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Abstract

In this thesis, we investigate the influence of counterparty risk on financial stability in

a banking system. Banks are exposed among each other via loans, credit derivatives,

repayment agreements, commercial bonds and other financial products. Losses caused

by counterparty failure can potentially result in a bank’s insolvency since a bank cannot

expect to retrieve the full value of any obligation to an insolvent counterparty. The

interconnectedness between institutions, in the form of exposure from one institution to

another, can propagate insolvency from one bank to another, create further insolvencies,

and eventually bring down the entire financial system.

We study a cascade counterparty risk model of interacting banks using liabilities

and assets to define banks’ balance sheets, which are further divided into interbank

assets and liabilities, modelling direct dependencies between banks. We further assume

that the balance sheet parameters are random variables. We simplify the system by

assuming that banks can be in two states: solvent or insolvent. The state of a bank

changes from solvent to insolvent whenever its liabilities are larger than the bank’s

assets, the so-called balance sheet test of insolvency. This creates a stylized banking

system that is analogous to the Random Field Ising model, a well-known model in the

statistical physics literature.

We solve the counterparty risk model semi-analytically by applying a mean-field

assumption that homogenizes the banking system for different location-scale distribu-

tions. We call this simplified version of the counterparty risk model the mean-field

model. The mean-field assumption allows us to conduct an analysis of the balance

sheet parameters to evaluate the stability of the banking system. We observe the de-

velopment of a fragile state where small perturbations to banks’ capital reserves can

trigger a sudden system failure. The parameter analysis further allows us to calculate

minimum capital requirements for banks ensuring a stable system, and to quantify the

cost of rescuing a defaulted banking system.
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Two simulation models are used to test for the robustness of the results of the

mean-field model. For the first simulation model, we consider a highly stylized bank-

ing system and verify that the mean-field model is robust for a variety of standard

network topologies and random distributions. More specifically, we find that the in-

terbank network is essential for the insolvency propagation. However, the structure of

the interbank network does not play a critical role for the distribution of counterparty

insolvency. We further show that diversification does not necessary reduce the risk of

system failure.

We also compute the critical balance sheet values for the stylized banking system

in the mean-field model, at which the fragile state occurs. For the second simulation

model, we use UK regulatory data to initialize the model. We show that a more realistic

heterogeneous system with different bank types and a complex underlying interbank

network calibrated on UK data also has systemic failures around similar sized shocks

to banks’ capital as computed for the stylized homogeneous system.

A network analysis on the exposure networks created using regulatory reports re-

veals a core-periphery topology with large internationally operating banks in the center

of the exposure network and smaller regional banks in the periphery. By aggregating

the fraction of surviving banks to specific bank types, we show that the behaviour of

banks towards failure is independent of the size of their balance sheets or their posi-

tion in the interbank network. This shows that bank-size heterogeneity and network

complexity play a marginal role in the mechanism leading to systemic failure. How-

ever, we also observe significant differences. Insolvencies in the heterogeneous system

start at smaller sized shocks than in the homogeneous system, and the residual frac-

tion of surviving banks ends at a larger value in the heterogeneous system than in the

homogeneous system.

In conclusion, we demonstrate that a simple counterparty risk model replicates

the behaviour of more complex simulation-based stress test models of a heterogeneous

banking system. This is significant because it allows for a better understanding of

the spread of system-wide insolvency, to draw policy implications such as the cost of

rescuing an insolvent banking system, and to specify capital requirements that ensure a

stable banking system that can be computed analytically using the mean-field model.
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Chapter 1

Introduction

In recent years, it became evident that the structure of the modern financial system can

cause sever danger to financial stability by spreading insolvency through obligations

on the interbank markets to other banks in the banking system (Haldane, 2009). The

risk that banks impose on others through interconnectedness is called counterparty risk

(Upper, 2011) and is the subject of this thesis.

In 2006, the US housing market started collapsing. This event induced a global

financial crisis with the aftermath still visible in 2015. Low interest rates provided by

the Federal Reserve enabled US banks to offer mortgages to people without deposits

and uncertain income. These mortgages were bundled with less risky mortgages and

sold as mortgaged backed securities to other banks and financial companies world-

wide. The idea was to diversify risk, grouping mortgage holders prone to failure with

less risky mortgage holders, thereby lowering the overall risk. In 2006, the Federal

Reserve raised its interest rate to 6% from a former low of 0.75% in 2002 (Kolb, 2010).

Banks raised interest rates of mortgages with adjustable interest rates as a consequence

to cover their increased cost of funding the mortgages. This caused numerous holders

of mortgages with adjustable interest rates to declare bankruptcy as they were not able

to maintain their mortgage payments. In turn, banks faced large losses due to credit

failure on their portfolios. The collapse of the US housing market resulted in a global

financial crisis.

Mortgage-backed securities became an alternative funding source in addition to

more traditional liabilities such as deposits and corporate bonds. In general, the market

for asset-backed securities increased tremendously. More specifically, the Financial

Crisis Inquiry Commission records in their report on the financial crisis:
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“By 1999, when the market was 16 years old, about $900 billion worth of

securitizations ... were outstanding.” (Financial Crisis Inquiry Commission

and others, 2011)

Securitization was only one way to fund the excessive growth of banks’ balance sheets

and mergers of banks that happened in the 90s and early 2000s. Interbank loans and

particularly over-night loans also formed an integral part of banks’ funding strategy.

The Financial Crisis Inquiry Commission notes on the issue:

“For example, at the end of 2007, Bear Stearns had $11.8 billion in equity

and $383.6 billion in liabilities and was borrowing as much as $70 billion

in the overnight market.” (Financial Crisis Inquiry Commission and others,

2011)

Over-night loans were used to satisfy banks’ liquidity needs but were also used as

financing for assets with maturity dates in the far future. Other ways for banks to obtain

funding were repurchase agreements (repos). A bank sold a security to a counterparty

and agreed to buy the security at an agreed date. Finally, banks were highly exposed to

each other via derivatives. The Financial Crisis Inquiry Commission states that

“... the notional amount of OTC [Annot.: over-the-counter] derivatives out-

standing globally was $95.2 trillion, and the gross market value was $3.2

trillion. In the seven and a half years from then until June 2008, when the

market peaked, outstanding OTC derivatives increased more than seven-

fold to a notional amount of $672.6 trillion; their gross market value was

$20.3 trillion.” (Financial Crisis Inquiry Commission and others, 2011)

Banks and other financial firms were highly interconnected through interbank exposure

and overlapping portfolios with the health of one company depending on the solvency

of others. Losses from mortgage providers easily spread to other parts of the financial

industry via mortgage backed securities and resulted in major uncertainty about the

future of financial firms. As a result, governments started bail-out programs providing

capital for struggling banks, and central banks initiated quantitative easing programs to

inject liquidity into the system, but also to give banks time to restructure their portfolios

to less risky products. For example,
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“the [Annot.: US] government ultimately committed more than $180 bil-

lion because of concerns that AIGs collapse would trigger cascading losses

throughout the global financial system.” (Financial Crisis Inquiry Commis-

sion and others (2011)

Even though the major banks were rescued and loans from governments to failing banks

were settled, the impact on the real economy and on society is still visible in 2015

with rates of unemployment high, and austerity measures in place intended to stabilize

economies (Kolb, 2010; Claessens et al., 2013).

In this thesis, we show that interconnectedness can accelerate the failure of a bank-

ing system. We restrict our investigation to how counterparty failure influences finan-

cial stability disregarding the influence of market risk. We acknowledge that market

risk played an important role during the financial crisis. However, for the moment, the

goal of this thesis is to provide a better understanding of how the insolvency cascade

process influences financial stability of a banking system. Having a better understand-

ing of this allows us to provide restrictions on banks’ balance sheet quantities to ensure

a more stable banking system.

An active literature modelling counterparty risk in banking systems using network

science and statistical modelling has emerged studying the impact of bank failure on

the stability of the banking system (Allen and Gale, 2000; Eisenberg and Noe, 2001;

Furfine, 2003; Nier et al., 2007; Gai and Kapadia, 2010; May and Arinaminpathy, 2010;

Cont et al., 2010; Battiston et al., 2012a; Fouque and Langsam, 2013). These models

are similar in that banks’ balance sheets consist of liabilities and assets. The balance

sheets are further divided into interbank assets and liabilities modelling direct depen-

dencies between banks. The interbank assets and liabilities create an interbank network

with banks being the nodes and interbank exposure forming the links of the network. In

these models, a bank is considered insolvent if its liabilities are larger than the bank’s

assets, which is called the balance sheet test of insolvency (Goode, 2010). The insol-

vency of a bank can be triggered by a random event (an initial bank failure, reduction

of asset values) that reduces banks’ loss absorbing capital and brings about counter-

party failure. In this thesis, we also introduce and study a cascade counterparty risk

model of interacting banks. In our model, banks can be in either of two states: solvent

or insolvent. This creates a stylized banking system that is analogous to the Random
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Field Ising model, a well-known model in the statistical physics literature. In our styl-

ized banking system, the balance sheet variables (assets, liabilities and loss absorbing

capital) are random variables. We also divide assets and liabilities into interbank and

non-interbank categories. The interbank assets and liabilities form the connection be-

tween banks. This allows us to also represent the interbank exposure using interbank

networks. We shock the system by lowering a fraction of all banks loss-absorbing cap-

ital initially. This causes some initial insolvencies. The interbank network propagates

the insolvency from one bank to another creating further insolvencies, and eventually

bringing down the entire system given a large enough shock.

We use a mean-field assumption to solve the insolvency cascade model semi-

analytically as well as numerically using simulation means. The mean-field assumption

homogenizes the banking system. This enables us to compute the equilibrium fraction

of surviving banks for fixed location and scale parameters of the balance sheet values

using a fixed point analysis. The fixed point analysis allows us to detail the parameter

ranges of balance sheet quantities that lead to a stable or unstable system. Because

of this, we can determine restricting ratios between loss absorbing capital and assets,

the leverage ratio, to ensure a stable banking system. We state this ratio for a variety of

location-scale distributions used to initialize banks’ balance sheets. The most dominant

feature of the mean-field solution is the occurrence of a fragile state, where one bank

can trigger the default of the entire banking system. This fragile state has been ob-

served in other studies (Gai and Kapadia, 2010; Amini et al., 2012; Hurd and Gleeson,

2011). We find that the important quantities regulating the fragile state are the ratios

of interbank assets to total assets, and loss absorbing capital to total assets. Moreover,

we quantify the costs of potential rescue attempts to re-direct an unstable system into

a stable region. We use balance sheet data for 2007 and 2012 to initialize the homoge-

neous counterparty risk model showing that the US and UK banking systems in 2007

were more prone to failure than in 2012.

To solve the counterparty risk model analytically, we make some restricting as-

sumptions. In particular, we assume an infinitely large banking system, where banks

are of similar size, and have equal-sized exposure to other banks. Additionally, we

assume that the value of non-interbank assets and liabilities do not change during the

insolvency propagation. To address the effects of these assumptions, we test for robust-
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ness and generality of the mean-field solution by solving the counterparty risk model

numerically. In particular, we change the structure of the exposure network and apply

different random distributions to initialize the balance sheet parameters. We argue that,

given a shock that causes the balance sheet parameters to shift into the unstable region,

the precise underlying topology of the exposure network is secondary for the propa-

gation of insolvency. Furthermore, we discuss how diversification of interbank assets

effects the fragile state. We do so by showing that if the reaction of banks to an external

shock to their balance sheet quantities results in similar losses of average capital, then

the fragile state can still be observed even for a highly diversified portfolio of interbank

assets. We also create banking systems of different sizes and compare the simulation

solution with the mean-field solution, concluding that for systems of all sizes the mean-

field solution is a fair approximation. Finally, we change the banks’ values of liabilities

and non-interbank assets during the insolvency propagation using (arbitrary) functions

to reduces non-interbank assets proportional to the fraction of surviving banks, and de-

crease the value of liabilities by injecting external capital into the banking system. We

discuss how the simulation results can be interpreted in the mean-field setting.

In the final part of this thesis, we use regulatory data of the UK banking system to

initialize both a simulation-based model as well as the mean-field model. Initializing

the simulation-based model with the UK regulatory data results in a highly heteroge-

neous banking system. Therefore, we call this model the heterogeneous model. The

heterogeneous model replicates a more realistic picture of a banking system than the

mean-field model. In both models, the system is stressed by artificially decreasing loss

absorbing capital. We observe in both models the occurrence of the fragile state and the

consequent systemic collapse and jump to a state where most banks are insolvent. We

demonstrate that in the heterogeneous model the systemic collapse happens around the

same values predicted by the mean-field model. Hence, we demonstrate that a simple

insolvency cascade model of a homogeneous banking system replicates the behaviour

of a more complex simulation-based stress test model of a heterogeneous banking sys-

tem. This is significant since it allows us to better understand the spread of system-wide

insolvency, to draw policy implications such as the cost of rescuing an insolvent bank-

ing system, and to specify capital requirements that ensure a stable banking system

from a simple counterparty risk model of a homogeneous banking system.
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As part of Chapter 6, we conduct a brief data analysis of the UK regulatory data

sets. The UK regulatory data sets consist of information about banks’ balance sheet

quantities used to initialize the model, namely, the value of banks’ total assets and Tier

1 capital. We conclude that the UK banking system consists of a wide variety of banks

with balance sheet sizes that differ by orders of magnitude. In addition, we examine

the structure of three exposure networks of the UK banking system constructed from

regulatory reports on bilateral exposure collected in 2011, 2012 and 2013. We show

that multinational banks are in the centre of the exposure network with regional banks

and small subsidiaries of foreign banks forming the periphery of the exposure network.

The results of the data analysis should be considered with caution as the data still

only provides a subset of the complete interbank network. Banks are required to only

report exposure to 20 counterparties worldwide. In the model, we only use the exposure

of UK banks to other UK banks to create the interbank network. The average links UK

banks have to other UK banks is seven. This reduces the ratio of interbank assets to

total assets considerably in comparison to values observed in other studies. For this

reason, the shock to banks’ loss absorbing capital has to be fairly large resulting in very

low leverage ratios ensuring a stable banking system. We address the low values of

interbank assets by increasing the exposure of banks artificially, thereby increasing the

average ratio of interbank assets to total assets of the entire system to values observed

in other studies.

We discuss in more detail the literature on cascade counterparty risk models in

Chapter 2, and we also state in more detail how the results in this thesis improve those in

on the literature in that chapter. The literature on cascade counterparty risk models can

be divided into two branches. The first branch solves the counterparty risk model using

simulations. Notable examples of studies of simulation-based cascade counterparty

risk models include Furfine (2003), Müller (2006), Nier et al. (2007) and Gai et al.

(2007). The second branch solves the model analytically. Notable examples of analytic

solutions of the model are Gai and Kapadia (2010), May and Arinaminpathy (2010),

Hurd and Gleeson (2011), Amini et al. (2012) and Glasserman and Young (2015).

The majority of studies (both simulation based and analytical) only investigate the

cascade process. That excludes shocks to banks’ capital caused by fluctuations in asset

and liability values. The initial shock in most studies is caused by a reduction of a bank’
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asset side of the balance sheet or one insolvent bank initially. In such studies the impact

of counterparty failure to the stability of the banking system is minimal (Müller, 2006;

Battiston et al., 2012c). Whereas solving the counterparty risk model using the mean-

field approach as done in this thesis can incorporate fluctuations to all banks’ capital.

This is significant because we are able to show that depending on the initial shock to

banks’ capital the banking system can shift into an unstable region, in which most of

the banks become insolvent. Using fluctuations to banks’ capital seems a more realistic

approach as the initial shock because shocks in financial markets are experienced by

most banks in the financial system.

Furthermore, in most studies, and simulation-based studies in particular, banks

have identical balance sheets. In these studies (Gai and Kapadia, 2010) diversification

of interbank assets lowers counterparty risk. However, we show that in a banking

system where banks have different ratios of capital to assets, diversification does not

necessary lower counterparty failure. This is in line with the results in Battiston et al.

(2012b) and Garnier et al. (2013). We argue that in a system where banks have multiple

counterparties, the probability of being connected to an insolvent bank also increases,

and therefore the risk of failure still exists.

We simulate the diversification of banks’ capital by assuming that the balance

sheet quantities are random variables during the initialization process. Because of that,

for each simulation we allow for small variations in banks’ capital. This seems like

a more reasonable assumption because it can be expected that banks’ balance sheets

change during daily business. Hence, even balance sheet data reported to regulators

most likely is outdated shortly after reporting. Thus, when using random distribution

of the balance sheet parameters, we can test the stability of the banking system for a

range of parameters close to the observed values.

Finally, we show that the UK interbank network has a core-periphery structure

using exposure data from the Bank of England. Other studies (Boss et al., 2004; Fricke

and Lux, 2015; van Lelyveld et al., 2012; Langfield et al., 2014) also determined that

interbank networks have a core-periphery structure. This result is not too surprising

as part of the dataset used in this thesis was also studied in Langfield et al. (2014).

Nonetheless, we extend on the study of Langfield et al. (2014) by providing more data

on the position of specific bank types in the interbank network.
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The thesis is structured as follows: Chapter 2 summarizes the current literature on

studies on cascade counterparty risk models and on the topology of interbank networks

and how the results of this thesis compare with those in the literature. Furthermore,

we briefly outline work on other systemic risk measures not strictly related to cascade

insolvency risk models. We do this because counterparty risk is part of systemic risk,

i.e. risk that can contribute to system failure. This is followed by Chapter 3, where we

state the cascade counterparty risk model used in this thesis, the assumptions leading

to the homogeneous mean-field model and the algorithms used to propagate insolvency

failure in the simulation-based models. In Chapter 4, we discuss the results of the mean-

field model. A comparison of the mean-field model and the solution of simulation

counterparty risk models are given in Chapter 5. A description and analysis of the

regulatory data forms the first part of Chapter 6. The comparison of counterparty failure

in heterogeneous and homogeneous banking systems initialized with the UK data is

presented in the second part of Chapter 6. The conclusions are given in Chapter 7.



Chapter 2

Literature Review

2.1 Cascade Counterparty Risk Models
As stated in Staum (2013):

”via contagion, the default of one firm is a cause contribution to default of

another.”

To test direct contagion effects, a literature on stylised banking systems has emerged

using network science and stylized balance sheets, modelling the dependencies of in-

terbank relationships (Eisenberg and Noe, 2001; Furfine, 2003; Cifuentes et al., 2005;

Nier et al., 2007; Gai and Kapadia, 2010; May and Arinaminpathy, 2010). Assets and

liabilities of banks are divided into interbank and non-interbank categories. The inter-

bank assets and liabilities form the links between the banks, and henceforth, are the

channels of default contagion.

2.1.1 Simulation-Based Studies
Most of the studied cascade counterparty risk models are simulation-based. Banks’

balance sheets are initialized using an arbitrary algorithm and the underlying interbank

network is constructed artificially using a standard network structure (i.e. Erdős-Rény,

Small-World (Watts and Strogatz, 1998) or Scale-Free (Barabási and Albert, 1999)

networks). Some influential studies, that use this theoretical approach are: Nier et al.

(2007); Gai et al. (2007); Heise and Kühn (2012); Anand et al. (2012). Other studies,

for example, Furfine (2003); Upper and Worms (2004); Mistrulli (2005); Elsinger et al.

(2006); Van Lelyveld and Liedorp (2006); Müller (2006); Iori et al. (2006); Degryse

and Nguyen (2007); Memmel and Stein (2008); Cont et al. (2010); Mistrulli (2011);
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Solorzano-Margain et al. (2013), use real world data of banks’ balance sheets and real-

world interbank networks to test for the resilience of a banking system.

2.1.1.1 This Thesis in Relation to the Literature on Simulation-Based

Studies of the Cascade Counterparty Risk Model

We also use simulation-based models in Chapters 5 and 6. The simulation-based risk

models in the later chapters use the same algorithm distributing insolvency through the

banking system as used in studies presented above, for example, Furfine (2003) and

Müller (2006). In Chapter 5, we show that the solution of the mean-field model can be

replicated with simulation-based models for various network topologies and underlying

random distributions for the balance sheet parameters.

Instead of using fixed values for assets and liabilities, we initialize our banking

system, assuming that the balance sheet quantities are random variables. This initial-

ization process of banks’ balance sheets differs from other studies. In some studies,

banking systems are initialized such that banks have the same balance sheets (for ex-

ample, Nier et al. (2007); Gai et al. (2007)). This initialization process creates highly

homogeneous banking systems. Real world banking systems, however, consist of banks

that vary largely in size. In other studies, real-world balance sheet values are extracted

from banks’ annual reports and used to initialize the cascade process. We also use real-

world balance sheet data in Chapter 6. However, in our initialization process, the real-

world balance sheet data are used as the mean-values of the random distribution used to

initialize the balance sheets. The stochasticity in our model allows us to introduce some

diversity in banks’ initial capital, and causes banks to react slightly differently in each

stress test simulation. Because of the stochasticity, a shock can have different effects to

the banking system depending on the distribution of banks’ initial capital, whereas in

deterministic initialization processes the same shock will lead to the same result. The

stochastic method is more realistic because banks’ balance sheets and capital reserves

change continuously during operation. Because of this, any measurements of banks’

balance sheets are already inaccurate the next day.

In simulation-based stress tests, it is easy to add extra algorithms to make the styl-

ized banking system more realistic. For instance, Cifuentes et al. (2005), Müller (2006)

and May and Arinaminpathy (2010) test the effects of liquidity shortage; in Gai et al.
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(2011) unsecured claims, repurchase agreements and haircuts are included in the simu-

lation; and in Anand et al. (2012) banks can choose to withdraw their funds (foreclose)

early to a counterparty to limit losses in the event of insolvencies. We also use addi-

tional functions to change the values of interbank assets and liabilities in Section 5.5.

As in the literature, we observe that a reduction in the value of interbank-assets dur-

ing the insolvency cascade can result in or accelerate system failure. Additionally, we

explain the effects of the functions in our mean-field setting.

2.1.2 Analytic Solutions of the Cascade Counterparty Risk Model

Simplifying the model set-up allows one to extract information about the insolvency

propagation analytically. For example, in Gai and Kapadia (2010) banks’ balance

sheets are said to be identical. The interbank network is the source of randomness in

their model. That is, the total interbank assets of a bank are divided by the out-degree

of the bank creating different weighted exposure links between banks. Applying this

simplification, they used a method combining probability generating functions of de-

gree distributions with the probability of a bank being connected to an insolvent bank

(discussed in more detail in Watts (2002)) to determine the probability of default of

the banking system conditional on the out-degree of banks. They show that if banks

diversify their interbank assets to many other banks, then the probability of default

of the entire banking system is reduced. The result in Gai and Kapadia (2010) is to

some extent confuted by Battiston et al. (2012b) and Garnier et al. (2013), where they

allow balance sheet quantities (non-interbank assets and liabilities) to differ. The het-

erogeneity causes diversification of interbank exposure and does not necessarily stop

the system from defaulting. This was also indicated in Iori et al. (2006), where both

models of homogeneous and heterogeneous banking systems were studied using sim-

ulation means calibrated on data of the Italian Money Market. In Amini et al. (2012)

and Amini et al. (2013), they generalise the results of Gai and Kapadia (2010) using

asymptotic analysis on insolvency cascades on networks. They show that there exists

a point, at which one bank can trigger entire system default. Another investigation of

the influence of diversification is found in Hurd and Gleeson (2011). There, they find

that the size of a shock to the capital that causes system failure. Glasserman and Young

(2015) also use connection probabilities to evaluate banks’ risk of insolvency. They
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compare these to banks’ idiosyncratic risk of failure due to market effects. They de-

termine that only if the idiosyncratic risk is high, interbank connectivity can result in

insolvency propagation.

In May and Arinaminpathy (2010), a mean-field approach homogenizing the bank-

ing system is used to determine the fraction of insolvent banks after 3 rounds of insol-

vency. Gleeson et al. (2013) constructs an iterative cascade model and replicates the

results of Nier et al. (2007), Gai et al. (2007) and May and Arinaminpathy (2010) by

finding some fixed points of an iteration function. The conclusions relevant for regu-

lators based on the model discussed in May and Arinaminpathy (2010) are discussed

in Haldane and May (2011). In that paper, they argue for new sets of leverage/capital

ratios and increasing the regulatory requirements of systemically important banks.

Finally, some measures of systemic risk have been proposed using as their foun-

dation the cascade counterparty risk model. For example, Debtrank (Battiston et al.,

2012c) determines the impact of a single or multiple banks insolvency on the rest of

the banking system using an iterative process. This causes the overall losses due to

counterparty risk to be relatively small. In addition to pure counterparty failure, the

contagion index (Cont et al., 2010) also includes external shocks to banks capital re-

serves, which leads to a risk measure that incorporates potential capital losses that

increases the probability of insolvency of single banks.

2.1.2.1 This Thesis in Relation to the Literature on Analytic Solutions

of the Cascade Counterparty Risk Model

The counterparty risk model studied in this thesis is based on the balance sheet model

used by Nier et al. (2007) and Gai et al. (2007). Futhermore, we assign a state to each

bank that determines whether a bank is insolvent or not, which bears similarities to the

set-up in Solorzano-Margain et al. (2013). More specifically, we say, bank i is solvent

if its state is one, and zero if the bank is insolvent. Because of that the model presented

in this thesis is analogous to the Lattice Gas model (Griessen, 1983), (Richards, 1984),

a model used to represent the motion of atoms. The state of the banks depends on

interbank exposure but also the values of non-interbank assets and liabilities. This

assumption leads to a stylized banking system that is analogous to the Random Field
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Ising model (Dahmen and Sethna, 1996), (De Dominicis and Giardina, 2006).1 The

application of this kind of model in the context of economic and financial behaviour

has been reviewed in Bouchaud (2013), and its application to credit default models has

been discussed in Hatchett and Kuehn (2009). RFIM can be solved analytically using

a mean-field assumption as is done in this thesis. The solution of the RFIM adopted

to represent the dynamics in a banking system in this thesis is a modified version of

the Curie-Weiss solution of the RFIM. The Curie-Weiss solution at zero temperature of

the RFIM shows a first order phase transition (de Matos and Perez, 1991), (Bouchaud,

2013) that in the context of the adaptation of the model to a banking system explains

the fragile state where the majority of banks change their state from solvent to insolvent

or vice versa.

In general, the mean-field approach allows us to calculate the stability of the bank-

ing system for a wide variety of balance sheet parameters. In Chapter 4, we apply a

mean-field assumption that is similar to the one simplifying the cascade model in May

and Arinaminpathy (2010). Thereby, we assume that the interbank exposure between

banks is the same, disregard the interbank network, and consider banks with similar

sized balance sheets only. In our model, liabilities and non-interbank assets are random

variables, and because of this, our banking system differs from the banking system

constructed in May and Arinaminpathy (2010). In May and Arinaminpathy (2010), the

balance sheet quantities of banks are the same values for all banks. Assuming random

assets and liabilities allows us (i) to determine the fraction of banks that survive an

external shock to their balance sheets and (ii) to conduct a parameter analysis, which

reveals the regions, where a fragile state becomes possible. Our results are in line with

the findings in Gai and Kapadia (2010), Amini et al. (2012) and Hurd and Gleeson

(2011). We also observe a fragile state, at which the majority of banks in banking

system change from solvent to insolvent, given a shock to banks’ initial capital.

Furthermore, we replicate the results of Gai and Kapadia (2010) in Chapter 5 and

discuss diversification of interbank assets within the setting of our methodology. We

show that for a particular range of parameters, diversification becomes less significant

in order to prevent the fragile state.

1The Ising model (Ising, 1925) was first used to model ferromagnetic spins that can either be in two
states: up or down. The lattice Gas model is a specific version of the Ising model where the state is either
one or zero.
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Most of the models (Gai and Kapadia, 2010; May and Arinaminpathy, 2010)

studying counterparty risk consider counterparty risk on its own, disregarding the in-

fluence of potential losses in system-wide capital (notable exceptions are Elsinger et al.

(2006), Cont et al. (2010), Amini et al. (2012), Hurd and Gleeson (2011) and Glasser-

man and Young (2015)). Instead, they discuss counterparty risk given that the initial

shock is represented by the loss of one bank in the banking system or a value reduction

of one banks assets. A reason why it is important to consider considerable capital losses

when dealing with not only counterparty risk but systemic risk in general is formulated

in Acharya et al. (2014):

“If a firm fails in isolation, other financial firms will step in and take over

its activities. However, in a period of aggregate stress where the whole fi-

nancial sector is undercapitalized, financial firms cannot find the resources

to take over other firms activities; thus, failing firms impose negative ex-

ternalities to the real economy.”

In Glasserman and Young (2015), they even show that without shocks to banks’

capital reserves system-wide, the insolvency hardly ever propagates through the in-

terbank network. Furthermore, we calculated the size of the average shock to banks’

capital that causes a system crash, and we find that only within the vicinity of the fragile

state one bank can trigger counterparty failure.

The results of the mean-field model are published in Birch and Aste (2014).

2.2 Literature on the Topology of Interbank Networks
Studies of direct contagion in a banking system are related to the study of the topology

of exposure networks. Interbank exposure networks can be constructed from informa-

tion on payments systems, interbank lending, or other exposure such as derivatives and

repayment products. Interbank exposure and its effects on counterparty risk have led to

an active study of interbank exposure networks, where direct obligations between banks

are depicted as graphs. Among the first theoretical studies on interbank markets are the

works conducted by Rochet and Tirole (1996), Allen and Gale (2000) and Freixas et al.

(2000). The networks in these early studies are relatively small consisting of only a

small number of banks. Basic concepts such as risk diversification and liquidity needs
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are discussed theoretically. Since then, multiple studies on the structure of real-world

interbank networks - consisting of a couple of hundred banks, were carried out, e.g. in

Müller (2006) and Upper (2011). Some of these studies challenged the results of these

early studies. For example, when increasing the number of banks and considering a

heterogeneous system, diversification of interbank assets does not always lead to a sta-

ble system (Battiston et al., 2012b; Garnier et al., 2013) as suggested in Allen and Gale

(2000).

This highlights the importance of empirical studies of the topology of interbank

networks. However, studies of real world interbank networks are restricted due to lim-

ited access to bilateral exposure data. Bilateral exposure data are mostly collected by

banking regulators and are not publicly available, since they are classified as market

changing information. Langfield and Soramäki (2014) state regarding the opaqueness

of interbank exposure data:

“...links between financial institutions are typically unobserved by market

participants. Banks chief risk officers know their employer’s counterparty

risk exposures, but not the counterparty risk exposures of their employer’s

counterparties. Large broker-dealers typically have some information re-

garding their clients’ exposures, but uncertainty nonetheless dominates.”

In particular, banks report their bank-to-bank exposure2 to their regulatory authority.

Other sources of bilateral exposure include electronic trading platforms such as e-MID

(electronic market for interbank deposits) (e MID, 2014; Iori et al., 2006) or the Fed-

wire Funds Services (Board of Governors of the Federal Reserve System, 2014; So-

ramäki et al., 2007). Regulatory reports and credit registers have restricted access due

to their sensitive nature. Thus, most studies on interbank lending are conducted by

central banks or bank regulators sometimes in cooperation with academics (for exam-

ple, Hungary (Lublóy, 2005), Italy (Mistrulli, 2005, 2011; Delpini et al., 2013; Bargigli

et al., 2015), Austria (Elsinger et al., 2006), Mexico (Solorzano-Margain et al., 2013;

Martı́nez-Jaramillo et al., 2014) and Brazil (Cont et al., 2010)). In most cases, the in-

terbank networks created from regulatory data contain information on banks belonging

to the country of the regulators, excluding foreign banks because these do not fall into
2For example, in the UK the Prudential Regulation Authority, a division of the Bank of England, is

responsible for collecting bilateral exposure reports.
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the geographic area of the regulator’s responsibility. When studying the topology of

interbank networks, the exclusion of foreign banks can cause distortions. For exam-

ple, in the European Union an active cross-border market is present. However, each

country collects information on bilateral exposure for banks only that are situated in its

jurisdiction (European Systemic Risk Board, 2015).

