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Cause and Prevention of Demyelination
in a Model Multiple Sclerosis Lesion
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Objective: Demyelination is a cardinal feature of multiple sclerosis, but it remains unclear why new lesions form, and
whether they can be prevented. Neuropathological evidence suggests that demyelination can occur in the relative
absence of lymphocytes, and with distinctive characteristics suggestive of a tissue energy deficit. The objective was
to examine an experimental model of the early multiple sclerosis lesion and identify pathogenic mechanisms and
opportunities for therapy.
Methods: Demyelinating lesions were induced in the rat spinal dorsal column by microinjection of lipopolysaccharide,
and examined immunohistochemically at different stages of development. The efficacy of treatment with inspired
oxygen for 2 days following lesion induction was evaluated.
Results: Demyelinating lesions were not centered on the injection site, but rather formed 1 week later at the white–
gray matter border, preferentially including the ventral dorsal column watershed. Lesion formation was preceded by
a transient early period of hypoxia and increased production of superoxide and nitric oxide. Oligodendrocyte num-
bers decreased at the site shortly afterward, prior to demyelination. Lesions formed at a site of inherent susceptibility
to hypoxia, as revealed by exposure of naive animals to a hypoxic environment. Notably, raising the inspired oxygen
(80%, normobaric) during the hypoxic period significantly reduced or prevented the demyelination.
Interpretation: Demyelination characteristic of at least some early multiple sclerosis lesions can arise at a vascular
watershed following activation of innate immune mechanisms that provoke hypoxia, and superoxide and nitric oxide
formation, all of which can compromise cellular energy sufficiency. Demyelination can be reduced or eliminated by
increasing inspired oxygen to alleviate the transient hypoxia.
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The events responsible for the formation of new

inflammatory demyelinating lesions in multiple scle-

rosis (MS) remain unknown.1 Many investigators favor an

autoimmune mechanism, but rather than developing like the

autoimmune lesions of experimental autoimmune encephalo-

myelitis, the most commonly used model of MS, newly form-

ing lesions in MS show a relative paucity of T cells,1–3 which

are reported to arrive later in lesion development.2,3 Early

lesions have been described by different investigators as pre-

phagocytic,1 primary,3 or pattern III,4 and the associated

demyelination has distinctive characteristics (see below).

Pathological studies have implicated reactive oxygen

and nitrogen species5 in lesion formation, and have

suggested that such agents may impair mitochondrial

metabolism, resulting in a tissue energy deficiency,6 a

mechanism later termed “virtual hypoxia.”7 The distinc-

tive early demyelination, characterized partly by preferen-

tial loss of myelin-associated glycoprotein,4 has been

described as “hypoxia-like” due to factors such as the

expression of hypoxia-related antigens,8,9 including the

prominent nuclear expression of hypoxia-inducible fac-

tor-1a (HIF-1a).10 Oligodendrocytes are notably vulnera-

ble to an energy deficit, as they not only maintain

numerous internodes of myelin, which is a substantial

metabolic load in itself, but also provide metabolic sup-

port for axons.11 Systemic exposure to carbon monoxide
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impairs oxygen delivery and mitochondrial function

