
Under consideration for publication in J. Fluid Mech. 1

Universal statistics of point vortex

turbulence

By J. G. E S L E R and T. L. A S H B E E

Department of Mathematics, University College London,

Gower Street, London WC1E 6BT, UK

j.g.esler@ucl.ac.uk

(Received 11 July 2015)

A new methodology, based on the central limit theorem, is applied to describe the statis-

tical mechanics of two-dimensional point vortex motion in a bounded container D, as the

number of vortices N tends to infinity. The key to the approach is the identification of

the normal modes of the system with the eigenfunction solutions of the so-called hydro-

dynamic eigenvalue problem of the Laplacian in D. The statistics of the projection of the

vorticity distribution onto these eigenfunctions (‘vorticity projections’) are then investi-

gated. The statistics are used first to obtain the density of states function and caloric

curve for the system, generalising previous results to arbitrary (neutral) distributions of

vortex circulations. Explicit expressions are then obtained for the microcanonical (i.e.

fixed energy) probability density functions (pdfs) of the vorticity projections in a form

that can be compared directly with direct numerical simulations of the dynamics. The

energy spectra of the resulting flows are predicted analytically. Ensembles of simulations

with N = 100, in several conformal domains are used to make a comprehensive validation

of the theory, with good agreement found across a broad range of energies.

The pdf of the leading vorticity projection is of particular interest because it has a

unimodal distribution at low energy and a bimodal distribution at high energy. This be-

haviour is indicative of a phase transition, known as Onsager-Kraichnan condensation in

the literature, between low energy states with no mean flow in the domain and high en-

ergy states with a coherent mean flow. The critical temperature for the phase transition,

which depends on the shape but not the size of D, and the associated critical energy are

found. Finally the accuracy and the extent of the validity of the theory, at finite N , are

explored using a Markov chain phase-space sampling method.

1. Introduction

Renewed interest in the classical problem of understanding the motion of point vor-

tices has been stimulated by the results of recent experiments with quantum fluids



2 J. G. Esler and T. L. Ashbee

(e.g. Neely et al. 2013). In the experiments, a Bose-Einstein condensate consisting of

O(106) 87Rb atoms is confined by a trapping potential, and is excited by the appli-

cation of a magnetic field. Vortices with quantized circulations are generated which,

because three-dimensional motion is suppressed by the experimental geometry, subse-

quently evolve in two-dimensions. The canonical model for the evolution of the system is

the Gross-Pitaevskii (de-focusing nonlinear Schrödinger) equation. However, in the ex-

perimental parameter regime, in which the healing length or core size of the vortices is

much smaller than the trap scale, the point vortex model gives an excellent approximate

description of the vortex motion (Bradley & Anderson 2012). Related numerical work

(Billam et al. 2014; Simula et al. 2014) has shown that the low wavenumber part of the

incompressible energy spectrum can be accounted for using the point vortex system.

The methods of equilibrium statistical mechanics have been used to describe the statis-

tics of point vortex motion ever since the pioneering study of Onsager (1949) (see also

the review of Eyink & Sreenivasan 2006). Most quantitative studies, following Joyce &

Montgomery (1973), have used mean field theory to obtain a predictive equation for the

streamfunction ψ of the time-mean flow induced by the vortices. The most well-known

of these is the sinh-Poisson equation (see eqn. 3.26 below), which predicts the time-mean

streamfunction ψ of a uniform neutral vortex gas, consisting of equal numbers of positive

and negative vortices with unit circulation.

A shortcoming of mean-field theory is that no information is provided about the fluc-

tuations of quantities of interest about their mean. Additionally, as is easily discovered if

numerical integrations of the point vortex equations are attempted, for randomly gener-

ated ‘neutral gas’ initial conditions, it is often the case that no time-mean flow emerges

from the dynamics (i.e. ψ = 0). Mean-field theory evidently reveals no useful information

about these ψ = 0 simulations. Additionally, sinh-Poisson solutions occur in positive /

negative pairs, due to the ψ → −ψ symmetry of the equation. It can be inferred that

the emergence of each pair of solutions, at low mean-field energies in the sinh-Poisson

equation, can be associated with a spontaneous symmetry breaking of the no-flow ψ = 0

solution. Understanding this symmetry breaking is a key focus of this work.

The spontaneous, symmetry breaking emergence of a mean circulation in the point

vortex system is known as Onsager-Kraichnan condensation (e.g. Billam et al. 2014;

Simula et al. 2014) in the physics literature. Condensation is widely observed in non-

equilibrium systems that are related to the point vortex model, in the sense that they

reduce to the point vortex model in a particular limit (e.g. the limit of small vortex size),

with one clear example being the superfluids experiments described above. Additionally,

however, condensation is observed in numerical simulations (e.g. Chertkov et al. 2007)

and experiments (Paret & Tabeling 1998; Shats et al. 2005) of both forced and unforced

2D turbulence in fluids, as well as in bounded magnetized plasmas (Bos et al. 2008),
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where its occurrence has been argued to be of importance for plasma confinement in

tokomak experiments. One particularly interesting example of condensation occurs in

numerical simulations of decaying two-dimensional Navier-Stokes turbulence in a square

domain (Clercx et al. 1998, 2001). In this case condensation is associated with the fluid

spontaneously and quite rapidly increasing its total angular momentum. By contrast, in

a rectangular domain with sufficiently large aspect ratio, a dipole circulation with no

angular momentum is observed to form instead.

Condensation can be viewed as the result of non-equilibrium processes such as repeated

vortex merger (or annihilation in the case of superfluids), with the condensate emerging

as the end state of the merger (or annihilation) process when a small number of vortices

are left in the domain, in an equilibrium configuration. In fluid turbulence, however,

Xiao et al. (2009) have shown that vortex merger alone cannot quantitatively account

for the upscale transfer of energy entering the condensate structure. The work of Taylor

et al. (2009), applying the earlier ideas of Chavanis & Sommeria (1996), provides insight

that condensation in fact has a statistical basis. They demonstrate that point vortex

statistical mechanics can be used to predict the outcome of the Clercx et al. experiments,

in particular explaining the transition between ‘spin up’ and dipole forming flows as

the domain geometry is altered. In Taylor et al.’s theory, both the spin-up and dipole

flows are examples of condensation, occurring when significant number of vortices remain

present, with the spatial structure of the condensate in each case being the structure with

maximum entropy according to the point vortex theory. A switch in the maximum entropy

solution occurs when the aspect ratio of the rectangle exceeds ≈ 1.12 thus accounting

for the transition.

In order to understand fully the statistical basis of condensation, however, it is neces-

sary to use an alternative approach to the mean-field theory used by Taylor et al. The cu-

mulant expansion method of Pointin & Lundgren (1976) is one method to obtain a richer

statistical description of point vortex behaviour. Using cumulant expansion, depending

on the scaling of the energy E with the number of vortices as N → ∞, either Joyce

and Montgomery’s mean-field theory is recovered (in the ‘hydrodynamic’ scaling limit,

in which e = E/N2Γ2
0 is held constant as N → ∞, where Γ0 is the root-mean-squared

vortex circulation), or a theory of fluctuations is obtained (in the ‘thermodynamic’ limit,

in which ε = E/NΓ2
0 = Ne is held constant). Pointin and Lundgren’s fluctuation theory,

which was made explicit only for the doubly-periodic domain, was recently generalised

and extended by the authors (Esler et al. 2013, EAM13 hereafter) to all simply-connected

bounded two-dimensional domains D ⊂ R2. However, cumulant expansion is laborious,

and truncations of the cumulant expansion are difficult to justify rigorously. The results

below, based on the central limit theorem (CLT hereafter), provide an alternative and

much simpler method of recovering the key results of EAM13. More importantly, the new
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method allows EAM13’s results to be extended to provide a number of predictions that

can be tested against direct numerical simulations (DNS) of the point vortex system.

The rest of the paper is set out as follows. In section 2, the point vortex model is

described, the uniform and microcanonical statistical ensembles to be investigated are

defined, and the normal modes of variability of the system are introduced. In section 3

statistics are obtained for various quantities of interest under both the uniform and

microcanonical ensembles. The critical inverse temperature and energy for condensation

are obtained, the equilibrium energy spectra are found, the large energy asymptotics

are derived and the connection is explained between the new results and those of mean-

field theory. In section 4 the results are validated, first by comparison with DNS, and

second by comparison between the predicted statistics and those obtained by statistical

sampling of phase-space (following e.g. Campbell & O’Neil 1991). Finally in section 5,

the applications to both 2D classical turbulence and quantum turbulence are discussed,

and conclusions are drawn.

2. Background

2.1. The point vortex model

The Hamiltonian point vortex model describes the motion in D of N vortices of infinites-

imal size with circulations Γi (i = 1, ..., N). Here, we will be mainly concerned with the

case of a neutral vortex gas, satisfying

N∑
i=1

Γi = 0,

being the system of most relevance to numerical simulations of 2D turbulence. Many

of the results below can be generalised to the non-neutral case, i.e. flows with non-

zero circulation, but the results are more complicated and will be reported elsewhere.

The vortex locations xi = (xi yi)
T ∈ D evolve according to Hamilton’s equations (e.g.

Newton 2001)

Γi
dxi
dt

= −∂H
∂yi

, Γi
dyi
dt

=
∂H

∂xi
, i = 1, ..., N (2.1)

where the Hamiltonian (Lin 1941a) is given by

H(x1, ...,xN ) = −1

2

N∑
i=1

N∑
j=1, j 6=i

ΓiΓjG(xi,xj)−
1

2

N∑
i=1

Γ2
i g(xi,xi). (2.2)

Here G(x,x′) is the Green’s function of the first kind of the Laplacian operator in D,

satisfying

∇2G(x,x′) = δ(x− x′), G(x,x′) = 0 on ∂D, (2.3)
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where the Laplacian ∇2 acts on x only, ∂D denotes the boundary of D, and

g(x,x′) = G(x,x′)− 1

2π
log |x− x′|.

Note that the terms involving g in (2.2) only require the evaluation of the so-called

Robin function r(x) = g(x,x) in which the position arguments of g are set to be equal.

The Robin function describes the interaction of each individual vortex with the domain

boundary, for example in some domains it can be expressed as the streamfunction induced

by one or more ‘image’ vortices outside the domain, evaluated at the location of the vortex

itself. A solitary vortex in D will move along a path with r(x) =constant.

The statistical mechanics of the system (2.1) will be discussed next.