In other studies of country specific interbank networks, datasets are used to con-

struct interbank networks of a variety of financial products (i.e. interbank credit, deriva-

tives, repayment products and other securities), which are restricted either by a limit on

the number of counterparties that banks have to report, or only include exposure above

a certain threshold. Thus, the incomplete information on interbank networks restricts

studies on the influence of interbank exposure on counterparty risk. This is because

models calibrated with incomplete interbank networks underestimate counterparty risk.

Examples of studies of incomplete interbank networks include the UK (Langfield et al.,

2014), Germany (Van Lelyveld and Liedorp, 2006; Memmel and Stein, 2008; van

Lelyveld et al., 2012), Switzerland (Müller, 2006), and Austria (Boss et al., 2004).

In Chapter 6, we use UK interbank exposure data first studied in Langfield et al. (2014)

to calibrate both the mean-field model as well as a heterogeneous simulation model of

counterparty risk.

Datasets on payment flows are used to reconstruct payment and money market

networks in the USA (Soramäki et al., 2007; Bech and Atalay, 2010; Battiston et al.,

2012a) using data on Fedwire; in Denmark (Amundsen and Arnt, 2005; Rørdam and

Bech, 2008) using regulatory reports; and in the Euro-area (Arciero et al., 2014) using

TARGET2 (Trans European Real-time Gross settlement Express Transfer) data. In

these datasets, transactions between banks are monitored. That is, if a bank A conducts

a transfer to a bank B, and bank B returns that transfer (plus interest) at a later time,

then it is assumed that bank A was exposed to bank B.

The literature on interbank networks suggests that there exists a core-periphery

structure with internationally operating banks forming the core of the interbank net-

work and a periphery consisting of smaller banks that operate on a national basis (Boss

et al., 2004; De Masi et al., 2006; Craig and Von Peter, 2010; Wetherilt et al., 2010;

Langfield et al., 2014). Specifically, it has been observed that the density of interbank

networks are relatively low with small clustering coefficients and disassortative mixing
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of the degree (Upper, 2011). In Cocco et al. (2009), it is argued that the core-periphery

structure in a country specific interbank market occurs because smaller regional banks

have limited access to international markets and tend to use the domestic interbank

markets via large internationally operating banks.

Another category of studies on interbank networks uses banks’ balance sheet re-

ports and algorithms to infer interbank networks. An early algorithm used to construct

an approximated interbank network is the entropy maximization algorithm, as used by

Upper and Worms (2004) and Degryse and Nguyen (2007). Information about banks to-

tal interbank assets and liabilities to or from other banks is distributed using maximum

entropy. This creates an interbank network where obligations are spread as equally

as possible creating a fully connected graph. However, this algorithm disregards any

community structure and low density as observed in real networks, and therefore was

not deemed suitable to create interbank networks, as it underestimates the impact of

counterparty risk (Mistrulli, 2011; Mastromatteo et al., 2012). The maximum entropy

algorithm is tweaked in Mastromatteo et al. (2012) where they adopt the maximum

entropy algorithm by tuning the degree of sparsity by bounding the maximum possible

degree of sparsity to create a more realistic network.

In Musmeci et al. (2012), a bootstrapping method is used to reconstruct the topol-

ogy of financial networks. This algorithm can be used provided there is information

given about the connectivity of a small subset of nodes. To construct the network, they

use an exponential random graph model that has to satisfy constraints provided from

the initial seed network and other information.

The core-periphery algorithm in an interbank setting (Craig and Von Peter, 2010)

is also used to construct exposure networks. The algorithm creates a network, where

banks can be classified into two groups: core and periphery banks. In a perfect

core-periphery network, periphery banks are only connected to core banks. Whereas,

core banks are connected to periphery banks but also other core banks. The core-

periphery algorithm was studied in Craig and Von Peter (2010), Fricke and Lux (2015)

and Langfield et al. (2014). The studies reveal that the networks produced using the

core-periphery algorithm provide a better fit to real world networks than networks con-

structed using the maximum entropy algorithm.
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2.2.0.1 This Thesis in Relation to the Literature on Interbank Networks

We refrain from using any of the algorithms discussed above to construct the interbank

network, as we were able to obtain real-world exposure data to construct our networks

in Chapter 6. Nonetheless, we think that due to a lack of publicly available data, al-

gorithms are needed to replicate the the core-periphery form of interbank networks.

Hence, we intend to redirect our future research to the fine tuning of these algorithms

and, for this and other reasons, provide more network measures in Section 6.1.3 to

obtain a better understanding of the topology of interbank networks.

In alignment with the literature on interbank networks, we find that the exposure

data studied in this thesis also produces core-periphery interbank networks. This is not

surprising because part of the data (2011) used to produce the interbank networks was

already studied in Langfield et al. (2014).

2.3 Short Overview of Other Systemic Risk Models
Financial contagion can occur via indirect and direct channels. Insolvency propagation

via interbank exposure is only one (direct) channel of insolvency contagion in a banking

system. An other channel is asset price fluctuations. In this thesis, we focus on the

effects of direct exposure from one bank to another and how this effects the stability of

a banking system. For completeness, this section gives a brief overview of works on

systemic risk, where asset price fluctuation and correlated portfolios are considered the

source for an unstable banking system. Fouque and Langsam (2013) provide a more

detailed collection of papers and an extensive review of the most current literature on

systemic risk.

Influential studies examining indirect channels include, for example, the measure:

Conditional Value at risk (CoVar) by Adrian and Brunnermeier (2011), a variation of

the Value at Risk (VaR3). CoVar uses the quantile function, measuring whether a bank

is at its VaR conditional on other institutions being at their VaR. The Systemic Ex-

pected Shortfall (SES) by Acharya et al. (2010), a variation of the Expected Shortfall

(ES4), measures “... the amount a bank’s equity ... drops below its target level ... in

3VaR states the value of a quantile function of loss distributions that a bank is likely to lose over a
time period given a certain confidence interval.

4Acharya et al. (2010) defines ES as: “... the expected shortfall is the average of returns on days
when the portfolio’s loss exceeds its VaR limit.”
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case of a systemic crisis” (Acharya et al., 2010). The distress insurance premium mea-

sure introduced by Huang et al. (2009) and Huang et al. (2012) is “based on credit

default swap (CDS) spreads of individual banks and the co-movements in banks equity

returns”(Huang et al., 2012). The three measures rely on time series analysis of banks’

portfolios.

In Billio et al. (2012) correlation and causality measures on financial institutions’

returns are used to quantify systemic risk. They conclude “that linkages within and

across all four sectors [Annot.: banking, insurance companies, hedge funds and bro-

ker/dealers] are highly dynamic over the past decade, varying in quantifiable ways

over time and as a function of market conditions. Over time, all four sectors have be-

come highly interrelated, increasing the channels through which shocks can propagate

throughout the finance and insurance sectors” (Billio et al., 2012).

Segoviano and Goodhart (2009) calculate the banking system’s portfolio multi-

variate density, which characterizes “both the individual and joint asset value move-

ments of the portfolio of banks representing the banking system” (Segoviano and Good-

hart, 2009), by computing the joint probability of distress of the banking system. A

similar approach is used in Tsatskis (2012), where he solves for the distribution of in-

solvent banks using multi-name latent variable models. Specifically, he uses normal

distributions for the underlying balance sheet variables. The outcome in both papers

depends on the choice of the underlying copulas used to combine the default probabil-

ities of single banks and might vary greatly for different random distributions.

Banks and asset classes form the set of nodes of bipartite networks in Caccioli

et al. (2014), where the Galton-Watson process is used to determine the influence of

overlapping portfolios on financial stability. In both Tsatskis (2012) and Caccioli et al.

(2014), asset prices are reduced proportional to the number of insolvent banks. This

causes the banking system to turn from a stable system to an unstable system, given

variations in capital. Thus, the interconnectedness of banks causes a fragile state similar

to the one observed in the cascade counterparty risk models.

Agent-based models have been used to model banking and other financial systems

(Lux and Marchesi, 2000; Hommes, 2006; Farmer and Geanakoplos, 2009). In agent-

based models of systemic risk, banks (or other financial companies) form the agents.

An algorithm models the strategy and interaction of banks in the system. This results
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in macro-economic observable behaviour of the banking system. The simulation-based

nature of agent-based models allows for testing of different strategies, for example

banks having additional information on other banks’ systemic risk influence (Thurner

and Poledna, 2013), the inclusion of a central bank (Geanakoplos et al., 2014), or test-

ing new regulations such as the influence of a transaction tax (Poledna and Thurner,

2014), or the effects of a bail-out of an insolvent bank (Klimek et al., 2014).

Finally, stress test platforms like the Systemic Risk Monitor (Boss et al., 2006),

the Risk Assessment Model for Systemic Institutions (Alessandri et al., 2009) and the

V-Lab (Acharya et al., 2014) incorporate cascade models based on balance sheets and

interbank networks, and various other risk measures, like CoVar and SES, when evalu-

ating the stability of financial systems.



Chapter 3

The Cascade Counterparty Risk

Model

Summary The chapter details a description of the counterparty risk model studied in

this thesis. Stylized balance sheets contain information about banks’ assets, liabilities

and capital. If banks’ assets are smaller than banks’ liabilities, the bank is said to be in-

solvent. The insolvency propagates through an interbank exposure network. Insolvent

banks reduce the asset side of their counterparties causing further insolvencies. The

chapter also includes the assumptions and derivations of the mean-field model - a vari-

ation of the counterparty risk model that can be solved semi-analytically by creating a

homogeneous banking system. Finally, the assumptions and the insolvency algorithm

of a simulation-based counterparty risk model are described.

3.1 Counterparty Risk Model
The counterparty risk model studied in this thesis investigates the insolvency propaga-

tion caused by counterparty failure in a banking system following an initial shock to

banks’ assets or liabilities.

In our model, we consider N banks. A bank i is assigned a state, S
i

(t), displaying

whether the bank is solvent or insolvent at time t:

S
i

(t) =

8
<

:
1 if bank i is solvent

0 if bank i is insolvent
. (3.1)

We adopt the stylized balance sheet introduced by Nier et al. (2007) and Gai et al.

(2007), considering liabilities and assets. A schematic diagram of a simple balance
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Figure 3.1: This figure represents a stylised balance sheet of bank i. The total liabilities of
bank i at time t, L

i

(t), is the sum of the bank’s non-interbank liabilities, ˆL
i

(t), and
interbank funding,

P
N

j=1

g

ji

. The total assets of bank i at time t, A
i

(t), is the sum
of non-interbank assets, ˆ

A

i

(t) and interbank exposure,
P

N

j=1

g

ij

(t)S

k

(t). Addi-
tionally, the value of exposure to an insolvent bank is considered by introducing a
recovery rate, q

ij

(t) such that the term
P

N

j=1

q

ij

(t)g

ij

(t)(1�S

j

(t)) states the value
of any exposure to insolvent banks j. The difference in the bank’s total assets and
liabilities is the bank’s capital E

i

(t) = A

i

(t) � L

i

(t). A bank is said to solvent if
A

i

(t) � L

i

(t). If A
i

(t) < L

i

(t), the bank is said to be insolvent.

sheet of a bank ‘i’ is given in Figure 3.1.

The balance sheet quantities are divided into interbank and non-interbank quan-

tities. The exposure matrix G = {g
ij

(t)}
1i,jN

describes the interbank network at

time t; interbank exposure is modelled by adding all the exposures of banks j at time

t to a bank i, and multiplying each exposure to bank j with the state of bank j, i.e.
P

N

j=1

g
ij

(t)S
j

(t). The state of a bank j indicates whether bank j is able to fulfill any

obligation to bank i. In the event of a bank being insolvent and not being able to return

the full amount of exposure to any loaner banks, the loaner bank can usually expect

a reduced amount of the original value of the exposure during insolvency procedures.

The fraction of the amount of exposure, that bank i receives from an insolvent bank,

is called the recovery rate. In particular, we say matrix Q(t) = {q
ij

(t)}
1i,jN

, where

q
ij

(t) 2 [0, 1] contains the recovery rates q
ij

(t) at time t for any exposure g
ij

(t) from

bank i to bank j, such that an additional term
P

N

j=1

q
ij

(t)g
ij

(t)(1 � S
j

(t)) models the

value of an exposure of bank i to bank j at time t, when bank j is insolvent. The to-

tal assets of bank i at time t are the sum of non-interbank assets, ˆA
i

(t), and interbank
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Table 3.1: The table states a list of variables of bank i at time t used in the balance sheet
model. S

i

(t) describes the state of bank i, g

ij

(t) models the loan from bank i

to bank j. Similarly, g

ji

(t) is the loan from bank j to bank i. The recovery
rate of any defaulted exposure from bank i to bank j is given as q

ij

(t). The
total interbank exposure from bank i to bank j is

P
N

j=1

g

ij

(t)S

j

(t), and bank
i receives funding on the interbank market of a total amount of

P
N

j=1

g

ji

from
banks j. The value of defaulted exposure is

P
N

j=1

q

ij

(t)g

ij

(t)(1 � S

j

(t)). The
non-interbank assets are represented by ˆ

A

i

(t), and ˆ

L(t) denotes non-interbank de-
posits, and E

i

(t) denotes the bank’s loss absorbing capital. The total assets are

A

i

(t) =

ˆ

A

i

(t) +

P
N

j=1

✓
g

ij

(t)S

j

(t) + q

ij

(t)g

ij

(t)(1 � S

j

(t))

◆
, and the total lia-

bilities are L

i

(t) =

ˆ

L

i

(t) +

P
N

j=1

g

ji

(t).

Variable Description of variables
S
i

(t) State of bank i
A

i

(t) Total assets
L
i

(t) Total liabilities
E

i

(t) Capital
ˆA
i

(t) Non-interbank assets of bank i at time t
ˆL
i

(t) Non-interbank liabilities
g
ij

(t) Interbank loan from bank i to bank jP
N

j=1

g
ij

(t)S
j

(t) Total interbank exposureP
N

j=1

q
ij

(t)g
ij

(t)(1� S
j

(t)) Total value of defaulted exposureP
N

j=1

g
ji

(t) Total interbank funding

assets at time t:

A
i

(t) = ˆA
i

(t) +
NX

j=1

✓
g
ij

(t)S
j

(t) + q
ij

(t)g
ij

(t)(1� S
j

(t))

◆
. (3.2)

Similarly, the liabilities are the sum of non-interbank liabilities ˆL
i

(t) and interbank

liabilities
P

N

j=1

g
ji

(t) such that the total liabilities of bank i at time t are:

L
i

(t) = ˆL
i

(t) +
NX

j=1

g
ji

(t). (3.3)

The loss absorbing capital of bank i at time t is the difference between total assets and

total liabilities, i.e.

E
i

(t) = A
i

(t)� L
i

(t). (3.4)

The above equation is the Balance Sheet Equation. Table 3.1 summarizes the variables

used in this model.
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The stress criteria are modelled by using the balance sheet test to determine insol-

vency, as outlined in Goode (2010). Namely, a bank is said to be insolvent if assets are

less than liabilities at time t, i.e. the Insolvency Condition is:

A
i

(t) < L
i

(t). (3.5)

In legal terms, a bank defaults if it is not able to pay back a loan upon maturity. Whereas

insolvency occurs if a bank’s liabilities are larger than a bank’s assets (Goode, 2010).

Thus, insolvency and default are not synonyms but describe two legal processes that

can result in the bankruptcy of a bank. Nonetheless, we sometimes refer to “default”

in this thesis when the correct term is insolvency. In particular, we use default if most

banks of the entire banking system are insolvent and say the banking system defaulted.

Given that the state of a bank i is determined by the Insolvency Condition, Eq. 3.5,

consequently the state of a bank at time t+ 1 is

S
i

(t+ 1) = H
c

(A
i

(t)� L
i

(t)), (3.6)

where H
c

(x) = 1 for x � c and H
c

(x) = 0 for x < c. For the purpose of this

thesis, we set c to zero and omit writing the subscript from now on. In some countries,

solvency procedures are started when the capital of a bank is still positive but when

capital reaches a certain threshold of total assets.1 In this case, c should be adjusted to

the value at which solvency procedures start.

Note that, an insolvent bank (S
i

(t) = 0) can recover and change its state to S
i

(t+

1) = 1 if the difference between liabilities and total assets is positive: A
i

(t) > L
i

(t).

This possibility can occur whenever capital is introduced to a distressed bank, as done

via quantitative easing (QE) or government bail-outs. The cost of returning to a stable

system as well as more details about capital injections are discussed in Chapter 4.

Finally, the fraction of surviving banks, p
t+1

2 [0, 1], at time t+ 1 is given by

p
t+1

=

1

N

NX

i

H(E
i

(t))). (3.7)

In the Ising model literature describing spin systems, E
i

(t) = A
i

(t) � L
i

(t) is
1For example, see regulations in Mexico (Solorzano-Margain et al., 2013).



3.2. Mean-Field Model 37

called the ‘incentive function’ (De Dominicis and Giardina, 2006). The probability of

bank i to be in a particular state, using the logit rule (which is a standard choice to

determine the probability of a spin being in a particular state) is:

P (S
i

(t) = 1|E
i

(t� 1)) =

1

1+exp(��Ei(t�1))

, (3.8)

where � is the inverse temperature of the spin system. When � tends to zero (infinite

temperature limit) the incentive does not influence the state of the bank. Hence, bank

i is normally operating or under stress with probability 1/2. Conversely, when � tends

to infinity (zero temperature limit) then Eq. 3.6 is recovered. Thus, the map introduced

in Eq. 3.7 belongs to the Random Field Ising models (RFIM) at zero temperature, a

model in statistical physics that describes the spin of atoms (De Dominicis and Giar-

dina, 2006). In addition, RFIM have been used to investigate the behaviour of other

complex systems, where the state of actors can be modelled as a binary decision influ-

enced by other actors in the system. For example, Weidlich (1994) used the model to

study decision making, Newman (2002) for the development of epidemic spread and in

Heise and Kühn (2012), it was used to investigate credit derivatives.

3.2 Mean-Field Model
The mean-field model is a simplified version of the counterparty risk model introduced

in Sec. 3.1. In order to obtain a closed form expression of the fraction of surviving

banks, assumptions are made that homogenize the banks in the banking system.

Furthermore, we are looking at the instantaneous stress imposed on a banking

system given a particular distribution of non-interbank assets and liabilities. Hence, any

change in the investment after the system is stressed is neglected. More specifically,

it is assumed that the time to counteract a shock using other investment strategies is

of larger order of time than the instantaneous stress imposed by insolvent banks to its

creditors. Therefore, we consider most of the balance sheet quantities to be constant in

time. Specifically, we consider that the process of stressing a bank and the consequent

loss of the interbank exposure are much more imminent than the distribution of any

assets belonging to an insolvent bank. Therefore, even if the creditor of a bank is

insolvent, the bank still has to pay any outstanding loans towards the insolvent bank.
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Furthermore, we assume that transfers of assets belonging to the insolvent bank to

counterparties are excluded. Hence, we say that the liabilities of bank i, L
i

(t) = L
i

are

constant in t and vary from bank to bank as drawn from a random distribution.

The non-interbank assets ˆA
i

(t) = ˆA
i

are also considered constant in t and drawn

from a random distribution. This represents different investment decisions, and hence,

different investment returns. Then Eq. 3.7 can be written as

p
t+1

=

1

N

NX

i=1

H(

ˆA
i

� L
i

+

NX

j=1

✓
g
ij

S
j

(t) + q
ij

g
ij

(1� S
j

(t))

◆
). (3.9)

For interbank loans, we assume a mean-field, i.e. the average amount bank i is

exposed to all other banks,
P

N

j=1

g
ij

S
j

(t), is approximated with zgp
t

, where z is the

average number of banks that bank i is exposed to and assumed to be very large, g is

the average loan borrowed from one bank to another and p
t

2 [0, 1] is the fraction of

solvent banks at a given time t as before. Similarly, the recovery rate is averaged and

constant in t: q
ij

(t) = q. Then Eq. 3.9 changes to

p
t+1

=

1

N

NX

i=1

H(

ˆA
i

� L
i

+ zgp
t

+ zqg(1� p
t

)). (3.10)

A probability distribution belongs to the family of location-scale distributions, if

for any random variable X with distribution function from such a family, one can find

another random variable Y = µ + �X , where µ 2 R and � > 0, with distribution

function also in that family (Rinne, 2011). The parameter µ is called the location

parameter and � is the scale parameter. Furthermore, if X’s location parameter equals

zero and it has a scale parameter of one, X is called the standardized variable.

Let us use the assumption here that ˆA
i

and L
i

are independent and follow dis-

tributions in the location-scale family with location parameters µ
ˆ

A

and µ
L

, and scale

parameters �
ˆ

A

and �
L

, respectively. The random variable ˆA
i

�L
i

therefore has location

parameter µ = µ
ˆ

A

� µ
L

and scale parameter � =

q
�2

ˆ

A

+ �2

L

.

Normal distributions belong to the family of location-scale distributions. If ˆA
i

and L
i

are drawn from Normal distributions, the location parameter, µ, is the mean of

the non-interbank assets minus the mean of liabilities and � is the standard deviation,

which represent the level of uncertainty of the expected value for non-interbank assets

and liabilities.
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To transform the CDF into a standard location-scale CDF, let ˆA
i

� L
i

= µ + �✏
i

,

where the standardized variable ✏
i

is taken from a standard location-scale distribution.

Then Eq. 3.9 changes to

p
r

=

1

N

NX

i=1

P (µ� �✏
i

+ zqg > �zg(1� q)p
r�1

), (3.11)

and the Insolvency Condition becomes

✏
i

<
�µ� zqg

�
� zg(1� q)

�
p
r�1

. (3.12)

For convenience, let us introduce the following two variables:

a =

�µ� qzg

�
, (3.13)

and

b =
zg(1� q)

�
. (3.14)

By using the above assumptions and assuming that N is very large, we can simplify

Eq. 3.11 and write the fraction of solvent banks after r rounds of insolvency as

p
r

= F (p
r�1

), (3.15)

where F (x) = 1 � P (a � bx) is a cumulative distribution function (CDF). The term

a � bp
r�1

states the average capital of a bank in round r. The function described in

Eq. 3.15 is a monotone increasing function on a compact set. This ensures that the map

in Eq. 3.15 has at least one stable fixed point (Smith, 2008). We present a more detailed

analysis of the fixed points in Chapter 4. Given an initial fraction, p
0

, of surviving banks

(note that p
0

can differ from one), the solution of Eq. 3.15 is a fixed point probability

satisfying p = F (p|p
0

). Hence, the fraction p represents the probability of the survival

of the banking system.

In the RFIM literature, the parameter b models the influence of agents on other

agents. In our model, b describes the average exposure minus the average expected

value of defaulted exposure divided by the scale parameter, �, of the sum of non-
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interbank assets and liabilities, and hence b is always positive. When b is negative,

banks would have to pay their loaners to keep the exposure. When b equals zero, then,

whether a bank is insolvent, depends solely on the distributions of the non-interbank

assets and liabilities. If the standardized variable ✏
i

is drawn from a standard Normal

distribution, it is to be expected that half the banks are insolvent when a and b equal

zero. Conversely, when b becomes larger, i.e. when the average total interbank expo-

sure becomes larger, or when the recovery rate becomes smaller, or the scale parameter

of the sum of non-interbank assets and liabilities becomes smaller, then, for a fixed a,

the system is more resilient. However, we will see in Chapter 4, there exists a criti-

cal value b
c

, at which the behaviour of the system changes from a smooth decline in

normally operating banks to a sudden decrease, which we call the fragile state of the

banking system.

The parameter a is the difference between the location parameters of liabilities

and non-interbank assets, µ, and the average recovery value of defaulted exposure,

qzg, divided by the scale parameter of non-interbank assets and liabilities, �. If a is

negative, then the location value of non-interbank assets and expected recovery term

are larger than the liabilities. The denominator of a is the scale parameter, �. If a is

negative and � tends to zero, then a tends to minus infinity, leading to a more stable

system. However, if a is positive, then � ⌧ 1 leads to a more unstable system. Instead,

if the location parameter of non-interbank assets is sufficient to counter the liabilities,

i.e. a ⌧ 0, a large � would imply that for some banks, their non-interbank assets would

not be enough to satisfy the Solvency Condition, Eq. 3.5. Therefore, if the interbank

loans are not sufficient, these banks are insolvent. Conversely, if a � 0, then a large

� is desirable, as this implies that for some banks, their non-interbank asset value is

higher than the expected value. Thus, these banks can satisfy the Solvency Condition,

Eq. 3.5, and will operate normally.

These assumptions homogenize the system, but it should be noted that banking

systems in most countries are far from a homogeneous system. Indeed, banks’ balance

sheets differ greatly. In particular, we discuss the size of UK banks in more detail in

Section 6.1, showing that some banks’ balance sheets only contain a few hundred Mil.

GBP, especially smaller regional building societies, and other banks’ assets are worth a

few trillion GBP (large internationally operating banks headquartered in the UK).
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We study a homogeneous system because it can be solved semi-analytically. A

reason why a homogeneous solution of a heterogeneous system can still be of interest is

the particular structure of the interbank network. It has been shown that in some coun-

tries the interbank network structure can be described as a tightly connected core with

international banks in the centre and smaller regional banks in the periphery (Müller,

2006; Fricke and Lux, 2015). We reach the same conclusion in Section 6.1, where we

investigate an interbank exposure network constructed from UK regulatory reports. In

the core-periphery structure, the larger international banks in the core are of similar

size. Therefore, we can argue that, for systemic risk, the most relevant part of the inter-

bank network is the homogeneous core network of large banks, which can be modelled

using the homogeneous mean-field model.

Furthermore, in Chapter 6, we compare a simulation-based model of a hetero-

geneous banking system with the homogeneous model solution, concluding that both

models lead to similar results: we show that a fragile state, at which most of the banks

in the banking system suddenly become insolvent occurs, for both models, with a sim-

ilar sized shock to their balance sheet quantities. This suggests that a simple model

of a homogeneous banking system sufficiently describes the main features of a more

complex model of a hetereogenous banking system.

3.2.1 The Ratio of Interbank Assets to Total Assets, ✓

For convenience, let us introduce here the ratio of interbank assets to total assets, ✓.

To derive the mean-field model solution containing ✓, we use the same assumptions as

above up to and including Eq. 3.10. We further assume A
i

(0) is drawn from a location-

scale distribution with location parameter µ
A

and scale parameter �
A

. We say that

zg = ✓A
i

(0) and ˆA = (1 � ✓)A
i

(0), and assume that p
0

equals one. Furthermore,

we assume as before that L
i

is drawn from a location-scale distribution with location

parameter µ
L

and scale parameter �
L

. Thus, we have

(1� ✓)A
i

(0) + ✓A
i

(0)� L
i

= µ
A

� µ
L

+

p
�2

A

+ �2

L

✏
i

= (1� ✓)µ
A

+ ✓µ
A

� µ
L

+

p
�2

A

+ �2

L

✏
i

.
(3.16)
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Then Eq. 3.10 can be written for r = 1:

p
1

=

1

N

NX

i=1

P

✓
(1� ✓)µ

A

+ ✓µ
A

� µ
L

+

q
�2

A

+ �2

L

✏
i

< 0

◆
, (3.17)

where P (.), as before, is the CDF of the location-scale distribution. The fraction of

operating banks after r iterations then can be written as:

p
r

=

1

N

NX

i=1

P

✓
(1� ✓)µ

A

+ ✓µ
A

p
r�1

+ q✓µ
A

(1� p
r�1

)� µ
L

+

q
�2

A

+ �2

L

✏
i

< 0

◆
,

(3.18)

For N ! 1, the above equation can be simplified further to:

p
r

= 1� P

✓
a

0 � b
0
p
r�1

◆
, (3.19)

where we reduced the multi-parameter system to the following two parameters given

�
0
=

p
�2

A

+ �2

L

:

a
0
=

�(1� ✓)µ
A

+ µ
L

� q✓µ
A

�0 , (3.20)

and

b
0
=

(1� q)✓µ
A

�0 . (3.21)

We have two reasons for introducing ✓. First, we use ✓ to calibrate the simulation-

based model of counterparty failure described in the next section. When comparing

the simulation solution with the solution of the mean-field model, a0 and b0 are used to

calculate the mean-field solution. Second, estimates for ✓ can be obtained from other

studies (Müller, 2006; Upper, 2011). Whereas it is more difficult to retrieve zp from

publicly available data.

3.3 Simulation-Based Counterparty Risk Model
The mean-field assumption of the interbank market implies that each bank lends the

same amount to all other banks and that the size of banks’ balance sheets are roughly

the same, with similar capital reserves to counteract a shock to banks’ non-interbank

assets and liabilities. In Chapter 5, we test the robustness of the results of the mean-
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field model by comparing it with a simulation-based model. In Chapter 6, we use two

regulatory datasets from the BoE to calibrate a simulation-based model.

The banking system discussed in Chapter 5 is still highly stylised using standard

network structures and random distributions to initialize the banking system. Whereas

when constructing the banking system studied in Chapter 6, we use real-world expo-

sure networks and balance sheet data. For this reason, the initialization processes of the

simulation-based models are stated in the beginning of Chapters 5 and 6 in more detail.

However, the assumptions about balance sheet variables during the insolvency propa-

gation are mostly the same in both simulation models and outlined in the following.

For both simulation-based models, the number of banks N is fixed and, as in the

general model layout, each bank i is assigned a state S
i

(0) 2 {0, 1}, stating whether

bank i is solvent (S
i

(0) = 1) or not (S
i

(0) = 0). As in the mean-field model, we also

consider the instantaneous impact of counterparty failure. Hence, we assume liabilities,

L
i

(t) = L
i

, non-interbank assets, ˆA
i

(t) =

ˆA
i

, interbank exposure, g
ij

(t) = g
ij

, and

recovery rates, q
ij

(t) = q
ij

do not change in time. The total liabilities, L
i

, and the initial

value of total assets, A
i

(0), of bank i are assumed to be random variables.

For the same reasons as in the mean-field model, we assume that interbank liabil-

ities to insolvent banks have to be returned also to an insolvent bank. Hence, we use

total liabilities, L
i

, in the simulation models only. Interbank assets are the sum of the

exposure from bank i to bank j multiplied by the state of banks j plus the recovery

value of the exposure:
P

N

i=1

g
ij

S
j

(0) + q
ij

g
ij

(1� S
j

(0)). The total assets of bank i in

round r are then

A
i

(r) = ˆA
i

+

NX

i=1

g
ij

S
j

(r) + q
ij

g
ij

(1� S
j

(r)) (3.22)

The insolvency cascade algorithm describes the propagation of insolvency of

banks in the banking system. Specifically, we use a similar algorithm as proposed

in Furfine (2003), where at each iteration round r:

1. The total assets, A
i

(r), are calculated using Eq. 3.22 for each bank i.

2. For all banks i, the difference between total liabilities, L
i

, and total assets, A
i

(r),

is calculated, simultaneously.
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3. For any bank i with negative capital, A
i

(r)�L
i

, the state of bank i is set to zero.

4. The iteration is repeated until no bank changes its state.

When the process stops, all surviving banks are counted and the fraction of surviv-

ing banks, p, is computed as the total number of surviving banks divided by the total

number of banks.

3.3.1 Differences in the Assumptions of the Simulation Models
In Chapter 5, each bank i is initially calibrated with liabilities L

i

and assets A
i

(0) drawn

from random distributions with location µ
L

and scale �
L

for liabilities, and location µ
A

and scale �
A

for total assets.

We construct the interbank network using standard network structures (Erdős-

Rény networks, Small-World networks (Watts and Strogatz, 1998) and a Barabási-

Albert networks (Barabási and Albert, 1999)). The adjacency matrix of the standard

network, X = {�
1ijN

}, indicates whether a bank i is exposed to a bank j (i.e.

�
ij

= 1) or not (i.e. �
ij

= 0). The total interbank assets of a bank i are computed using

a fixed fraction, ✓ 2 (0, 1), of interbank assets to total assets, such that the total inter-

bank exposure is: ✓A
i

(0). To extract the value g
ij

of interbank assets from bank i to

bank j, ✓A
i

(0) is divided by the degree of bank i, z
i

=

P
N

j=1

�
ij

. Hence, the individual

loan from bank i to its neighbouring banks j is ✓A
i

�
ij

/z
i

. The difference between total

initial assets, A
i

(0), and total interbank assets, ✓A
i

(0), are the non-interbank assets, ˆA
i

,

of bank i.