throughout the body, but it selectively causes cerebral

demyelination.12 Oligodendrocytes may also suffer, even

at the earliest stages of lesion formation, from at least

some of the mitochondrial impairments that have been

described in established MS lesions.13

Lesions have a predilection to form in the periven-

tricular and juxtacortical regions,14 the spinal white mat-

ter tracts,15 and the optic nerves.16 In a large study of

1,594 plaques, Brownell and Hughes17 noted that peri-

ventricular lesions “have the peculiarity that they are situ-

ated on the boundary zones between major cerebral

arteries which have penetrated in this periventricular

region to their further point of supply,” namely the

watershed areas between the anterior, middle, and poste-

rior cerebral arteries, and this observation has recently

been confirmed.18 Presciently, from the standpoint of the

current observations, Brownell and Hughes commented,

“It may be of aetiological significance that the sites where

plaques were commonly formed are areas where relative

vascular insufficiency can be postulated.”17 Furthermore,

vascular injection studies19 have highlighted that sites of

lesion formation tend to contain few vessels, with those

present derived from 2 independent major arteries that

have reached their furthest point. Such watershed regions

have prolonged arterial transit times,20 and this may

render them vulnerable to impaired perfusion. In agree-

ment, a recent magnetic resonance imaging (MRI) exam-

ination of 1,249 cases of MS21 observed that lesions

tended to accumulate in regions with relatively lower per-

fusion than normal-appearing white matter, and further-

more the MS brain may exhibit poor perfusion.22–24

Attention has also been drawn to the common occur-

rence of lesions at the junction between the gray matter

of the cortex and the underlying white matter.17

In addition to a relationship with watershed

regions, it has long been apparent that new lesions tend

to form around veins,25 which has encouraged the suspi-

cion that deleterious factors emanate from veins to dis-

turb the surrounding tissue (see Prineas and Parratt1, but

the particular factors have remained elusive.

Here, we employ an in vivo model of the early MS

lesion26–28 to explore the mechanisms involved in the

demyelination, and whether it can be prevented.

Materials and Methods

Lipopolysaccharide Lesion Induction
In brief, a quarter laminectomy was performed aseptically

between the T12 and T13 vertebrae in adult male Sprague Daw-

ley rats (312g 6 31.9, mean 6 standard deviation), under deep

isoflurane anesthesia (2% in oxygen), as described previously.26 A

glass micropipette was used to microinject lipopolysaccharide

(LPS; 0.5 ll of 100ng/ml in saline; Salmonella enterica abortus

equi; Sigma-Aldrich, St Louis, MO) into the right dorsal column

at depths of 0.7 and 0.4mm (n 5 3 rats per time point); control

animals received injections of saline alone (n 5 2 per time point).

The injection site was marked with charcoal on the dura for sub-

sequent histological localization.

Exposure of Naive Animals to Hypoxia
Female Dark Agouti rats (163.7g 6 7.8), were exposed to nor-

mobaric hypoxia by substituting oxygen with nitrogen using a

ProOx 110 controller (Biospherix, Salem, NY) in a purpose-

designed chamber (Biospherix). The hypoxia was gradually

introduced by decreasing the oxygen from 21 to 10% over 20

minutes, prior to continuous exposure to 10% oxygen for 6

hours (n 5 3) or 24 hours (n 5 6). Animals housed in the same

chamber, in room air (21% oxygen; n 5 6), served as controls.

In Vivo Detection of Hypoxia and Superoxide
Production
The intravenous probe pimonidazole (HPI, Burlington, MA)

was employed to detect tissue hypoxia in both studies, as previ-

ously described.29 The intravenous probe dihydroethidium

(DHE; Sigma-Aldrich) was used to indicate superoxide produc-

tion in the LPS dorsal column study. DHE is thought to react

with superoxide to produce 2-hydroxyethidium, which interca-

lates with DNA, resulting in a red fluorescence. Pimonidazole

(180mg/kg [naive hypoxia study] or 60mg/kg [LPS dorsal col-

umn study]) and DHE (1 lg/ml in dimethylsulfoxide) were

administered into different saphenous veins under brief anesthe-

sia (2% isoflurane) with recovery, 4 hours prior to perfusion, as

previously described.29

Normobaric Oxygen Therapy
To examine the consequence of increasing the concentration of

inspired oxygen on LPS-induced demyelination, animals were

randomized into treatment groups exposed to either room air

(n 5 8) or normobaric hyperoxia (80% oxygen, n 5 11) for 2

days following the injection of LPS into the dorsal columns.

Animals were housed in a purpose-built chamber (BioSpherix)

for the duration of the treatment, and temperature, oxygen con-

centration, and carbon dioxide concentration were monitored

and controlled throughout. Following treatment, animals were

returned to their home cages and maintained at room air until

perfusion, 12 days later.

All the protocols involving animals were approved by the

institutional ethics committee, licensed under the UK Animals

(Scientific Procedures) Act of 1986, and conducted according

to the ARRIVE guidelines. Animals were provided with food

and water ad libitum throughout.

Perfusion and Tissue Collection
All animals were transcardially perfused with rinse solution

(0.9% NaCl, 2,000U/l heparin, 0.025% lidocaine, 0.02% 4-[2-

hydroxyethyl]-1-piperazineethanesulfonic acid [pH 7.4]) fol-

lowed by paraformaldehyde (4% in 0.15M phosphate buffer)

under deep anesthesia (3% isoflurane) after 6 or 24 hours of
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exposure to 10% oxygen (naive hypoxia study), and at 12 hours

or 1, 2, 3, 7, or 14 days after LPS injection (LPS lesion study).