2.2. Microcanonical statistical mechanics

Provided that D has no continuous symmetries, for example D is not a circle, periodic

channel or a doubly periodic domain, the Hamiltonian H is the only known conserved

quantity of the motion. Provided ergodicity can be assumed, an aspect which will be

discussed briefly in §4.2 below (see also Weiss & McWilliams 1991), the relevant statistical

ensemble for the dynamical system (2.1) is the microcanonical ensemble consisting of all

vortex configurations with a fixed energy H = E. Hereafter, angle brackets will be used to

denote the microcanonical ensemble average, e.g. 〈ω(x)〉 for the average of the vorticity

distribution

ω(x) =

N∑
i=1

Γiδ(x− xi). (2.4)

Thermodynamic quantities can be obtained using the density of states function, i.e.

the classical measure of the number of microstates occupying each energy shell, which

for given vortex circulations Γ = (Γ1, ...,ΓN )T is defined as

WΓ(E) =
1

AN

∫
DN

δ(E −H(x1, ...,xN )) dx1...dxN , (2.5)

where A is the area of D. A key insight (see Onsager 1949) is obtained from the fact

that phase-space has a finite volume (equal to AN ). It follows that WΓ(E) must have a

maximum at some value E = E0, and decay to zero as E → ±∞. A schematic illustration

of WΓ(E) is given in Fig. 1. Entropy SΓ(E) and inverse thermodynamic temperature

βΓ(E) are formally defined from WΓ(E) (setting Boltzmann’s constant to be unity here

without loss of generality),

SΓ(E) = logWΓ(E), βΓ(E) = S′Γ(E) =
WΓ
′(E)

WΓ(E)
. (2.6)

It is immediately apparent from Fig. 1 that, depending on the energy E, βΓ can be

positive or negative. It is well-known (e.g. Onsager 1949) that the sign of βΓ reveals

much about the qualitative behaviour of the associated dynamics. Strongly positive βΓ
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Figure 1. Schematic of the density of states function WΓ(E). (The plotted curve is in fact

obtained from a numerical evaluation of W (ε) for a uniform neutral gas in domain A - see

§3.1.)

indicates that the vortex gas will be dominated by dipoles of opposite-signed vortices,

whereas strongly negative βΓ indicates that clusters of like-signed vortices will form.

A useful starting point for any statistical theory is to describe the behaviour of WΓ(E)

as N →∞. Note that, in this limit, it can be expected that the N self-interaction terms

in (2.2) will be dominated by the N(N −1) interactions between vortices. We will return

to this point below. An important theoretical result concerning the N →∞ limit, proved

by Campbell & O’Neil (1991) for periodic, rectangular or trapezoidal domains, is that

under mild restrictions on Γ,

lim
N→∞

NΓ2
0WΓ

(
NΓ2

0ε
)

= W (ε). (2.7)

The limiting form W (ε) is a function of a rescaled energy ε = E/NΓ2
0, which is an

energy per unit vortex sometimes referred to as the thermodynamic energy. Here the
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root-mean-squared (rms) vortex circulation Γ0 has the standard definition

Γ0 =

(
1

N

N∑
i=1

Γ2
i

)1/2

. (2.8)

Statistical sampling of phase space, for values of N in the range 10 to 160, was used by

Campbell & O’Neil (1991) to produce convincing numerical evidence that WΓ(E) indeed

convergences according to (2.7). An important point is that (2.7) holds even if the rms

circulation Γ0 depends on N . Different authors have followed different conventions, for

example in order to specify the domain-integrated vorticity of each sign, EAM13 chose

Γ ∼ N−1. By contrast, Dritschel et al. (2015) chose Γ ∼ N−1/2, which has the advantage

that it leads to convergence of WΓ(E) with respect to the original energy E. All such

scaling choices for the circulations are (trivially) equivalent to a rescaling of the time

variable in (2.1) and therefore have no influence on the statistics of the system.

EAM13’s main results are for the uniform neutral vortex gas, which consists of N vor-

tices exactly half having positive circulation Γi = 1/N and half negative Γi = −1/N . For

the uniform neutral gas set-up, EAM13 used the cumulant expansion method to obtain

an explicit expression for W (ε), in the form of an inverse Fourier integral, generalising

a result of Pointin & Lundgren (1976) for the doubly-periodic domain. Here, we aim to

obtain an analytic expression for the limiting form W (ε) for as general a distribution of

vortices as possible, using a new method. Not only will EAM13’s results be generalised,

and the scaling result (2.7) of Campbell & O’Neil (1991) generalised to arbitrary do-

mains, but also the new methodology will allow the explicit calculation of pdfs of various

quantities in the microcanonical ensemble, which can then be verified against DNS.

2.3. Modes of variability of an ideal two-dimensional fluid in a bounded domain

To obtain point vortex statistics in a general domain D it is useful to first define an

orthogonal basis that captures the modes of variability of the point vortex distribution

in D. The method to generate such a basis is to solve the hydrodynamic (e.g. Flucher &

Gustafsson 1999) eigenvalue problem for the Laplacian

∇2Φ =
β

A
Φ in D, (2.9)

subject to boundary conditions

Φ = cons. on ∂D,
∮
∂D
∇Φ · n ds = 0, (2.10)

Solutions of (2.9) consist of an infinite set of eigenvalues {βj} and associated eigenfunc-

tions {Φj(x)} (j = 0, 1, 2, ...). Note that β has been deliberately chosen to label the

eigenvalue parameter because the eigenvalues {βj} can be interpreted as inverse temper-

atures (see EAM13 and below). It is important to emphasize that the problem (2.9-2.10)

is uniquely determined, and in general gives a different spectrum and set of basis func-
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A B C D

Φ1(x) Φ2(x) Φ3(x)

(D) β1 = −44.11 (D) β2 = −45.96 (D) β3 = −53.69

(C) β1 = −45.13 (C) β2 = −47.14 (C) β3 = −50.89

Figure 2. Top Row: Domains A-D. Middle Row: Leading three eigenfunctions of domain C.

Bottom row: Leading three eigenfunctions of domain D.

tions compared to the more familiar Neumann (∇Φ ·n = 0 on ∂D) and Dirichlet (Φ = 0

on ∂D) eigenvalue problems.

The boundary condition (2.10) is natural if Φ is interpreted as a streamfunction of a

vorticity field that integrates to zero in D. In that case, because there can be no flow

through ∂D, Φ must be constant there, although the value of the constant need not

be specified. The integral condition in (2.10) follows from the 2D divergence theorem,

because the domain integral of the vorticity field ∇2Φ remains zero at all times. The lead

eigenvalue β0 of (2.9) is evidently zero, with corresponding eigenfunction Φ0 =constant

in D. An energy argument reveals that the remaining eigenvalues {βj} (j > 1) are strictly

negative. Notice that the 1/A factor in (2.9) ensures that the {βj} are invariant under a

rescaling of the domain size. Since (2.9) satisfies the conditions for the Hilbert-Schmidt

theorem (e.g. Debnath & Mikusiński 2005), it follows that the remaining eigenfunctions

{Φj} are orthogonal, both to each other and to Φ0. Using square brackets [·] to denote
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the domain average of a function f(x)

[f ] =
1

A

∫
D
f(x) dx (2.11)

the eigenfunctions satisfy, following normalisation,

[Φj ] = 0, (j > 1), [Φj Φk] = δjk, (j, k > 1), (2.12)

where δjk denotes the Kronecker delta. The orthogonality properties (2.12) are of central

importance to our approach below.

The relevance of the set of eigenfunctions {Φj} is not restricted to the point vortex

system. The set {Φj} are in fact a natural basis for describing the variability of any

ideal flow with vorticity in D. In fact, Chavanis & Sommeria (1996) identified the same

eigenvalue problem as central to their study of the Miller-Robert-Sommeria mean-field

statistical mechanics predictions (Miller 1990; Robert 1991) for the outcome of vortex

patch flows in rectangular and circular domains. Their formulation of (2.9) appears rather

different

∇2Φ′ =
β

A
(Φ′ − [Φ′]) , Φ′ = 0, on ∂D, (2.13)

although (2.13) is easily shown to be equivalent to (2.9) under the transformation Φ =

Φ′ − [Φ′]. Taylor et al. (2009) classified the eigenfunctions of (2.13) into Type I (with

[Φ′] = 0) and Type II ([Φ′] 6= 0). Examining the rather simpler hydrodynamic formulation

of (2.9), however, this distinction is seen to be somewhat artificial in general, with the

existence of Type I solutions being dependent upon symmetries of D (e.g. rectangles have

three times as many Type I eigenfunctions as Type II).

For the purposes of comparison with DNS (see §4.1), and with statistics obtained by

sampling of phase-space (see §4.2), four conformal domains (A-D) shown in Fig. 2, have

been chosen for detailed study. These shapes may appear somewhat arbitrary, however

there is a good reason for avoiding (a) the unit circle, because its statistical mechanics

are complicated by the fact that angular momentum is conserved (e.g. Bühler 2002), (b)

the doubly-periodic domain which conserves linear impulse (e.g. Weiss & McWilliams

1991), and (c) rectangular domains because the Green’s function then requires relatively

expensive evaluations of the Weierstrass σ-function (e.g. Kunin et al. 1994). Domains

A-D have the advantage that (2.1) can be transformed to the circle domain in which the

Hamiltonian is closely related to that of the unit circle itself (Newton 2001).

Domains A-D are defined by a two-parameter (q, s) map from the unit circle (|Z| 6 1),

z = aZ/((1− q2Z)(1− isZ)). (2.14)

Here a = a(q, s) is a normalizing constant calculated to fix the area (A = π), and (q, s)

for each domain are (A) (0.8,0), (B) (0.3,0), (C) (0.55,0.65) (D) (0.55,0.5). When s = 0

the map is the ‘Neumann oval’ (see e.g. Richardson 1981).

Fig. 2 shows the four domains (A-D) and contours the leading three eigenfunctions



10 J. G. Esler and T. L. Ashbee

for domains C and D (for domains A and B see Figs. 3-4 of EAM13). The eigenfunction

calculations are effected by transforming to the unit circle domain, and using a standard

spectral method with a Chebyshev polynomial representation in the radial direction and a

Fourier representation in the azimuthal direction (e.g. Chaps. 9 and 11 of Trefethen 2000,

and appendix C of EAM13). For the results illustrated a grid of 51 radial × 100 azimuthal

points was used. Domains C and D exhibit an interesting switch in the ordering of

eigenfunctions, the consequences of which will be explored in §4.1 below.

2.4. The fixed ratio neutral vortex gas and its continuum limit

The results to follow use the CLT and are therefore obtained formally by passage to a

limit in which the number of vortices N →∞. For definiteness, it is helpful to be specific

about how exactly the distribution of circulations Γi (i = 1, ..., N) of the vortices behave

as the N → ∞ limit is taken, while nevertheless keeping the treatment as general as

possible.