The recovery rate is constant for all exposures from bank i to bank j, such that

an element of the recovery matrix Q can be written as q
ij

= q. Hence, the value of

recovered loans are given as q✓A
i

(0)g
ij

.

In Chapter 6, each bank i is initially calibrated with liabilities L
i

and assets A
i

(0)

drawn from random distributions with location µ
Li and scale �

Li for liabilities, and

location µ
Ai and scale �

Ai for total assets, i.e. µ
Ai , µLi , �Ai and �

Li are chosen individ-

ually for each bank. This creates a highly heterogeneous banking system where banks

vary greatly in the size of their balance sheets.

The value of interbank exposure, g
ij

, from bank i to bank j is taken from the

regulatory data. The non-interbank assets, ˆA
i

, are the difference between the total

initial assets, A
i

(0), and the sum of bank i’s exposure to other banks,
P

N

j=1

g
ij

.
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We disregard the recovery rate, q
ij

, in the simulation model of the heterogeneous

banking system. The reason for this is quite practical: we do not have data on the

recovery rate of exposure between specific banks. Thus, the recovery rate is set to zero.

3.3.2 Changes in the Value of Balance Sheet Quantities Over Time

Fire-sales, QE, bank runs and bail-outs are examples that potentially change the value

of banks’ balance sheet quantities during the insolvency propagation. To investigate the

effects of value changes in time of balance sheet quantities, we incorporate functions

that alter the value of assets or liabilities following the initial shock to banks’ balance

sheets.

For the simulation model in Chapter 5, we apply a function that changes the bal-

ance sheet values of a bank i at time t. If a bank becomes insolvent, its assets are

liquidated to satisfy debtors demands. This might cause a change in the price value of

specific assets due to an over supply of these assets. When mark-to-market accounting

is used to evaluate the value of the asset side of balance sheets, other banks experience

a shock to their balance sheets because of asset devaluation. In particular, we use an

inverse demand curve for the illiquid asset to simulate a reduction in the asset value

caused by the insolvency of banks:

ˆA
i

(r + 1) = exp(�
1

(1� p
r

))

ˆA
i

(r), (3.23)

where 
1

2 [0, 1] is a constant. Thus, exp(�
1

(1 � p
r

)) reduces the value of non-

interbank assets of a bank i in round r proportional to the fraction of insolvent banks,

1� p
r

.

Eq. 3.23 captures the effect of asset value reduction by multiplying the initial value

of non-interbank assets with the exponential function. It should be noted that there is

no evidence that a price reduction indeed corresponds to an exponential function that

is proportional to the fraction of insolvent banks. We nonetheless use this form as it is

in accordance with the literature. Other studies (Cifuentes et al., 2005; Müller, 2006;

May and Arinaminpathy, 2010; Tsatskis, 2012) use the same function to investigate the

impact of price reduction of assets and liquidity shortages.

To model a reduction in the value of the liability side of the balance sheet, we use
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the following function:

L
i

(r + 1) = (1� 
2

)L
i

(r), (3.24)

where 
2

2 [0, 1] is a constant as before. Eq. 3.24 is a simple linear reduction of the

liability side of the balance sheet, which can be used to model a capital infusion to a

bank i as done during government bail-outs.

For the simulation model, any function describing the movement of the value of

the asset or liability side can be used. Other examples include the geometric random

walk (Webber and Willison, 2011), which is usually used to model the price movement

of assets. The functions used in this thesis are chosen to a certain extent arbitrarily

as there is no evidence that the precise form of an asset reduction or capital infusion

resembles an exponential or linear function. We chose the functions as they can be

easily included into our model set-up, and the effects of the functions to the stability of

the banking system can be explained using the equilibrium solutions of the mean-field

model.

3.4 The Initial Shock to Banks’ Balance Sheets

There are multiple ways to shock the banking system. Some studies consider the failure

of one or multiple banks initially (Battiston et al., 2012c; Gai et al., 2011). Other

studies (May and Arinaminpathy, 2010; Gai, 2013) shock banks’ capital by reducing

or increasing a fraction of banks asset or liability side of the balance sheet.

In this thesis, we vary the capital of banks to induce the initial shock. We do this

for technical convenience when comparing different model solutions. A negative shock

to banks’ capital decreases the amount of the bank’s capital by increasing the value of

liabilities or decreasing the asset side of the balance sheet. A positive shock to banks’

capital is achieved by a reduction of the bank’s liabilities or an increase in the value

of assets. In particular, we vary the liability side of banks’ balance sheets to induce a

shock to banks’ liabilities. However, we could have equally chosen to reduce the asset

side of banks’ balance sheets. All the calculations and simulations can be repeated

using a shock to banks’ asset side and will lead to the same solution.
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3.5 Conclusion
In this chapter, we outlined the general counterparty risk model that we study in this

thesis to obtain a better understanding of counterparty risk in a banking system. We

mapped a counterparty risk model to a RFIM by assuming that a bank can be either

solvent or insolvent. Additionally, we use a mean-field assumption to simplify the

counterparty risk model and obtain an iterative map stating the fraction of surviving

banks in any iteration round. We call this simplified version the mean-field model. The

iteration map is governed by two parameters: a and b that contain the information of

the average balance sheet parameters of banks in the banking system. The parameter

a states the difference between the averages of liabilities, and non-interbank assets and

the recovery term of defaulted exposure divided by the variance of liabilities and non-

interbank assets. The parameter b states the average interbank exposure (excluding

the recovery value of exposure) of banks in the banking system divided by the vari-

ance of liabilities and non-interbank assets. Finally, we introduce the assumptions and

algorithm of a more heterogeneous simulation-based version of the counterparty risk

model.



Chapter 4

Mean-Field Model Results

Summary The chapter contains a discussion of the equilibrium solutions of the mean-

field counterparty risk model. A fixed point analysis of the iteration map describing the

insolvency propagation reveals the occurrence of a hysteresis cycle for the equilibrium

fraction of surviving banks. This implies that the solution of the iteration map is history

dependent and allows one to calculate the cost of rescuing a defaulted banking system.

Additionally, we conduct a parameter analysis of the balance sheet variables and their

influence on the stability of the banking system. We show that below a specific leverage

ratio, one bank can trigger the insolvency of most of the banks in the banking system.

The calculations are repeated for multiple location-scale distributions to show that the

results are robust. Finally, we use balance sheet data from UK and US banks to discuss

the stability of each banking system in the years 2007 and 2012.

4.1 Fixed Points
The counter party risk model presented in Chapter 3 is part of the Curie-Weis models.

The analysis presented in this chapter uses the equilibrium solution of the Curie-Weis

mean-field model at zero temperature to show a phase transition experienced by the

banking system, whereby the banking system changes from a stable to an unstable state

and vice versa. Curie-Weis models have been studied extensively in the past decades

and the reader is directed to Weidlich (1971), de Matos and Perez (1991), Sethna et al.

(1993), Dahmen and Sethna (1996), and Bouchaud (2013) for more details. To study

the behaviour of the iteration map in Eq. 3.15 (p
r

= 1� P (a� bp
r�1

) = F (p
r�1

)), we

investigate the fixed points, p, of the iteration map F (.). The fixed point of an iteration

map is reached when p = F (p). The propositions and lemmas used in this Section can
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be found in the Appendix, Chapter A. Using Lemma A.4.1 ensures that the iteration

map in Eq. 3.15 has at least one fixed point since p
r

, p
r�1

, ...p
0

for p
s

2 [0, 1] is a

monotone sequence, and [0, 1] is a compact set. Using Eq. 3.15 and assuming P (.) is a

standard Normal CDF, we can write:

F (x) = 1� �(a� bx), (4.1)

where �(.) is the standard normal CDF. Using a Normal distribution as the underlying

random distribution for the balance sheet quantities is a standard choice in the RFIM

literature. Note that the following discussion can be repeated with other location-scale

distributions (see Section 4.7). The assumption to draw the random variables from

location-scale distributions is not necessary. The sudden decline in the fraction of sur-

viving banks can also be observed with other random distributions. For example, in

Chapter 5, we initialize the balance sheet variables with Lognormal and Loglogistic

distributions and obtained similar results. The advantage of using location-scale distri-

butions is that it allows one to reduce the multi-parameter model into a two-parameter

model, where the two parameters, a (the weighted average difference of liabilities, and

the sum of non-interbank assets and the value of interbank exposure of insolvent coun-

terparties) and b (the weighted average value of interbank assets minus the recovery

term of insolvent exposure) are defined as stated in Eqs. 3.13 and 3.14.

In order to investigate the fixed points, we report in Figure 4.1 (first row) various

plots of the iteration map p
r

= F (p
r�1

) for different values of a and b for r from r = 0

to r = 100. It becomes clear, that, given particular parameter values, and the same

starting value, the fixed points change. This is better illustrated in the second row of

Figure 4.1, where p� F (p) is plotted, which crosses zero at the fixed point. This is of

importance as the roots of p� F (p) are the fixed points of p
r

= F (p
r�1

).

In Lemma A.4.2, we see that x� F (x) undergoes a behavioural change at b = b
c

.

The critical parameter is a common result of the Curie-Weis solution leading to the first

order phase transition (Dahmen and Sethna, 1996), (Bouchaud, 2013). For the standard

Normal CDF, b
c

equals
p
2⇡. If b < b

c

, then x� F (x) is strictly increasing. However,

if b > b
c

, then x � F (x) has a maximum x
1

and a minimum x
2

as shown in Lemma

A.4.2. Depending on the position of x
1

� F (x
1

), x
2

� F (x
2

) and a, p
r

= F (p
r�1

) has
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Figure 4.1: The first row of this figure shows F (p) form Eq. 4.1 vs. p for r = 0, ..., 100

with various combinations of parameters a and b. The second row shows plots of
p�F (p). The extreme values, x

1

and x

2

, of p�F (p) are indicated with a cross and
the corresponding fixed points, w

1

, w

2

and w

3

are the points where p�F (p) crosses
zero. The arrows indicate which fixed point is reached starting at a particular p

0

.

up to three fixed points.

Substituting x
1

= F (x
1

) and solving for a, allows one to determine a
1

= b +
q

2 ln

b

bc
� b�(

q
2 ln

b

bc
). Similarly, for x

2

= F (x
2

), the weighted, average difference

of liabilities and non-interbank assets is a
2

= b�
q
2 ln

b

bc
� b�(�

q
2 ln

b

bc
).

To be more specific, say b > b
c

and a 2 (a
1

, a
2

), we have x
1

� F (x
1

) > 0 and

x
2

� F (x
2

) < 0. Thus, x � F (x) has three roots, and therefore, p
r

= F (p
r�1

) has

three fixed points: w
1

, w
2

and w
3

, where w
1

< x
1

< w
2

< x
2

< w
3

. Furthermore, the

derivative of F (x) is

F 0
(x) =

b

b
c

exp

✓
� (a� bx)2

2

◆
(4.2)

Note that F 0
(x

1

) = 1 = F 0
(x

2

). For x ! ±1, we have exp(� (a�bx)

2

2

) ! 0. Thus,

for x < x
1

or x
2

> x, F 0
(x) tends to zero and is less than one. Using Proposition

A.4.1, w
1

and w
2

are therefore stable fixed points. Because F 0
(x) equals one only for

x = x
1,2

, F 0
(w

2

) has to be larger than one. Hence, using Proposition A.4.2, w
2

is an

unstable fixed point.

To summarize, if the starting value p
0

is in the orbit [0, w
1

] or [w
3

, 1], then the

attracting fixed points are w
1

or w
3

, respectively. If p
0

2 [w
1

, w
2

], then w
2

is a repelling

fixed point and w
1

is the attracting fixed point that is eventually reached. Similarly, if
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Figure 4.2: The figure shows two subplots. In the first row, the first derivative of F (x), F 0
(x),

is plotted against x. In the second row, the function x � F (x) is plotted against
x. The parameters a = 2.5 and b = 5 are fixed for each plot. Additionally,
the maximum (x

1

, vertical black line) and minimum (x
2

, vertical black line) of
x� F (x) as well as fixed points of p

r

= F (p

r�1

) (w
1

, w

2

and w

3

, vertical purple
line) are indicated. It becomes clear that for the chosen values of a and b, w

1

and w

2

are stable fixed points and w

2

is an unstable fixed point since F

0
(w

1

), F

0
(w

3

) < 1

and F

0
(w

2

) > 1.

p
0

2 [w
2

, w
3

], the fixed point eventually reached is w
3

.

To illustrate the occurrence of three fixed points, we plotted in Figure 4.2 F 0
(x)

(first subplot) and x�F (x) (second subplot) against x for fixed a = 2.5 and b = 5. For

b = 5, we have a = 2.5 2 (a
1

, a
2

). We marked the maximum (x
1

) and minimum (x
2

)

of x� F (x) with vertical, black lines as well as the fixed points of p
r

= F (p
r�1

) with

vertical, magenta lines. The horizontal, red line in the first subplot indicates where the

y-axis is equal to one. In the second subplot, the horizontal, red line indicates where

the y-axis equals zero. As in Figure 4.1, the intersections of x � F (x) with zero in

the second row represent the fixed points of p
r

= F (p
r�1

), namely w
1

, w
2

and w
3

. It

becomes clear that F 0
(w

1

) and F 0
(w

3

) are less than one and F 0
(w

2

) is larger than one

for a = 2 and b = 5. Hence, w
1

and w
2

are stable and w
2

is unstable.

For b > b
c

and a < a
1

, x
1

�F (x
1

) and x
2

�F (x
2

) are less then zero. But x�F (x)

tends to infinity as x tends to infinity. Hence, x � F (x) has only one root. Similarly,

for a > a
2

, x
1

� F (x
1

) and x
2

� F (x
2

) are larger then zero and x� F (x) ! �1 for

x ! �1. Thus, for a < a
1

and a > a
2

, x� F (x) has one root and p
r

= F (p
r�1

) has
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one fixed point: w
1

, which is stable (by Lemma A.4.1).

For a = a
1

and b > b
c

, x � F (x) has two roots with one root being x
1

. That is

because for a = a
1

, x
1

� F (x
1

) equals zero. Furthermore, x
2

� F (x
2

) is less then

x
1

� F (x
1

) because at x
2

, x � F (x) is at its local minimum. Note that @(x�F (x))

@a

> 0

for all a, which implies that for increasing a and fixed x, x� F (x) increases. Let 0 <

✏ < a
2

� a
1

and consider the case a = a
1

+ ✏ (then a 2 (a
1

, a
2

)). Thus, p
r

= F (p
r�1

)

has the three fixed points w
1

, w
2

and w
3

. For ✏ ! 0, w
2

tends to x
1

since x � F (x)

decreases for decreasing a. Similarly, w
1

tends to x
1

for decreasing a. Eventually, w
1

and w
2

merge at x
1

for ✏ = 0. Thus, the left-hand side of x
1

is stable. Whereas the

right-hand side of x
1

is unstable. Any iteration process with starting value p
0

in the

orbit [0, w
1

= w
2

] will reach the fixed point w
1

. However, if p
0

2 [w
1

= w
2

, w
3

], the

fixed point reached is w
3

, which is a stable fixed point. For p
0

2 [w
3

, 1], the attracting

fixed point is again w
3

.

A similar argument can be used to show that for a = a
2

and b > b
c

, we have

w
2

= x
2

= w
3

, i.e. w
2

and w
3

merge at x
2

implying that if p
0

2 [w
1

, w
2

= w
3

], then w
1

is the attracting fixed point. If p
0

2 [0, w
1

] or p
0

2 [w
3

, 1], then the fixed points reached

are w
1

and w
3

, respectively.

Finally, if b < b
c

, x � F (x) is strictly monotonically increasing. Therefore, p
r

=

F (p
r�1

) has only one fixed point, w
1

. By Lemma A.4.1, w
1

is stable.

In general, for at least three fixed points to become possible in the iteration process

p
r

= F (p
r�1

), the following conditions need to be satisfied: F 0
(x) is a positive real-

valued, bell-shaped, continuous and differentiable probability distribution function; and

the balance sheet parameters can be tuned such that F 0
(x) is larger than one.

In Figure 4.3, we illustrate how the number of roots of x�F (x) depends on a. The

figure shows various plots of x�F (x) for fixed b = 3 and varying a 2 [1.2228, 1.7772].

Note that for b = 3 > b
c

, we have a
1

⇡ 1.4228 and a
2

⇡ 1.5772. More specifically,

for the magenta coloured graphs, a 2 [1.2228, a
1

). For the red and blue line, a equals

a
1

and a
2

, respectively. For a 2 (a
2

, 1.7772], the graphs are coloured cyan. In addition,

we plotted horizontal, dotted lines indicating the roots of the thicker graphs. It becomes

clear that for a 2 [1.2228, a
1

) and a 2 (a
2

, 1.7772], x � F (x) has one root. Hence,

p
r

= F (p
r�1

) has one fixed point. For a = a
1

and a = a
2

, x�F (x) has two roots, and

p
r

= F (p
r�1

) has two fixed points. The figure illustrated further that for a 2 (a
1

, a
2

),
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Figure 4.3: The figure shows x�F (x) against x for fixed b = 3 > b

c

and a 2 [1.2228, 1.7772].
Note that for b = 3, we have a

1

⇡ 1.4228 and a

2

⇡ 1.5772. Magenta coloured
graphs indicate x � F (x) for a 2 [1.2228, a

1

), for the blue line a = a

1

, for the
green lines a 2 (a

1

, a

2

), for the red line a = a

2

, and for the cyan lines a 2
(a

2

, 1.7772]. The dotted horizontal lines indicate the roots of the ticker graphs. For
a 2 [1.2228, a

1

) and a 2 (a

2

, 1.7772], x � F (x) has one root. For a = a

1

and
a = a

2

, x � F (x) has two roots, and for a 2 (a

1

, a

2

), x � F (x) has three roots.
This is important as the roots of x� F (x) are the fixed points of p

r

= F (p

r�1

).

x� F (x) has three roots, and p
r

= F (p
r�1

) has three fixed points.

In terms of the stability of the modelled banking system, we note that for b > b
c

a barrier, represented by the unstable fixed point, can occur, such that the number of

operating banks does not decrease below a certain value (or increases above a certain

value). However, if there is a change in the parameter values, then it becomes possible

that the entire system suddenly collapses (or becomes fully functional again). Hence,

for b < b
c

, the system is reversible, but for b > b
c

, a hysteresis cycle occurs, such that

the system becomes irreversible, and depends on its history. The hysteresis cycle is a

well known phenomena in Curie-Weis models at zero temperature (Bouchaud, 2013).

Therefore, a large amount of lending on the interbank market (i.e. large b when p
0

= 1)

can help to stabilize the system, if the corresponding value for liabilities and mean value

of non-interbank assets are such that a < a
2

, because, in this case the barrier prevents

an entire system failure.
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4.2 Change in the Number of Surviving Banks Induced

by One Bank Failure
For a small change from p

r

to p
r+1

, the change in the number of surviving banks is given

by NF 0
(p

r

) . Note that F 0
(x) is the probability density function that ✏

i

= a�bx. Thus,

the number of banks becoming distressed as a consequence of one bank changing from

operating normally to insolvent in the next iteration is (Dahmen and Sethna, 1996):

n = F 0
(x). (4.3)

If n is less than one, any avalanche will eventually stop. This is because one insolvent

bank triggers on average less than one bank to become insolvent. Whereas, if n � 1,

one bank’s insolvency can trigger an entire system failure. Starting with p
0

= 1, for b >

b
c

and x = x
1

, n is precisely one. The maximum of F 0
(x) is reached when x = a/b. At

this point the number of insolvent banks triggered by one bank in the following iteration

is of order z suggesting that all the neighbouring banks of the initially insolvent bank

become all insolvent as well.

4.3 Parameter Analysis
We have observed that when b becomes larger than the critical value b

c

, the system

passes from a reversible kind of dynamics to an irreversible one, where hysteresis cycles

emerge. This is illustrated in Figure 4.4, where the fixed point probability values are

plotted for varying a for various b ranging from b = 0, ..., 15. The solid blue lines

indicate the stable fixed points, whereas the blue dashed lines indicate the unstable

fixed points. The hysteresis cycle is indicated by the red arrows.

We can observe that at b = 0, when banks are not lending to each other, the

system is stable for negative values of a; fluctuations in the asset side of the balance

sheet equation can cause banks to fail and, at a = 0, half the banks in the system are

insolvent. By lending money from one bank to another (b > 0), the system becomes

more stable with smaller numbers of banks in distress for the same values of a.

If a increases further but b is kept constant, then more banks fail as the difference

between the banks non-interbank assets and liabilities increases. Hence, the capital in

the system is lowered (for constant � and q). If b is below its critical value, then the
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Figure 4.4: This figure shows the fraction of surviving banks as a function of the parameter a
for given fixed values of b. The blue graphs are the solution of the iteration map 4.1
for different b values whereby b = 1, ..., 15. The solid lines indicate stable fixed
points whereas the dotted lines indicate unstable fixed points. If the fixed point is
unique as in the case for b = 1, 2, no hysteresis occurs for decreasing or increasing
a. For this value of b > b

c

and a particular range of a, three fixed points become
possible leading to a hysteresis cycle. The thick blue line indicates the fixed points
for b = 7. The red arrows indicate the hysteresis cycle that occurs for b = 7.
Starting from p

0

= 1, the parameter a needs to increase to a = a

2

⇡ 5.04 for the
entire system to default. If the starting value is p

0

= 0 then a needs to decrease to
a = a

1

⇡ 1.96 for the banks to be operating. Thus, the path is history depended.

system is reversible and all fixed points are stable. If b becomes larger than the critical

value b
c

and a < a
2

, almost the entire system is stable (if p
0

= 1) because of the barrier.

However, if a increases above a
2

, then the whole system suddenly crashes. We call the

sudden system failure the fragile state.

If a is constant but b decreases, then a sudden jump becomes possible as well. Let

us here note that a decrease in b happens, if average interbank loans zg decrease, or

the variance � =

p
�

ˆ

A

(t)2 + �
L

(t)2 increases. In Iori et al. (2012), it was shown that

during the financial crisis, there was indeed a decrease in the amount of money loaned

but the interest rates for loans also increased. Thus, b decreased, and a increased due

to changes on the financial markets. In our stylized system, this is a mechanism that

would create disastrous consequences unless b < b
c

.

In order to return to a normally operating system after the crash, a needs to be re-

duced at least to a
1

. Then a sudden jump brings the whole system operative again.

Hence, the cost of rescuing a banking system is given by the difference between
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Figure 4.5: The figures show the fraction of operating banks for given a and b obtained by
numerically solving the Iteration Function 4.1 starting from an initial value p

0

= 1

(plot A) and p

0

= 0 (plot B). The hysteresis behaviour becomes visible form the
jump occurring in (A) at a = a

2

and in (B) at a = a

1

.

a
1

(b(t)) and a
2

(b(t + �t)), where b(t) is the value of b at the beginning of the crisis

and b(t+ �t) the value of b at the time of rescue.

To be more specific, let us here discuss the case b = 7 and starting from fully

operating banks (i.e. p
0

= 1). Here, the infinite avalanche occurs when a reaches

a
2

⇡ 5.04. Whereas, if one starts with all banks insolvent, a would need to be lowered

to a
1

⇡ 1.96, in order to return to a stable system. In Figure 4.4, this cost is indicated

by the green arrow.

Figure 4.5 is a plot of the equilibrium fraction of surviving banks for different

parameter values. The figure contains two plots: A and B, and depicts the solution of

Eq. 4.1 for different values of a and b when the initial state of all banks is p
0

= 1 (plot

A) or p
0

= 0 (plot B). Whenever b = 0, the fraction of surviving banks depends only on

the CDF of non-interbank assets and liabilities. In the case of the standard normal CDF,

for a = 0, half of the banks are expected to be under stress; at a = �2.5, the equilibrium

fraction of operating banks is p ⇡ 0.9938; whereas for a = 2.5, the equilibrium fraction

of operating banks is p ⇡ 0.0062. If 0 < b < b
c

, the system becomes more stable,

which is obvious as the asset side of the balance sheet is increased and the interbank

loans act as an extra asset. If a is kept constant, then either extra capital is introduced

in the system or the values µ
L

, µ
ˆ

A

, q, �
L

and �
ˆ

A

change such that a stays constant.

Further, for values of b in that range, the decline in the fraction of solvent banks for
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increasing a is still smooth. When b > b
c

, the fraction of solvent banks suddenly jumps

from almost all banks solvent to almost all banks insolvent, which happens because of

the occurrence of the multiple fixed points as outlined in Section 4.1.

4.4 Relation Between a and b

For fixed capital E(p), the parameters a and b are dependent on one another such that

the parameter a can be expressed in terms of b as:

a = �E(p)

�
+ bp. (4.4)

Thus, a change in a given a fixed b at the fixed point p can only happen when exter-

nal capital is introduced to the system. There are multiple ways of increasing capital

of a bank. For instance, a bank can raise capital by issuing shares (ECB, 2009; Fed,

2011a; Kollewe, 2011; ECB, 2011). Given the thread of insolvency, a government can

intervene by inducing capital into the insolvent bank via government bailouts. Further,

central banks use methods of QE by adjusting interest rates and lending to banks, or

buying assets using open market operations (Singh, 2010; The Federal Reserve Board,

2011). Hence, QE can ensure that liabilities are reduced using central bank loans with

smaller interest rates than otherwise required by the money market, and assets are liq-

uidated above the market value, ensuring that capital is not needed to overcome losses

when faced by liquidity shortages.

4.5 Leverage, �
For a stable system (i.e. p ⇡ 1) with b > b

c

, the ratios between assets and liabilities

should ensure that a  a
2

. Using a
0 and b

0 as defined in Eqs. 3.20 and 3.21,1 and

Eq. 4.4, the leverage ratio2 - the ratio of capital to total assets (i.e. � =

µE

µA
, where

µ
E

= µ
A

�µ
L

), ensuring a stable banking system has to satisfy the following condition:

1As a reminder, the random variables used to derive a and b are non-interbank assets and liabilities.
Interbank assets are deterministic values. Whereas for a

0
and b

0
, the random variables are assets and

liabilities, with interbank assets being a fraction ✓ of the total assets.
2There exists numerous definitions of the leverage ratio. We decided to use the ratio of loss absorbing

capital to total assets in accordance with Acharya et al. (2014) and Bank for International Settlement
(2014). Specifically, the leverage ratio in Bank for International Settlement (2014) is stated as the ratio
of a capital measure to an exposure measure.
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Figure 4.6: The figure shows the minimum leverage, �
min

, for an average bank to ensure a
stable banking system as a function of the fraction of interbank assets ✓ for q = 0.
The different curves correspond to various �0’s. From the figure, we can see that the
larger �0 , the larger is ✓ at the instability and also the larger the minimum leverage.

� � �
min

= (1� q)
✓
c

b
c

✓r
2 ln

✓

✓
c

+

b
c

✓
c

✓�(�
r

2 ln

✓

✓
c

)

◆
, (4.5)

where ✓
c

=

�

0
bc

(1�q)µA
and q 6= 1. When Eq. 4.5 reaches equality, the smallest leverage

ratio, �
min

, is recovered, at which the banking system is stable. Figure 4.6 is a plot

of Eq. 4.5 depicting the minimum leverage, �
min

, at which the system is stable as a

function of ✓, of interbank assets to total assets for given values of �0 . The value of

�
0 is chosen to be a fraction of the mean total assets for each graph as applicable in

the accompanying legend. Any leverage value above and including �
min

ensures a safe

banking system given a particular �0 .

4.6 The Fraction of Mean Liabilities, fL
Eq. 4.5 can be further simplified, without any loss of generality, by assuming that �0

is a fraction,
p
2f

A

, of µ
A

, i.e. �
0
=

p
2f

A

µ
A

. We chose to represent �0 in this way

because Eq. 4.5 then becomes independent of µ
A

.

In Chapter 6, we use a fraction f
L

to stress the banking system. That is, we mul-

tiply µ
L

by a fraction f
L

to vary the average value of capital in the system. Define the

parameter fMF

L

to be the fraction of mean liabilities, at which the fraction of surviving
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banks, p, jumps from almost all banks solvent to almost all banks insolvent. Using

Eq. 4.5, fMF

L

can be written as:

fMF

L

=

µ
A

µ
L

�
p
2f

A

µ
A

µ
L

s

2 ln

(1� q)✓p
2f

A

b
c

� ✓
µ
A

µ
L

(1� q)�(�

s

2 ln

(1� q)✓p
2f

A

b
c

). (4.6)

Thus, the free model parameter becomes f
A

. The fraction of the mean liabilities, fMF

L

,

is influenced by f
A

. The parameter, f
A

, indicates how big the uncertainty of capital is,

and thus indicates the size of a potential initial shock to banks’ capital.

For Eq. 4.6 to have a solution, ✓ needs to be larger than or equal to
p
2fAbc

1�q

. The

maximal value of f
A

is reached if ✓ tends to one. Thus, f
A

tends to 1�qp
2bc

. If q = 0, then

f
A

tends to approximately 0.2821.

It should be noted that �0 is the variance of the average, initial capital in the sys-

tem. Therefore, for f
A

larger then 0.2821, the capital reserves of individual banks

differ greatly, such that some banks are safer than others. These banks form barriers

stopping the insolvency from spreading via interbank exposure failure. Because of this,

the interbank exposure network does not cause a sudden system failure, but rather the

stability of the banking system relies on changes in the market, influencing the value of

liabilities and assets.

If f
A

tends to zero, then fMF

L

tends to µA

µL
. For f

A

equal to zero, all banks have

the same value of capital initially because their balance sheets are identical. Then the

initial shock causing one bank to become insolvent automatically causes all other banks

to become insolvent as well. Hence, the average capital for system failure to occur is

µ
A

� µ
L

= 0, which is equivalent to fMF

L

being equal to µA

µL
. Thus, in a banking

system with identical banks (i.e. all banks have the same balance sheet values), the

underlying exposure network becomes irrelevant for systemic failure because the initial

shock causes all banks to fail simultaneously.

4.7 Values for Other Location-Scale Distributions
The parameter analysis can be repeated with any location-scale distributions where

the PDF, F 0
(x), satisfies the properties stated in Section 4.3. In Tables 4.1-4.4, we

state the iteration function, F (x); its first derivative, F 0
(x); the critical parameters, b

c

and ✓
c

; the extrema of x � F (x), x
1,2

; the parameters a
1,2

, at which the jump occurs;
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Table 4.1: The tables states the values of F (x), F 0
(x), b

c

, x
1,2

, a
1,2

and �

min

given that the
random variables L

i

and ˆ

A

i

are drawn from Normal distributions.

Normal Distribution
F (x) 1

2

+ erf(

a�bxp
2

)

F 0
(x) bp

2⇡

exp(� (a�bx)

2

2

)

b
c

p
2⇡

✓
c

�

0
bc

(1�q)µA

x
1,2

b�1

(a⌥
q

2 ln

bp
bc

a
1,2

b±
q

2 ln

b

bc
� b�

✓
±

q
2 ln

b

bc

◆

�
min

(1� q) ✓c
bc

✓q
2 ln

✓

✓c
+

bc
✓c
✓�(�

q
2 ln

✓

✓c
)

◆

Table 4.2: The tables states the values of F (x), F 0
(x), b

c

, x
1,2

, a
1,2

and �

min

given that the
random variables L

i

and ˆ

A

i

are drawn from Cauchy distributions.

Cauchy Distribution
F (x) 1

2

� 1

⇡

arctan(a� bx)
F 0

(x) b

⇡(1+(a�bx)

2
)

b
c

⇡

✓
c

�

0
bc

(1�q)µA

x
1,2

a⌥
q

b
bc

�1

b

a
1,2

b

2

±
q

b

bc
� 1� b

bc
arctan

✓
±
q

b

bc
� 1

◆

�
min

(1� q) ✓c
bc

✓
1

2

bc
✓c
✓ +

q
✓

✓c
� 1 +

✓

✓c
arctan

✓
�

q
✓

✓c
� 1

◆◆

Table 4.3: The tables states the values of F (x), F 0
(x), b

c

, x
1,2

, a
1,2

and �

min

given that the
random variables L

i

and ˆ

A

i

are drawn from Logistic distributions.