To visualize the spinal cord vasculature, animals exposed to 6

hours of 10% oxygen were additionally perfused with the fluo-

rescent carbocyanine lipophilic dye, DiI (Molecular Probes,

Eugene, OR) after perfusion with rinse solution but prior to

perfusion–fixation.

MRI Protocol
Fixed spinal cords were washed in phosphate-buffered saline (PBS)

prior to arrangement in a custom-built sample holder and

immersed in Fomblin perfluoropolyether (LC 08; Solvay Solexis,

Milan, Italy) to avoid susceptibility artifacts. The holder was

positioned in a horizontal bore 9.4T preclinical MRI scanner (Agi-

lent, Santa Clara, CA) equipped with a 33mm-diameter radiofre-

quency birdcage volume coil (Rapid Biomedical, Rimpar,

Germany). Images with a spatial resolution of 50 3 50 3 300mm

were acquired using a volumetric gradient echo sequence with the

following parameters: echo time 5 20 milliseconds, repetition time-

5 100 milliseconds, flip angle 5 35 8, field of view 5 28 3

14 3 38.4mm, matrix size 5 560 3 280 3 128, number of

averages 5 12, and a total acquisition time 5 12.5 hours.

Tissue Processing and Histology
All tissue was postfixed overnight in either 4% paraformalde-

hyde for cryosections, followed by cryoprotection in 30%

FIGURE 1: Time course of lesion formation following intraspinal lipopolysaccharide (LPS) injection. Light micrographs of trans-
verse, semithin resin sections of spinal cords show the base of the dorsal columns at the level of the injection of saline or LPS.
Tissue integrity is maintained following the injection of saline, with no apparent pathology. In the acute LPS lesion (12 hours to
2 days postinjection), the tissue appears grossly unaffected, although some inflammatory cells are apparent. At 3 days postin-
jection, the tissue is edematous, with some debris-containing macrophages present in the dorsal columns of LPS-injected ani-
mals. At 7 days postinjection, the lesion remains edematous, with the appearance of some demyelinated axons. By 14 days,
the lesion contains many demyelinated axons, several debris-filled macrophages, and a few axons undergoing degeneration.
Scale bars 5 200mm (first and second columns) and 100mm (last column). All micrographs are representative.
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sucrose in PBS, or 4% glutaraldehyde in 0.15M phosphate

buffer for resin sections, and subsequently processed for exami-

nation in frozen or semithin resin sections using standard tech-

niques and the range of antibodies described in the

Supplementary Table, as previously described.26,29

Microscopy and Quantification

LIGHT MICROSCOPY. Tissue labeled using the peroxidase

detection system was viewed using an Axiophot light

microscope (Carl Zeiss, Oberkochen, Germany) and

photographed with a Nikon D300 camera (Nikon Instruments,

Melville, NY).

CONFOCAL LASER MICROSCOPY. Fluorescent images were

obtained using a Zeiss LSM5 Pascal confocal microscope, with

32.5 and 340 objectives.