With the above in mind, a ‘Fixed Ratio Neutral Vortex Gas’ is defined as follows. A fixed

ratio αk of the vortices is assumed to have a constant circulation Γ̄k, where k = 1, ...,K

and K < ∞ is the number of different vortex populations. Evidently
∑K
k=1 αk = 1. As

discussed above, because of time-rescaling, the Γ̄k can be constants or, provided their

ratios are fixed, can multiply an arbitrary function of N without affecting the argument

below. The neutrality condition is then

K∑
k=1

αkΓ̄k = 0.

and the rms circulation introduced above is

Γ0 =

(
K∑
k=1

αkΓ̄2
k

)1/2

.

Note that the uniform neutral vortex gas, defined in §2.2 above, is an example of a fixed

ratio gas with K = 2, α1,2 = 1/2 and in the treatment of EAM13, Γ̄1,2 = ±1/N .

To describe the continuum limit of the fixed ratio neutral vortex gas, we introduce α(γ)

to describe the fractional density of vortices with circulation γ. A sufficient condition

for our results below to hold, that will apply in all practical situations, is that vortex

circulations are bounded above by a maximum value γm (i.e. α(γ) = 0 for |γ| > γm).

The neutrality condition and rms circulation are then∫ γm

−γm
γα(γ) dγ = 0, Γ0 =

(∫ γm

−γm
γ2α(γ) dγ

)1/2

. (2.15)

The continuum case is particularly interesting because universal scaling laws have been

proposed for distributions of vortex sizes in decaying two-dimensional turbulence (Dritschel

et al. 2008).
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2.5. Sums of χ-squared random variables

Many of the results below will be expressed in terms of functions which arise as a result

of summations of χ-squared random variables. Here, some useful results and definitions

are given, which will serve to simplify the exposition below.

A starting point is the standard result that, if X ∼ N (0, 1) is a Gaussian random

variable, then Y = X2 − 1 is χ2
1-distributed with pdf

p(y) =


1√
2π

exp (−(y + 1)/2)

(y + 1)1/2
y > −1

0 y 6 −1

. (2.16)

Notice that E(Y ) = 0 and Var(Y ) = 1. Next suppose that we are interested in finding

the pdf of the summation

SM =

M∑
j=1

Yj
2wj

(2.17)

in the limit M →∞. Here {Yj} are independent and identically distributed (iid hereafter)

with distribution (2.16), and the {wj} are an infinite set of monotonically increasing

positive constants. The {wj} are assumed to increase sufficiently rapidly so that (a) CLT

results for weighted sums (e.g. Lyapunov CLT) do not hold, and (b) S∞ = limM→∞ SM

is well defined. It turns out that wj ∼ j at large j is sufficient for both (a) and (b).

Denote the pdf of SM by Fw
M

(s) where wM = (w1 w2 ... wM )T . Using the convolution

theorem, the Fourier transform of Fw
M

(s) is given by

F̂w
M

(k) = (2π)(M−1)/2
M∏
j=1

p̂

(
k

2wj

)
. (2.18)

where

p̂(k) =
1√
2π

exp
(

1
2 i
(
2k − tan−1 (2k)

))
(1 + 4k2)1/4

. (2.19)

is the Fourier transform of p(y). Taking the limit M →∞, and using w in place of w∞,

after some working it follows that

Fw(s) =
1

2π

∫ ∞
−∞

Aw(k) exp (iks+ iφw(k)) dk, (2.20)

where the amplitude and phase functions Aw and φw are real-valued and defined by

Aw(k) =

∞∏
j=1

(
1 +

k2

w2
j

)−1/4

, φw(k) =
1

2

∞∑
j=1

(
k

wj
− tan−1

(
k

wj

))
. (2.21)

The function Fw(s) will be used repeatedly below. A notational device we will use

in several places is to write w(i1, i2, i3) to denote the sequence w with the terms at

j = i1, i2, i3 omitted (e.g. w(1) = (w2 w3...)
T etc.).

Unfortunately, there is no known analytical method for inverting the transform (2.20),

or indeed to sum (2.17) by other means (e.g. Bausch 2013, and refs. therein). As a conse-
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quence a numerical approach must be taken. Direct numerical quadrature of (2.20) using

the trapezium rule, with w truncated at a few hundred terms converges fairly rapidly

with element size, provided that s . 2(
∑
j w
−2
j )1/2 (roughly four standard deviations of

the resulting distribution). For larger |s| convergence rapidly becomes computationally

expensive and then impossible. An ingenious direct numerical pairwise method of sum-

mation of (2.17) by Bausch (2013), which is very accurate and efficient for s < 0, has

been used to cross-validate our calculations.

3. A new approach to point vortex statistics

3.1. Statistics of the uniform ensemble

A natural starting point is to formulate a description of the statistics of the uniform

ensemble. The uniform ensemble pdf p0(q) of a quantity Q(x1, ...,xN ) that depends on

the vortex positions is defined to be

p0(q) =
1

AN

∫
DN

δ(Q(x1, ...,xN )− q) dx1...dxN . (3.1)

In other words, p0(q) is the pdf of Q when the vortices are arranged at random in D under

uniform measure. Certainly, the uniform ensemble bears no relation to the statistics of

quantities calculable from dynamical simulations of (2.1), which are governed by the

microcanonical ensemble (see below). However, the density of states function WΓ(E)

(2.5 above), is simply the pdf of the Hamiltonian under the uniform ensemble. Other

important thermodynamic quantities are defined from WΓ(E) (see eqn. 2.6). The main

aim in this section is to determine the limiting behaviour of WΓ(E) as N → ∞ and

to establish related results that allow us to address the statistics of the microcanonical

ensemble below.

The results below will be derived first for the fixed ratio neutral gas of §2.4, and the

continuum limit will subsequently be taken. First define the ‘vorticity projections’ Ωj ,

i.e. the projections of the vorticity field onto the eigenfunction basis, to be

Ωj =
1

ω0
[ωΦj ] =

1

ω0A

N∑
i=1

ΓiΦj(xi), so that ω(x) = ω0

∞∑
j=1

ΩjΦj(x). (3.2)

Here ω0 = N1/2Γ0/A is a scaling factor used to simplify the bookkeeping. It is straight-

forward to obtain the statistics of the {Ωj}, under the uniform ensemble, using the CLT.

Notice first that we can write

Ωj =

K∑
k=1

α
1/2
k

Γ̄k
Γ0

Ωkj , where Ωkj =
1

(αkN)
1/2

αkN∑
ik=1

Φj(xik), (3.3)

where the {xik} denote the positions of those vortices with circulation Γ̄k. Under the

uniform ensemble, each Ωkj is the sum of αkN iid random variables Φj(Xik), where the

Xik are random positions uniformly distributed in D, divided by the square root of
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the number in the sum. Applying the CLT to Ωkj , and noting that it follows from the

orthogonality properties (2.12) that E(Φj(Xik)) = 0 and Var(Φj(Xik)) = 1, it follows

that in the limit N → ∞ the random variable Ωkj is Gaussian-distributed with zero

mean and unit variance, i.e. Ωkj ∼ N (0, 1). The distribution for Ωj then follows from the

standard result for sums of Gaussian random variables applied to (3.3), from which it is

also the case that Ωj ∼ N (0, 1), or equivalently the {Ωj} have pdf

p0(ωj) =
exp(−ω2

j /2)√
2π

. (3.4)

Further, it follows from the orthogonality condition (2.12) that Cov(Ωj ,Ωk) = 0 for

j 6= k, hence in the limit N →∞ the set of random variables {Ωj} are iid.

Next, introduce the distributions

R(x,x′) =

N∑
i=1

Γ2
i δ(x− xi) δ(x′ − xi), S(x) =

N∑
i=1

Γ2
i δ(x− xi). (3.5)

In terms of these distributions the point vortex energy (2.2) can be written

H = −1

2

∫
D2

(
(ω(x)ω(x′)−R(x,x′))G(x,x′) +R(x,x′)g(x,x′)

)
dx dx′ (3.6)

= −1

2

∫
D2

(ω(x)ω(x′)−R(x,x′))G(x,x′) dx dx′ − 1

2

∫
D
S(x)r(x) dx.

This result can be verified by inserting (2.4) and (3.5) into (3.6).

Progress can now be made by introducing the eigenfunction expansions of R(x,x′)

and S(x) as follows

Rjk =
1

ω2
0A

2

N∑
i=1

Γ2
iΦj(xi)Φk(xi), R(x,x′) = ω2

0

∞∑
j=0

∞∑
k=0

RjkΦj(x)Φk(x′), (3.7)

Sj =
1

ω2
0A

2

N∑
i=1

Γ2
iΦj(xi), S(x) = ω2

0A

∞∑
j=0

SjΦj(x). (3.8)

Similarly, the Green’s function G(x,x′) and the Robin function r(x) can be expanded

in the eigenfunction basis

G(x,x′) = G00 +

∞∑
j=1

Φj(x)Φj(x
′)

βj
, G00 =

1

A2

∫
D2

G(x,x′) dx dx′, (3.9)

r(x) =

∞∑
j=0

rjΦj(x), rj =
1

A

∫
D
r(x)Φj(x) dx. (3.10)

Using (3.6-3.10) the Hamiltonian can now be expressed in terms of the projections

{Ωj , Rjj , Sj}, which can be regarded as random variables under the uniform ensemble,

H = ω2
0A

2

ε0 −
1

2

∞∑
j=1

(
Ω2
j −Rjj
βj

+ rjSj

) where ε0 =
G00 − r0

2
. (3.11)

If one now writes Rjj = Tj + 1, it is shown in the appendix that the random variables
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Tj and Sj can be neglected at leading order in (3.11), essentially because they are both

zero mean random variables with variance O(1/N) compared to O(1) for Ωj . Note that it

was anticipated above that contributions to H from self-interaction terms, i.e. the {Tj}
and {Sj} here, would become insignificant as N →∞. On substituting ω0 = N1/2Γ0/A,

(3.11) is at leading order

H

NΓ2
0

− ε0 = −1

2

∞∑
j=1

Ω2
j − 1

βj
, where Ωj ∼ N (0, 1), (3.12)

and with the Gaussian random variables {Ωj} being iid. The result (3.12) holds in the

continuum limit but with Γ0 given by (2.15). Alternatively, for the specific case (see §2.2)

of the uniform neutral gas of EAM13, Γ0 = 1/N .