Logistic Distribution

F (x) 1

2

� 1

2

tanh

✓
a�bx

2

◆

F 0
(x) b

4

sech

2

✓
a�bx

2

◆

b
c

4

✓
c

�

0
bc

µA

x
1,2

a⌥2 arccosh(

q
b
bc

)

b

a
1,2

2

b

bc
⌥

p
b
q

b

bc
� 1± 2 arccosh

✓q
b

bc

◆

�
min

(1� q) ✓c
bc

✓
1

2

bc
✓c
✓ �

q
bc
✓c
✓
q

✓

✓c
� 1 + 2 arccosh(

q
✓

✓c
)

◆
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Table 4.4: The tables states the values of F (x), F 0
(x), b

c

, x
1,2

, a
1,2

and �

min

given that the ran-
dom variables L

i

and ˆ

A

i

are drawn from Student’s t distributions with two degrees
of freedom.

Student’s t Distribution, ⌫ = 2

F (x) 1

2

� a�bx

2

p
2+(a�bx)

2

F 0
(x) b

(2+(a�bx)

2
)

3/2

b
c

2

3/2

✓
c

�

0
bc

(1�q)µA

x
1,2

a⌥
p

b

2/3�2

b

a
1,2

b

2

+

✓
⌥ b

2/3

2

± 1

◆p
b2/3 � 2

�
min

(1� q) ✓c
bc

✓
1

2

bc
✓c
✓ � (

1

2

(

bc
✓c
✓)2/3 � 1)

q
(

bc
✓c
✓)2/3 � 2

◆

and the minimum leverage, �
min

, to ensure a stable system, given that the random

variables, (non-interbank) assets and liabilities, are drawn from Normal distributions

(Table 4.1), Cauchy distributions (Table 4.2), Logistic distributions (Table 4.3), and

Student’s t distributions with two degrees of freedom (Table 4.4).3 To calculate �
min

,

we used a
0 and b

0 as defined in Eqs. 3.20 and 3.21. For the rest, a and b are used as

defined in Eqs. 3.13 and 3.14.

Figure 4.7 shows in its first row plots of F 0
(x) against x, and in its second row

plots of x � F (x) for different location-scale distributions. The different distributions

are indicated using different colour schemes with graphs equated using Normal dis-

tributions (N ) being red, Cauchy distributions (C) being green, Logistic distributions

(L) being blue and Student’s t distributions with two degrees of freedom (S) being ma-

genta coloured. In addition, we marked the positions of the fixed points (w⇤
i

, where

i = [1, 2, 3] and ⇤ = [N,C, L, S]) and the extrema of x � F (x) (x⇤
i

, where i = [1, 2]

and ⇤ = [N,C, L, S]) using horizontal lines. The parameters a and b are fixed at 2 and

4.5, respectively. For b = 4.5, b
c

is smaller than b for all distributions.

It becomes clear that for Normal and Student’s t distributions, three fixed points

occur with wN,S

1

, wN,S

3

being stable fixed points and wN ;S

2

being an unstable fixed point

forming the barrier between wN ;S

1

and wN ;S

3

. For Cauchy and Logistic distributions,

only one fixed point exists: wC;S

1

, which is a stable fixed point close to one indicating a

3A Student’s t distribution with one degree of freedom leads to the Cauchy distribution and if the
degree of freedom tends to infinity the Normal distribution is recovered.
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Figure 4.7: The figure shows two subplots. In the first subplot, F 0
(x) is plotted against x for a

Normal distribution (N , red), Cauchy distribution (C, green), Logistic distribution
(L, blue) and Student’s t distribution (S, magenta). In the second row, x� F (x) is
plotted against x for the different distributions using the same colour scheme as in
the first row. The parameters a = 2 and b = 4.5 are fixed. We marked the one (first
row) and zero (second row) line, using a black, dotted line. In addition, we indi-
cated the positions of the fixed points (w⇤

i

, where i = [1, 2, 3] and ⇤ = [N,C,L, S])
and the extrema of x�F (x) (x⇤

i

, where i = [1, 2] and ⇤ = [N,C,L, S]) using hor-
izontal lines.

stable banking system.

Therefore, for a starting value p
0

in [wN ;S

1

, wN ;S

2

] or [0, wN ;S

1

] and L
i

, ˆA
i

drawn

from Normal or Student’s t distributions, the banking system collapses. Whereas for p
0

in [wN ;S

2

, wN ;S

3

] or [wN ;S

3

, 1] and L
i

, ˆA
i

drawn from Normal or Student’s t distributions,

the banking system stays stable. For L
i

, ˆA
i

drawn from Cauchy or Logistic distribu-

tions, the banking system always reaches wC;L

1

given any starting value p
0

2 [0, 1].

Because the fixed point, wC;L

1

, is close to one, the banking system is stable.

Furthermore, note that xN

1

< xS

1

< xL

1

< xC

1

< xC

2

< xL

2

< xS

2

< xN

2

for a = 2

and b = 4.5. Thus, given p
0

2 [w⇤
3

, 1], a = a⇤
2

and b = 4.5, the jump from almost

all banks surviving to almost all banks insolvent is the largest if L
i

, ˆA
i

are drawn from

Normal distributions, and the smallest if L
i

, ˆA
i

are drawn from Cauchy distributions.

In Figure 4.8, we plotted a
1,2

against b for the different distributions. We have

aC;L;S

2

< aN
2

. This implies that the initial capital needs to be reduced much further

if L
i

, ˆA
i

are drawn from Normal distributions in comparison to L
i

, ˆA
i

being drawn
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for Cauchy distributions, in (C) the graphs for a
1,2

are plotted for the Logistic
distributions and (D) a

1,2

are shown for Student’s t distributions with two degrees
of freedom. In addition, we marked the critical parameter b

c

for each distribution
using a dotted horizontal line.

from Cauchy, Logistic or Student’s t distributions for the jump to occur. Hence, for the

latter distributions, the initial shock to the capital can be smaller for the fragile state

to occur. That said, the average interbank exposure for banking systems initialized

with Cauchy, Logistic or Student’s t distributions needs to be greater than the average

interbank exposure for banking systems initialized with Normal distributions for the

fragile state to become possible.

Figure 4.9 shows the minimum leverage ratio, �
min

, for Normal distributions (red),

Cauchy distributions (green), Logistic distributions (blue) and Student’s t distributions

(red) plotted against the average ratio of interbank exposure to total assets, ✓. The

recovery rate, q, is set to zero. The location parameter, �, for each distribution is set to

0.02µ
A

. The vertical lines indicate ✓
c

for each distribution. The critical ratio of average

interbank exposure to total assets, ✓
c

, is the smallest for Normal distributions followed

by Student’s t, Cauchy and Logistic distributions. However, the minimum leverage for

Student’s t, Cauchy and Logistic distributions increases faster for increasing ✓ than �
min

calculated for Normal distributions.

Specifically, for ✓ = 0.2, the minimum leverage to ensure a stable system for

Normal distributions is �N

min

(✓ = 0.2) = 0.0429, for Cauchy distributions �C

min

(✓ =
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Figure 4.9: The figure shows the minimum leverage for Normal distributions (red), Cauchy dis-
tributions (green), Logistic distributions (blue) and Student’s t distributions with
two degrees of freedom (magenta) plotted against the average ratio of interbank
lending, ✓. The coloured vertical lines inidcate ✓

c

for each distribution. Further-
more, the minimum leverage when ✓ = 0.2 is marked (�⇤

min

(✓ = 0.2), where
⇤ 2 [N,C,L, S]) for each distribution.

0.2) = 0.0674, for Logistic distributions �L

min

(✓ = 0.2) = 0.0638, and for the Student’s

t distribution �S

min

(✓ = 0.2) = 0.0571. For increasing ✓, �
min

for Student’s distribution

is about three times larger than �
min

for Normal distributions.

The reason for the difference in the size of the jump, the shock size resulting in the

fragile state and varying minimum leverage requirements can be found in the thickness

of the tail of the distributions. The tail for standard Cauchy distributions, Logistic

distributions and Student’s t distributions is wider than the tail of a standard Normal

distribution for the same location, µ, and scale, �, parameter (see Figure 4.7). This

implies that the difference between L
i

and ˆA
i

differs more greatly between individual

banks if Cauchy distributions, Logistic distributions and Student’s t distributions are

used to initialize the banking network (in comparison to Normal distributions). Thus,

some banks have more capital than others initially when Cauchy distributions, Logistic

distributions and Student’s t distributions are used. These banks’ larger capital reserves

stop them from being affected by the collapse of the rest of the banking system. Hence,

the difference between x
1

and x
2

, and subsequently, the jump is smaller. Furthermore,

banks with large capital reserves form breaking points in the insolvency propagation.
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Thus, the probability of solvent banks being connected to insolvent banks is lower.

For the fragile state to become possible, the probability of banks being connected to

insolvent banks needs to increase. Hence, the critical interbank exposure parameter, b
c

,

has to increases.

On the other hand, some of the banks initialized with Cauchy distributions, Lo-

gistic distributions and Student’s t distributions have much less capital, which causes

the fragile state to happen at lower values of a
2

. This is also reflected in the minimum

leverage requirement, which is larger for Cauchy distributions, Logistic distributions

and Student’s t distributions than for Normal distributions for the same value of inter-

bank assets to total assets, ✓, and scale parameter, �.

4.8 Analysis of Real Banking Systems Using Balance

Sheet Data
Banks report their balance sheet quantities yearly as part of their financial statement

in their annual report. We used Bankscope (Bureau Van Dijk, 2014) to collect data

for US and UK banks.4 The data includes consolidated values for some banks and

unconsolidated values for others. Only using the values from consolidated balance

sheets would have reduced the list of banks considerably, mostly excluding foreign

subsidiaries of foreign banks. We chose the years 2007 and 2012 as reference years,

to determine the stability of the UK and US banking system during the recent financial

crisis and a non-crisis time. The parameters µ
A

and µ
E

represent the “true” of the

average value of total assets and capital per bank.

We also disregard any seniority of the debt and assume that the recovery rate is

set to zero. Hence, we consider the worst case scenario, where a creditor cannot expect

any payment for a defaulted loan. Furthermore, Normal CDFs are used for the iteration

process. Hence, µ
A

and µ
L

= µ
A

� µ
E

are the mean, and �
A

and �
L

represent the

standard deviation of the distributions.

Using a
0 and b

0 as defined in Eqs. 3.20 and 3.21 and assuming p
0

= 1, the two
4The query settings were on “Status: Active Banks, Inactive Banks”, “Specialisation: Commercial

banks, Savings banks, Cooperative banks, Real Estate & Mortgage banks, Investment banks, Islamic
banks, Other non banking credit institutions, Bank holdings & Holding companies, Private banking /

Asset management companies” and “Ultimate Owner: Def. of the UO: min. path of 50.01%, known or
unknown shareh., closest quoted company in the path leading to the Ultimate Owner (if any); GUO and
DUO”
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Table 4.5: The table reports the mean value of total assets µ
A

and Tier 1 capital of banks µ
E

and the standard deviations for the years 2007 and 2012 for the UK and US banking
system. The data is from Bankscope. We only considered banks that reported their
Tier 1 capital. The table additionally states the number of banks. To compare the
Tier 1 capital, we also stated the leverage ratio �, i.e. Tier 1 capital to total assets.

UK USA
2007 in GBP 2012 in GBP 2007 in USD 2012 in USD

µ
A

2.0287e+11 1.8307e+11 1.8505e+10 2.0247e+10
STD 4.7503e+11 4.2912e+11 1.3592e+11 1.5234e+11
µ
E

6.3032e+09 8.1836e+09 1.0615e+09 1.5829e+09
STD 1.3785e+10 2.0298e+10 6.6785e+09 1.1102e+10
Leverage, � 0.0311 0.0447 0.0574 0.0782
No. banks 26 38 666 779

quantities that are decisive for the stability of the banking system in our model are the

mean of the total assets µ
A

and the mean of loss absorbing capital µ
E

= µ
A

� µ
L

. We

are using the “Tier 1 Capital” and “Total Assets” as reported in Bankscope. It should

be noted that the UK and US use different accounting systems.5 This causes different

estimations for the value of the same asset and liabilities. Hence, the value of total

assets, total liabilities and Tier 1 capital for UK and US banks reported in Bankscope

cannot be compared countrywise. However, it is possible to discuss changes in financial

stability of the banking systems in a country for different years. To compute the mean

values for µ
A

and µ
E

, we only use banks with Tier 1 capital larger than zero this reduced

the list of banks considerably (especially in 2007) as Bankscope does not report the Tier

1 capital value for all banks. The mean values as well as the number of banks used to

compute the values can be found in Table 4.5. To compare the values for Tier 1 capital

and total assets in the different years, we also included leverage, �, in the table. It

becomes clear that in 2007 the average leverage both in the US and UK was less than

it was in 2012 and henceforth already implies a less stable system in 2007.

The parameter �0 is a free model parameter that indicates the uncertainty about

the value of asset and liabilities. More precisely �
A

increases if the value for assets

is uncertain. Similarly, difficulties in obtaining funding from banks or other funding

sources are represented in an increased �
L

. In a way, �0 measures the severity of the

5The firms in the UK as the rest of EU countries use International Financial Reporting Standards and
companies in the US use the US Generally Accepted Accounting Principles (Pricewaterhouse Coopers,
2014).
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shock, and hence, we tested for different values of �0 . To calibrate �0 , we use a variable

f 2 [0, 1] and say that �0 is a fraction of the mean value of the Tier 1 capital, µ
E

, i.e.

�
0
= fµ

E

.

Another parameter that cannot be easily obtained from the annual account data is

the average fraction of interbank assets, ✓. Banks report their lending to other banks

under “Loans and advances to banks” and “Deposits by banks” in their annual reports.

However, as it is pointed out in Langfield et al. (2014), loans and advances to banks are

not the only exposure banks have to other banks. Thus to monitor the UK interbank

market, the BoE collects data about other financial instruments that form part of the in-

terbank market. In particular, Langfield et al. (2014) list: “prime lending (...); holdings

of capital and fixed-income securities issued by banks; credit default swaps bought and

sold; securities lending and borrowing (...); repo and reverse repo (...); derivatives ex-

posure (...); settlement and clearing lines; asset-backed securities; covered bonds; and

short-term lending with respect to other banks and broker dealers”. The balance sheet

data reported in the annual reports do not differentiate between the interbank market

and products obtained from other financial institutions. Still, using only the values for

“Loans and advances to banks” or “Deposits by banks” to calibrate ✓ would underesti-

mate the average fraction of interbank lending. Henceforth, we use multiple values of

✓ to test the stability of the system.

Figures 4.10 and 4.12 show various plots of the fraction of surviving banks, p,

plotted against the fraction of �
0 to the mean Tier 1 capital µ

E

, f , for the UK and

US system, respectively. The fraction of surviving banks is calculated using the fixed

points of Eq. 4.1 and a standard normal CDF as before. The value of the fraction of

interbank exposure to total assets, ✓, is fixed and given above each subplot. The blue

crosses indicate the fraction of surviving banks for a banking system calibrated with the

2007 data and the black circles symbolize the fraction of surviving banks for a banking

system calibrated with the 2012 data.

For ✓ set to zero, the fraction of surviving banks in the UK banking system is

almost identical (Figure 4.10). The number of surviving banks declines for a larger

f . However, even for f tending to one, more than 85% of banks are operating in both

2007 and 2012. Note that ✓ equal to zero corresponds to no interbank exposure. The

number of insolvent banks is only due to the uncertainty of the value of liabilities and
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Figure 4.10: The subplots show the fraction of surviving banks for the years 2007 (blue
crosses) and 2012 (black circles) against the fraction of �0 to mean value of cap-
ital, f , for various values of the fraction of interbank assets to total assets, ✓. To
calibrate the model, the mean of total assets, µ

A

, and the mean of Tier 1 capital,
µ

E

, was used from banks from the UK banking system (q = 0). For ✓ = 0, banks
are not interconnected. In that case, for both years no systemic distress event hap-
pens. In order for a system failure to happen, ✓ needs to be non-zero. The sudden
system failure happens for the banking system calibrated with the 2007 UK data
for ✓ = 0.07 at which the banking system calibrated with 2012 UK data is still
in a stable state. For ✓ � 0.10, the banking system calibrated with 2012 UK data
also becomes unstable for a large enough f . However, f at which the systemic
distress happens for the 2007 UK data is smaller then the value for f at which the
systemic failure happens when the banking system is calibrated with the 2012 UK
data implying that the 2007 system is more prone to failure then the 2012 banking
system.

non-interbank assets caused by a large �
0 . For the range of �0 from zero to the size of

µ
E

, no systemic event, i.e. the entire failure of the banking system, becomes possible

in both years given that there is only a shock to the value of non-interbank assets or

liabilities.

For the next graphs in Figure 4.10, in the first row, ✓ is increased to 0.03 and 0.07.

It becomes clear that the fraction of surviving banks deviates for 2007 and 2012 with

p for 2007 being considerable less than p for 2012, implying that the banking system

2007 was much more prone to failure. For ✓ = 0.07 and the banking system calibrated

with the 2007 data set, a jump becomes visible for p for f around 0.5. The banking

system calibrated with the 2012 data set remains stable for ✓ set to either 0.03 or 0.07.

This changes when ✓ is further increased. In the second row of Figure 4.10, ✓ is set

to 0.10, 0.11 and 0.13. The sudden jump for banks calibrated with the 2007 data set
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Figure 4.11: The figure is similar to Figure 4.5 showing the fraction of surviving banks for
different values of a and b. In addition to the fraction of surviving banks for
particular values of a and b, we also plotted the particular values of the fraction of
surviving banks calibrated with the 2012 UK data for ✓ fixed at 0.10 for varying
f as indicated. It becomes clear that for increasing f , b decreases such that for
f = 0.90, b becomes less than b

c

. At the same time, p increases, explaining the
increase in p observed in Figure 4.10 for ✓ = 0.10 and ✓ = 0.11 for increasing f

for the 2012 UK data.

happens for f around 0.51 to 0.56 and increases even further in the third row when ✓

takes the values 0.3, 0.4 and 0.5 with a value of f around 0.31 - 0.46 being sufficient

to ensure an unstable banking system. For the banking system calibrated with the 2012

data set, a jump also occurs for values of ✓ above and including 0.1. For ✓ equal to

0.10, the jumps happens for f around 0.66. As with the 2007 data set, the jump moves

to a lower value of f for a larger ✓ with ✓ set to 0.5, f being around 0.36 for the jump

to happen.

For ✓ equal to 0.10 or 0.11, a jump occurs as well in the banking system calibrated

with the 2012 UK data set. However, after the jump, p increases for increasing f . This

can be explained using Figure 4.11. Figure 4.11 is the same plot of the contour lines

of surviving banks as plotted in Figure 4.5. The black symbols indicate the position of

p for fixed ✓ equal to 0.10 and varying f as indicated in the accompanying legend. It

becomes obvious that for increasing f , b decreases such that for f = 0.90 a jump does

not become possible any more and the system is in the reversible region. At the same

time, the value of p increases for decreasing b. Hence, we can observe an increase in p
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Figure 4.12: The figure is similar to Figure 4.12 except that US balance sheet data for the
years 2007 and 2009 were used to calibrate the model with the recovery rate for
interbank exposure set to zero. The sub plots show the fraction of surviving banks
for the years 2007 (cross) and 2012 (circle) against the fraction of �0 to mean value
of capital, f, for various values of the fraction of interbank assets to total assets,
✓. To calibrate the model, the mean of total assets, µ

A

, and the mean of Tier 1
capital, µ

E

, was used from banks from the US banking system. For ✓ = 0, banks
are not interconnected. In that case, for both years, no systemic distress event
happens. In fact, even for an increased ✓ of 0.10 the system is stable with only
some losses for large f but no system-wide failure. The sudden system failure
happens for the banking system calibrated with the 2007 US data for ✓ = 0.15.
However, we note that for the same value of ✓, the banking system calibrated with
2012 US data is still in a stable state. For ✓ � 0.17, the banking system calibrated
with 2012 US data also becomes unstable for a large enough f . For both years, �0

needs to be at least half of the size of banks capital in order for the system wide
failure to happen.

even though f , and therefore, the uncertainty, �0 , increases.

Figure 4.12 is similar to Figure 4.10 except that we used US banks to calibrate the

model with the blue crossed line representing the fraction of surviving banks in 2007

and the black circled line being the fraction of surviving banks in 2012. In Figure 4.12

the difference in the stability of the US banking system in 2007 and 2012 is less visible

suggesting that a shock to that similar sized as happened in 2007 would also cause

severe damage in 2012 if the ratio of interbank assets to total is also similar.

Figures 4.10 and 4.12 show that exposure to other banks played an important role

in the recent financial crisis. As we mentioned before, we cannot be certain about the

actual average fraction of interbank loan nor the size of �0 . However, an exposure of
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30% of total assets to other banks seems like a valid estimate. A �
0 of 25% or 50% of the

bank’s capital only happens during a period of large uncertainty - which one can argue

happened during the 2008 meltdown of the financial sector. In particular, the Financial

Services Authority (FSA) stated in their report on “The failure of the Royal Bank of

Scotland” FSA (2011) that a mismatch in short-term funding and devaluation of long-

term assets, which potentially reduced the capital of RBS by 50%, played part of the

failure and eventual bail-out of the Royal Bank of Scotland by the UK government.

Hence, it can be assumed that other banks also faced capital losses of similar order that

according to our model would result in failure of the entire banking system.

Needless to say, in using the balance sheet test to determine insolvency, a bank

failure is always an option as capital is limited. The likelihood of such a large shock

happening is not part of this thesis but it can certainly be considered a rare event.

Nonetheless, the maximal economically feasible leverage ratio should be used as a

minimum to prevent entire system failure and taxpayer intervention.

4.9 Conclusion
In conclusion, simplifying the counterparty risk model using the mean-field assumption

allows us to solve the counterparty risk model semi-analytically for a variety of location

scale distributions. Additionally, we analysed the balance sheet parameters performing

a parameter analysis using the mean-field model to obtain the regions where the bank-

ing system is stable or unstable. We showed that the banking system can turn suddenly

from a stable system, where most of the banks survive a shock to their loss absorbing

capital, to an unstable system, where most of the banks become insolvent. We call

this shift in stability the fragile state. In particular, we calculated the size of the shock

that induces the fragile state. This allowed us to not only infer the cost of rescuing a

banking system but also to compute a restricting minimum leverage ratio that ensures

a stable banking system. Another advantage of the mean-field model is that one can

obtain data to initialize the model from banks’ annual reports. We did so by comparing

the stability of the US and UK banking system in 2007 and 2012. We determined that

the banking systems in 2012 were more stable than the systems in 2007 for the same

level of average counterparty exposure.

Banks in real banking system vary largely in the size of their balance sheets. The
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assumptions leading to the mean-field model reduce the banking system to a homoge-

neous system where only average balance sheet parameters are considered in order to

evaluate the stability of the banking system. Furthermore, the interbank network struc-

ture is disregarded and banks interbank exposure to other banks is assumed to be the

same in the mean-field model. These assumptions are unrealistic as they ignore the het-

erogeneity of real banking systems. For this reason are we testing in Chapters 5 and 6

the robustness of the mean-field model by comparing the solution of the mean-field

model to the solution of more realistic simulation based models of the counterparty

risk model.



Chapter 5

Comparison of Simulation and

Mean-Field Model of Stylized Banking

Systems

Summary: In this chapter, we use simulation means to test for the robustness of the re-

sults deduced from the mean-field model. Different random distributions and standard

network topologies are used to initialize banks’ balance sheets in a simulation-based

model. The equilibrium solution of the simulation model is compared to the fixed point

solution of the mean-field model. We find that both solutions are in agreement, which

suggests that indeed the results of the mean-field model are robust for different sized

banking systems initialized using a variety of random distributions, network topologies

and banking system parameters.

5.1 Initialization of Theoretical, Simulation-based

Banking System
In this chapter, we also construct a highly stylized banking system. The intention of

this chapter is to show the robustness and limitations of the mean-field model. We do

so by comparing the mean-field model to a simulation-based model testing for different

random distributions and network topologies to initialize the banking system.
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Table 5.1: The table reports the variables and values used for initializing banks’ balance sheets
and exposure structure in the simulation modelling a stylized banking system. The
banking system consists of N = 500 banks. The state of each bank is set to oper-
ating initially, i.e. S

i

(0) = 1 for all banks i. Two location scale distributions, the
Normal distribution and the Student’s t distribution, are used to calibrate the balance
sheets of banks with location parameters µ

A

= 1000 and µ

L

2 [700, 1200] and
scale parameters �

A

= 30 and �

L

= 50. To compute the structure of the adjacency
matrix X = {�

1i,jN

}, three different network structures are used: Erdős-Rény
networks, Small-World networks and a network structure with core and periphery
banks. For the Erdős-Rény network, a link exists between two banks with proba-
bility ↵ = 0.1. To construct the Small-World network, we used the algorithm from
Watts and Strogatz (1998) with banks having c = 12 neighbours and a re-wiring
probability of each link of � = 0.1. To create the core-periphery network, we use
the algorithm from Barabási and Albert (1999) with an Erdős-Rény seed network
with 50 banks and connection probability ↵ = 0.75 and 450 banks with 15 links
added with a preferential attachment to the existing banks. The weight for a loan
from bank i to bank j is ✓A

i

g

ij

/z

i

, where ✓ is the fraction of interbank assets to
total assets. The recovery rate is set to zero. If not explicitly stated otherwise, the
values given in this table are used to initialize the simulations.

Variable Values used for initialization Description of variables
of bank i at time 0

N 500 Number of banks in
the stylised banking system.

✏

A,L

i

✏

A,L

i

⇠ N(0, 1) Standard normal random variables.
t

A,L

i

t

A,L

i

⇠ T (⌫) Standard Student’s t random
variables with degree of freedom ⌫.

⌫ 2 Degree of freedom for
Student’s t distribution.

S

i

(t) S

i

(0) = 1 State, all banks
are solvent initially.

µ

A

1000 Location parameter for
total assets.

�

A

30 Scale parameter
for assets.

µ

L

700 - 1200 Location parameter for liabilities.
�

L

50 Scale parameter for liabilities.
✓ 0.0, 0.1, 0.3 Fraction for interbank assets.
↵ 0.1 Probability of bank i

being connected with bank j,
used to generate Erdős-Rény network
and seed network for the
core-periphery network.

c 12 Neighbouring banks of all bank i

in Small-World network.
� 0.1 Re-wiring probability for a link

in the Small-World network .
q

ij

0 Recovery rate for exposure from bank i to bank j.
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The location-scale distributions tested are Normal and Student’s t distribution. To

calibrate total assets and total liabilities with Normal distributions, random variables ✏
i

are drawn from a standard normal distribution; the total assets are A
i

(0) = µ
A

+ �
A

✏A
i

and the total liabilities are L
i

= µ
L

+ �
L

✏L
i

. Similarly, if the distribution used to

calibrate total assets and total liabilities is the Student’s t distribution, random variables

tL
i

, tA
i

are drawn from a standard Student’s t distribution with degree of freedom ⌫. The

total assets and liabilities are given by A
i

(0) = µ
A

+ �
A

tA
i

and L
i

= µ
L

+ �
L

tL
i

. Note

that the random variables ✏L,A
i

and tL,A
i

are different and independent.

We also use to initialize the balance sheets non-location-scale distributions,

namely Log-Normal and Log-Logistic. To calibrate the balance sheets, we start by

using the location, µN

A

, µN

L

, and scale parameters, �N

A

, �N

L

, for Normal distributions.

We convert µN

A

, µN

L

and �N

A

, �N

L

into the input variables of the other distributions such

that the arithmetic mean and standard deviation of the samples of banks’ balance sheets

constructed using Log-Normal, Logistic and Log-Logistic distributions are µN

A

, µN

L

, and

�N

A

, �N

L

, by using the formulas stated in Table 5.2.

Table 5.2: The table shows the input variables of Normal (N ), Log-Normal (LN ), Logistic (L)
and Log-Logistic distributions (LL) as derived from a Normal distribution’s mean
and standard deviation.

Distribution

Normal µ

N

�

N

Log-Normal µLN

= log

✓
µ

Np
�

N 2
+µ

N 2

◆
�

LN

=

r
log(

�

N 2

µ

N 2 + 1)

Logistic µ

L

= µ

N

�

L

=

p
3

⇡

�

N

Log-Logistic µLL

= log

✓
µ

Lp
�

L2
+µ

L2

◆
�

LL

=

r
log(

�

L2

µ

L2 + 1)

For constructing the underlying exposure network structure, we use an adjacency

matrix X to represent three different standard network types: the Erdős-Rény network,

the Small-World network (Watts and Strogatz, 1998) and a Barabási-Albert network

(Barabási and Albert, 1999), with a tightly connected seed network. For the Erdős-

Rény network, a bank i is connected to a bank j with probability ↵. For the Small-

World network, we used an initial network, where each bank is connected to its c

closest neighbours and a probability � is used to re-wire any existing links between

the neighbouring banks to other banks creating the small-world effect. We call the
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Barabási-Albert network a core-periphery network as we use an Erdős-Rény seed net-

work of banks with a high connection probability, ↵, to create the core and add ‘pe-

rioheral’ banks individually to the system using the preferential attachment algorithm

stated in Barabási and Albert (1999).1 Constructing a core-periphery network using

a Barabási-Albert network has the advantage of producing a network topology quite

different to the topology of the Erdős-Rény and Small-World network. Thus, we test

for the influence of quite different network topologies on the stability of the banking

system.

We would like to stress that both the network structures as well as the distributions

are standard choices, whereas reality might differ greatly. The different structures and

distributions are intended to show that predictions of the mean-field model are robust

for a variety of assumptions. If not stated otherwise, the parameter values used to

initialize the simulation model can be found in Table 5.1.

5.2 Random Distributions

5.2.1 Normal and Student’s t Distributions
The effects of different underlying location-scale distributions are illustrated in Fig-

ures 5.1 and 5.2. The underlying network structure of the exposure network is, in both

figures, an Erdős-Rény network.

In Figure 5.1, we report the average simulated fraction of surviving banks against

(µ
L

� µ
A

)/(�2

A

+ �2

L

)

1/2 and the fixed point solution of the iteration map, Eq. 3.15

(black line) against a0 � b
0 . For the simulated fraction, we varied µ

L

and for the fixed

point solution, we changed a
0 to satisfy (µ

L

� µ
A

)/(�2

A

+ �2

L

)

1/2

= a
0 � b

0 . For each

µ
L

, the simulation was repeated 100 times. In the figure, symbols represent average

fractions and vertical error bars are the standard deviations from the 100 simulations.

To test the behaviour of the simulation for different fractions of average interbank loans,

we changed ✓ from 0.0 (blue line), to 0.1 (red line) and 0.3 (green line). To compute

the equivalent fixed point solution for each value of ✓, we use Eqs. 3.20 and 3.21 to

compute a0 and b
0 . The critical value for b0 for the Normal distribution is b

c

=

p
2⇡. For

the Student’s t distribution with 2 degrees of freedom, the critical value for b0 is reached

when b
c

= 2

3/2 (see Tables 4.1 and 4.4). Hence, ✓ = 0.1 leads to a value of interbank
1Note that this method is not the core-periphery algorithm as proposed by Craig and Von Peter (2010).
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Figure 5.1: The figure shows the fraction of surviving banks, p, evaluated by initializing the
liabilities and assets of banks’ balance sheets with Normal distributions (A) and
Students’t distributions with 2 degrees of freedom (B) with varying location, µ

L

,
and scale parameter, �

L

, for liabilities, fixed location µ

A

and scale parameter, �
A

,
for assets plotted against (µ

L

� µ

A

)/(�

2

A

+ �

2

L

)

1/2. Each symbol is the average of
the fraction of surviving banks of 100 simulations. The error bars are the standard
deviation of the 100 simulations. To compute the blue line, we set the average
fraction of interbank loans to zero, i.e. ✓ = 0.0, for the red line ✓ was set to 0.1

and for the green line ✓ was set to 0.3. The underlying structure of the exposure
networks are Erdős-Rény networks. The black lines accompanying each plot are
the fixed points of the iteration map, Eq. 3.15 plotted against a0 � b

0 which is equal
to (µ

L

�µ

A

)/(�

2

A

+�

2

L

)

1/2. Note that b0 is changed to fit the equivalent ✓ value. A
steep decline in the fraction of surviving banks happens when ✓ equals to 0.3 in the
area of the predicted jump. For ✓ equal to 0.0 and 0.1 the simulation result for both
distributions are close to the fixed point solution of the iteration map, Eq. 3.15. The
parameter values used to initialize the system are stated in Table 5.1.

assets of bank i below the critical value and, conversely, setting ✓ = 0.3 creates a value

of interbank assets above the critical value, where a jump becomes visible.

The difference between Figures 4.4 and 5.1 is that in order to compute the fixed

point solution in Figure 4.4, the total assets of the banks are varied since the location

parameter of non-interbank assets is constant and a change in b
0 implies that either

capital is changed to compensate a decrease or increase in total assets, or q, µ
L

, µ
A

, �
L

and �
A

change accordingly such that a0 is constant. Whereas, in Figure 5.1, the location

parameter of the total assets of banks is constant and a change in ✓ does not effect the

size of the balance sheet. Hence, capital stays constant for fixed values of q, µ
L

, �
L

and

�
A

.

The fractions of surviving banks computed in Figure 5.1 uses Normal distributions
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(A) and Student’s t distributions (B) to initialize total assets and total liabilities. Sim-

ilarly, to compute the fixed point solutions, we use a standard Normal CDF in A and

a standard Student’s t CDF in B. We use Normal and Student’s t distributions as both

distributions are location-scale distributions. Hence, we can compare the simulation

results with the solutions of the iteration map, Eq. 3.15.

We note that for ✓ = 0.3, more banks become insolvent for the same values of

q, µ
A

, µ
L

, �
A

and �
L

than when ✓ = 0. The reason is that there exists no counterparty

risk when ✓ = 0.0. For both distributions a sudden decrease in the fraction of surviving

banks is observed for ✓ = 0.3. The jump starts earlier for the banking system with

banks initialized with Student’s t distributions than for banks initialized with Normal

distributions. Also, the simulation results for a banking system initialized with Normal

distributions are a closer fit to the fixed point solutions of the iteration map, Eq. 3.15,

nonetheless the simulated results initialized with the Student’s t distribution are also

close to the fixed points. In the proximity of the jump, the standard deviation of the

simulated fractions of surviving banks increases. This indicates that for the values of

q, µ
A

, µ
L

, �
A

and �
L

, at which the jump occurs, either most of the banks are operating

or most of the banks are insolvent with no intermediate state.

To investigate this behaviour for parameter values close to the jump, we plotted

the frequency distribution for fixed values of q, µ
A

, µ
L

, �
A

and �
L

in proximity of the

jump in Figure 5.2. We used different values of µ
L

for the simulations when initializing

with Normal distributions (µ
L

= 890) and Student’s t distribution (µ
L

= 870). This is

because of the jump starting earlier for the Student’s t distribution than for the Normal

distribution. The value for ✓ is set to 0.3 again. To determine the frequency distribution,

we repeated the default algorithm for the fixed values of q, µ
A

, µ
L

, �
A

and �
L

10,000

times and sum the occurrence of the same equilibrium fraction of surviving banks.

Subplot A shows the results for simulations using Normal distributions and subplot B

shows the results for simulations using Student’s t distributions.

For both distributions, two peaks occur. The peaks of the frequency distribution

for a banking system initialized with Normal distributions occur around p close to zero

and for p between 0.9 and 1.0. The first peak for the fraction of surviving banks for

a banking system with balance sheets initialized with Student’s t distributions happen

between 0.03 and 0.15 and the second peak for values of p between 0.65 and 0.95.
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Figure 5.2: This figure shows the frequency distribution of fractions of surviving banks p for
banks initialized with Normal (A) and Student’s t distribution (B) for fixed values
of q, µ

L

, µ

A

,�

L

and �

A

. The fraction of interbank loans to total assets, ✓, is set to
0.3 and the underlying structure of the exposure network is an Erdős-Rény network.
To observe the behaviour in the proximity of the jump the values for µ

L

are set to
890 for the Normal distribution and 870 for the Student’s t distribution. To compute
the frequency distribution, we repeat the simulation 10,000 times. Two peaks occur
because of perturbations of the balance sheet values due to the randomness. The
two peaks are visible in both subplots at the end and beginning of the scale of
p indicating that most of the banks in the banking system either survive or are
insolvent. Intermediate fractions of surviving banks do not occur.

Values of fractions of surviving banks between the two peaks do not occur. The lack

of intermediate values is due to the stable and unstable fixed points. The unstable fixed

point forms a barrier between the stable fixed points. However, slight perturbations of

the values of banks’ assets and liabilities caused by the randomness of the simulation

either tip the banking system into distress or survival.

The number of banks defaulting before the sudden system failure happens when

initialized with Normal distributions and is less than for a banking system initialized

with Student’s t distributions. The Student’s t distribution is a fat tail distribution im-

plying that banks’ balance sheets differ more than when the balance sheet values are

distributed with a Normal distribution. Thus, after the jump some banks have a greater

chance of survival, as they have more capital, than other members of the banking sys-

tem. However, because of the greater diversity, some banks also have less capital than

other banks, causing the system failure to happen for a smaller location parameter

for liabilities in comparison to a more homogeneous banking system when initialized
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Figure 5.3: The figure shows the average fraction of surviving banks for varying leverage,
� =

µA�µL
µA

, for banking systems initialized with Normal (red), Logistic (magenta),
Log-Normal (green) and Log-Logistic (blue) distributions. We use 100 simulations
to determine the average fraction of surviving banks. The means and standard de-
viation of the Normal distributions are: µN

A

= 1000, µ

N

L

2 [800, 1000],�

N

A

= 30

and �

N

L

= 50. The ratio of interbank assets to total assets, ✓, is set to 0.3 for all
simulations. The input variables for the other distributions are calculated as stated
in Table 5.2. The leverage, �, is calculated using the input variables for the individ-
ual probability distributions. A steep decline of p occurs for all banking systems
around similar leverage values of � = 0.1. This indicates that the banking system
is in the fragile state for these leverage values.

with Normal distributions. Thus, the more diverse system is more prone to failure but

chances of survival of some banks are larger than for a more homogeneous banking

system.

5.2.2 Non-Location Scale Distributions

To test the behaviour of a banking system calibrated with non location-scale distribu-

tions, we use Log-Normal and Log-Logistic distributions to initialize the balance sheets

of banks. In addition to the Log-Normal and Log-Logistic distribution, we also pro-

vide the solutions for the fraction of surviving banks for banking systems calibrated

with Normal and Logistic distribution. If a random variable X is drawn from a Nor-

mal or Logistic distribution, then exp(X) is the random variable of a Log-Normal or

Log-Logistic distribution.

Figure 5.3 shows a plot of the average fraction of surviving banks, p, against lever-

age, � =

µA�µL

µA
, for Normal (red cross), Logistic (magenta circle), Log-Normal (green

star) and Log-Logistic (blue cross) distributions. To produce the graphs in Figure 5.3,
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Figure 5.4: The figure shows the frequency distribution for the fraction of surviving banks, p,
for banking systems initialized with Normal (A), Logistic (B), Log-Normal (C)
and Log-Logistic (D) distributions. The parameters for the Normal distributions
were chosen such that all distributions cause the banking system to be in the range
of the fragile state. Namely, we fixed µ

N

L

= 895 and calculated the other input
variables accordingly. As before, we used 10,000 simulations for each distribution
to generate the frequency distribution. For each plot, two peaks occur close to
p = 0 and p = 0.8, which shows that indeed the banking system is in the fragile
state.

the mean, µN

A,L

, and standard deviation, µN

A,L

, of Normal distributions are used to cal-

culate the input variables for the other distributions using the formulas as stated in

Table 5.2. This has the effect that the samples of banks’ balance sheets have the same

arithmetic mean and standard deviation for the different random distributions. The

average was taken over 100 simulations. The leverage is calculated using the input

variables for the specific random distribution used to produce each graph, i.e. for sim-

ulations initialized with Log-Normal distribution, the leverage is: � =

µ

LL
A �µ

LL
L

µ

LL
A

.

For the simulations, we set µN

A

= 1000, µN

L

2 [800, 1000], �N

A

= 30 and �N

L

= 50

and calculated the input variables for the other distributions. The ratio of interbank

assets to total assets, ✓, is set to 0.3 to ensure that the jump becomes possible. Finally,

the underlying network structure is chosen to be an Erdős-Rény network.

The fragile state in Figure 5.3 occurs for the distributions around a leverage of

� = 0.1. The banking system initialized with Normal and Log-Normal distributions

are the first to default, followed by Logistic and Log-Logistic. That said, the difference

between the values is marginal. To ensure that a jump from almost all banks solvent
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Figure 5.5: The figure shows the PDFs for the average initial capital of a bank given that the
banking system is initialized with Normal (red), Logistic (magenta), Log-Normal
(green) and Log-Logistic (blue) distributions. For the Normal distribution, the
means and standard deviations are µN

A

= 1000, µN

L

= 895, �N

A

= 30 and �

N

L

= 50.
The input variables for the other distributions are based on the ones for the Normal
distribution and calculated using the formulas in Table 5.2. All banks are assumed
solvent initially, i.e. p

0

= 1. The FWHM for each PDF is also indicated by the
vertical and horizontal, dotted lines and the double arrows. The Log-Normal distri-
bution has the largest FWHM with FWHMLN

= 133.89, followed by the Normal
distribution with FWHMN

= 129.62. The Logsitic and Log-Logistic distributions
have a FWHM of FWHML

= 119.25 and FWHMLL

= 113.61. This implies that
the initial capital for banks initialized with Logistic and Log-Logistic distributions
are closer to the arithmetic mean than the initial capital of banks initialized with
Normal and Log-Normal distributions.

to almost all banks insolvent happens, the frequency distributions are plotted for fixed

µN

L

= 895 in Figure 5.4.

For all four distributions, two peaks occur close to p = 0 and p = 0.8 with inter-

mediate values missing. Thus, the fragile state indeed occurs. The graphs suggest that

for µ
L

= 985, the banking systems calibrated with Log-Normal distributions followed

by Normal distributions are more likely to fail than systems calibrated with Logistic

and Log-Logistic distributions.

Note that the scale parameters for the Normal (� = 58.3095) and Logistic (� =

32.1477) distributions differ. This has the effect that the arithmetic standard deviation

of the samples of banks’ balance sheets is similar and results in a slimmer PDF for

the Logistic distribution than for the Normal distribution. The width of the PDFs of

each distribution is further described in Figure 5.5. The figure shows the Normal (red),
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Logistic (magenta), Log-Normal (green) and Log-Logistic (blue) PDF of (1� ✓)µ
A

�

µ
L

+ ✓µ
A

p
0

(the initial average capital of a bank). To evaluate the Normal PDF, we

fix µN

L

= 895, and calculate µL,LN,LL

A,L

and �L,LN,LL

A,L

accordingly to retrieve the input

variables for the other PDFs. The initial fraction of surviving banks, p
0

, is set to one.

The horizontal and vertical dotted lines indicate the position of the full width

at half maximum (FWHM). The FWHM for the Normal distribution is FWHMN

=

129.62; for the Logistic, FWHML equals 119.25; for the Log-Normal, FWHMLN is

133.89, and for the Log-Logistic, FWHMLL equals 113.61. From the figure it becomes

clear that the Log-Logistic and Logistic distributions are slimmer than the Normal and

Log-Normal distributions. Hence, for a system initialized with Log-Logistic or Logis-

tic distributions, more banks have initial capital closer to the arithmetic mean than in a

system initialized with Log-Normal or Normal distributions. In systems initialized with

Normal and Log-Normal distributions, there exist more banks with less initial capital

that are more prone to failure. These banks start the insolvency at lower leverage values

making the total banking system less stable.

5.3 Network Influence

5.3.1 Size of the Banking System, N
Figures 5.6 and 5.7 show the second norm of the difference of the fraction of surviving

banks computed using the fixed points of the iteration map, Eq. 3.15 and the average

fraction of surviving banks computed using 100 simulations. In the simulation, we use

Erdős-Rény networks as underlying structures for the exposure networks, and Normal

distributions for liabilities and assets with varying mean liabilities, µ
L

. The ratio be-

tween interbank assets and total asset, ✓, is set to 0.3. For this value of ✓, b0 is well

above its critical value and a jump is predicted. For the fixed point equation a
0 is varied

to balance the changes in µ
L

in the simulation. The colour scale in Figures 5.6 and 5.7

reports the error (second norm) between the predicted values and the value achieved

using the average from 100 simulations.

In Figure 5.6, the errors for different values of N 2 [11, 1000] are plotted. The

connection probability ↵ for the Erdős-Rény networks is changed such that the average

degree for each N is z̄ = 10

2. To derive the fixed point solution for the iteration map,
2For an Erdős-Rény network, the average degree is z = ↵(N � 1).
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Figure 5.6: The figure shows the average error between the solution of the simulation and iter-
ation map, Eq. 3.15 of the fraction of surviving banks for varying bank population,
N . The figure reports the second norms of the difference between the fractions
of surviving banks of the fixed point solutions of the iteration map, Eq. 3.15, and
the fraction of surviving banks of an average of 100 simulations for fixed values
(µ

L

� µ

A

)/(�

2

A

+ �

2

L

)

1/2. The exposure network structures are Erdős-Rény net-
works. The connection probability for each population size is adjusted such that
the average degree of a bank is z̄ = 10. Banks’ balance sheets are calibrated using
Normal distributions. An interbank exposure to total exposure ✓ = 0.3 is used.
To test the influence of the size of the banking system, the number of banks N is
varied between [11, 1011].

Eq. 3.15, we assume that N tends to infinity. Nonetheless, Figure 5.6 indicates that the

number of banks, N , does not affect the outcome of the simulation much. The error

close to the jump for N < 150 is visible for a wider range of µ
L

. For larger N , the

error only becomes large close to the jump. For the same amount of average capital in

the system, the randomness allows for capital to vary among banks in the simulation

model. Close to the jump, this implies that small perturbation in banks’ individual

capital ensures a stable banking system, whereas in other cases the banking system

collapses (see Figures 5.2 and 5.4). Hence, close to the jump predicted in the iteration

map, Eq. 3.15, the error is the largest.

5.3.2 The Average Degree, z̄

In Figure 5.7, the errors for different connection probabilities ↵ are plotted for a bank-

ing system with N = 500. As expected, close to the jump the error is large but becomes
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Figure 5.7: The figure shows the average error between the solution of the simulation and the
iteration map, Eq. 3.15, of the fraction of surviving banks for varying average de-
grees of banks in the exposure network. The figure reports the second norm of
the difference between the average fraction of surviving banks of the fixed point
solutions of iteration map, Eq. 3.15, and the fraction of surviving banks of 100
simulations for fixed values (µ

L

� µ

A

)/(�

2

A

+ �

2

L

)

1/2 (changing µ

L

for different
simulations) and a

0 � b

0 (changing a

0 for different fixed points). The simulation
assumes Normal distributions for the balance sheet values, and for the structure
of the exposure network, Erdős-Rény networks with connection probability ↵ and
fraction of interbank loans to total assets ✓ = 0.3 are used. To test the influence of
the number of links from one bank to others, ↵ is varied in (0, 0.1].

smaller the larger the average degree z̄ in the exposure network. However, for ↵ smaller

than 0.03, a large error is also observed. This is because in that region the jump is only

marginal or does not occur in the simulation, implying that due to the smaller number

of links, the insolvency distribution and subsequent cumulative counterparty losses via

the network are not realized.

We note that large errors happen in a range close to the jump for connection proba-

bilities ↵ smaller than 8 ·10�3. In that region, the average degree z̄ of a bank is between

0 and 4 for N = 500. For ↵ < 10

�3, the jump is not observed or it is not very dominant

in the simulation testing. The amount loaned from one bank to others is still ✓A
i

(0).

However, it was shown in Chessa et al. (1998) and Barrat et al. (2008) using simula-

tion means that the upper critical Euclidean dimension for the mean-field assumption

of the Ising model is 4. Thus, it becomes clear that the mean-field approximation does

not capture the behaviour for average degrees smaller than 4 and further investigation

needs to be done into whether an average low number of counterparties in a banking
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Figure 5.8: The figure shows the average fraction of insolvent banks, 1�p, against the average
degree, z̄, of the interbank network for different �. The fraction of insolvent banks
is determined using 100 simulations. Banks’ balance sheets are initialized using
Normal distributions and fixed values of µ

L

= 960 and ✓ = 0.3. The underly-
ing topology of the interbank network is an Erdős-Rény network. The connection
probability ↵ is varied in [0, 0.5]. The variance � is changed for each graph from 0
to 30 (�

L

= 0 and �

A

= �). The parameter values used to initialize the banks re-
sult in an unstable solution for the mean-field model. However, it can be observed
that for decreasing �, the fraction of insolvent banks decreases for increasing z̄.

system reduces the risk of a systemic stress event.

5.3.3 The Influence of the Variance, �, on Diversification of Inter-

bank Assets

To test the influence of the variance, �, we plotted the average fraction of insolvent

banks, 1� p, against the average degree, z̄, for different values of � in Figure 5.8. The

graphs in Figure 5.8 are the averages of 100 simulations. The topology of the underly-

ing exposure network resembles an Erdős-Rény network and the random distributions

used to initialize the balance sheets are Normal distributions. The simulations are ini-

tialized with fixed µ
L

= 960 and ✓ = 0.3. The connection probability, ↵, is varied in

[0, 0.5]. The variance, �, is changed from 0 to 30 for each graph as indicated in the

legend. To be more specific, �
L

, is set to zero, and �
A

equals �.

We use 1� p in this figure to have the same representation as in Gai and Kapadia

(2010). In Gai and Kapadia (2010), they test the same contagion algorithm as presented

in this thesis. However, in their initialization process, all banks have the same value of

total assets, liabilities and capital. They also use Erdős-Rény networks to initialize
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Figure 5.9: The figure is similar to Figure 4.5 showing the fraction of surviving banks, p, for
different values of a and b given p

0

= 1. In addition, we also plotted the the
equilibrium solution of the fraction of surviving banks corresponding to the values
archived in Figure 5.8 for different values of � = [20, 18, 15, 13, 10, 5]. It becomes
clear that for � larger than 15, p is in the stable region, whereas for � larger smaller
than 15, p is in the unstable region.

their exposure networks. The interbank assets in Gai and Kapadia (2010) are, as in this

study, a fraction of total assets, and a single weight from a bank i to another bank has the

value: ✓Ai
zi

. To summarize, in Gai and Kapadia (2010), � is zero and the balance sheets

of banks are identical except the exposure from one bank to another, which depends on

the out-degree of each individual bank.

The increased fragility of the banking system for increasing � can be explained

using Figure 5.9. Figure 5.9 shows a plot similar to Figure 4.5. It depicts the fraction

of surviving banks for given a and b. Additionally, we plotted p for a and b using the

same parameters as used to created the graphs in Figure 5.8 as indicated by the legend.

For � larger than 15 the equilibrium fraction of surviving banks is above a
2

. However,

for � below 18, the equilibrium fraction of surviving banks is below a
2

in the stable

region.

For z̄ increasing and small �, the fraction of insolvent banks decreases as well.

Reducing � causes the balance sheets of banks to be more alike. If � = 0, each bank

has the same amount of capital initially. The randomness in the system is caused by the

distribution of the degree of the underlying exposure network. In the simulation model

for � = 0, the exposure leaving bank i to any loaner bank j is given as ✓A
i

(0)/z
i

. Thus,
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for bank i to be vulnerable in round r (assuming that bank i withstands insolvency until

round r) at least one counterparty of bank i needs to be insolvent. Additionally, given

that bank i is only connected to one insolvent bank, the capital of bank i in round r,

E
i

(r) = A
i

(r)� L
i

, needs to be less than ✓A
i

(0)/z
i

for bank i to become insolvent.

Let us consider the parameter values used to initialize the simulation in Figure 5.8

and set � = 0. That implies that all banks have the same amount of total assets, initially,

namely A
i

(0) = 1000. The capital in round r = 0 of a solvent bank i is 40 and the

single weight of exposure from bank i to bank j is: 300/z
i

. Thus, for z
i

= 7, an

insolvent counterparty bank j will cause insolvency to bank i since the exposure of

bank i to bank j is 42.9, greater than bank i’s capital. However, for z
i

= 8, bank i

needs to be connected to more than one insolvent bank to become insolvent itself.

Hence, assuming all banks i have the same amount of balance sheet quantities,

this implies that the larger the degree of a bank i, the more secure bank i is from

counterparty failure. Furthermore, any cascades will eventually stop, since only banks

with small out-degrees are affected by counterparty default and the network effects can

be disregarded. This is in accordance with the results in Gai and Kapadia (2010).

If the balance sheet parameters are also random variables, than the amount of

capital distributed among banks also differs. This causes the variance of loss-absorbing

capital for banks to be greater with some being more prone to failure than others. There-

fore, the cumulative losses increase as the likelihood of banks being connected to an

insolvent bank increases (and even more so the larger the number of counterparties).

This result is in accordance with Battiston et al. (2012a) and Battiston et al. (2012b),

where they tested the banking cascade model in Gai and Kapadia (2010) using random

variables for the balance sheet parameters. They also observe that for an increase in �,

counterparty insolvency continues to propagate through the network with large average

degree.

Thus, it can be argued that for a highly homogeneous banking system counter-

party risk can be lowered by diversifying interbank exposure. Whereas, for a more

heterogeneous system, where banks have different levels of loss absorbing capital, di-

versification does not necessary make the system more stable.
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Figure 5.10: The figure shows the average fraction of surviving banks, p, computed using 100
simulations plotted against (µ

L

� µ

A

)/(�

2

A

+ �

2

L

)

1/2. The balance sheet values
are normally distributed. The underlying structure of the exposure networks are
Small-World with neighbouring nodes c = 12 and a re-wiring probability � set
to 0.1 (A) and core-periphery networks with a strongly connected core created
using Erdős-Rény networks with connection probability ↵ = 0.75 and 50 banks,
and 450 periphery banks that are added one by one and joined to the 50 already
existing banks using the preferential attachment algorithm. As in Figure 5.1, for
a fraction of interbank assets to total assets, ✓ = 0.3, p is plotted using green
symbols; for ✓ = 0.1, we used red symbols; and for 0.0, blue symbols were used.
The error bar is the standard deviation of the results of 100 trials. The black line
represents the fixed points of the iteration map, Eq. 3.15, plotted against a0 � b

0

for changing ✓ as used in the simulation. The values of p for the simulation and
the iteration map, Eq. 3.15, are for both network structures close and the steep
decrease in the proximity of the jump are for both network structures observable.

5.3.4 Network Topology

Interbank networks of various countries (Austria (Boss et al., 2004), Brazil (Cont et al.,

2010), UK (Langfield et al., 2014), Italy (Iori et al., 2008), etc.) have been studied

with the outcome that the networks do not resemble Erdős-Rény networks. Instead,

they consist of “low clustering coefficients with short average path length” (Boss et al.,

2004) and the links in the interbank networks resembling the exposure from one bank

to others are distributed with tails exhibiting “a linear decay in log-scale, suggesting a

heavy Pareto tail” (Cont et al., 2010) indicating a core-periphery structure with banks in

the centre being highly connected and periphery banks being connected to core banks

(Viegas et al., 2013).

In Figure 5.10, we test the influence of other exposure network structures than

the Erdős-Rény network. The distributions used to initialize the balance sheets for
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both subplots are Normal distributions. The structure of the outline of Figure 5.10 is

similar to the one in Figure 5.1. Again, we plotted the average fraction of 100 trials

of surviving banks for a ✓ of 0.3 (green line), 0.1 (red line) and 0.0 (blue line) against

(µ
L

�µ
a

)/(�2

A

+�2

L

)

1/2 varying µ
L

. The black lines are the solution of the fixed points

of Eq. 3.15 for changing b
0 to match the equivalent value of ✓. Plot A shows the results

given that the underlying exposure network has a Small-World structure and in plot B,

the underlying exposure network structure uses the preferential attachment algorithm

to create a core-periphery structure. To tightly connected core banks, we used Erdős-

Rény core networks made out of 50 banks with a connection probability ↵ of 0.75. The

remaining 450 periphery banks are added one-by-one connecting to 15 banks using the

preferential attachment algorithm.

As shown in Figure 5.10, the simulation results using both network structures are

close to the fixed point solutions of the iteration map, Eq. 3.15, with a steep decline in

surviving banks for ✓ = 0.3. The steep decline of p, when the Small-World network

is used, starts a bit earlier than the predicted jump in the mean-field model. Before

the rewiring process, the Small-World network is an ordered lattice. The Ising model

on an ordered lattice can be approximated using the mean-field solution as long as the

number of close neighbours is larger than 4. The re-wiring creates long-distance links

between banks, distributes the shock quicker through the network.

Thus, it can be said that the network influence is marginal given that the number

of lending banks is large enough. This can be explained using the results in Section 4.2.

There, we showed that when p
r

= x
1

(and assuming a small change from p
r

to p
r�1

)

and a = a
2

, the average number of banks failing as a result of one insolvent bank is

one again. Therefore, this implies that when capital is low the insolvency of one bank

causes a chain of insolvencies in connected banks resulting in distress throughout the

entire system. This implies that the network structure is secondary in the distribution of

insolvencies. However, it has been reported that in the real world networks, periphery

banks are of smaller size than core banks, which we did not account for and might lead

to a different result.
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Figure 5.11: The figure shows the average fraction of surviving banks p computed using 100
simulations plotted against (µ

L

� µ

A

)/(�

2
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+ �

2

L

)

1/2. The balance sheet values
are normally distributed. The underlying structure of the exposure network is
an Erdős-Rény network. A collateral term, a recovery rate q, was added when
the total assets where computed during simulation modelling. The collateral on
loans becomes active after the counterparty becomes insolvent. The black line
represents the fixed points of the iteration map, Eq. 3.15. The fixed points are
plotted against a0�b

0 (✓ = 0.3 was used in the simulation). The different coloured
lines represent varying fractions q 2 [0, 1]. The value of the collateral for any loan
from bank i to bank j is q✓A

i

g

ij

. For increasing q, the interbank interaction is
reduced such that for q = 1 the interbank loans can be disregarded.

5.4 Recovery Rate
Figure 5.11 is a plot of the fraction of surviving banks, p, using simulation testing

including the recovery rate and the fixed point solution of the iteration map, Eq. 3.15.

The average fraction of surviving banks was plotted for 100 trials along with the error

bars (coloured lines) for fixed ✓ = 0.3. As in the plots before, µ
L

is varied in the

simulation and a
0 is changed accordingly in the mean-field model. The black lines are

the fixed point solutions of the iteration map, Eq. 3.15. The different colours represent

varying fractions of q 2 [0, 1]. For increasing q, the interaction in form of interbank

loans between banks can be disregarded. However, for lower values of q, the jump

can still be observed. This can be explained using the critical value of the ratio of

interbank assets to total assets, ✓
c

, which increases for increasing q. In fact, if q tends

to one, banks do not have any losses to compensate when counterparties fail. Thus,

unsurprisingly, a large q diminishes the importance of counterparty risk.

In the literature on recovery rates (Bruche and González-Aguado, 2010), it has
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been observed that the value of recovery rates fluctuates with economic cycles. During

a downturn the recovery rates are usually lower than when the economic cycle is in

an upturn. According to Bruche and González-Aguado (2010), the recovery rates for

bonds of US companies range between 0.15 to 0.80.3 In Fleming and Sarkar (2014), it is

stated that the recovery rate of Lehman Brothers was estimated to be 0.28. They further

say: “The settlement of OTC [Annot.: over the counter] derivatives was a long and

complex process...” and that “the Lehman estate was able to make the first distribution

to creditors [Annot.: OTC derivatives contracts with big bank counterparties] on April

17, 2012.” Thus, it is fair to assume that the instantaneous recovery rate is much lower.

Hence, a jump in a real economic setting with positive recover rates is still feasible.

However, the economic conditions need to be dire, allowing for low recovery rates, and

a considerable loss in the value of assets or increase in the cost of funding.

5.5 Changes in Liabilities and Assets During the Insol-

vency Propagation
To investigate the impact of changes in liabilities and assets during the insolvency

propagation, we apply Eqs. 3.23 ( ˆA
i

(r + 1) = exp(�(1 � p
r

))

ˆA
i

(r)) and 3.24

(L
i

(r + 1) = (1 � )L
i

(r)) to the simulation model. We use Normal distributions

to initialize the balance sheet quantities and say the underlying network structure re-

sembles an Erdős-Rény network with ✓ = 0.3.

To investigate the effects of reducing the value on non-interbank assets propor-

tional to the fraction of insolvent banks, 1� p
r

, in round r, we adopted the insolvency

algorithm from Chapter 3 slightly. In particular, Eq. 3.23 is applied after the third step

in the insolvency algorithm. That is, in round r we have:

• The current value of interbank assets, A
i

(r), is calculated for each bank i using

Eq. 3.22.

• For all banks i with A
i

(r)� L
i

< 0, the state, S
i

(r), of bank i set to zero.

• The number of solvent banks is counted and divided by N to obtain the fraction

of solvent banks, p
r

, in round r.
3They used the Altman-NYU Salomon Center Corporate Bond Default Master Database to extract

the recovery rates.
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Figure 5.12: The figure shows the fraction of solvent banks, p
r

, against r for one simulation
run given that in each round r, the non-interbank assets, A

i

(r), are reduced by
exp(�(1� p

r

)) as outlined in Eq. 3.23. The parameters to initialize the balance
sheets are chosen such that only a small number of banks become insolvent ini-
tially but the overall system stays stable (µ

L

= 860). For each graph the constant,
, is changed from zero (magenta x), to 0.05 (blue cross), to 0.10 (green star). For
 = 0.00, as expected, the equilibrium solution of surviving banks is p = 0.99.
However, for  = 0.05 and  = 0.10, the system defaults with p = 0.

• The value of non-interbank assets, ˆA
i

(r), is calculated for each bank i according

to Eq. 3.23.

• The iteration is repeated until no further bank becomes insolvent.

Figure 5.12 shows the fraction of solvent banks, p
r

, in round r plotted against

round r. To create the plot, the location parameter of the liabilities is chosen such that

the banking system is stable when disregarding a reduction in the value of assets, i.e.

µ
L

= 860. To be more precise, only a few banks become insolvent and the majority

of banks stay stable. The ratio of interbank assets to total assets is set to ✓ = 0.3.

Figure 5.12 consist of three graphs representing the fraction of solvent banks, p
r

, in

round r computed using one simulation run. For each graph the constant, , is changed

from zero (magenta x), to 0.05 (blue cross), to 0.10 (green star). For  = 0, non-

interbank assets do not lose in value and most banks in the banking system survive

with the equilibrium fraction of surviving banks being p( = 0) = 0.99 in round

r = 1. Increasing  to 0.05 and 0.10 results in a reduction of the value of interbank

assets. This causes the banking system to become unstable with the equilibrium fraction

of surviving banks for  = 0.05 and  = 0.10 being p( = 0.05, = 0.01) = 0.00.
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The reduction in non-interbank assets results in a greater loss in capital and moves the

system into the unstable region eventually.
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Figure 5.13: The figure shows multiple plots of x � F (x) against x. The values for a

00
(r)

and b

0 are calculated using Eqs. 3.21 and 5.1. Because of the reduction term,
exp(�(1 � p

r

))

PN
i=1

ˆ

Ai(r)

N

, in Eq. 5.1 the value for a00
(r) changes for each in-

solvency round, r. This causes x � F (x) to shift upwards for each r. For r = 0,
x � F (x|a00

(0)) has three roots, w
1

, w

2

and w

3

, which are the fixed points of
p

r+1

= F (p

r

|a00
0). For r  1, p

r+1

= F (p

r

|a00
r  1) has only one fixed point

close to zero. Hence, a reduction in non-interbank assets resulted in an unstable
banking system.