Under the uniform ensemble, the right-hand side of (3.12) is a sum of of χ-squared

random variables, precisely as discussed in §2.5. Introducing a scaled energy ε = H/NΓ2
0,

it is evident that this sum of random variables will have a pdf W (ε) that depends only on

the properties of the domain D, through the eigenvalues {βj} and the domain-dependent

constant ε0, and not on the vortex circulations Γ. From the scaling properties of random

variables, in the limit N →∞, the density of states function WΓ(E), which is the pdf of

H, satisfies NΓ2
0WΓ(NΓ2

0ε) = W (ε). This observation generalises the result of Campbell

& O’Neil (1991) to all simply-connected domains. Furthermore, from the results of §2.5,

W (ε) can be given explicitly in terms of the functions defined there as

W (ε) = Fβ(ε− ε0) (3.13)

where β = (−β1,−β2, ...)
T is the vector of eigenvalues of (2.9).

Equation (3.13) is precisely the formula found by EAM13 for the special case of the

uniform neutral gas, including evaluating the unknown constant (W0 in their eqn. 41).

EAM13 used the (rather laborious) cumulant expansion method of Pointin & Lundgren

(1976). The function W (ε) (see also Fig. 1 of EAM13) invariably resembles the schematic

of Fig. 1, which in fact shows (3.13) for domain A.

A careful comparison of the shapes of the density of states prediction (3.13) is afforded

by Fig. 3 (green curves), which shows the corresponding inverse temperature β(ε) =

W ′(ε)/W (ε). The differences between domains are much more evident when looking at

β as opposed to W . In the limit ε → −∞, the behaviour is similar for both domains A

and B, and is not inconsistent with the domain-independent behaviour predicted by

Edwards & Taylor (1974), β ∼ exp (−8πε), (see also Pointin & Lundgren 1976). At

positive energies by contrast, in the limit ε → ∞ the inverse temperature β → β1 i.e.

the first non-zero eigenvalue of (2.9), in each domain. Notice that β1 differs between

domain A (β1 ≈ −36.37) and B (β1 ≈ −42.61). It will be shown below that β → β1

in all simply-connected domains and that βc = β1 therefore has a special role as the

critical inverse temperature for condensation referred to in the introduction. Moreover,
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Figure 3. Comparison of inverse temperatures βΓ(E) obtained from the MC3 calculation (red

curves) for domains A and B (illustrated), with the theoretical result β(ε) obtained from (3.13)

(green curves), and βh(e) (see §3.3) obtained from the mean-field (sinh-Poisson) theory (solid

blue curves). Left panels are scaled to show the central region and right panels the right-tail

region of W (ε). The dashed blue lines give the linearised (low E) sinh-Poisson result and the

dashed green lines the large ε asymptotic result (3.20). A secondary sinh-Poisson solution (dotted

blue curve) is shown for domain B.

β invariably approaches β1 from below. It is interesting to remark that, in all closed

domains, the point vortex microcanonical ensemble therefore has ‘negative specific heat

capacity’ at high energies (in our notation the specific heat capacity c with respect

to the scaled (thermodynamic) energy ε is c = −β2/β′, which is negative wherever

β′(ε) > 0). Negative specific heats are generic features of long-range interacting systems

and raise interesting issues concerning ‘ensemble inequivalence’ (e.g. Campa et al. 2009).

In addition, for each domain, it is possible to define a critical energy εc (vertical dotted

lines on Fig. 3) to be the lowest energy (but in practice the only energy) for which

β(εc) = βc. The onset of condensation will be shown below to occur at energies close

to εc. Fig. 3 will be discussed further below, in the context of numerical validation of

the theory, when results are compared with statistics obtained by random sampling of

phase-space (see §4.2 below).



16 J. G. Esler and T. L. Ashbee

In summary, the new approach has been used here to generalise and simply the deriva-

tion of EAM13’s result (3.13), showing that (3.13) is universal to all neutral distributions

of vortices. Next, it will be shown that the flexibility and simplicity afforded by the current

approach allows new microcanonical results to be obtained, which are directly testable

by comparison with DNS.

3.2. Statistics of the microcanonical ensemble

The microcanonical pdf pE(q) of a quantity Q(x1, ...,xN ) is the distribution of Q when

the energy E is held constant. Explicitly, this is

pE(q) =
1

ANWΓ(E)

∫
DN

δ(Q(x1, ...,xN )− q) δ(H(x1, ...,xN )− E) dx1...dxN . (3.14)

Under the ergodic hypothesis, the time-series of the variable Q(t) in a long-time dynam-

ical solution of (2.1) with energy H = E, will be distributed as pE(q). However, even for

moderate (i.e. O(100)) values of N , (3.14) can be extremely expensive to sample numer-

ically, particularly for energies outside the central region (although methods do exist, as

will be described in §4.2 below). For many purposes (3.14) has little practical value.

By contrast, in the limit N → ∞ interesting and practical microcanonical statistics

can be obtained. Denoting the limiting microcanonical pdfs as pε(q), where ε = E/NΓ2
0

is the scaled energy, the techniques of §3.1 can be adapted to make predictions which can

be compared with integrations of (2.1). Here the focus will be on the microcanonical pdfs

of the vorticity projections Ωj , which reveal how energy is shared between the normal

modes of the system in the long-time limit. Recall that, under the uniform ensemble,

the {Ωj} are iid with Gaussian distribution N (0, 1). Under the microcanonical ensemble,

their pdf will deviate from Gaussianity due to the need to satisfy the energy constraint

H = NΓ2
0 ε (see eqn. 3.12).

The results are obtained using Bayes’ theorem. Writing the microcanonical marginal

pdf of Ωj as pε(ωj) = p0(ωj | ε), and applying Bayes’ theorem

pε(ωj) =
p0(ε |Ωj = ωj)p0(ωj)

p0(ε)
=

Fβ(j)

(
ε− ε0 +

ω2
j − 1

2βj

)
Fβ
(
ε− ε0

) exp
(
−ω2

j /2
)

√
2π

(3.15)

gives the result in terms of the functions defined in §2.5 (recall that β(j) denotes the

vector β with the jth term omitted). The conditional probability in the numerator of

(3.15) is expressed in terms of the function Fβ(j)(·) because the latter is the pdf for the

sum of random variables in (3.12) excluding the jth term, and its argument follows from

the fact that total sum in (3.12) must remain equal to ε− ε0 in the case where Ωj = ωj

is given.

The pdf pε(ω1) of the first vorticity projection Ω1 deviates most strongly from the

Gaussian obtained for the uniform ensemble. In Fig. 4 (top panels) pε(ω1), calculated
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Figure 4. Upper panels: Contour plots of pε(ω1), from the theoretical expression (3.15), as a

function of (ω1, ε) for domains A, C and D. The blue circle and error bars denote the mean and

95% confidence intervals of W (ε) and the critical energy εc is marked with a dotted line. The

possible values of ω1 according to the linearised sinh-Poisson solution (3.28) are marked with

the dashed blue parabolas. Lower panels: As for the upper panels, but here pε(ω1) is estimated

using MC3 sampling of phase-space with N = 100 vortices.

using eqn. (3.15), is contoured as a function of (ω1, ε) for domains A, C and D. All three

domains share a key feature. At energies around the level ε = εc the pdf switches from

unimodal to bimodal, and the distribution becomes increasing bimodal as the energy is

further increased. A strongly bimodal distribution can be associated with a state with a

coherent mean flow (i.e. the condensed state), because in this case there will be a strong

tendency for the system to remain either in a positive polarity state with Ω1 > 0 or in a

negative polarity state with Ω1 < 0. Passage between the two states requires the system

to evolve through a relatively improbable configuration with Ω1 = 0 (similar transitions

between positive and negative polarity equilibrium solutions of the Euler equations have

been studied by Naso et al. 2010).

In Fig. 4, domain A is seen to have a very ‘clean’ condensation, in the sense that pε(ω1)

becomes strongly bimodal at relatively low energies. There is a sharp contrast, which ar-

guably might be expected on geometric grounds, between domain A and domains B-D for
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Figure 5. Comparison between theoretical predictions (eqn. 3.15, blue curves) of pE(|ω1|) and

DNS (red curves) of (2.1). Three different energy levels (ε = −0.1, 0, 0.1) are shown. (2.1). Top:

Domain A. Bottom: Domain B.

which the onset of bimodality as ε is increased is more gradual. In domains B-D the prob-

ability of a configuration associated with a switch in polarity (Ω1 = 0) is much greater

than that at the same energy in domain A. The issue of how the transition probability is

controlled by the domain shape is discussed in the next subsections where asymptotics

at high ε are considered. Domains C and D, which have similar shapes, unsurprisingly

are seen in Fig. 4 to have similar pdfs. The reason they have been chosen for close ex-

amination is that the condensate structure Φ1(x) (plotted in Fig. 2) is nevertheless very

different between the two domains.
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ε = 0.05. Left panels: Domain A. Right panels: Domain B.

The difference in the pdfs of Ω1 can be seen clearly in Fig. 5, where pε(ω1) (blue

curves) is plotted at three different values of the energy (ε = −0.1, 0, 0.1) for domains A

and B. Note that, since the pdf is an even function of ω1, it is plotted as a function of

|ω1| in Fig. 5 in order to facilitate comparison with the DNS (red curves, discussed in

§4.1 below). For reference, the (Gaussian) uniform ensemble pdf is also plotted (dotted

black curve).

For any ordered set of n integers {i1, i2, ..., in} the joint microcanonical pdf pε(ωi1 , ωi2 , ..., ωin)

of the random vector of vorticity projections (Ωi1 ,Ωi2 , ...,Ωin)T can also be calculated.

The result is

pε(ωi1 , ωi2 , ..., ωin) =

Fβ(i1,i2,...,in)

(
ε− ε0 +

∑
ik

ω2
ik
− 1

2βik

)
Fβ (ε− ε0)

exp

(
−
∑
ik

ω2
ik

2

)
(2π)n/2

. (3.16)

Of these joint pdfs, the most interesting is arguably pε(ω1, ω2) because it illustrates

the distribution of energy between the leading two normal modes of the system. Fig. 6

contours pε(ω1, ω2) for domains A and B for energy ε = 0.05. The results show markedly

different behaviours for the two domains. In domain A nearly all states have a significant

amount of energy trapped in mode 1, whereas domain B allows energy to be shared

comparatively efficiently between modes 1 and 2, evidenced by the circular pattern (only

the upper right quadrant is shown) in Fig. 6. The difference can be explained by the
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difference in the spectral gap β1 − β2, between the two domains, as will be discussed

further below.

3.3. The energy spectrum

For the two-dimensional Euler equations inD, it is straightforward to define the ensemble-

averaged fluid dynamical energy EF and the associated instantaneous discrete energy

spectrum. Expanding the vorticity field ω(x) (here assumed to have zero-mean) in the

eigenfunctions {Φj(x)} as in (3.2) leads to

EF = −1

2

∫
D2

〈ω(x)ω(x′)〉G(x,x′) dx dx′ = ω2
0A

2
∞∑
j=1

〈Ej〉, where Ej = −
Ω2
j

2βj
, (3.17)

and Ωj = [ωΦj ]/ω0 as in (3.2). In general ω0 is any scaling factor and the angle brackets

denote an (unspecified) ensemble average. In the singular limit of the point vortex distri-

bution (2.4), however, EF is undefined. Consequently, additional regularising terms are

needed in the point vortex Hamiltonian (2.2), compare for example (3.6) to (3.17). Nev-

ertheless, the fluid dynamical spectral coefficients Ej in (3.17), which denote the energy

in a mode with wavenumber kj = (−βj/A)1/2, do remain calculable in the point vortex

system. In this case ω0 = N1/2Γ0/A and the angle brackets unambiguously denote the

microcanonical ensemble. In fact, it is demonstrated in the appendix that 〈Ej〉 has the

following exact analytic relationship with the density of states function,

〈Ej〉 = − 1

2βj

(
1 +

β(ε)

βj
− 2

βj
W (ε)

∂W

∂βj
(ε)

)
. (3.18)

It is interesting to remark that the density of states function W (ε) encodes, through

(3.18), all information concerning the equilibrium point vortex energy spectrum (recall

that β(ε) = W ′(ε)/W (ε)). An alternative expression (compare eqn. 38 of EAM13), which

shows that it is not in fact necessary to evaluate the partial derivatives ∂W/∂βj to obtain

the energy spectrum from W (ε), is

〈Ej〉 =
1

2W (ε)

∫ ε

−∞
W (ε̄) eβj(ε−ε̄) dε̄. (3.19)

Equation (3.19) is obtained by integrating equation (A 8) given in the appendix.

In Fig. 7 the energy spectrum obtained from (3.18) is plotted for domain B for sev-

eral values of ε. The usual convention of summing the contributions from modes within

wavenumber shells of finite width ∆k is adopted. Here we take ∆k = 2
√
π (consistent

with taking ∆k = 1 in the usual doubly-periodic domain which has greater area by a

factor of 4π). Fig. 7 shows that as ε is increased, energy is increasingly added to the

largest scales in the system. At small scales the spectrum has a k−1 slope for all values

of ε, consistent with the spectrum not being integrable. These results are consistent with

spectra recently calculated numerically by Dritschel et al. (2015) for the particular case
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Figure 7. Point vortex energy spectra E(k) in domain B at different values of ε.

of point vortices on the sphere. The dashed curve, showing the saturated spectrum, will

be discussed below.

3.4. Large ε asymptotics, condensation and saturation spectrum

In the appendix it is proved that as ε→∞ the limiting density of states function satisfies

W (ε) ≈
( −β1

π(ε− ε0)

)1/2

exp

(
β1(ε− ε0)− C1

2
−
∞∑
k=1

Bk+1

k(ε− ε0)k

)
(3.20)

where C1 is a constant

C1 =

∞∑
j=2

log

(
1− β1

βj

)
+
β1

βj
,

and the {Bk} are a sequence of negative constants also depending upon the eigenvalues

{βj} (see table 1 in the appendix). Not only does (3.20) serve as a test of the numerical

quadrature of (3.13), it also allows simplified analytical expressions to be obtained for

various quantities of interest. The useful domain of validity of (3.20) can be estimated

by inspection of Fig. 3 (right panels), where the corresponding four term approximation

β(ε) ≈∑3
k=0Bk(ε−ε0)−k (see table 1) is plotted (dashed green curves) against a quadra-

ture of the exact expression (i.e. obtained from eqn. 3.13, solid green curves). Evidently

the approximation is appropriate only for inverse temperatures below the critical value

(i.e. β < β1), and works better in domain A than domain B because the coefficients {Bk}
decay more rapidly in the former case.
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Naturally, equation (3.20) also gives the s → ∞ asymptotics of the functions Fw(s)

of §2.5, hence essentially the same asymptotics can be applied to the microcanonical pdf

pε(ωj) (given by 3.15) of the vorticity projection Ωj . It is found that, as ε→∞, all but

the first vorticity projection becomes normally distributed

Ωj ∼ N
(

0,
βj

βj − β1

)
for j > 2. (3.21)

Applying the method to (3.16) it can also be established that {Ω2,Ω3, ...} become in-

dependent as ε → ∞. Interestingly, (3.21) is consistent with saturation of the fluid

dynamical energy in each mode

〈Ej〉 = −
〈Ω2

j 〉
2βj

→ 1

2(β1 − βj)
, as ε→∞, for j > 2. (3.22)

In other words, at large ε, the energy spectrum of the point vortex system becomes

saturated and as ε increases further, all of the additional energy must go into the con-

densate only. The saturated spectrum (3.22) is plotted on Fig. 7 (dashed curve). Note

that, because 〈E1〉 depends upon on the system energy ε, the first energy shell is omit-

ted. Spectral saturation is seen to be more-or-less complete by ε = 0.1, indicating that

as ε increases beyond this value all energy will go into the first energy shell (i.e. the

condensate).

The pdf pε(ω1) of the condensate vorticity projection Ω1, by contrast, does not become

Gaussian as ε → ∞. However, results about its behaviour can be found by taking the

microcanonical ensemble average of (3.12), and using the results above. For example, the

ensemble average of the condensate energy E1 is found to be

〈E1〉 = ε− ε∗0, ε∗0 = ε0 +
1

2β1
+

∞∑
j=2

β1

2βj(β1 − βj)
. (3.23)

The domain-dependent constant ε∗0 represents a correction to the mean field theory to be

discussed in the next subsection. Similarly, the variance of the condensate energy about

its mean value is found to be

〈(E1 − 〈E1〉)2〉 =
1

4

∞∑
j=2

1

(β1 − βj)2
, (3.24)

showing that the amplitude of fluctuations of the condensate energy are independent

of ε as ε → ∞. The predicted variance in (3.24) varies greatly between domains, e.g.

〈(E1 − 〈E1〉)2〉 ≈ 7.2× 10−4 in domain A versus 2.4× 10−2 in domain B, with the large

difference explained by the clustering of the first few eigenvalues close to β1 in domain B.

Figs. 4-6 suggest that, as energy increases, switches in the sign of Ω1 will become

increasing infrequent in the dynamics, as the probability pε(ω1 = 0) of encountering a

transition state with Ω1 = 0 becomes increasingly small. One might in fact anticipate

that the expected time of transition is inversely proportional to pε(ω1 = 0), this is in

fact the case with stochastic models of bistable systems (e.g. Naso et al. 2010), which
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might be used as a simple phenomenological models for the dynamic evolution of Ω1(t)

here (see e.g. section 6.2 of Touchette 2009). This idea will be explored in more detail in

future work. In the large ε limit,

pε(ω1 = 0) ≈
(
β2

β1

)1/2

exp

(
−(β1 − β2)(ε− ε0) +

C1 − C2

2
− β2

2β1

)
(3.25)

where C2 is defined exactly as C1 above, but with β2 replacing β1 and the sum starting

at j = 3. The result (3.25) shows that the frequency of switches in the sign of Ω1 is

highly sensitive to the spectral gap β1 − β2 > 0. In domain A, β1 − β2 ≈ 33.78, whereas

in domain B, β1 − β2 ≈ 3.54, which explains the huge difference in switching behaviour

between the two domains. The important point is that it is the shape of the domain that

controls the spectral gap, and through this the switching frequency at high energy.

3.5. The connection with mean-field theory (sinh-Poisson equation)

Many researchers will be more familiar with the mean-field statistical mechanics theory of

Joyce & Montgomery (1973) than with the fluctuation theory considered above. What is

the connection between the two theories? To answer this question, we will briefly review

the mean-field theory for a uniform neutral gas below, and show how the main predictions

relate to those of the fluctuation theory. The essential starting point is to recognise

that, while the results of the fluctuation theory are expressed as a function of the scaled

(thermodynamic) energy ε = E/(NΓ2
0), the mean-field results are expressed as a function

of e = E/(N2Γ2
0) (sometimes referred to as the hydrodynamic energy). The fact that the

energy scales differently with the number of vortices N in each theory (ε = Ne) means

that, with respect to the density of states function in Fig. 1, the fluctuation theory is a

theory of the central region, whereas the mean-field theory is theory of the (positive) tail

region. Pushing an analogy with sums of random variables in elementary statistics, it

might be said that the fluctuation theory is the ‘central limit theorem’ for point vortices,

with the mean-field theory acting as a ‘large-deviation theory’. According to this analogy,

the two theories will be linked asymptotically, with the ε → ∞ limit of the fluctuation

theory matching to the e→ 0 limit of the mean-field theory (Pointin & Lundgren 1976).

The mean field theory is formulated on the basis that the hydrodynamic energy e

of the system is positive, that all of this energy is contained in a steady mean flow

(the condensate), and that fluctuations can be neglected. For the case of a uniform

neutral gas, the mean-field theory leads to the well-known sinh-Poisson equation (Joyce &

Montgomery 1973) for the time-mean streamfunction ψ (scaled so that ∇2ψ = 〈ω〉/NΓ0)

of the condensate

∇2ψ = C sinh (βhψ), where C =
1

A
[exp (βhψ)]

−1/2
[exp (−βhψ)]

−1/2
, (3.26)

where as above [·] denotes the domain average. The correct boundary condition for ψ

on ∂D is (2.10). This can be seen, for example, by following the derivation of Pointin &
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Lundgren (1976, see discussion surrounding their eqn. 23). We note in passing that the

Dirichlet condition (ψ = 0 on ∂D) has occasionally been erroneously used in previous

works (following e.g. Book et al. 1975). That (2.10) physically makes sense is clear:

ψ =constant on ∂D is sufficient to satisfy no-normal flow, and the circulation condition

on ψ in (2.10) must hold from Green’s theorem in the plane, because the domain integral

of the mean-field vorticity ∇2ψ is zero for a neutral gas. Consider also that (3.26) is

not invariant under the transformation ψ → ψ+constant, therefore specifying a value

for ψ on the boundary by using the Dirichlet boundary condition, is evidently over-

prescriptive. The inverse temperature βh = βh(e) appearing in (3.26) is determined from

the mean-field energy

e = −1

2

∫
D
ψ∇2ψ dx. (3.27)

It has been proved (Kiessling 1995) that βh(e) is strictly negative. As discussed above,

however, it is clear that both positive and negative temperatures exist in the point vortex

system. At the outset it is thus clear that the mean-field theory is restricted to a limited

range of β.