We visualized in Figure 5.13 the change of the system from a stable to an unstable

system conditional on the reduction. Figure 5.13 shows multiple plots of x � F (x)

against x. To calculate b
0 , we used Eq 3.21. However, because of the asset reduction

function, Eq. 3.23, we adopted the formula for a0 , Eq. 3.20, to (assuming q = 0):

a
00
(r) =

� exp(�(1� p
r

))

PN
i=1

ˆ

Ai(r)

N

+ µ
Lp

�2

A

+ �2

L

, (5.1)

i.e. we changed the term (1� ✓)µ
A

to exp(�(1� p
r

))

PN
i=1

ˆ

Ai(r)

N

. Note that
PN

i=1
ˆ

Ai(r)

N

is the arithmetic mean of the non-interbank assets, ˆA
i

(r), for all banks i in round r.

Thus, we say a
00
(r) changes in time. It should be noted that the value for the non-

interbank assets, ˆA
i

(0), for a bank i is specific for each simulation and changes for

each simulation run. To produce the graphs in Figure 5.13, we used the same values

for ˆA
i

(0) as were used in the banking system to produce the fractions of solvent banks,

p
r

, in Figure 5.12 for  = 0.05. Hence, a00
(r) differs for each graph in Figure 5.13
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resulting in an upwards shift of the graphs of x�F (x|a00
(r)). The legend indicates the

round of insolvency for each graph.

For r = 0 (dark blue line), x � F (x|a00
(r)) has three roots. Hence, the iteration

map, p
r

= F (p
r�1

|a00
(0)) has three fixed points, w

1

, w
2

and w
3

. For reasons outlined in

Chapter 4, w
1

and w
3

are stable fixed points and w
2

is an unstable fixed point forming

a barrier between the two stable fixed points. Note also that w
1

is slightly smaller than

one. Thus, for all banks solvent initially (p
0

= 1), some banks become insolvent in the

initial round (r = 0). This has the effect that the non-interbank assets are reduced and

a
00
(1) increases. The increase in a

00
(1) causes x�F (x|a00

(1)) to shift upwards. Because

of the shift, x�F (x|a00
(1)) only has one root, namely w

1

, which is the stable fixed point

of p
r

= F (p
r�1

|a00
(1)). In fact, for any a

00
(r) for r  1, p

r

= F (p
r�1

|a00
(r)) has only

one fixed point. The fixed point w
1

is zero for all a00
(r) with r  1. This implies that for

any r  1, the reduction in non-interbank assets results in system failure for  = 0.05.

In Figure 5.14, we test for the influence of a capital injection into an unstable sys-

tem. Because of that, the parameters are chosen such that the banking system collapses

given  = 0, i.e. µ
L

= 890 and ✓ = 0.3. To be more precise, we adopt the insol-

vency algorithm stated in Chapter 3 and reduce the liabilities in a particular round r by

applying Eq. 3.24 to the liability side of banks’ balance sheet. That is, for each bank

i, L
i

(r + 1) is a fraction (1 � ) of L
i

(r). Figure 5.14 shows the fraction of solvent

banks, p
r

, against round r. For each graph, we reduced the value of liabilities in round

r as specified in the accompanying legend. For example, for the graph represented by

the magenta triangles, the liabilities were reduced in round r = 7. Additionally, we

marked the fraction of solvent banks at the point right before the liabilities are reduced.

To be more precise, for a reduction in liabilities at r = 7, the fraction of solvent bank

before the reduction is p
r=7

= 0.05.

The graphs show that if a reduction of 5% in the value of liabilities takes place

before the 6th iteration step, the banking system returns to almost all banks solvent

again. However, if the reduction in liabilities takes place after the 6th iteration step,

all banks become insolvent. Note that we did not plot average solutions but only the

solution of a single simulation. Hence, depending on the initial distribution of balance

sheet quantities and the underlying network structure, a system might be rescuable

after the 6th iteration or doomed to default before the 6th iteration step. Nonetheless,



5.5. Changes in Liabilities and Assets During the Insolvency Propagation 96

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Round of insolvency, r

F
ra
ct
io
n
o
f
su

rv
iv
in
g
n
b
a
n
k
s,

p

 

 

r = 1

r = 3

r = 5

r = 7

r = 9

p9 = 0.00

p1 = 0.93

p5 = 0.65

p3 = 0.83

p7 = 0.05

Figure 5.14: The figure shows the fraction of solvent banks, p
r

, against round r. To produce
the graphs, the liabilities, L

i

(r), of each bank i are reduced by a fraction 1 � 

in round r. The legend indicates the specific round, r, in which liabilities are
reduced. Additionally, we marked p

r

for each simulation before reduction in
liabilities takes place. For liability reductions in round r = 1, ..., 5, the banks in
the banking system return to normally operating. For r = 7, 9, all banks become
insolvent.

it can be deduced from Figure 5.14 that there exists a point in the iterative process, at

which a capital injection does not save the banking system even though the same capital

injection could have rescued the banking system in earlier iteration steps.

This can be explained using Figure 5.15. In Figure 5.15, the function x� F (x|a0
)

is plotted twice against x. The difference in the two graphs is the parameter a0 . For both

graphs, the parameter b0 is calculated using the values used to initialize the simulation

model. However, for the solid line, we used the initial value of µ
L

to calculate a
0
1

=

3.60. For the dotted graph, (1� )µ
L

was used to calculate a
0
2

= 2.82. The parameter

b
0
= 5.1 is the same for both graphs. The vertical lines indicate x corresponding to the

values of p
r

before the reduction in liabilities. For example, the vertical magenta line

(x = 0.05) corresponds to the fraction of solvent banks in round r = 7 for the magenta

coloured triangle graph in Figure 5.14, i.e. p
7

= 0.05. The vertical black lines mark the

position of the fixed points, w
1

, w
2

and w
3

, of the iteration map p
r

= F (p
r1 |a

0
2

), which

are the roots of x� F (x|a0
2

).

As can be deduced from the graphs in Figure 5.15, the reduction in capital causes

the iteration map, p
r

= F (p
r1 |a

0
), to change from one fixed point solution (for a0

= a
0
1

)

to three fixed point solutions (a0
= a

0
2

). The fixed point, w
1

, for a0
1

= 3.60 is close
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Figure 5.15: The figure shows two plots of x � F (x|a0
) against x. The parameter b0 equals

5.1. The parameter a0 varies for the two graphs. For the solid black line we used
a

0
1

= 3.60. Whereas for the dotted black line a

0
2

equals 2.82. The parameters
a

0
1

and b

0 are calculated using the values q, µ
A

, µ
L

, �
A

, �
L

and ✓ to initialize the
simulation model before the reduction in liabilities takes place. For the dotted
black graph, b0 stays the same. However, a0

2

varies because we used (1 � )µ

L

for the average liabilities to represent the reduction in liabilities instead of µ
L

.
The black vertical lines represent the roots of x � F (x|a

2

), w
1

, w

2

and w

3

. The
coloured vertical lines are specific x values corresponding to p

r

in Figure 5.14
before the liabilities are reduced.

to zero. The stable fixed points, w
1

, w
3

, for a0
2

= 2.82 are close to zero and one. The

unstable fixed point, w
2

, forms a barrier between the two stable fixed points around 0.6.

Therefore, without the reduction in liabilities, all banks in the banking system will

become insolvent. However, if the liabilities are reduced in round r, instead of one

orbit, the new iteration process has two orbits. For any starting value p
r

in [w
1

, w
2

], the

fixed point reached is going to be w
1

; and for any p
r

in [w
2

, w
3

], the fixed point reached

is going to be w
3

. For example, for p
r=7

= 0.05 the iteration process will stop at zero.

Whereas, for p
r=6

= 0.65, the system returns to normally operating again.

5.6 Conclusion
We conclude that the results of the mean-field model can be replicated using a

simulation-based model for a variety of random distributions and banking system pa-

rameters. We determine that interbank networks are crucial to the distribution of coun-

terparty failure, but the network structure is secondary for the onset of the insolvency

propagation. We also show that diversification of interbank assets does not necessarily
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reduce the risk of failure. Hence, monitoring precise exposure from one bank to another

is not necessary. Instead, ratios of interbank assets to total assets should be monitored

to guarantee financial stability. This is of interest as interbank exposure from one bank

to another is not published by regulators. This is because the information contained in

reports on interbank exposures collected by regulators is considered market changing.

The conclusions of this chapter suggest that publishing information on the ratio of in-

terbank assets to total assets is sufficient to monitor financial stability. It would allow

other participants to obtain a better picture about banks’ solvency. That said, we did

not incorporate the importance of recovery rates other than using the same value for all

banks or how maturity times for different financial products influence the solvency of

banks. These should be checked before solely relying on the ratio of interbank assets

to total assets as a measure of how counterparty failure influences financial stability.

Finally, we incorporate functions changing the time value of assets and liabilities

in the simulation model and explain the observations in the setting of the mean-field

model. The functions used are not realistic to model actual processes during a real

financial crisis. The intention of using these functions was to show that value changes

of assets and liabilities can be incorporated into the mean-field setting.4 Depending

on the balance sheet values, the equilibrium solution of the counterparty risk model

shifts. This potentially causes a seemingly stable system to move into an unstable

region given reductions in banks’ capital during the insolvency iteration. Furthermore,

we find that because the equilibrium solution is history dependent, capital injections

during the insolvency propagation might not have the desired effect of rescuing the

banking system, even so the same amount of external capital would have caused the

system to return to stability again at earlier iteration rounds.

4One assumption to derive the mean-field model is to keep the value of non-interbank assets and
liabilities constant after the initial round of insolvency.



Chapter 6

Empirical Analysis of Counterparty

Failure in the UK Banking System

Summary of the chapter: In this chapter, we investigate the simulation-based model

and the mean-field model using banking systems initialized with UK regulatory data. In

the first part of this chapter, we conduct an analysis of bilateral exposure and balance

sheet data of the UK banking system. We construct interbank exposure networks from

the bilateral exposure data and apply network measures to obtain a better understand-

ing of the topology of the banking networks. We observe that the UK banking system

consists of banks varying greatly in the size of their balance sheets. Furthermore, large

UK banks that operate globally can be found in the core of the interbank network with

smaller regional operating banks in the periphery. In the second part of this chapter,

the solutions of both the mean-field and simulation models are compared. We conclude

that the simulation-based model of a highly heterogeneous banking system and the

mean-field model, where we assume a homogeneous banking system, behave similar.

To be more specific, we observe the occurrence of the fragile state in both models for

similar sized shocks. We conclude the chapter by calculating the leverage requirements

using the regulatory data.

6.1 Data Analysis

6.1.1 Description of Regulatory Datasets
The dataset presented in this thesis consist of regulatory reports of UK banks to the

BoE. In particular, we use regulatory reports on bilateral exposure data and balance

sheet information to calibrate a simulation-based and mean-field model. The data was



6.1. Data Analysis 100

collected at the end of 2011 (2011 H2), the end of 2012 (2012 H2) and the first half

of 2013 (2013 H1). The exposure data are supplemented by balance sheet information

obtained from the BoE for UK regulated banks. The balance sheet quantities relevant

for calibrating the counterparty risk models are “total assets” and “Tier 1 capital”.

The datasets are classified due to their market changing nature. The results of

the network and balance sheet analysis in Section 6.1.3 and 6.1.2, and simulations

results presented in Section 6.3 were initialized and run by our collaborator at the BoE.

We need permission from the BoE for publishing any information related to the two

datasets. For this reason, we limit the data analysis to measures relevant to calibrate the

counterparty risk models and to understand the cascade process.

The BoE supervises 176 UK consolidated banking groups. Each bank reports ex-

posures by instrument to their top 20 bank and broker-dealer counterparties. If the

top 20 do not have at least six UK-based counterparties, firms are asked to report ex-

posures to up to six UK-based counterparties in addition to the top 20. Branches of

foreign banking groups in the UK are not included in the data collection as their super-

visory authority is not situated in the UK.1 UK banks disclose their exposures to other

banks and broker dealers by financial instruments. The financial instruments2 reported

include:

• Lending, unsecured, secured3 and undrawn;

• Holdings of equity and fixed-income securities issued by banks;

• Credit default swap, bought and sold;

• Securities lending and borrowing (net of collateral);

1Because the 176 UK banks report their exposures to other global consolidated banking groups,
there are 314 non-UK banks recorded in the dataset. These 314 non-UK banks do not submit their own
exposures to the BoE and are only listed as counterparties of the UK banks. In this study, we consider
the 176 UK regulated banks only and disregard the 314 non-UK banks when constructing the network
since we do not have enough information on the exposure of non-regulated banks to UK regulated banks.

2Moreover, banks state exposures with breakdown by the maturity of the instrument. Categories of
maturities are: open; less than three months; between three months and one year; between one year and
five years; and more than five years. Derivatives are not reported with a maturity breakdown. Banks’
internal risk management limits, with respect to counterparties and instruments, are also supplied. How-
ever, for this study, we disregard any differences in maturity time and debt structure.

3Secured loans do not include reverse repurchase agreements, which have a different contractual
nature. Secured loans are collateralised by various assets such as buildings, lands and other physical
assets.
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Table 6.1: The table reports the number of banks in the system. The first line indicates the
total number of banks regulated by the BoE, which is the same for all years. Only
banks are used for calibrating the counterparty risk models that belong to the largest
connected component of the interbank network, have total assets larger than total li-
abilities, and banks where interbank assets and liabilities are larger than the recorded
total assets and liabilities.

Year Total No. LB BS IB OB CB
All banks recorded 176 8 47 14 67 40
2011 H2 158 8 45 14 54 37
2012 H2 154 8 44 14 50 38
2013 H1 147 8 46 14 44 35

• Repurchase agreements and reverse repurchase agreements (net of collateral);

and

• Derivatives exposures: The breakdown covers interest rate derivatives; credit

derivatives; equity derivatives; foreign-currency derivatives; commodities deriva-

tives; and other derivatives.

Finally, we use the BoE’s classification of banks into “Large Banks” (LB), “Build-

ing Societies” (BS), “Investment Banks” (IB), “Oversea Banks” (OB) and “Other Com-

mercial Banks” (CB). The BoE’s classification groups banks into particular bank types

with similar sized banks, or banks with similar business models belonging to the same

bank type. The number of banks for each bank type are reported in Table 6.1, first row.

For the counterparty risk model, we only use banks that belong to the largest con-

nected component of the network (see Section 6.1.3). Further, we restrict our investiga-

tion to banks, where the difference between assets and liabilities is positive. A negative

difference can be a result of restructuring, insolvencies and other organisational events.

Finally, we include only banks, where the value of interbank assets and interbank liabil-

ities is smaller than the banks value for total assets and total liabilities. The reason for

the discrepancy between interbank assets and liabilities, and total assets and liabilities

is a result of combining the two datasets. When constructing the interbank network,

we assume that any exposure to an international banking group is the exposure to the

UK subsidiary. For example, any exposure to Santander Group is assumed to belong

to Santander UK when the interbank network is constructed. In some cases the expo-

sure reported to the international banking group exceeds the value of the total assets

or liabilities reported by the UK subsidiary to the BoE. Hence, for some banks, OB in
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particular, the interbank exposure exceeds the balance sheet values, and consequently,

we exclude these banks from the model calibration. The total number of banks in the

dataset and the number of banks used for model calibration, can be found in Table 6.1.

We must stress that combining the data for international banking groups and UK

subsidiaries together with limiting the number of counterparties during reporting to the

BoE results in a distorted replication of the real UK banking system.

6.1.2 Data Analysis of Balance Sheets
The balance sheet parameters needed to calibrate the counterparty risk model are: total

assets and loss absorbing capital. In this thesis, we assume that Tier 1 capital is equiv-

alent to loss absorbing capital.4 Liabilities of a bank, are computed as the difference

between the value of total assets and Tier 1 capital.

Table 6.2: The table reports the average value of assets of banks of a particular bank type for
the years 2011 H2, 2012 H2 and 2013 H1 in Mil. GBP. The STD is reported below
in brackets. The STD are of the same order or larger than the mean values indicating
that banks grouped in one bank type have balance sheets varying greatly in size.

Year LB BS IB OB CB Total
2011 H2 675855 2707 183337 2695 4901 53305

(576078) (6487) (219105) (6752) (10528) (205547)
2012 H2 642503 2881 189115 2594 5371 53560

(522503) (6949) (213583) (6199) (11667) (195977)
2013 H1 646177 2809 189152 2928 5529 56252

(522810) (6881) (214470) (6766) (11317) (200985)

The majority of banks in the system are BS, OB and CB. LB and IB are the mi-

nority, but as we can see in Table 6.2, they have the largest balance sheets. Table 6.2

reports the mean values of total assets per bank type and standard deviations (STD) of

assets (in Mil. GBP) as used in the model calibration. In terms of balance sheet size,

the UK banking system is very heterogeneous. Balance sheets of LB and IB are about

ten times larger than the average value of all banks. BS, OB and CB are on average

about 10 times smaller than the average. The average size of all banks’ balance sheets

remains similar for the three years. However, the mean value of total assets of LB

decreases. This is because major UK banks conducted some restructuring of balance

sheets to decrease the overall financial risk.
4There is still an on-going discussion as to what counts as loss absorbing capital. For example, the

UK government states that beside equity “potentially loss-absorbing liabilities” (UK parliament, 2013)
should be included.
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Table 6.3: The table reports the mean value of Tier 1 capital of banks of different bank types
in the years 2011 H2, 2012 H2 and 2013 H1 in Mil. Pounds. The values in brackets
are the STD. Analogous to the STD of the assets values reported in Table 6.2, the
STD for Tier 1 capital is also of the same order or larger than the mean values. Tier
1 capital can be considered to be the loss absorbing capital buffer. From 2011 H2
to 2013 H1, an increase of the average Tier 1 capital in banks of all bank types
can be observed. In recent years, banks increased their capital to meet the capital
requirements as outlined in Basel III.

Year LB BS IB OB CB Total
2011 H2 29619 124 4630 265 358 2120

(24088) (266) (5426) (502) (574) (8405)
2012 H2 32835 155 7966 315 380 2670

(25583) (331) (8574) (564) (750) (9568)
2013 H1 33113 151 7990 336 416 2810

(25453) (328) (8565) (611) (766) (9809)

The mean Tier 1 capital of all banks and banks aggregated to their bank type is

reported in Table 6.3 together with the STD. We observe that the total average Tier

1 capital increases over the years. This is due to regulatory requirements in the UK

for banks to increase their capital reserves following the guidelines in Basel III (BIS,

2011).

Table 6.4: The table reports the leverage ratios (ratio of the average Tier 1 capital to the average
total assets) for the years 2011 H2, 2012 H2 and 2013 H1 for the different bank
types. The leverage ratio increases for LB, BS, IB and OB. The ratio for CB stays
almost constant. Further, the leverage ratio for OB and CB is considerably higher
than the leverage ratio of LB, IB and OB.

Year LB BS IB OB CB Total
2011 H2 0.044 0.046 0.025 0.098 0.073 0.040
2012 H2 0.051 0.054 0.042 0.121 0.071 0.050
2013 H1 0.051 0.054 0.042 0.115 0.075 0.050

Table 6.4 denotes the leverage ratio, which in this case is the ratio of Tier 1 capital

to total assets. We note that the leverage ratio increases over time from 0.04 (2011 H2)

to 0.05 (2012 H2 and 2013 H1). This implies that the rate of accumulation of Tier 1

capital is greater than the rate of growth of the value of banks’ balance sheets showing

the regulatory efforts to increase overall capital reserves. The lowest leverage ratio is

achieved by IB in 2011 H2 with 0.025. OB have the largest leverage ratio (0.1213) in

2012 H2. The leverage ratios of LB and BS are similar in all years increasing slightly

from around 0.04 to 0.05. CB have leverage ratios around 0.07 for all years. The reason
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Figure 6.1: The figure shows the exposure network 2013 H1 as used in model calibration. The
nodes of the exposure network are the banks, with the links depicting the exposure
from one bank to another creating a directed network. The size of the nodes varies
relatively to the size of banks balance sheets. The nodes are also coloured according
to bank type with blue for LB, red for BS, green for IB, black for OB and magenta
for CB.

for the larger leverage ratios of OB and CB as well as some BS is that small banks

typically do not have the skills and resources to apply advanced approaches to calculate

Risk Weighted Assets (RWA). So small banks tend to use the standardised approach,

which leads to higher RWA, and hence, higher risk-based capital requirements.

6.1.3 Topology of the UK Interbank Network

The interbank exposure network from the 2013 H1 data as used in model calibration is

shown in the Figure 6.1. A node in the interbank network represents a bank i 2 [1, N ]

in the banking system. The size of the nodes in Figure 6.1 are proportionate to the size

of banks’ balance sheets. Furthermore, the nodes are coloured according to their bank

type with blue for LB, red for BS, green for IB, black for OB and magenta for CB.
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The interbank network is a directed graph, i.e. the links in the network have a direction

associated with them. In particular, a link from a bank i to another bank j indicates

the exposure g
ij

from bank i to bank j. While creating the interbank network from

the exposure data, we do not differentiate between different financial instruments and

disregard variations in maturity time.

The network measures used in this study to calibrate the models and to understand

the insolvency process are a connected component analysis, out-degree, in-degree,

weights and assortativity coefficient (Newman, 2010). We measure the averages of

these quantities over the whole network and the averages aggregated by bank type.

6.1.3.1 Connected Component Analysis

The component analysis reveals that most of the banks belong to the largest connected

component; meaning that, disregarding the directedness of a link, there exist at least

one path between any two nodes. The banks that do not belong to the largest connected

component are isolated.5 Compositions of the largest connected components per bank

type are reported in Table 6.1 (second to fourth row). For the stability analysis of

the UK banking system, we only use banks in the largest connected component. The

insolvency of banks that are not members of the largest component is not influenced by

counterparties. This is because banks not included in the largest connected component

do not have any counterparties and form a component on their own. If there exists

more than one network component of connected banks then all components need to be

considered for calibration that contain more than one bank.

6.1.3.2 Degree Analysis

The average in- and out-degree states the average number of links leaving or direct

to a bank in the interbank network. To compute the average in- and out-degree of a

bank of a specific bank type to other bank types, we only use banks belonging to the

specific bank type. To be more specific, the in- and out-degree of a bank i of type

⌧ 2 {LB,BS, IB,OB,CB} are given as:

z in

i

⌧

=

P
j2V⌧⇤{1}

(gji>1)

, zout

i

⌧

=

P
j2V⌧⇤{1}

(gij>1)

, (6.1)

5In 2011 H2 and 2012 H2, four banks are not part of the largest connected component (2011 H2: 2
BS, 1 OB, 1CB, and 2012 H2: 1 OB, 3 BS). In 2013 H1, 8 banks do not belong to the main component
with 1 being a CB and 7 being OB.
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(a) In-degree (b) In-weight

(c) Out-degree (d) Out-weight

Figure 6.2: The networks represent the average in- and out-degree (subplots (a) and (b), respec-
tivly), and the average in- and out-weight (subplots (c) and (d)) to and from a bank
of a partciular bank type to banks of other bank types of the exposure network 2013
H1. The graphs are visualizations of the information contained in Tables B.3, B.4,
B.1 and B.2. It becomes clear that LB and IB form a central role in the exposure
network with the majority of BS, OB and CB situtated in the periphery.

where V⌧⇤ is the sets of banks belonging to bank type ⌧⇤ 2 {LB,BS, IB,OB,CB}.

The average in- and out-degree of a bank of type ⌧ to banks in the set V⌧⇤ are:

z̄ in

⌧⇤ =
1

N⌧

P
i2V⌧⇤ z in

i

⌧

, z̄out

⌧

=

1

N⌧

P
i2V⌧⇤ zout

i

⌧⇤. (6.2)

Tables B.3 and B.46 report the average and STD of in- and out-degree from one bank

type (columns) to another (rows), or vice versa. The information from the tables is

visualized in Figues 6.2a7 and 6.2c. Figues 6.2a and 6.2c show the average in-degree

from bank types to a particular bank type and the out-degree from a bank type to other

bank types for the exposure network in 2013 H1.

The degree analysis is to a certain extent limited by the number of links banks

have to report to the BoE. This is also reflected in the small STD of average number of
6Because of the size of the tables they are placed in the Appendix, Chapter B.
7The transpose of Table B.3 for 2013 H1 is used to produced the directed links in the graph in

Figure 6.2a.
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out-degrees. Thus, it should be kept in mind that without the threshold, the potential

number of counterparties from one bank type to others might differ greatly.

We can note that the average in-degrees have high STD, which is mostly due to the

high number of in-coming links LB and IB receive and low number of links directed to

BS, CB and OB. The largest number of links to LB are directed from BS, OB and CB.

However, the number of banks belonging to BS, OB and CB is larger than the number

of banks belonging to LB and IB. Thus, in relative terms LB and IB are also almost

entirely exposed to other LB. Similarly, most of the links directed to IB are coming

from LB, IB and OB. BS, CB and OB have on average very low incoming links. The

STD for both OB and CB are also close to the average values. Thus, the majority of

OB and CB only receive little exposure from other bank types.

The degree analysis indicates that LB in all three years as well as IB in 2012 H2

and 2013 H1 form the centre of the interbank network with BS, OB and CB mostly

interacting with LB or IB. Hence, BS, OB and CB are forming the periphery with LB

and IB being in the centre of the interbank network.

6.1.3.3 Weight Analysis

To evaluate the importance of the different bank types towards counterparty risk, the

weights of the links are also of importance. The in- and out-weight of states the size of

the exposure of a bank of a particular bank type to and from banks of other bank types.

That is

win

i

⌧

=

P
j2V⌧⇤ g

ji

, wout

i

⌧

=

P
j2V⌧⇤ g

ij

. (6.3)

The average in- and out-weights of a bank of type ⌧ to banks in the set V⌧⇤ are:

w̄in

⌧

=

1

N⌧

P
i2V⌧⇤ win

i

⌧⇤, w̄out

⌧⇤ =

1

N⌧

P
i2V⌧⇤ wout

i

⌧

. (6.4)

Tables B.1 and B.28 report the average total in- and out-weights in GBP Mil. lead-

ing to or direct from a specific bank type (rows) from or to banks of another bank

type (columns), as well as the total averages for the entire network. The average total

weights are the sum of the single weights directed to or leaving a bank. To obtain the

8Because of the size of the tables, they are placed in the Appendix, Chapter B.
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single average weight directed to or leaving a bank of a specific bank type, the total

average weight needs to be divided by the average link as stated in Tables B.3 and B.4.

In Figures 6.2b9 and 6.2d, the in- and out-weights for 2013 H1 to and from a bank of a

particular bank type from or to other bank types are plotted visualizing the data stated

in Tables B.1 and B.2.

The break down into different bank types reveals that total exposure varies by

orders of magnitude for different bank types with the mean in- and out-weight of LB

being around GBP Mil. 10,000, IB weights being about a tenth smaller than LB, and

BS, OB and CB again being a tenth smaller than IB. This is not too surprising as

the sizes of the balance sheets also vary by orders of magnitude (see Table 6.2). The

average in- or out-weight for BS, OB and CB does not vary much over time. However,

the exposure of LB and IB to IB increases considerably from 2011 H2 to 2012 H2 and

2013 H2. The average out-weight of LB to LB decreases from 2011 H2 to 2012 H2.

Table 6.5: The table reports the ratio of the average values of interbank assets to total assets,
✓

out

, aggregated to different bank type levels and the entire banking system. The
values ✓, used in the mean-field model, are the total over all banks types.

Year LB BS IB OB CB Total ✓
2011 H2 0.0162 0.0351 0.0097 0.0634 0.038 0.0158
2012 H2 0.0162 0.0217 0.0126 0.0538 0.0231 0.0159
2013 H1 0.0156 0.0329 0.0126 0.0312 0.0328 0.0159

The relative out-weight, ✓
out

, is calculated using the average out-weights as given

in Table B.2 and the mean values for total assets as reported in Table 6.2 and Table 6.5.

That is

✓
out

⌧

=

w̄out

⌧

µ
A⌧

, (6.5)

where µ
A⌧ states the mean value of assets of banks of type ⌧ . The value of ✓

out

for

all bank types is used to calibrate the parameter ✓, the ratio of interbank assets to total

assets in the mean-field model (see Chapter 4).

The average value of ✓
out

for all bank types averaging around 1.6% is relatively

low. In comparison, in Müller (2006) and Upper (2011), the average interbank lend-

ing in the second half of the 2000s is between 10% to 20%, which indicates that the
9The transpose of Table B.1 for 2013 H1 is used to produced the directed links in the graph in

Figure 6.2b.



6.1. Data Analysis 109

recorded interbank network is incomplete. This is partly due to the data structure used

in other studies, where interbank exposures is measured on a gross-of-collateral ba-

sis. In this thesis, exposure is measured on a net-of-collateral basis. Another reason

why the interbank exposure of banks is lower than observed in other studies is the

limited number of twenty counterparties UK regulated banks have to report as well as

the restriction made to only investigate UK regulated banks, which makes the dataset

incomplete. Because of this, we test the effects of increased exposure in Section 6.3.3.

6.1.3.4 Associativity Coefficients Analysis

Finally, the associativity coefficients of the interbank exposure networks also indicate

a core-periphery structure. The associativity coefficient is the ratio of the covariance

of nodes over edges to the value of perfect mixing and can take values between one

and minus one (Newman, 2010). It states whether nodes with a large (small) number

of links are connected to nodes with a large (small) number of links, in which case the

associativity coefficient is closer to one and the network is associative. If nodes with

a large (small) number of links are connected to nodes with a small (large) number

of links, the associative coefficient is closer to minus one and the network is said to

be disassociative. We used the algorithm from the Brain Connectivity Toolbox (Brain

Connectivity Toolbox, 2010) to compute the associativity coefficient. The algorithm is

described in Rubinov and Sporns (2010). The associativity coefficient of the exposure

networks are: -0.32 (2011 H2), -0.27 (2012 H2) and -0.28 (2013 H1). The negative

associativity coefficients indicate that banks with a small number of degrees are mostly

connected to banks with a large number of degrees.

Overall, the network analysis shows that the topology of the interbank networks in

2011 H2, 2012 H2 and 2013 H1 resembles a core-periphery structure with LB and IB

in the core and BS, OB and CB in the periphery. The core-periphery structure has been

observed in other studies on interbank network topology (Boss et al., 2004; Fricke and

Lux, 2015; van Lelyveld et al., 2012). The core-periphery structure suggests that LB

and IB are financial intermediaries, i.e. these banks provide links between banks with

money surplus to banks with liquidity or hedging needs.
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6.2 Model Calibration

6.2.1 Calibration of Homogeneous Mean-Field Model

The mean-field model requires the calibration of 6 parameters for each historic period:

µ
A

(t
0

), µ
L

(t
0

), ✓(t
0

), �
A

(t
0

), �
L

(t
0

), and q(t
0

), where t
0

= 2011 H2, 2012 H2 and

2013 H1.

The random distribution to initialize the balance sheets is chosen to be a Normal

distribution. The parameters µ
A

(t
0

) and µ
L

(t
0

) can be traced from the balance sheet

data. In particular, µ
A

(t
0

) is the average of total assets, reported in Table 6.2. For

µ
L

(t
0

), we use the difference between the mean value of total assets and Tier 1 capital

for the entire banking system as reported in Tables 6.2 and 6.3. In addition, we multiply

µ
L

(t
0

) by a parameter f
L

. We introduced f
L

in Section 4.6. The parameter f
L

is used

to stress the system by increasing (or decreasing) average liabilities with respect to the

empirically measured ones. Thus, we are testing stability over different average loss

adsorbing capital.

Note that we could have chosen to multiply µ
A

(t
0

) by a fraction, increasing or

decreasing the mean value of the total assets, creating a positive or negative shock

to the price value of assets. In both cases, the loss absorbing capital is increased or

reduced. The more the loss absorbing capital is reduced initially, the more stressed is

the banking system.