Asymptotic matching with the fluctuation theory requires that the system (3.26-3.27)

be studied in the limit E → 0. In this limit (3.26) can be linearised to recover the

eigenvalue problem (2.9). In other words, at low energies, distinct solutions of the sinh-

Poisson equation emerge from (e, βh) = (0, β1), (0, β2), .... The mean-field theory can be

used to show (Chavanis & Sommeria 1996; Taylor et al. 2009) that, of these solutions,

the first has maximum entropy and will therefore be selected by the dynamics. In the

E → 0 limit the first solution has streamfunction

ψ(x) = ±
(
−2e

β1

)1/2

Φ1(x). (3.28)

Further, Taylor et al. (2009) have shown that the caloric curve βh(e) associated with this

first solution has expansion

βh(e) = β1 − β2
1

(
1− 1

3

[
Φ4

1

])
e+O(e2). (3.29)

Numerical solutions of (3.26-3.27) have been obtained, using the algorithm of McDon-

ald (1974), in domains A and B for a range of energies starting close to E = 0. These

solutions have been used to obtain numerical estimates of βh(e) for each domain, and

these have been plotted on Fig. 3 (blue curves) for N = 50 and N = 100 vortices (note

that the number of vortices N affects the scaling of the βh(e) curve in Fig. 3 because the

ordinate is ε = Ne and not e). The shape of the βh(e) curves can be seen only in the right

panels, which expand the region near β1. For domain B solutions emerging from both

(0, β1) and (0, β2) (dotted line) are plotted. The corresponding small-e approximation

(3.29) has also been calculated and plotted (dashed blue line).

The results above allow us to consider matching between the ε → ∞ limit of the
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fluctuation theory and the e→ 0 limit of the mean-field theory. First note that it is proved

above, and is clear from Fig. 3, that both limε→∞ β(ε) = β1 and lime→0 βh(e) = β1.

Hence βc = β1 is not only the critical inverse temperature for condensation, but is also

the critical value for matching between the theories. Therefore, as E is increased at finite

N , a smooth transition between the behaviour predicted by each theory can be expected

for β near βc. This transition will be examined numerically in §4.2 below using phase-

space sampling. Second, the solution (3.28) is consistent with the ε → ∞ prediction for

the fluctuation theory, because in the fluctuation theory all of the excess energy ends

up in the condensate. The results (3.23-3.24) go beyond the mean-field theory result

(3.28) by calculating the size of both the leading correction to the mean energy of the

condensate and the variance of the condensate energy about this mean. The vorticity

projection predicted by (3.28) is plotted on Fig. 4 as a blue dashed parabola, and shows

that mean-field theory slightly underestimates the magnitude of the vorticity projections.

4. Numerical Validation

4.1. Direct numerical simulation (DNS)

The ergodic hypothesis motivating the study of the microcanonical ensemble in §3.2 is

that the statistics of the microcanonical ensemble will correspond to the (long) time-

averaged statistics of the equations of motion (2.1). This hypothesis will be tested next

using DNS of (2.1). In particular marginal pdfs pε(ωj) for the scaled vorticity projections

{Ωj} can be compared directly with statistics from the DNS. Here we will focus on pε(ω1),

given by (3.15) and plotted in Fig. 5, as well as the joint pdf pε(ω1, ω2) contoured in Fig. 6.

DNS of equation (2.1) is performed using the adaptive algorithm described in Ashbee

et al. (2013). The majority of the runs to be discussed have been documented previously

in EAM13. Briefly, equation (2.1) is solved for a uniform neutral gas with N = 100,

in domains A and B, at a range of energies (ε = −0.15,−0.1,−0.05, 0, 0.05, 0.1, 0.15)

spanning the central region of the density of states function shown in Fig. 1. For each

energy level and both domains, eight runs of 1000 Γ−1
0 time units are executed, during

which the evolving vorticity projections Ωj(t) are calculated and recorded at regular time

intervals (10 Γ−1
0 ). Long time-averaged pdfs are then compiled from the histograms of

the recorded data.

The red curves in Fig. 5 show the DNS results for pε(|ω1|), which can be compared

with the theoretical prediction (3.15) (blue curves). Notice that pε(|ω1|) is plotted rather

than pε(ω1). Here we are exploiting the fact that pε(ω1) is an even function to aid

comparison with the DNS. This is necessary because in the high energy DNS (e.g. ε =

0.1), particularly in domain A, the system tends to become trapped for the duration of

each run in a state with Ω1 either strictly positive or negative, producing asymmetric

statistics. Good agreement is seen in Fig. 5, with much of the remaining discrepancy
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Domain

C

D

Dynamics
〈ψ(x)〉

Linear Sinh-Poisson
(−2e/β1)

1/2Φ1(x)

Figure 8. Left panels: Time-mean streamfunction (scaled by NΓ0 as in §3.5) 〈ψ(x)〉, calcu-

lated for time interval 1000Γ−1
0 < t < 3000Γ−1

0 , for dynamical runs with N = 100 vortices

in domains C and D. The energies are (C) e = E/N2Γ2
0 = 0.013 (ε = 1.3) and (D) e = 0.011

(ε = 1.1). Right panels: Linearised sinh-Poisson solution (−2e/β1)1/2Φ1(x) for the two domains.

Contour intervals are the same in each panel.

arguably due to the finite integration length over which our statistics were compiled. In

particular, the large contrast in the shape of pε(|ω1|) between the two domains is equally

apparent in the DNS as it is in the theory. Similarly, the DNS results in Fig. 6 (lower

panels) agree well with the theoretical prediction of (3.16) (upper panels). The contrast

between the two domains is again equally apparent in the DNS.

A further testable prediction is that the time-mean streamfunction 〈ψ〉 in the DNS, at

energies in the matching region (low e, high ε), is at leading order given by (3.28). In par-

ticular the spatial structure of the condensate should match that of the first non-constant

eigenfunction Φ1(x). Domains C and D have been selected to provide an exacting numer-

ical test that the correct spatial structure of 〈ψ〉 emerges, because as shown in Fig. 2, the

two geometrically similar domains have very different first eigenfunctions. In C, Φ1(x)

has a tripole structure dominated by a single large vortex in the centre of the domain,

whereas in D Φ1(x) has a left-right dipole structure.

The numerical runs for domains C and D are initialised with N = 100 randomly placed

vortices, and are executed just as described above for A and B, but for a longer duration

(3000 Γ−1
0 time units) and at higher energy (ε = 1.3 for C and ε = 1.1 for D). High

energy is necessary to prevent switches in the polarity of the circulation, as described
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above, occurring during the DNS. During each run, the exact instantaneous streamfunc-

tion at every point on a spatial grid is recorded. Note that, although the instantaneous

streamfunction has logarithmic singularities at the locations of the vortices, provided

that a vortex location is never exactly coincident with a grid-point the time-average at

the grid-point remains well-defined. Moreover, due to the gentle nature of the logarith-

mic singularity, ‘near-misses’ where vortices pass close to grid-points do not dominate

the time-average.

Fig. 8 shows a comparison between the time-mean streamfunction 〈ψ〉 calculated from

the DNS (left panels) and the theoretical predictions (right panels). The DNS results

capture the contrasting structures between the two domains. The N = 100 vortex runs

have been repeated with many sets of randomly generated initial conditions across a

range of similar energies, and the emergence of the distinct structures in 〈ψ〉 in each

domain has been found to be very robust. A detailed numerical investigation of the

‘geometry-controlled transition’ (see also Chavanis & Sommeria 1996; Taylor et al. 2009)

between the two structures, as the domain shape is varied smoothly between C and D is

presented in Ashbee (2014).

4.2. Phase-space sampling using a multi-canonical Markov chain Monte-Carlo (MC3)

method

The results of §3 can also be validated against statistics generated from repeatedly sam-

pling the uniform distribution (see e.g. Campbell & O’Neil 1991; Bühler 2002; Billam

et al. 2014, EAM13). In the naive approach, the N vortices are randomly distributed

in the domain with uniform measure, and quantities of interest such as the energy and

the vorticity projections Ωj are calculated for the distribution in question and recorded.

Repeating the process allows histograms to be generated from the recorded data, which

then serve as estimates of the probability densities p0(·) under the uniform ensemble.

Probability densities under the microcanonical ensemble pε(·) can be generated from

subsets of the data for which the energy lies in a shell centred on the energy ε of interest.

If the point vortex system is ergodic, pdfs obtained by sampling the microcanonical

canonical ensemble and pdfs obtained from long-time integrations of the dynamics (2.1),

should be identical to within statistical error. For our calculations with N = 100 this is

indeed what we have found, i.e. there is no evidence of non-ergodicity, in contrast to the

N = 6 doubly-periodic calculations reported by Weiss & McWilliams (1991).

The main drawback with the naive sampling method described above is that it is very

expensive to generate data outside the central region of the density of states function

illustrated in Fig. 1 (i.e. outside −0.2 . ε . 0.3), simply because the vast majority of

random distributions of vortices will have energy within that range. To bypass the need

to sample all energy levels simultaneously, and as a method of investigating energy levels

outside of the central region, methods of sampling constant energy surfaces have been
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developed (Creutz 1983). Creutz’s method has been used with apparent success in the

point vortex context by Smith (1989) but has the disadvantages that (i) no proof exists

that the microcanonical ensemble is accurately represented, and (ii) it does not allow

direct calculation of the inverse temperature β for comparison with theory.

An alternative method is multi-canonical Markov chain Monte-Carlo sampling (Berg

2000; Driscoll & Maki 2007, MC3 hereafter). In its simplest form MC3 can be regarded

as a method for sampling the tail regions of one-dimensional pdfs, and in our set-up

the pdf in question is the density of states function WΓ(E). Our implementation of the

MC3 algorithm closely follows the structure of the MATLAB code published by Driscoll

& Maki (2007, see discussion surrounding their Fig. 4) used therein to estimate the

(known) binomial pdf of a one-dimensional random walk. For our problem, a Markov

chain is initialised with a random distribution of vortices, and is updated at each step by

moving a single vortex chosen at random, to a new random position in D. The algorithm

proceeds, for states in the positive tail region of WΓ(E), by accepting an update if the new

distribution of vortices has greater energy E, and rejecting it with a certain probability

if the updated E is lower. The MC3 algorithm then uses the accumulated statistics of

how E changes under updates to adjust the rejection probabilities. The result is that,

after a sufficient number of iterations, WΓ(E) is sampled with optimal efficiency far into

the tail regions with an unbiased method.