The values for ✓(t
0

) are reported in Table 6.5. For the purpose of this model, we

set the instantaneous recovery rate q(t
0

) equal to zero for all t. In the event of a bank

becoming insolvent, any loaner banks cannot expect any repayment. Thus, we consider

the worst case scenario only.

The free-model parameter is �. We set � to be equal to
p
2f

A

µ
A

(t
0

), i.e. �
A

(t
0

) =

f
A

µ
A

(t
0

) = �
L

(t
0

); in this way making ✓
c

independent of µ
A

.

As in Chapter 5, we assume all banks solvent initially. Hence, the initial fraction

of solvent banks, p
0

, equals one.

6.2.2 Calibration of the Heterogeneous Simulation

The number of banks, N , used in the simulation are reported in Table 6.1. The initial

values for banks’ total assets and total liabilities are drawn from Normal distributions.

The mean value µ
Ai(t0) is taken from the raw data. Hence, µ

Ai(t0) differs for each
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bank i. The STD is assumed to be a fraction of the mean of the total assets, µ
Ai(t)fA.

Thus, the total assets of bank i are initially: A
i

(0) ⇠ N (µ
Ai(t0), fAµAi(t0)), where

N (., .) is the normal distribution.

The liabilities of each bank i, are initialized by computing µ
Li(t0) as the difference

of a bank i’s total assets and Tier 1 capital. In the simulation, values are then drawn

from a Normal distribution with mean f
L

µ
Li(t0). The STD is f

A

µ
Ai(t0), causing �

i

=

q
�2

Ai(t0)
+ �2

Li(t0)
=

p
2f

A

µ
Ai(t0), which is consistent with the homogeneous model.

Thus, the liabilities of bank i are: L
i

(0) ⇠ N (f
L

µ
Li(t0), fAµAi(t0)).

For each simulation, the interbank network is the real network for the respective

year. That is g
ij

is the exposure as recorded in the data. The recovery rate of any

exposure is assumed to be zero.

Furthermore, we consider all banks solvent initially, i.e. S
i

(0) = 1 for all banks i.

Because of the incompleteness of the exposure data, any result calculated with the

mean-field model or achieved with the heterogeneous simulation model should still be

considered with caution as these might differ greatly with the values calculated when

the complete exposure network is used.

6.3 Stress Simulation Results and Comparison with

Homogeneous Solutions

6.3.1 Inducing System Stress by Increasing Average Liabilities

We perform 1,000 simulations by using the simulation-based model calibrated with UK

regulatory data setting f
A

= 0.001 and varying the factor f
L

between 0.8 and 1.3. Let

us first observe that when f
L

 1 and f
A

= 0.001, the banking system is in a stable

state with all banks operating normally. When the system is stressed by increasing

liabilities and reducing loss adsorbing capital, we observe the occurrence of a jump in

the number of normally operating banks with the system becoming distressed.

Figure 6.3 shows in the upper subplot the fraction of surviving banks, p, against

the fraction of the mean liabilities, f
L

, for banking systems calibrated with the 2013

H1 data. The same plots for banking systems initialized with 2011 H2 and 2012 H2

data can be found in the Appendix, Figure C.1. There are three graphs in each figure:

1) p
S

is the mean value of the fraction of surviving banks over 1,000 simulations; 2)
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Figure 6.3: The figure shows in its first row the fraction of surviving banks, p, against the mean
liabilties, f

L

, for models calibrated with the 2013 H1 data. We set f
A

= 0.001.
The solid black line shows the average fraction of surviving banks, p

S

, from 1,000
simulations. The dotted black line shows the average fraction p

N

of surviving
banks from 1,000 simulations when g

ij

is set to zero for all banks i, j. This solution,
p

N

, is the null model as it shows the stability of the banking system when direct
contagion is excluded. The blue line shows the solution of Eq. 3.15, p

MF

, when
p

0

= 1. The second row shows the STD of p
S

. In the upper row, we indicated
the position of f

L

, at which p

MF

jumps from almost all banks solvent to almost
all banks insolvent. In the second row, we indicated the value of f

L

, at which the
STD of p

S

is maximal. It becomes clear that, for a given f

L

, the exposure network
causes significantly more losses with respect to the case when the exposure network
is disregarded. Also, close to the value of f

L

, at which the jump occurs in the
mean-field model, the STD is at maximum, suggesting that in that region, p

S

also
experiences a jump. The figures calibrated with 2011 H2 and 2012 H2 data can be
found in the Appendix (Figure C.1).

p
MF

is the fixed point solution of Eq. 3.15 when p
0

= 1; 3) p
N

is the ‘null hypothesis’

mean value of the fraction of surviving banks. In the null hypothesis solution, all links

of the underlying exposure network are set to zero (g
ij

= 0). Thus, bank failure is only

caused by changes to the value of liabilities and non-interbank assets. We note that

p
S

decreases in value first, followed by a sharp decline in the value of p
MF

, followed

finally by p
N

at larger values of f
L

. The second row of each plot shows the STD of the

simulation solution, p
S

, plotted against the fraction of the mean liabilities, f
L

.

There is a considerable difference between p
N

and p
S

. The decline of p
N

is much

smoother because banks become insolvent when their capital becomes negative, which

happens independently for each bank. When the exposure network is incorporated

into the simulation, in the first iteration round, the same number of banks become
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Figure 6.4: The figure shows the mean fraction of surviving banks of 1,000 simulations of
particular bank types plotted against the fraction of mean liabilities, f

L

, in the
upper subplots for banking systems calibrated with 2013 H1 data. The parameter
f

A

was fixed at 0.001. The different bank types are indicated using the colours
blue for LB, red for BS, green for IB, black for OB and magenta for CB. In the
lower plot, the STD of the mean fractions of surviving banks of particular banks
is plotted against f

L

. The figure showing the corresponding graphs for banking
systems calibrated with 2012 H2 and 2012 H2 data can be found in the Appendix
(Figure C.2).

insolvent as in the null model (for fixed f
L

). In later insolvency rounds, the insolvent

banks reduce the total asset value of healthy banks, potentially flipping these (formerly-

healthy) banks into insolvency. This process continues until a stable fixed point is

reached, at which point all surviving banks have enough capital to withstand the losses

caused by direct exposure.

The homogeneous mean-field model behaves as predicted in Chapter 4 and a

sudden jump happens from almost all banks operating to almost all banks insolvent.

The value of fMF

L

, at which the mean-field model predicts the jump, is calculated us-

ing Eq. 4.6. We obtain: fMF

L

= 1.0383 (2011 H2), fMF

L

= 1.0495 (2012 H2) and

fMF

L

= 1.0498.

In the second row of each figure, the STD of p
S

, STD(p
S

), is plotted against f
L

.

It becomes clear that around the value of f
L

, at which the steeper decline in p
S

starts,

STD(p
S

) has a sharp peak. This indicates that this is a region, where small fluctua-

tions can bring most of the system down; and for the same set of average parameters,

simulations can produce very different results leading to large values of STD(p
S

).
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In Figures 6.4 and C.2 (Appendix), we plotted the mean fraction of surviving

banks aggregated to bank type level against f
L

(upper rows) and the STD for each bank

type (second row). The banking systems in Figure 6.4 are initialized with 2013 H1 data

and the banking system used to produce Figure C.2 are initialized with 2011 H2 (a) and

2012 H2 (b) data. Again, averages are over 1,000 simulations. The average fraction

of LB is the blue line, BS are represented by the red line, the fraction of surviving IB

banks is green, OB are the black line and CB are represented by the magenta line.

Splitting the fraction of surviving banks into the different bank types reveals a

bit more detail about the loss dynamic. For instance, we observe that in 2011 H2

(Figure C.2 (a)), IB default much earlier than the other bank types. Further, the losses

of IB do not cause a system failure. The earlier insolvencies happen because the capital

reserves of IB are much smaller than the capital reserves of the other bank types in

2011 H2 (see Section 6.1.2). In Table B.2 and B.4, we see that in 2011 H2 bank

types were not as much exposed to IB as in 2012 H2 and 2013 H1. The low average

capital explains the earlier insolvencies of IB; and the less-central position of IB in the

interbank network accounts for the smaller influence of IB to the stability of other bank

types.

A steep decline in the fraction of surviving banks for all bank types (except for

IB in 2011 H2) happens around the same value of f
L

in each single year. The value

of the fraction of surviving banks for specific bank types, at which the steep decline

stops, varies for the individual bank types, such that for LB and BS, the shock causes

the majority of banks to suddenly become insolvent. CB and OB lose during the steep

decline about half to a third of banks. The reason why OB and CB are less effected by

the shock is that most of these banks have only a small number of outgoing links with

the average out-degree being between 3 to 4 (see Table B.4). Furthermore, the capital

reserves of OB and CB are larger (See Section 6.1.2). Thus, the stability of these bank

types are only minimally effected by counterparty risk.

The STD is plotted in the second row. The graphs of the STD also indicate that

the largest bank failure happens for all banks around the same value of f
L

. Again, we

marked the value of f
L

, at which the STD is at maximum for all different bank types.

We observe that in 2011 H2, the values of f
L

vary slightly, but in 2012 H2 and 2013

H1 the largest STD for all bank types happen almost at the same value of f
L

. From
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this value of f
L

, the direct exposure of banks has a significant influence, causing the

majority of banks in the banking system to become insolvent independent of the bank

type.

The simulation results reveal that in 2012 H2, LB, OB and IB form a platform after

f
L

equals 1.0420 with 2 LB surviving. Again a steep decline of banks happens around

f
L

equal to 1.0670. This suggests that an in-between stable state occurs for values of

f
L

close to 1.0670, which cannot be explained by the result of the mean-field model.

We hypothesize that the heterogeneity of the simulation-based model causes multiple

fixed points for various values of f
L

. This, however, still needs to be verified.

Overall, let us observe that the sudden decline happens earlier in 2011 H2 than in

2012 H2 and 2013 H2. In Section 6.1.2, we argued that the leverage ratio increases

for LB, BS, IB and OB. This shows that to a certain extent, larger capital reserves can

make the banking system more stable, making the system capable of absorbing losses

of individual banks. However, if the cumulative losses caused by direct exposure in

an interbank network create a system failure, then banks with larger leverage ratios are

also at risk of insolvency.

6.3.2 Frequency Distribution for Fixed f
L

To further show that at specific values of f
L

(max(STD(p
S

))), the simulation indeed

experiences a jump, in Figures 6.5 and C.3 (in the Appendix), we plotted the frequency

distribution of p
S

. Again, banking systems in Figure 6.5 are initialized with the 2013

H1 data, and the banking systems in Figure C.3 are initialized with 2011 H2 (a) and

2012 H2 (b) data. To obtain these frequency distributions, we fixed f
L

at 1.038 (2011

H2) and 1.042 (2012 H2 and 2013 H1). Again, f
A

was set to 0.001. We then re-

peated the simulation 10,000 times and recorded the occurrence of each value of p
S

.

It becomes visible that in all three years multiple peaks occur. In 2011 H2, the most

dominant peaks materialise around 0.4 and 0.65 with an island formed in between these

peaks. The picture in 2012 H2 is similar with the two dominant peaks occurring around

0.5 and 0.85 and smaller islands in between. In 2013 H1, there are three peaks. The

first one occurs around 0.45, a second one occurs around 0.55 and a third one is formed

around 0.8. This means that for most simulations, about 80% or about 40-50% banks

of the banking system survive.
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Figure 6.5: The figure shows the frequency distribution of the fraction of surviving banks, p
S

.
The simulation was repeated 10,000 times at fixed values of f

L

at 1.042 for the
2013 H1 data. The parameter f

A

was set to 0.001. Distinct peaks occur around
0.45, 0.57 and 0.8 in 2013 H1. This indicates that small perturbations in liabilities
and assets cause p

S

to jump from around 0.8 to 0.57 or 0.45 confirming the exis-
tence of the discontinuity predicted in the mean-field model. The figure showing
the corresponding graphs for banking systems calibrated with 2011 H2 and 2012
H2 data can be found in the Appendix (Figure C.3).

Figure 5.2 in Chapter 5 also shows the frequency distribution of a simulation-

based risk model, where two distinct peaks occur close to either end of the interval

[0, 1]. The simulations of the heterogeneous banking system initialized with UK data

do not lead to such a clean picture as in Figure 5.2. That is, in the simulations in

Chapter 5, the banking system is assumed to consist of banks with similar sized balance

sheets with similar ratios of interbank assets to total assets. Thus, banks behave more

similarly. Nonetheless, a discontinuity in the fraction of surviving banks instead of a

steady decline can be observed in Figures 6.5 and C.3. This suggests that indeed jumps

occur caused by the direct exposure of banks to other banks.

Note that the middle peak in Figure 6.5 can not be explained by the mean-field

model. The mean-field model homogenises the system and we expect that the third

peak is a result of the diverse UK banking system. This needs to be further investigated

by, for example, extending the one-tier mean-field model into a more realistic multi-tier

mean-field model including banks with different sized balance sheets.

We can conclude that the main feature of the mean-field model, namely, the jump

from almost all banks operating to almost all banks insolvent, is also observed in the
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Figure 6.6: As in Figure 6.3, the first row of each subplot shows the fraction of surviving banks,
p, plotted against the fraction of the mean liabilities, f

L

. The second row shows the
STD of p

S

plotted against f
L

. The models are initialized with the 2013 H1 data.
The dotted lines are the average of 1,000 simulations and the solid lines indicate
the solution of Eq. 3.15 given p

0

= 1. The green lines use the original interbank
network for each year. Whereas for the red line, the exposure of LB was multiplied
by d = 9. Multiplying the exposure of LB by 9 increased ✓ from 0.0159 to 0.0933
in 2013 H1. The parameter f

A

for both simulation models as well as the mean-
field model is set to 0.01. This causes ✓ for the original network to be smaller than
✓

c

, and for the network with increased exposure to be larger then ✓

c

. As a result,
for the green lines we are not able to observe a jump but a smooth decline in p for
increasing f

L

, whereas for the red line a jump can be observed. The figure showing
the corresponding graphs for banking systems calibrated with 2012 H2 and 2012
H2 data can be found in the Appendix (Figure C.4).

simulation model of the heterogeneous banking system. In addition, the mean liabili-

ties, fMF

L

, at which the jump occurs in the mean-field model is relatively close to f
L

where the fragile state is induced in the simulation model. This implies that the param-

eter analysis of the highly homogeneous banking system in Chapter 4 can be used for

stability evaluation of a heterogeneous banking system. However, the heterogeneity of

the banking system most likely allows for more than two stable states at the point of the

jump such that intermediate states can reduce the size of the jump for some scenarios.

Further, more than just one jump seems to occur when f
L

is increased.
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Figure 6.7: The figure shows the frequency distribution of the fraction of surviving banks, p,of
10,000 simulations for banking systems calibrated with 2013 H1 data. The pa-
rameter f

A

is set to 0.01. For the blue line f

L

is fixed at 1.037 for 2013 H1 and
the original interbank networks have been used during the simulations. For the
red line, the exposure of LB was multiplied by a factor d = 9, and f

L

is fixed at
1.025. For d = 1 (blue line), ✓ for the 2013 H1 (and 2011 H2, 2012 H2) network
is below ✓

c

, and henceforth, no jump is visible. Instead the frequency distribution
is almost bell shaped. For d = 9 (red line), ✓ is larger than ✓

c

, and peaks become
visible around p approximately 0.5 and 0.95 confirming that the banking system
can be in two states, where either most banks are operative or half of the banks are
insolvent. These peaks cannot be observed for the frequency distribution when the
original interbank network is used. The figure showing the corresponding graphs
for banking systems calibrated with 2012 H2 and 2012 H2 data can be found in the
Appendix (Figure C.4).

6.3.3 Inducing Stress by Increasing Direct Exposure of Large

Banks
In Section 4.6, we discuss that the fragile state can only be observed for f

A

(� =

p
2f

A

µ
A

) being smaller than or equal to (1�q)✓p
2bc

. For f
A

larger than 1�qp
2✓bc

, some banks

have enough capital to withstand the shock and form a barrier preventing the insolvency

to propagate through the entire network. For ✓ as recorded in Table 6.5, this implies

f
A

needs to be smaller than 0.0044 for the fragile state to become possible. This re-

striction on f
A

results in a small minimum leverage requirement (see the next section,

Section 6.4). In that section, we calculated the minimum leverage requirements using

Eq. 4.5 for ✓ as recorded in Table 6.5. Because of the small value of f
A

and ✓, the

minimum leverage value ensuring a stable system is also relatively small with 0.0031

in 2011 H2, and 0.0041 in 2012 H2 and 2013 H1. That is, if ✓ is indeed of similar order
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as recorded in the regulatory data, the UK banking system could be considered stable

if banks set their leverage requirements to 0.3%.

However, as mentioned before, the values of ✓ recorded in Table 6.5, are relatively

small in comparison to other studies, where interbank assets to total assets are esti-

mated to be 10% to 20% (Müller, 2006; Upper, 2011). Another example illustrating

the inaccuracy of the values in Table 6.5 can be found in banks’ annual reports. The

financial statement in banks’ annual reports lists, among others, “Loans and advances

to banks” in addition to “Total assets”. The ratio of ”Loans and advances to banks”

to ”Total assets” of the Royal Bank of Scotland in their annual report of 2013 is 0.05

(RBS, 2014). Values for other banks are similar. The section ”Loans and advances to

banks” lists reverse repos, and loans and receivables to banks, excluding other obliga-

tions. If repos, derivatives and other assets to banks would be included, then it can be

assumed that the ratio of interbank assets to total assets for the Royal Bank of Scotland

is even higher than 5%.

To test the effects of increased exposure, we increase the exposure of LB by mul-

tiplying a factor d = 9. This increase has the effect to change ✓
c

to 0.035. We chose

to increase the exposure of LB only as the exposure of some banks of other bank types

exceeded their total assets when their exposure is increased by d = 9. This changes ✓

from 0.0158 to 0.0991 in 2011 H2, from 0.0159 to 0.0966 in 2012 H2 and from 0.0159

to 0.0933 in 2013 H1. Hence, the observed ✓s are now below the critical value ✓
c

and

the homogeneous model predicts no jumps. However, when for the network with in-

creased exposure, ✓ is above ✓
c

, a jump becomes possible. We induce the system into

the fragile state by setting f
A

equal to 0.01.

In the upper row of Figures 6.6 and C.4, the fraction of surviving banks for the

mean-field solution, p
MF

, for ✓ equal to 0.0158 (blue line) and to 0.0991 (red line)

in 2011 H2 (FigureC.4 (a)); 0.0159 (blue line) and to 0.0996 (red line) in 2012 H2

(Figure C.4 (b)); and 0.0159 (blue line) and to 0.0933 (red line) in 2013 H1 (Figure 6.6)

are plotted against the fraction of the mean liabilities, f
L

. Additionally, the fraction

of surviving banks evaluated using the simulation, p
S

, is computed for the original

network (blue dotted line) and when the exposure of LB is multiplied by d equal to

9 (red dotted line). It should be noted that changing d does not change the network

structure nor the average mean value of total assets of a bank i. The second row of each
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subfigure shows the STD of the simulation solution when d = 1 (blue dotted line) and

when d = 9 (red dotted line).

We observe that, when d = 1, the homogeneous mean-field solution does not ex-

perience a jump. Instead, the decline is smooth in all years. The simulation solution

for d = 1 starts a decline at similar f
L

to the mean-field solution, but eventually di-

verging from the mean-field solution. When d = 9, the mean-field solution jumps from

almost all banks operating to almost all banks defaulted. Furthermore, the value of f
L

,

at which the jump is predicted, is fairly similar to the value of f
L

, at which the STD is

the largest. This suggests that a jump occurs.

To verify this, we again plotted the frequency distribution of each simulation for

fixed values of f
L

in Figures 6.7 and C.4 for 10,000 simulations. Figures 6.7 and

C.4 show the frequency distribution for the years 2011 H2 (Figure C.4 (a)), 2012 H2

(Figure C.4 (b)) and 2013 H1 (Figures 6.7). For d = 1, f
L

was fixed respectively at

1.032 for 2011 H2, at 1.037 for 2012 H2 and 2013 H1. Whereas, for d = 9, f
L

was

fixed respectively at 1.013 for 2011 H2, 1.037 for 2012 H2 and 1.025 for 2013 H1. The

blue line indicates the frequency distribution for d = 1 and the red line is used for the

frequency distribution when d = 9.

Peaks are not visible in the frequency distributions for d = 1 for all years. Instead

one bump occurs between p equal to 0.4 and 1.0. The bump is most dominant in 2011

H2. In Figure C.5 (b) and 6.7 the bump has a dent around 0.7 for both years. The dent

indicates the beginning of the peak formation. However, values of p within the dent are

still likely since ✓ for d = 1 is below ✓
c

. Hence, the decline in p for increasing f
L

is still

smooth. This clearly shows that no jump occurs in the simulation when d = 1; instead,

small perturbations in the values of assets and liabilities cause a smooth decline. For

d = 9, the shape of the frequency distribution looks quite different. Peaks occur around

0.5 and 0.95 in 2011 H2; 0.55, 0.7 and close to one in 2012 H2 and 0.5 and close to

one in 2013 H1 suggesting that small perturbations in the value of assets and liabilities

cause the system to jump from a fairly stable state, where most banks are operative, to

an unstable state, where half the banks are insolvent. Thus, a jump occurs.
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Figure 6.8: The figure shows the minimal leverage ratio, �
min

that is needed for a banking
system to be stable plotted against the fraction of interbank asset to total assets, ✓,
for a fixed � =

p
2f

a

µ

A

. The different curves correspond to different values of f
A

.
In addition, the crosses indicate the minimum leverage ratio for a banking system
for some given ✓ and f

A

, where the parameter ✓ correspond to the values calculated
from the interbank data from 2013 H1.

6.4 Minimum Leverage Ratio
We have shown that the system failure in a model of a heterogeneous banking sys-

tem happens around similar values as the jump predicted in the mean-field model of

a homogeneous banking system. This implies that we can use Eq. 4.5 to calculate the

minimum leverage requirement for more heterogeneous banking systems.

Eq. 4.5 allows us to calculate the minimal leverage ratio needed to ensure a stable

system when ✓ is greater than ✓
c

. If d = 1, then ✓ in 2011 H2 is 0.0158; and in 2012 H2

and 2013 H1 ✓ is 0.0159. These values are very close and result in a minimum leverage

ratio of 0.0031 (2011 H2) and 0.0041 (2012 H2 and 2013 H1), if f
A

equals 0.01. When

increasing ✓ to 0.0991 in 2011 H2, to 0.0996 in 2012 H2 and to 0.0933 in 2013 H2, the

minimum leverage ratio changes to 0.0278 for f
A

equal to 0.01.

Figure 6.8 shows the minimum leverage ratio, �
min

, plotted against the fraction

of interbank assets to total assets, ✓, for different values of f
A

as stated. The crosses

indicate the position of the minimum leverage ratio, �
min

, for ✓ and f
A

as indicated.

These ✓ values correspond to ✓ as calculated using the 2013 H1 data. It becomes clear

that the larger f
A

, the larger �
min

has to be in order to ensure a stable system.
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In Bank for International Settlement (2014), it is stated that the recommended

non-risk based leverage ratio for banks is 3%. The minimum leverage ratios ensuring

a stable system calculated for d = 1 and d = 9 are below the recommended leverage

ratio. That said, the incompleteness of the bilateral exposure data implies that the

calculated leverage ratios are most likely underestimating the actual leverage ratios.

6.5 Conclusion
The chapter is divided into two parts. In the first part, we introduce the dataset used

to calibrate the mean-field and simulation-based models discussed in the second part

of the chapter. The two regulatory datasets are studied recording balance sheet and

exposure information of banks in the UK banking system for three different years. Our

analysis reveals that banks in the UK vary largely in the size of their balance sheets.

Additionally, we showed that banks’ capital reserves increased over the years following

regulatory requirements set by the BoE.

The dataset containing the exposure data is limited by the number of counterparties

banks have to report to the BoE. Because of that, the exposure networks constructed

from the data only provide limited representation of the real UK interbank networks.

Nonetheless, we can deduce from the network analysis that LB and IB form the centre

of the interbank network with BS, OB and CB being positioned in the periphery. This

result is in line with the outcomes of other studies. Obtaining data for this thesis was

one of the biggest obstacles, not only because access to exposure data is limited but

also because regulators (with a few exceptions) started only recently, following the

financial crisis, collecting interbank exposure data. For future studies, the quality of

exposure data needs to improve in order to investigate further how financial stability

is influenced by counterparty exposure. In particular, more data on exposure between

international banks needs to be collected because via international banks a banking

crisis can propagate from one country to another.

In the second part of the chapter, we calibrate the mean-field and simulation mod-

els with the datasets. The banking system in the simulation-based model is highly

heterogeneous with banks varying in size, position in the interbank network, links di-

rected towards them and value of exposure to other banks. Nonetheless, we observed

that the fragile state in the simulations occurs for a similar sized shock to banks’ capital
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as is predicted in the mean-field model. Hence, we mapped the results of the mean-field

model of a simple banking system to a simulation-based model of a more complicated

banking system. This suggests that the minimum capital requirements deduced from

the mean-field model can be applied to real world banking systems to create a more

stable financial system given more accurate data on interbank exposure.



Chapter 7

Conclusions

This study set out to explore the influence of counterparty failure on the financial sta-

bility of a banking system. For this reason, we studied a counterparty cascade model,

where banks’ stability depends on their balance sheet quantities and the solvency of

their counterparties. In our model, the balance sheet parameters are random variables.

The model was solved in two ways: semi-analytically by applying a mean-field as-

sumption homogenizing the banking system, and by constructing a simulation model

to test counterparty failure in more complex banking systems.

The mean-field assumption allowed us to conduct a parameter analysis of the bal-

ance sheet quantities to determine the ratios of assets, liabilities and capital that ensure

a stable banking system. We showed that the results extracted from the mean-field solu-

tion can be mapped to the simulation-based model of a more complex banking system,

where banks vary in size, have different leverage ratios, and exposure to other banks.

Because of that we can conclude that a simple model of counterparty failure of a ho-

mogeneous banking system predicts the propagation of counterparty failure in banking

systems dynamics before, during and after a crisis. Therefore, the results of this thesis

can be used to set restricting guidelines on leverage ratios and interbank exposure that

also ensures financial stability for more complex real-world financial systems.

By applying the mean-field assumption in Chapter 4, we were able to reduce a

multi-parameter counterparty risk model into a two-parameter iteration map. The itera-

tion map states the average fraction of surviving banks in an iteration round r. The two

parameters, a and b, represent the influence on the stability of banks of external fac-

tors changing balance sheet parameters (a), and the average exposure between banks

(b). A fixed point analysis of the iteration map revealed that for fixed b above a critical
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value and changing a, the solution of the iteration map has a hysteresis cycle. This

is because the iteration map has at least one and at most three fixed points depending

on the values of the parameters a and b. This implies that the solution of the iteration

map is history dependent. That is, depending on the initial value of solvent banks, the

solution of the iteration map for the same parameters can differ. This result allowed us

to draw conclusions about the cost of rescuing a defaulted banking system. Further-

more, the hysteresis cycle explains a discontinuity in the fraction of surviving banks

also observed in other studies (Gai and Kapadia, 2010; Amini et al., 2012; Hurd and

Gleeson, 2011). In this thesis, we calculated the values of a, namely a
1

and a
2

, where

the fraction of surviving banks changes for slight perturbations from almost all banks

solvent to almost all banks insolvent and vice versa. We determined a
1

and a
2

for dif-

ferent location-scale distributions, which allowed us to draw conclusions on restricting

leverage ratios to ensure a stable banking system. Additionally, we showed that in the

proximity of the jump, the failure of one bank is sufficient to induce system failure.

Finding exposure data for calibrating the counterparty risk model was one of the

major challenges of this thesis. Balance sheet data is published each year by banks

in their annual report and are publicly accessible. However, exposure data between

banks is, in most cases, only collected by regulators. For this reason, we calibrated

the mean-field model in Section 6.1 with balance sheet data only. We used balance

sheet data of UK and US banks from the years 2007 and 2012 to demonstrate the

stability of the banking systems in the individual years. We showed that interbank

lending made both the US and UK systems more prone to failure in 2007 such that

small fluctuations in assets and liabilities could have caused catastrophic events. In

2012, for the same fluctuations, both banking systems are more stable with much larger

fluctuations needed to create a system-wide bank failure.

In Chapter 5, we tested the robustness of the mean-field model comparing the

solution of the mean-field model to the solution of a more complex simulation-based

model. The assumptions used to find the solution of the mean-field model create an

overly simplistic banking system of banks of similar size and with the same value of

interbank exposure to other banks. We showed using the simulation model that the pre-

dicted fragile state in the mean-field model occurs for different distributions and various

network structures used to initialize the simulation model. In particular, we were able
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to show that the discontinuity occurs when banks initial capital is shocked for location-

scale and non-location scale distributions. We further explained how the mean and full

width at half maximum (FWHM) of random distributions used to initialize the balance

sheets affected the size of the jump, and the size of the shock to banks’ initial capital

needed to induced the fragile state. When banking systems are initialized with different

random distributions with the same mean but different FWHM, banks in the banking

systems with small FWHM have more similar levels of initial loss-absorbing capital

than banks in banking systems with larger FWHM. In systems with similar levels of

initial capital, the size of the jump is more severe. Whereas, in banking systems with

differing levels of capital, the size of the jump is smaller but the fragile state occurs

at larger mean values of initial capital. This is because some banks have less capital

than others. These banks induce the fragile state at higher levels of average capital in

comparison to a more homogeneous system. However, some banks in a system with

diverse capital levels also have more initial loss absorbing capital and therefore are able

to withstand the shock. Eventually, these banks form a barrier in the distribution of in-

solvency on the interbank network, and they stop the insolvency induced by a small

number of initially failing banks. This suggest that for a homogeneous banking sys-

tem, a two-tier leverage system as suggested in in the Basel III (Basel Committee on

Banking Supervision, 2010)), where systemically important banks have larger capital

requirements, could have a positive effect on financial stability. However, more re-

search needs to be conducted to provide a definitive answer. An analysis of a multi-tier

model with banks of different size and exposure towards other banks using the mean-

field method presented in Chapter 4 could potentially answer some of these questions

in more detail.

Standard network topologies were used in the simulation model to compare the

simulation solution with the solution of the mean-field model in Chapter 5. The results

indicate that network topology and the size of the banking system do not influence the

solvency propagation through interbank networks in a homogeneous banking system.

Furthermore, diversification only reduces the risk of spreading insolvency if banks in

the banking system have very similar balance sheets. If the distribution of initial capital

varies a lot in the banking system, then diversification does not necessary reduce the

risk of insolvencies caused by counterparties. This is because the probability of being
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connected to an insolvent bank also increases when a bank increases the number of

counterparties. Previous studies (Allen and Gale, 2000; Freixas et al., 2000; Gai and

Kapadia, 2010) suggested that diversification lowers the risk of failure of a banking

system. We repeated in our model-setting the results in Gai and Kapadia (2010) and

explained that stochastic effects causing slight changes in banks’ initial capital result in

banks to become insolvent regardless of the number of counterparties.

We conclude Chapter 5 by relaxing the assumption that banks’ balance sheet quan-

tities do not change in time during the insolvency propagation. It is much more reason-

able to assume that due to the announcement of a bank failure asset prices change, than

to consider that no correlation between changes in asset values and bank failure exist.

Similarly, QE programs and government bail-outs can prevent the failure of a banking

system by providing external capital, and reducing the debt of banks. To address this

short-coming of the mean-field model, we changed the values of non-interbank assets

and liabilities in the simulation model using functions that change the value of assets

proportional to the fraction of insolvent banks and induce capital into the banking sys-

tem at a particular round in the insolvency process. We explained how the changes in

the balance sheet values influenced the equilibrium solution of the mean-field model

and how the mean-field model can still be used to calculate the fraction of surviving

banks. By doing so, we showed that asset price devaluation can move the banking

system into an unstable (from a formerly healthy) region and can induce the fragile

state. Furthermore, we showed that capital injections into a failing system do not nec-

essary cause the system to return to a stable state. Our model suggests that if external

capital is provided too late, the system still fails, even though earlier rescue attempts

would have saved the banking system for the same cost of external capital. We wish to

stress that the functions used to stress balance sheet quantities were chosen arbitrarily.