MC3 has been used to sample WΓ(E) in domains A and B, where the circulations Γ

are those of a uniform neutral gas with N = 100. A Markov chain length of 1.5 × 107

was used for each iteration, of which the first third is a ‘burn-in’ which is not used when

compiling the statistics. Note that the fact that only one vortex is moved each time the

chain is advanced, can be used to accelerate the calculation of the energy and vorticity

projections, allowing for efficient calculation of long chains. Twenty iterations were found

to be necessary for the statistics to converge on the energy interval −0.2 . ε . 2.5. The

failure of MC3 to significantly extend the statistics in the negative energy tail is due to

the double exponential decay of WΓ(E) as E → −∞ (see Fig. 1).

Numerical differentiation was then used to obtain the corresponding inverse tempera-

tures βΓ(E) = W ′Γ(E)/WΓ(E) which are plotted in Fig. 3 (red curves, NΓ2
0βΓ plotted

as a function of ε = E/NΓ2
0). The calculated inverse temperatures can be compared with

the theoretical predictions β(ε) (fluctuation theory, green curves) and βh(e) (mean-field

theory, blue curves). The left panels cover the central region (−0.2 < ε < 0.3), which

could equally well have been sampled using the naive method, and show excellent agree-

ment between the MC3 sampled βΓ(E) and the fluctuation theory β(ε). The right panels,

by contrast, focus on the positive tail region (0 . ε < 2) and show inverse temperatures

close to the critical value β = β1 (dashed line). On this scale, the MC3 results show

a remarkable transition between close agreement with the fluctuation theory at lower



Statistics of point vortex turbulence 29

−2 0 2

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

MC3

N=100

A

Mode 1 projection (ω
1
)

E
n
e
rg

y
(ε

)

A

−2 0 2

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

MC3

N=50

A

−2 0 2

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

MC3

N=20

A

E
n
e
rg

y
(ε

)

−2 0 2

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Theory

N large

A

Mode 1 projection (ω
1
)

Figure 9. Top row: The microcanonical pdf pε(ω1) of the vorticity projection Ω1 at energy ε,

calculated for domain A with a uniform neutral gas, contoured as a function of (ω1, ε). Top left:

MC3 calculation with N = 20 vortices. Top right: MC3 with N = 50. Bottom left: MC3 with

N = 100. Bottom right: Theoretical prediction (eqn. 3.15).

energies, and close agreement with mean-field theory prediction βh(e) at higher energies.

Accurate statistical validation of βh(e), which has not (to the authors’ knowledge) been

attempted previously, has therefore been made possible by MC3. The naive method is

computationally too expensive by several orders of magnitude. To check the robustness of

the result the MC3 calculation was repeated for domain A with N = 50 vortices. Recall

that, because Fig. 3 is plotted as a function of the thermodynamic energy ε = E/NΓ2
0

rather than the hydrodynamic energy e = ε/N , the mean-field theory prediction βh(e)

must be replotted on Fig. 3 when N is changed. Nevertheless, the MC3 calculation (dark

red curve) reveals that a clear transition between agreement with β(ε) to agreement with

βh(e) again takes place, i.e. both theories are correct within their range of validity.

Statistics compiled using MC3 can also be used as a check on the pdfs of the vorticity

projections. In the lower panels of Fig. 4 pε(ω1), as calculated from histograms compiled

from the MC3 data with N = 100 vortices, is contoured. Excellent agreement with the

theoretical predictions of (3.15) is evident in all three domains (A,C,D). It is clear from



30 J. G. Esler and T. L. Ashbee

Fig. 4 that N = 100 vortices are sufficient for the theory to be accurate, hence an obvious

question relates to how the theory performs as N is decreased. Fig. 9 compares pε(ω1)

estimated from MC3 calculations in domain A with N = 20, 50 and 100 vortices with

the theoretical prediction. Even with as few as N = 20 vortices, the phase transition

between the uncondensed and condensed state is seen to occur at an almost identical

energy ε. At higher energies there is a quantitative difference with the expected values

of |Ω1| somewhat lower for N = 20 compared with the theory. An explanation for the

difference is that ε = 0.7 in Fig. 9 corresponds to a significantly higher value of the

hydrodynamic energy E at low N (E = 0.035 for N = 20 compared to E = 0.007 for

N = 100). The former value of E is sufficiently high for the sinh-Poisson equation (3.26)

to predict significant nonlinearity in the 〈ω〉- 〈ψ〉 relationship, and an associated change

in the spatial structure of 〈ψ〉, causing it to differ significantly from that of Φ1(x).

5. Discussion and Conclusions

A new methodology has been introduced above that, using the central limit theorem,

allows pdfs from the microcanonical ensemble to be calculated and compared to time-

averages from DNS. Good agreement has been found. The pdfs in question are primarily

those of the projections of the vorticity field onto a particular orthonormal basis, which

has been argued to give a natural description of the modes of variability of the system

(see also Chavanis & Sommeria 1996). It is perhaps not surprising that the microcanon-

ical ensemble, which is defined by conservation of energy, provides information most

succinctly about the distribution of energy between modes that are orthogonal under the

energy norm. In particular an exact expression (3.18) has been found which allows the

complete energy spectrum to be calculated.

A natural topic for future investigation is to test the relevance of this predicted energy

spectrum to simulations of two-dimensional Navier-Stokes and superfluid turbulence,

particularly in the case where the area fraction covered by the vortices is very small,

when the theory might be expected to be most relevant. In the case of superfluids,

significant steps in this direction have been made by Billam et al. (2014), who have

compared incompressible energy spectra computed from DNS of the Gross-Pitaevskii

equations with energy spectra from point vortex integrations. Excellent agreement was

found at low wavenumbers at a range of point vortex energies, showing that key aspects

of the physics are well-captured by the point vortex model. The current work allows the

energy spectrum in flows of this type to be calculated analytically, including in domains

with geometry matching those of the experiments, and therefore promises detailed and

flexible theoretical predictions of value to experimentalists.

A key question concerns the extent to which the point vortex approach remains relevant

when non-equilibrium processes, such as vortex merger and filament formation in classi-
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cal turbulence or vortex annilihation in quantum turbulence, are active. Non-equilibrium

processes act to change the vortex population, in classical turbulence by evolving both

the distribution of vortex sizes and their number (empirical models of this process have

been developed by Benzi et al. 1992; Dritschel et al. 2008), and in quantum turbulence by

reducing the number of vortices. Our (testable) hypothesis is that a point vortex descrip-

tion will be successful whenever τe � τne, where τe is the characteristic time-scale for

the point vortex system to relax to equilibrium (i.e. forget initial conditions), and τne is

the time-scale over which non-equilibrium processes act to change the vortex population.

If τe � τne the equilibrium statistics of the point vortex model will remain relevant to

those of the evolving turbulent flow, because the turbulent flow in this case adjusts suf-

ficiently rapidly that no memory of its changing vortex population is retained. The good

correspondence between the point vortex model and the Gross-Pitaevskii calculations of

Billam et al. (2014) suggests that, at least in some circumstances, τe � τne in typical

numerical simulations of 2D quantum turbulence. Similarly, a preliminary study of DNS

of decaying 2D classical turbulence by the first author and collaborators suggests that,

at least at late times in typical simulations, point vortex predictions correspond closely

to the observed energy spectrum.

An important point concerning the use of the point vortex model to interpret DNS

of classical or quantum turbulence is that, because the vortex population evolves in the

turbulent flow, the mapping from the point vortex model to the turbulent flow also

evolves in time. In particular the point vortex energy ε corresponding to the turbulent

flow will change as the vortex population evolves, even as the fluid energy EF of the

turbulent flow is approximately conserved. Under the empirical model of vortex popula-

tion evolution in classical turbulence suggested by Dritschel et al. (2008), ε can be shown

to increase with time, consistent with the 2D turbulent flow evolving towards a regime

favouring like-signed vortex clustering and eventual Onsager-Kraichnan condensation. In

this picture, which will be explored in more detail in future work, the combination of

the point vortex model and any suitable model of vortex population evolution provides a

route to a quantitative statistical understanding of upscale energy transfer in 2D classical

turbulence.

The main focus of much of this work has been a detailed investigation of Onsager-

Kraichnan condensation in the point vortex model, addressing the question of under what

circumstances a steady time-mean flow spontaneously emerges in a given set-up. It is

clear from both the theoretical results and those from statistical sampling of phase-space

that condensation is a spontaneous symmetry-breaking in the system. The pitchfork-like

bifurcations shown in Fig. 4 resemble those seen in second-order phase transitions in

(for example) the Ising model of ferromagnetism, with the first vorticity projection Ω1

taking the role of a global order parameter. However, there are obstacles to developing
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this analogy because the point vortex system is a long-range interacting Hamiltonian

system, and is resistant to many of the standard methods of statistical mechanics (e.g.

Campa et al. 2009). An interesting new result is that, at the onset of condensation, the

energy spectrum becomes saturated, with any additional energy going exclusively into

the condensate mode. The saturated spectrum can be found explicitly (see eqn. 3.22).

Many of the remaining results relate to how condensation is influenced by the domain

shape. The geometry of the domain determines the eigenvalues {βj}, and in turn these

control, for example, the amplitude of fluctuations of the energy in the condensate mode,

and the scaling of the transition probability pε(ω1 = 0), which controls the frequency of

switches in the polarity of the condensate mean flow. The behaviour is most sensitive

to the size of the spectral gap β1 − β2. It is important to emphasise that, because the

point vortex system is a long-range interacting one, there is no limit in which the shape

of the domain does not influence the statistics of the flow. This point is particularly

relevant to the study of two-dimensional turbulence in doubly-periodic domains. Rather

than somehow representing the flow on an infinite domain, as might be supposed, the

specific nature of the doubly-periodic geometry influence the statistics just as profoundly

as that of the bounded domains studied here.
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Appendix A. Some mathematical details pertaining to section 3

A.1. The Hamiltonian (3.11) in the limit N →∞

Here we aim to justify carefully the approximation of (3.11) by (3.12) in the limit N →∞.

We will establish the result by first considering an application of the multivariate CLT to

a 3M -component random vector Zkik to obtain the distribution of its sample mean Sk in

the limit N →∞. Here M denotes the number of eigenfunctions at which expansions such

as (3.2) are truncated. The random vectors {Zkik}, are associated with the contributions
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of those vortices, with indices ik, that have circulation Γ̄k. They are given by

Zkik =



Φ1(Xik)
...