This was done mainly to affirm that time changing variables can also be incorporated

into our model set-up. Nonetheless, it would be of interest to incorporate more realis-

tic functions that imitate the process of price changes or cost of borrowing in a better

way. In addition, functions modelling more complex interactions between banks such

as derivatives that depend on the solvency of multiple parties or repayment agreements

can be added in future research.

The analysis in Chapters 4 and 5 was done on highly stylized banking system.
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Banks’ balance sheet parameters and weights of the interbank network are, by con-

struction of the banking system, fairly similar. The real world banking system consists

of banks of various sizes. This issue is addressed in Chapter 6, where we used real-

world exposure and balance sheet data obtained from the BoE for three different years

to calibrate the mean-field and a simulation-based model. We constructed the banking

system in the simulation-based model such that, for each bank, the recorded values of

banks’ balance sheets in the respective years form the means of the random distribu-

tions used to initialize the assets and liabilities. Furthermore, we use real-world expo-

sure data to construct the exposure networks. From the data analysis in Section 6.1, we

can conclude that the UK banking system is highly heterogeneous with banks vary in

size of their balance sheets by orders of magnitude. The banking system constructed

using the balance sheet data is therefore heteregeous as well.

In that section, we group banks into different banktypes: LB, BS, IB, OB and

CB1. We find that LB are the largest, and BS and OB are the smallest banks on average.

Nonetheless, the leverage ratios between the bank types vary only marginally, with OB

having the largest leverage ratio and IB the smallest. We were also able to observe that

leverage ratios increased between 2011 to 2013 for most bank types due to regulatory

requirements set by the BoE. Hence, we can conclude that even though the sizes of UK

banks’ balance sheets vary by orders of magnitude, the ratio of capital to total assets (i.e.

the leverage ratio) is of similar value across most bank types. The explanation for this

can be found in the regulatory framework. The required leverage ratio in the UK was

set according to Basel II guidelines using the same leverage value for all banks. Note

that with the introduction of Basel III, this changes because systemically important

banks have to satisfy higher leverage requirements.

The degree, weight, component and assortative analysis of the interbank networks

show that LB and IB are in the center of the exposure network with most links directed

towards these bank types. Hence, we can state that the structure of the interbank net-

work resembles a core-periphery network with LB and IB in the centre of the network

and BS, OB and CB in the periphery. The core-periphery structure has been observed

in other studies and confirms that LB and IB form intermediaries that provide financial

1LB = large bank, BS = building society, IB = investment bank, OB = oversea bank, and CB = other
commercial bank.
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services and access to international markets for regionally operating banks. The rela-

tive out-weight, namely the average interbank assets to total assets, for LB, BS, IB and

CB are fairly similar. However, we argued that the values observed in Section 6.1.3

are lower than the values observed in other studies since the exposure is measured net

of collateral and the number of counterparties that banks have to report to the BoE is

restricted.

In Section 6.3, we found that the model of the more realistic heterogeneous bank-

ing system reproduces the main feature of the mean-field model: We observe the oc-

currence of a fragile state in both models, where a large portion of banks in the banking

system can become suddenly insolvent as a consequence of an external shock to the

banks’ non-interbank asset or liabilities, and the interconnectedness of banks via direct

exposure.

We showed that the capital in both the homogeneous and heterogeneous model

has to be reduced to similar levels for a sudden system failure to occur. This effect

is surprising and can be explained by the cumulative losses that the majority of banks

experience in later rounds of insolvency. We showed that the loss in the fraction of sur-

viving banks in the simulation-based heterogeneous system was not as severe as for the

mean-field model. For the heterogeneous system, about 50% of banks become insol-

vent, whereas for the mean-field model almost the entire banking system defaults. The

banks surviving the shock are mostly OB and CB in the periphery with little exposure

to the rest of the banking system.

Nonetheless, in the heterogeneous banking model, the sudden insolvency occurs

for most failing banks of all bank types at the same fraction of mean liabilities, indepen-

dent of balance sheet size. Variations in the capital reserves of banks in the simulation-

based model lead to smaller jumps occurring for the rest of the banks that survived

the first jump at lower capital values. These are heterogeneous effects that cannot be

explained by the mean-field model. These are probably the consequence of the onset

of multiple fixed points caused by the heterogeneity and can be explained by extending

the one-tier mean field model into a multi-tier model.

Finally, we addressed the low values of out-weight, ✓, in the dataset by artificially

increasing the exposure of LB such that the average ratio of interbank assets to total

assets are closer to 10%. We find that for larger exposure the minimum leverage re-
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quirements increase. This is because it is more likely that large shocks to banks’ capital

can propagate through the interbank network for larger values of average exposure.

We should note that we disregarded any additional information about the interbank

exposure such as maturity time, risk weights and variations in financial products. We

did so because of the low number of data points. Similarly, we only briefly discussed

the effects of collateral and recovery rates due to a lack of data. However, variations

in exposure clearly do have an effect on counterparty risk and should be part of future

research projects. In general, the quality of the data needs to improve. Without actual

data on interbank exposure, the precise risk imposed via counterparty failure can not

be quantified.

In conclusion, we used a simple cascade counterparty risk model to explain the

propagation of distress in a connected banking system and explained the mechanism

and conditions under which a system failure occurs. The simple model of banking

failure demonstrates the risk that counterparty failure imposes in a highly connected

banking system and can be used to create a more stable banking system.



Appendix A

Propositions and Lemmas Needed for

Fixed Point Analysis

The section states the propositions and lemmas used in the fixed point analysis here.

Propositions, lemmas and proofs from textbooks are in italics. We adapted the notation

of the propositions, lemmas and proofs to fit the notation of this thesis.

In general, a fixed point of an iteration map, f
n

(x) (where n indicates the nth

iteration step), is defined as the point where p = f(p) (Devaney et al., 2003). Fixed

points can be repellent or attracting. The two following propositions can be found in

Devaney et al. (2003) (Propositions 4.4 and 4.6) and help to determine whether a fixed

point is repellent or attracting:

Proposition A.4.1 [Proposition 4.4 in Devaney et al. (2003)] Let f
n

(x) be an iteration

map at the nth iteration step and f 0
(.) be continuous. Let p be a fixed point of f

n

(x)

with |f 0
(p)| < 1. Then there exists an open interval U about p such that if x 2 U , then

lim

n!1
f
n

(x) = p. (A.1)

Proof Since f 0
(x) is continuous, there exists ✏ > 0 such that |f 0

(x) < A < 1| for

x 2 [p� ✏, p+ ✏]. By the Mean Value Theorem

|f(x)� p| = |f(x)� f(p)|  A|x� p| < |x� p|  ✏. (A.2)

Hence f(x) is contained in [p � ✏, p + ✏] and, in fact, is closer to p than x is. Via

the same argument

|fn

(x)� p|  An|x� p| (A.3)
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so that fn

(x) ! p as n ! 1.

Proposition A.4.2 [Propositions 4.6 in Devaney et al. (2003)] Let f
n

(x) be an iter-

ation map at the nth iteration step and f 0
(.) be continuous. Let p be a fixed point of

f
n

(x) with |f 0
(p)| > 1. Then there is an open interval U of p such that, if x 2 U , x 6= p,

then there exists n > 0 such that f
n

(x) /2 U .

Proof Since f 0
(.) is continuous, there exists ✏ > 0 such that |f 0

(x)| > A > 1 for

x 2 (p� ✏, p+ ✏). Using the Mean Value Theorem, we have

✏ < |p� x| < A|p� x| = |f(p)� f(x)| = |p� f(x)|. (A.4)

Hence, the distance to ✏ increases if f is applied to x. Thus,

|p� fk

(x)| > ✏, (A.5)

for any k.

Thus, for |f 0
(p)| < 1, p is a stable fixed point and |f 0

(p)| > 1, p is an unstable

fixed point.

Furthermore, note that the iteration map in Eq. ?? is a monotone decreasing one-

dimensional map on a compact set. In Smith (2008), Lemma 1.2 (and proof) can be

found. It states:

Lemma A.4.1 [Lemma 1.2 in Smith (2008)] A monotone sequence contained in a

compact subset of X converges in X.

Proof Suppose x
n

is a sequence satisfying x
n

 x
n+1

and x
n

2 A for n � 1 where A

is a compact subset of X; the case for a decreasing subsequence is treated similarly. It

follows that the sequence x
n

has convergent subsequences. The Lemma will be proved

by showing that there exists a unique p 2 X which is the limit of every convergent

subsequence. If x
nk

and x
mk

are two subsequences of x
n

and if x
nk

! p and x
mk

! q

as k ! 1 then, by monotonicity of x
n

, for each k there exists l(k) such that x
nk



x
ml(k)

. Passing to the limit as k ! 1, p  q. A similar argument shows that q  p.

[Thus,] ... q = p. Hence, Lemma 4.1 ensures that the iteration map in Eq. ?? has at

least one stable fixed point.

The following lemma states the extrema of x�F (x). The function x�F (x) is important
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Figure A.1: The figure shows the function x � F (x) plotted against x for fixed a = 2 and
various values of b as indicated in the legend. For b = 0, 1, 2, x�F (x) is monotone
increasing. Whereas, for b = 3, 4, 5, x� F (x) has a maximum and a minimum.

as its roots are equal to the fixed points of the iteration map p
r

= F (p
r�1

).

Lemma A.4.2 Assume P (.) in Eq. ?? is a standard normal CDF. Given b > b
c

=

p
2⇡,

x� F (x) has extrema x
1,2

= b�1

(a⌥
q

2 ln

bp
bc
), where x

1

is a maximum and x
2

is a

minimum.

Proof The derivatives of x� F (x) relevant for the extrema analysis are

d(x� F (x))

dx
= 1 +

b

b
c

exp

✓
� (a� bx)2

2

◆
, (A.6)

and
d2(x� F (x))

dxdx
=

b2

2b
c

(a� bx) exp

✓
� (a� bx)2

2

◆
. (A.7)

For f d(x�F (x))

dx

) = 0, two solution exist if b � b
c

, namely, x
1,2

as defined above. Fur-

thermore, d

2
(x�F (x))

dxdx

(x
1

) = �2

q
ln(

b

bc
)  0 and d

2
(x�F (x))

dxdx

(x
2

) = 2

q
ln(

b

bc
) � 0.

Hence, x
1

is a maximum and x
2

is a minimum of x� F (x).

Figure A.1 illustrates the behaviour of x � F (x) for changing b. The function

x � F (x) is plotted against x for fixed a = 2. To plot the graphs, we used a standard

Normal CDF for P (.) in F (.). The parameter b is changed for each plot as indicated in

the legend. For b = 0, 1, 2 < b
c

, x � F (x) is monotonically increasing. Whereas, for

b = 3, 4, 5 > b
c

, x� F (x) has a maximum (x
1

) and a minimum (x
2

).



Appendix B

Emperical Information on Interbank

Network

The exposures among banks of different kinds are reported in Table B.1. In Table B.2,

we report the empirical values for interbank exposures. The interbank network average

out-degree and in-degree are reported in Tables B.3 and B.4.
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Table B.1: The table shows the average value of exposure in Mil. GBP to a bank of a particular bank
type (row) from banks of another bank type (column) (the total in-weight) for 2011 H2,
2012 H2 and 2013 H1. The brackets below each mean value indicates the STD. The STD of
the mean values are of the same order or larger than mean values indicating that the size of
funding a bank of a particular bank type differs largely form the size of funding other banks
of the same bank type receive.

2011 H2 LB BS IB OB CB Total
LB 6645.09 378.66 1263.91 658.52 726.48 9672.66

(5259.03) (297.83) (1070.73) (514.38) (680.33) (7204.10)
BS 0.87 14.58 0.33 0.11 3.09 18.98

(4.32) (28.49) (2.02) (0.75) (13.74) (41.43)
IB 2335.04 4.45 804.70 198.22 23.76 3366.18

(2579.48) (8.49) (817.13) (166.78) (32.24) (3421.39)
OB 12.61 1.39 51.19 14.27 2.32 81.77

(56.30) (10.22) (276.59) (33.51) (11.28) (290.05)
CB 30.90 12.39 22.45 10.89 14.61 91.25

(150.68) (38.23) (66.46) (44.50) (52.27) (297.74)
Total 555.16 27.10 158.15 58.36 43.98 842.75

(2053.47) (105.95) (498.23) (192.88) (215.63) (2898.26)
2012 H2 LB BS IB OB CB Total

LB 4153.29 251.51 1567.65 441.00 474.43 6887.88
(3418.68) (207.29) (1355.99) (350.40) (504.83) (5010.34)

BS 3.21 12.55 0.00 0.36 5.12 21.25
(14.80) (19.75) (0.00) (2.41) (21.94) (44.72)

IB 3452.42 6.47 1279.51 186.45 21.53 4946.38
(3590.70) (18.82) (1221.12) (178.93) (21.29) (4778.66)

OB 27.17 0.00 53.09 14.29 0.45 95.00
(192.12) (0.00) (324.64) (29.84) (2.47) (533.05)

CB 5.04 2.68 4.54 2.97 10.01 25.25
(30.85) (13.13) (19.43) (15.29) (40.31) (116.32)

Total 540.59 17.90 216.11 45.34 30.68 850.63
(1827.85) (72.00) (690.57) (141.53) (152.07) (2679.19)

2013 H1 LB BS IB OB CB Total
LB 4158.68 420.08 1678.31 266.77 486.48 7010.32

(3556.12) (332.13) (1474.11) (311.03) (456.85) (5528.95)
BS 1.24 11.73 0.35 0.22 6.24 19.78

(8.40) (23.30) (2.36) (1.47) (29.43) (53.18)
IB 3221.71 12.35 1220.62 111.55 27.01 4593.24

(3225.70) (20.68) (1336.57) (160.77) (27.67) (4602.72)
OB 43.30 0.54 61.20 5.33 4.22 114.60

(254.48) (2.56) (353.01) (10.11) (18.51) (607.31)
CB 1.71 4.48 3.82 2.16 45.56 57.72

(7.92) (21.41) (18.78) (9.11) (253.94) (309.97)
Total 546.91 28.94 226.92 27.32 43.11 873.20

(1787.25) (120.38) (739.28) (106.49) (192.72) (2727.08)
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Table B.2: The table reports the total average amount in Mil. GBP of interbank exposure of banks
belonging to a particular bank type (row) to banks of other bank types (columns), i.e. the
total out-weight. The amount in the brackets is the STD. The values can be thought of as the
total in-weight of banks in the interbank system. The STD are of the same order or larger
than the mean values suggesting that even banks in the same bank type have highly varying
exposure to other banks.

2011 H2 LB BS IB OB CB Total
LB 6645.09 4.90 4086.32 85.09 142.92 10964.32

(5953.31) (9.39) (4483.17) (88.69) (223.11) (8245.12)
BS 67.32 14.58 1.39 1.67 10.19 95.14

(114.01) (28.74) (4.36) (6.92) (33.23) (161.91)
IB 722.23 1.06 804.70 197.46 59.34 1784.80

(869.15) (3.60) (807.09) (340.39) (134.02) (1675.86)
OB 97.56 0.09 51.39 14.27 7.46 170.77

(175.18) (0.68) (133.84) (29.76) (22.94) (315.73)
CB 157.08 3.76 8.99 3.38 14.61 187.82

(204.28) (12.01) (15.54) (7.49) (25.57) (217.02)
Total 489.75 5.41 298.27 27.95 21.37 842.75

(1931.81) (17.49) (1332.73) (115.77) (73.06) (3005.22)
2012 H2 LB BS IB OB CB Total

LB 4153.29 17.65 6041.74 169.81 23.94 10406.43
(3782.40) (32.48) (7329.54) (435.75) (44.85) (10989.00)

BS 45.73 12.55 2.06 0.00 2.31 62.65
(61.45) (16.89) (11.00) (0.00) (5.92) (79.21)

IB 895.80 0.00 1279.51 189.61 12.33 2377.30
(892.90) (0.00) (1458.27) (349.11) (29.48) (2489.23)

OB 70.56 0.32 52.20 14.29 2.26 139.63
(108.63) (1.63) (133.55) (23.35) (5.78) (241.96)

CB 99.88 5.93 7.93 0.59 10.01 124.34
(176.06) (17.76) (17.96) (2.82) (20.67) (191.97)

Total 357.81 6.07 449.67 30.84 6.23 850.63
(1259.30) (15.46) (2121.37) (152.07) (17.96) (3397.48)

2013 H1 LB BS IB OB CB Total
LB 4158.68 7.12 5637.99 238.16 7.47 10049.41

(3956.45) (20.14) (6574.11) (445.99) (15.98) (10261.69)
BS 73.06 11.73 3.76 0.52 3.41 92.47

(86.26) (15.54) (12.17) (1.71) (7.65) (108.98)
IB 959.04 1.14 1220.62 192.34 9.54 2382.69

(1049.12) (4.28) (1281.65) (252.25) (29.38) (2466.63)
OB 48.50 0.23 35.49 5.33 1.72 91.28

(112.96) (1.51) (126.04) (10.81) (4.68) (219.47)
CB 111.20 8.21 10.80 5.31 45.56 181.07

(189.47) (17.22) (23.89) (12.11) (210.14) (305.91)
Total 381.51 6.19 437.45 34.30 13.74 873.20

(1325.74) (13.75) (1978.79) (144.08) (103.54) (3309.62)
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Table B.3: The table shows the average number of links to a bank of a particular bank type (rows) from
banks of another bank type (columns), i.e. the average in-degree, for 2011 H1, 2012 H2
and 2013 H3. The number in the brackets is the STD of each value. It becomes clear that
LB and IB receive the largest number of in-coming links from other banks. OB, CB and BS
hardly receive any, indicating that LB and IB form the core, and and BS, OB and CB the
periphery of the interbank network.

2011 H2 LB BS IB OB CB Total
LB 4.63 17.88 7.80 18.64 18.21 67.14

(1.92) (8.32) (4.19) (11.27) (8.85) (28.82)
BS 0.07 2.51 0.04 0.02 0.32 2.97

(0.33) (3.63) (0.21) (0.15) (0.74) (4.31)
IB 2.36 0.64 4.32 5.67 2.16 15.15

(2.34) (0.84) (2.96) (4.38) (1.98) (10.82)
OB 0.13 0.06 0.23 1.03 0.22 1.66

(0.44) (0.41) (0.67) (1.52) (0.84) (2.55)
CB 0.19 0.65 0.16 0.58 0.66 2.24

(0.52) (1.89) (0.37) (1.50) (2.33) (6.00)
Total 0.55 1.85 0.91 1.94 1.43 6.68

(1.44) (4.74) (2.38) (5.08) (4.57) (16.50)
2012 H2 LB BS IB OB CB Total

LB 5.25 17.26 8.47 16.37 16.77 64.12
(2.25) (9.35) (5.09) (9.93) (8.73) (29.04)

BS 0.07 4.57 0.00 0.05 0.31 5.00
(0.25) (4.69) (0.00) (0.30) (0.96) (5.21)

IB 3.36 0.41 5.00 6.28 1.58 16.63
(3.15) (0.75) (3.68) (4.54) (1.32) (11.17)

OB 0.06 0.00 0.18 1.11 0.07 1.41
(0.42) (0.00) (0.66) (1.61) (0.26) (2.46)

CB 0.08 0.36 0.13 0.28 0.46 1.31
(0.36) (1.61) (0.40) (1.04) (1.96) (5.12)

Total 0.64 2.33 0.98 1.86 1.24 7.05
(1.80) (5.20) (2.76) (4.68) (4.28) (16.24)

2013 H1 LB BS IB OB CB Total
LB 5.63 23.63 8.08 8.94 17.06 63.33

(2.07) (12.46) (4.38) (6.98) (9.46) (32.48)
BS 0.021 4.34 0.02 0.02 0.46 4.86

(0.15) (4.93) (0.15) (0.15) (1.34) (5.68)
IB 3.64 1.29 4.50 3.27 2.01 14.71

(3.30) (1.66) (3.68) (2.24) (1.54) (10.56)
OB 0.14 0.14 0.27 0.62 0.23 1.40

(0.63) (0.55) (1.09) (0.98) (0.75) (2.48)
CB 0.06 0.64 0.09 0.23 0.77 1.78

(0.24) (2.46) (0.28) (0.77) (2.72) (6.06)
Total 0.71 2.96 0.98 1.05 1.51 7.21

(1.95) (6.68) (2.66) (2.76) (4.60) (16.67)
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Table B.4: The table shows the average number of links from one a bank of a particular bank type
(rows) to banks of another bank type (columns), i.e. the average out-degree, for 2011 H1,
2012 H2 and 2013 H3. The number in the brackets is the STD of each value. It becomes
clear that LB and IB have the largest number of links to other banks. OB, CB and BS are
mostly exposed to LB and IB. This is another indication for the core-periphery structure.

2011 H2 LB BS IB OB CB Total
LB 4.63 0.38 4.13 0.88 0.88 10.88

(0.92) (0.74) (2.03) (0.64) (1.13) (2.36)
BS 3.18 2.51 0.20 0.07 0.53 6.49

(2.45) (3.67) (0.46) (0.25) (0.99) (5.84)
IB 4.46 0.14 4.42 0.89 0.43 10.24

(1.85) (0.36) (2.72) (1.21) (0.65) (3.82)
OB 2.76 0.02 1.47 1.03 0.40 5.68

(1.73) (0.14) (1.60) (1.12) (0.73) (3.36)
CB 3.93 0.39 0.82 0.32 0.66 6.13

(1.77) (1.02) (0.88) (0.53) (0.88) (3.20)
Total 3.40 0.85 1.34 0.57 0.52 6.68

(2.04) (2.28) (1.88) (0.90) (0.86) (4.43)
2012 H2 LB BS IB OB CB Total

LB 5.25 0.38 5.88 0.38 0.37 12.25
(0.71) (0.52) (1.96) (0.52) (0.52) (2.25)

BS 3.14 4.57 0.13 0.00 0.31 8.15
(2.13) (5.06) (0.46) (0.00) (0.59) (6.88)

IB 4.84 0.00 5.00 0.64 0.36 10.83
(1.35) (0.00) (3.21) (0.84) (0.71) (3.78)

OB 2.61 0.04 1.76 1.10 0.21 5.74
(1.68) (0.20) (2.00) (1.27) (0.45) (3.57)

CB 3.53 0.36 0.58 0.09 0.46 5.03
(2.04) (0.80) (0.87) (0.27) (0.63) (3.27)

Total 3.33 1.43 1.51 0.46 0.32 7.05
(1.99) (3.37) (2.34) (0.92) (0.57) (5.11)

2013 H1 LB BS IB OB CB Total
LB 5.63 0.13 6.38 0.75 0.25 13.13

(0.74) (0.35) (1.41) (0.46) (0.46) (1.73)
BS 4.11 4.34 0.39 0.13 0.49 9.46

(1.54) (4.62) (1.29) (0.34) (0.86) (5.69)
IB 4.62 0.07 4.50 0.86 0.21 10.26

(1.60) (0.27) (2.93) (1.10) (0.43) (3.96)
OB 1.63 0.02 1.04 0.62 0.18 3.49

(1.83) (0.14) (1.77) (1.13) (0.37) (3.59)
CB 3.90 0.60 0.80 0.29 0.76 6.36

(1.87) (1.86) (1.55) (0.77) (0.76) (3.15)
Total 3.45 1.52 1.40 0.42 0.42 7.21

(2.09) (3.18) (2.27) (0.80) (0.65) (5.13)



Appendix C

Additional Figures of Empirical

Counterparty Risk Analysis of the UK

Banking System

For readability, we placed the figures of the results for the simulation and the mean-field

models calibrated with 2011 H1 and 2012 H2 data in this chapter.

In particular, the figure corresponding to Figure 6.3 is Figure C.1, to Figure 6.5 is

Figure C.3, to Figure 6.6 is Figure C.4, and to Figure 6.7 is Figure C.5. The datasets

used to produce subplot (a) of each figure are 2011 H2. For the initialization of subplot

(b) of each figure, we used the 2012 H2 datasets.
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Figure C.1: To produce the plots in this figure, we use the same simulation set-up as was used
to produce Figure 6.3. However, for the initialization of the models, we apply the
2011 H2 (a) and 2012 H2 (b) datasets for UK banks’ balance sheets and interbank
exposure data. The plot in the upper row shows the fraction of surviving banks,
p, against the mean liabilities, f

L

, evaluated using the average of 1’000 simulation
(black solid line, p

S

); the mean-field model (blue solid line, p
MF

); and the solution
of a null-model (black dotted line, p

N

), where all links in the interbank network
are set to zero. The second row is a plot of the STD of the simulation solution, p

S

,
against the mean liabilities, f

L

. Additionally, we marked the position at which the
jump occurs in the mean-field model, fMF

L

, and the maximum STD of p
S

.
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Figure C.2: To produce the plots in this figure, we use the same simulation set-up as was used
to produce Figure 6.4. However, for the initialization of the models, we apply the
2011 H2 (a) and 2012 H2 (b) datasets for UK banks’ balance sheets and interbank
exposure data. In the first tow of the figures, the mean fraction of surviving banks
of 1’000 simulations of a particular bank type is plotted against the mean liabilities,
f

L

. In the second row, the STD of each fraction of surviving banks for the different
bank types is plotted against the mean liabilities, f

L

. The graphs are coloured blue
for LB, red for BS, green for IB, black for OB and magenta for CB. Additionally,
we marked the maximum STD of p

S

for each bank type.
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Figure C.3: To produce the plots in this figure, we use the same simulation set-up as was used
to produce Figure 6.5. However, for the initialization of the models, we apply the
2011 H2 (a) and 2012 H2 (b) datasets for UK banks’ balance sheets and interbank
exposure data. The figures show the frequency distributions of 10’000 simulations
for fixed values of f

L

at 1.038 (2011 H2) and 1.042 (2012 H2). The parameter f
A

was set to 0.001. Distinct peaks occur around 0.4 and 0.65 in 2011 H2, 0.5 and 0.8
in 2012 H2, and 0.45 confirming that the fragile state occurs for the fixed values
of f

L

.
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Figure C.4: To produce the plots in this figure, we use the same simulation set-up as was used
to produce Figure 6.6. However, for the initialization of the models, we apply the
2011 H2 (a) and 2012 H2 (b) datasets for UK banks’ balance sheets and interbank
exposure data. As in Figure 6.3, the first row of each subplot shows the fraction
of surviving banks, p, plotted against the fraction of the mean liabilities, f

L

. The
second row shows the STD of p

S

plotted against f
L

. The dotted lines are the av-
erage of 1’000 simulations and the solid lines indicate the solution of the Iteration
Map ?? given p

0

= 1. The green lines use the original interbank network for each
year. Whereas for the red line, the exposure of LB was multiplied by d = 9. Mul-
tiplying the exposure of LB by 9 increased ✓ from 0.0158 to 0.0991 in 2011 H2,
from 0.0159 to 0.0966 in 2012 H2 and from 0.0159 to 0.0933 in 2013 H1. The
parameter f

A

for both simulation models as well as the mean-field model is set to
0.01. This causes ✓ for the orginal network to be smaller than ✓

c

and for the ex-
posure network where LB exposure is multiplied by d equal to 9 to be larger then
✓

c

. As a result, for the green lines, we are not able to observe a jump but a smooth
decline in p for increasing f

L

, whereas for the red line, a jump can be observed.
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Figure C.5: To produce the plots in this figure, we use the same simulation set-up as was used
to produce Figure 6.7. However, for the initialization of the models, we apply the
2011 H2 (a) and 2012 H2 (b) datasets for UK banks’ balance sheets and interbank
exposure data. The figures show the frequency distribution of the fraction of sur-
viving banks, p,of 10’000 simulations. The parameter f

A

is set to 0.01. For the
blue line f

L

was fixed at 1.032 for 2011 H2 (a), and at 1.037 for 2012 H2 (b) and
the original interbank networks have been used during the simulations. For the
red line, the exposure of LB was multiplied by a factor d = 9, and f

L

was fixed
at 1.013 for 2011 H2 (a), and 1.037 for 2012 H2 (b). For d = 1 (blue line), ✓
for all networks is below ✓

c

, and henceforth, no jump is visible. Instead the fre-
quency distribution is almost bell shaped. For d = 9 (red line), ✓ is larger than
✓

c

, and peaks become visible around p approximately 0.5 and 0.95 confirming that
the banking system can be in two states, where either most banks are operative or
half of the banks are insolvent. These peaks cannot be observed for the frequency
distribution when the original interbank network is used.
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Variable Description

Variable Variable description
↵ Connection probability of two nodes.
� Re-wiring probability for a link

in the Small-World network .
� Leverage ratio.

�
min

Minimum leverage to ensure a stable system.
✏
i

Random variable drawn from a standard normal
distribution.

µ
A

Location parameter of total assets.
µ

ˆ

A

Location parameter of non-interbank assets.
µ
L

Location parameter of total liabilities.
µ Difference between location parameter of liabilities and

non-interbank assets.
✓ Fraction of interbank assets to total assets.
✓
c

Critical value of ✓.
 Constant.
�
A

Scale parameter of total assets.
�

ˆ

A

Scale parameter of non-interbank
assets.

�
L

Scale parameter of liabilities.
� Scale parameter of the difference between the mean

value of liabilities and non-interbank assets.
X Adjacency matrix.
�
ij

Element of Adjacency matrix X .
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Variable Variable description
A

i

(t) Total assets of bank i at time t.
ˆA
i

(t) Non-interbank assets of bank i at time t.
a Mean-field value of the difference between the mean

values of liabilities and non-interbank assets
divided by the variance of the distribution of the
difference of liabilities and non-interbank assets.

a
1

Value of a, at which the banking system changes from
almost all banks insolvent to almost all banks solvent.

a
2

Value of a, at which the banking system changes from
almost all banks solvent to almost all banks insolvent.

b Mean-field value of interbank lending divided
by the variance of the distribution of the

b
c

Critical value of b.
c Neighbouring banks of all bank i

in Small-World network.
difference of liabilities and non-interbank assets.

f Fraction by which the mean of Tier 1 capital
is multiplied to resemble �

f
A

Fraction by which the variance � is multiplied
to vary the occurrence of the fragile state.

f
L

Fraction that is multiplied to the mean value of
liabilities to reduce or increase the overall average
capital in the banking system.

f ⇤
L

Fraction that is multiplied to the mean value of
liabilities at which the fragile state occurs.

G Interbank exposure matrix.
g
ij

(t) Interbank exposure of bank i to bank j
at time t.

g Average interbank exposure.
L
i

(t) Total liabilities of bank i at time t.
ˆL
i

(t) Non-interbank liabilities of bank i
at time t.

m Location parameter.
N Number of banks in the banking system.
Q Recovery rate matrix.

q
ij

(t) Recovery rate of exposure of bank i
to bank j at time t.

q Average recovery rate.
s Scale parameter.

S
i

(t) State of bank i at time t.
w

i

Fixed point, with i 2 {1, 2, 3}.
x
i

Extrema of x� F (x).
z Average degree.
z̄ Average degree of Erdős-Rény network.
z
i

Degree of bank i.



Appendix E

Abbreviations

Abbreviation Abbreviation description
C Cauchy distribution.
L Logistic distribution.
LL Log-Logistic distribution.
LN Log-Normal distribution.
N Normal distribution.
S Student’s distribution.
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Abbreviation Abbreviation description
Annot. Annotation.

2011 H2 Year 2011, second half.
2012 H2 Year 2012, second half.
2013 H1 Year 2013, first half.

BoE Bank of England.
BS UK building society.
CB Other UK commercial bank.

CDS Credit default swap.
CoVar Conditional Value at risk.

ES Expected Shortfall.
FWHM Full width at half maximum.

IB Investment bank.
LB Large UK bank.

LHS Left hand side.
PDF Probability distribution function.
repos Repayment products.
RFIM Random Field Ising Model.
RHS Right hand side.
RWA Risk Weighted Assets.
OB Oversea bank; subsidiaries of international

banks regulated by the PRA.
OTC Over the counter.
QE Quantitative easing.
SES Systemic Expected Shortfall.
STD Standard deviation.
VaR Value at Risk.
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