ΦM (Xik)

N−1/2Γ̄kΓ−1
0

(
Φ1(Xik)2 − 1

)
...

N−1/2Γ̄kΓ−1
0

(
ΦM (Xik)2 − 1

)
N−1/2Γ̄kΓ−1

0 Φ1(Xik)
...

N−1/2Γ̄kΓ−1
0 ΦM (Xik)



and Sk =
1

(αkN)1/2

αkN∑
ik=1

Zkik =



Ωk1
...

ΩkM

T k1
...

T kM

Sk1
...

SkM



.

(A 1)

The {Zkik} have been designed in order that their normalised sums Sk have components

{Ωkj , T kj , Skj }, where Ωkj has been previously defined in (3.3), whereas T kj and Skj are

defined by the sums in (A 1). These random variables have zero mean, and by design

satisfy
K∑
k=1

α
1/2
k

Γ̄k
Γ0

Ωkj = Ωj ,

K∑
k=1

α
1/2
k

Γ̄k
Γ0

T kj = Tj ,

K∑
k=1

α
1/2
k

Γ̄k
Γ0

Skj = Sj , (A 2)

where the random variables {Ωj , Tj , Sj} are those appearing in connection with (3.11)

(recall that Tj = Rjj − 1).

The multivariate CLT must be used because the components of Zkik are not indepen-

dent. The multivariate CLT states that, provided that all components of the covariance

matrix exist, in the limit N →∞ the random vector Sk will be distributed as

Sk ∼ N (0,Σ) , (A 3)

where Σ = E(ZkikZ
k
ik

T
) is the covariance matrix associated with Zkik . It is straightforward

to calculate the entries in the covariance matrix Σ (note that, because covariance matrices

are symmetric, only entries with p 6 q need be given explicitly)

(Σ)pq =



δp′q′ 1 6 p, q 6M

N−1/2Γ̄kΓ−1
0 [Φp′Φ

2
q′ ] 1 6 p 6M, M + 1 6 q 6 2M

N−1/2Γ̄kΓ−1
0 δp′q′ 1 6 p 6M, 2M + 1 6 q 6 3M

N−1Γ̄2
kΓ−2

0 ([Φ2
p′Φ

2
q′ ]− 1) M + 1 6 p, q 6 2M

N−1Γ̄2
kΓ−2

0 [Φ2
p′Φq′ ] M + 1 6 p 6 2M, 2M + 1 6 q 6 3M

N−1Γ̄2
kΓ−2

0 δp′q′ 2M + 1 6 p, q 6 3M

(A 4)

Here square brackets [·] denote the area average over D, δpq is the Kronecker delta, and

primes on the indices denote that the modulus with respect to M is intended (i.e. p′ = p

mod M). The important point to take from (A 4) is simply that all covariances are finite,

justifying the use of the CLT. Further, in the limit N →∞ the matrix is dominated by



34 J. G. Esler and T. L. Ashbee

the diagonal entries with 1 6 p = q 6 M , hence in the limit N → ∞ we can neglect

all components in Sk except the {Ωkj } which are iid with Ωkj ∼ N (0, 1). Summing the

Gaussian distributed random variables in (A 2), and then taking the limit M →∞, the

result that the vorticity projections are iid with Ωj ∼ N (0, 1) is recovered, along with the

fact that at leading order in N the variables {Tj} and {Sj} can be neglected, as required

for (3.12).

A.2. Derivation of the energy spectrum

Here, the details are given for the result (3.18), which expresses the microcanonical

average of 〈Ω2
j 〉 in terms of the density of states function W (ε) and its derivatives. First

note that

〈Ω2
j 〉 =

∫ ∞
−∞

ω2
j pε(ωj) dωj , (A 5)

where pε(ωj) is the microcanonical pdf of Ωj given by (3.15). Next, note that∫ ∞
−∞

ω2
j pε(ωj) dωj =

1

Fβ(ε− ε0)

∫ ∞
−∞

Fβ(j)

(
ε− ε0 +

ω2
j − 1

2βj

)
ω2
j√
2π

exp

(
−
ω2
j

2

)
dωj

=
1

W (ε)

∫ ∞
−∞

Aβ(j)(k)

(2π)3/2
exp

(
i(ε− ε0)k + iφβ(j)(k)− ik

2βj

) (∫ ∞
−∞

ω2
j exp

(
ikω2

j

2βj
−
ω2
j

2

)
dωj

)
dk

=
1

W (ε)

∫ ∞
−∞

Aβ(j)(k)

(2π)

(β2
j + ikβj) exp

(
i(ε− ε0)k + iφβ(j)(k)− ik/(2βj) + 1

2 i tan−1(k/βj)
)

(1 + k2/β2
j )1/4(k2 + β2

j )
dk

=
1

W (ε)

∫ ∞
−∞

Aβ(k)(β2
j + ikβj)

2π(k2 + β2
j )

exp
(
i(ε− ε0)k + iφβ(k)

)
dk. (A 6)

A result equivalent to (A 6) was obtained by EAM13 (see their eqn. 45, and note that

ajj + 1 = 〈Ω2
j 〉).

To obtain (3.18) it remains to calculate

∂W

∂βj
(ε) =

1

2π

∫ ∞
−∞

(
∂Aβ

∂βj
+ iAβ

∂φβ

∂βj

)
exp

(
i(ε− ε0)k + iφβ(k)

)
dk

=
1

2π

∫ ∞
−∞

k2(βj + ik)

2β2
j (k2 + β2

j )
Aβ(k) exp

(
i(ε− ε0)k + iφβ(k)

)
dk

=
1

2π

∫ ∞
−∞

(βj + ik)

2

(
1

β2
j

− 1

(k2 + β2
j )

)
Aβ(k) exp

(
i(ε− ε0)k + iφβ(k)

)
dk

=
1

2βj

(
W (ε) +W ′(ε)/βj − 〈Ω2

j 〉W (ε)
)
,

from which (3.18) follows.

A.3. High energy asymptotics of (3.13)

Here the high energy (ε → ∞) asymptotics of the density of states function W (ε) is

considered. We have not managed to find a direct method to approximate (3.13) as



Statistics of point vortex turbulence 35

k Bk Ajk (j > 2) A1k

k = 0 β1
βj

βj − β1
1− s1

k = 1 −1

2
− βj

2(βj − β1)2
, − s2

2β1

k = 2
1

4β1
(s1 − 1)

1

4

(
3βj

(βj − β1)3
+

(s1 − 1)βj
β1(βj − β1)2

)
− 1

4β2
1

(3s3 + s2(s1 − 1))

k = 3 − 1

8β2
1

(
(s1 − 1)2 + 3s2

)
etc. etc.

Table 1. Coefficients in the expansion (A 9) of (A 7-A 8). Here the constants {s1, s2, s3} refer

to summations s1 =
∑∞

j=2 β
2
1/βj(βj − β1), s2 =

∑∞
j=2 β

2
1/(βj − β1)2, s3 =

∑∞
j=2 β

3
1/(βj − β1)3.

ε→∞. The following indirect method is used instead. Consider the equations

ε− ε0 = −1

2

∞∑
j=1

〈Ω2
j 〉 − 1

βj
, (A 7)

(∂ε + β(ε)) 〈Ω2
j 〉 = βj

(
〈Ω2

j 〉 − 1
)

(j > 1). (A 8)

Here (A 7) is the microcanonical ensemble average of (3.12), and (A 8) follows from

differentiating of (A 6) with respect to ε. Eqns. (A 7 -A 8) can also be obtained by the

cumulant expansion method (c.f. equations 37 and 39 of EAM13).

To study (A 7-A 8) asymptotically in the limit ε → ∞, it is necessary to take as a

starting point the fact that all of the energy at leading order is contained in the j = 1

mode, i.e. that associated with condensation. A solution based on the following expansion

in the small parameter (ε− ε0)−1, can then be sought

〈Ω2
1〉 = −2β1(ε− ε0) +

∞∑
k=0

A1k(ε− ε0)−k,

〈Ω2
j 〉 =

∞∑
k=0

Ajk(ε− ε0)−k, (j > 2) (A 9)

β(ε) =

∞∑
k=0

Bk(ε− ε0)−k.

The values obtained when the expansion (A 9) is inserted into (A 7-A 8), and powers in

(ε − ε0)−1 are equated are shown in Table 1. The expansion for β(ε) can be integrated

to give

W (ε) ≈ W0

(ε− ε0)1/2
exp

(
β1(ε− ε0)−

∞∑
k=1

Bk+1

k(ε− ε0)k

)
.

for W0 constant. The {βj}-dependency of the constant W0 can be obtained by demanding
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consistency with (3.18), giving after some working,

W0 = W00(−β1)1/2 exp

−1

2

∞∑
j=2

log

(
1− β1

βj

)
+
β1

βj

.
where W00 is a constant independent of the {βj}. Finally, consistency with the single

variable pdf (2.16) in the limit βj →∞ (j > 2) requires W00 = π−1/2, resulting in (3.20).

A notable feature in Table 1 is that the calculated coefficients {Bk} in the expansion

of β(ε) are negative, provided that s1 > 1, which appears to be the case in all domains.

Under this assumption on s1, it turns out to be possible to prove inductively that Bk < 0

for all k. The proof by induction starts with the following set of three assumptions: that

for some positive k, for all 0 6 i 6 k − 1 firstly A1i < 0, secondly Aji > 0 for all j > 2,

and thirdly Bi+1 < 0. Inspection of table 1 reveals that these assumptions hold true for

k = 1 and k = 2. Inserting the expansion (A 9) into equation (A 8) with j = 1, and then

equating terms of order (ε− ε0)−k results in

Bk+1 =
1

2β1

(
−(s1 − 1)Bk +

k−2∑
i=1

A1iBk−i − (k − 1
2 )A1,k−1

)
< 0, (k > 2)

because, under our assumptions above, every term inside the brackets is positive. Con-

sidering next (A 8) with j > 2, and again equating terms of order (ε− ε0)−k we have

Ajk =
1

β1 − βj

(
(k − 1

2 )Aj,k−1 −
k∑
i=2

BiAj,k−i

)
> 0, (k > 1)

again using the three assumptions. Finally, it follows from the expansion of (A 7) that

A1k = −β1

∞∑
j=2

Ajk
βj

< 0.

In summary, we have proved that if our three assumptions hold for some k, then they

will also hold for k + 1. Given that they hold for k = 2, inductively they must hold for

all k, i.e. Bk < 0 for all k, establishing the result.
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