QUANTIFICATION. All analysis and quantification was per-

formed blind using ImageJ (NIH, Bethesda, MD). Cells posi-

tively labeled with adenomatous polyposis coli (APC), HIF-1a,

and inducible nitric oxide synthase (iNOS) were counted in the

spinal dorsal column at the site of injection and expressed as

FIGURE 2: Immunohistochemical examination and quantification of labeling for bound pimonidazole adducts, adenomatous
polyposis coli (APC), and hypoxia-inducible factor-1a (HIF-1a), following the injection of saline or lipopolysaccharide (LPS) into
the dorsal columns. (A) Representative images showing the base of the dorsal columns and adjacent gray matter at the level
of injection after 12 hours, and 1, 2, 7, and 14 days. Labeling for pimonidazole is increased bilaterally in both the gray and
white matter of animals injected with LPS, compared with saline-injected controls, particularly at 1 day following injection, with
insets showing the spinal cord at lower magnification. The gray matter labels for bound pimonidazole following LPS injection,
and individual cells are labeled throughout the white matter, but particularly within the dorsal and dorsolateral columns. The
labeling in LPS-injected animals is particularly intense in the gray matter immediately adjacent to the dorsal columns. (Bi)
Graphical representation of APC-positive oligodendrocyte density in the entire dorsal columns at different time points after
injection (saline n 5 2, LPS n 5 3, per time point). Oligodendrocyte loss was apparent 3 days after LPS injection. (B) Graphical
representation of the density of HIF-1a–positive cells in the entire dorsal column at different time points after injection (saline
n 5 2, LPS n 5 3, per time point; Bii). Graphical representation is shown of the intensity of pimonidazole labeling of the gray
matter (Biii) and dorsal column (Biv) at different time points after injection (saline n 5 2, LPS n 5 3, per time point; mean 6 stan-
dard error of the mean [SEM]). Statistical significance was determined by independent t test, comparing saline-injected and
LPS-injected animals at each time point (*p < 0.05, **p < 0.01, ***p < 0.001). (C) Double label immunofluorescence with antibod-
ies against pimonidazole (PIMO; red), and glial fibrillary acidic protein (GFAP; astrocytes) or carbonic anhydrase 2 (CA2; oligo-
dendrocytes; green), showing that a subset of astrocytes and oligodendrocytes in the dorsal column white matter label
positively for pimonidazole at 1 day following LPS injection. Scale bars 5 200mm (A), 500mm (A insets), 20 mm (C).

ANNALS of Neurology

594 Volume 79, No. 4



cell density. Pimonidazole labeling was quantified as described

previously.29 Lesion size in magnetic resonance images was

determined using a threshold intermediate to nonlesion gray

and white matter contrast and manually delineated for each

scan frame. Regions of myelin loss in Luxol fast blue (LFB)-

stained sections were manually circumscribed and expressed as a

percentage of dorsal column area.

Statistical Analysis
All data were tested for normality using either the Kolmogorov–

Smirnov or the Shapiro–Wilk test, and for homogeneity of var-

iances using the Levene test. Linear regression analysis was used

to compare differences between groups for the different immu-

nohistochemical markers, and when significant, further compared

using independent t tests between groups at each individual time

point. Independent t tests were also used to compare lesion

length, maximum cross-sectional area, and volume between oxy-

gen and room air treatment groups. A Pearson correlation coeffi-

cient was used to assess reliability of MRI measures of lesion size

in comparison with LFB staining. Probability values of <0.05

were considered statistically significant. All statistical analyses

employed SPSS (IBM, Armonk, NY).

Three-Dimensional Reconstruction
To study the relationship between the distribution of pimonida-

zole labeling and the vasculature, 3-dimensional (3D) recon-

struction was performed on serial sections that were double-

labeled with antipimonidazole and anti–RECA-1 antibodies using

the Reconstruct editor (Boston University, Boston, MA).

Results

Demyelination
The unilateral injection of LPS into the dorsal column

white matter of the rat spinal cord induced a focal pri-

mary demyelinating lesion, as described previously (Fig

1).26,27 At early time points after injection (12 hours, 1

day, and 2 days), the tissue appeared grossly normal

when examined in resin sections, although closer inspec-

tion revealed evidence of inflammation within the dorsal

white matter. By the third day after injection there was

obvious edema present, particularly at the base of the

dorsal columns, but the myelin appeared intact. The

edema persisted 7 days after injection, with clear evidence

at this time of primary demyelination, which consistently

involved the tissue on either side of the white matter–

gray matter boundary ipsilateral to the injection, some-

times extending to involve the most ventral dorsal col-

umns, bilaterally. Debris-filled macrophages were

observed within the lesion. By 14 days postinjection,

lesions were comprised of many demyelinated axons and

debris-filled macrophages, but no evidence of edema was

observed. The lesion in this study closely resembled that

described in more detail previously.26–28,30

Oligodendrocyte number was assessed using an anti-

body directed against the marker tumor suppressor APC.

The number of oligodendrocytes in the dorsal columns of

animals injected with LPS was comparable to saline-injected

controls during the first 2 days, but was significantly

FIGURE 3: Immunohistochemical examination of the expres-
sion of hypoxia-inducible factor-1a (HIF-1a) following the
injection of saline or lipopolysaccharide (LPS) into the dorsal
columns. (A) Representative micrographs of the dorsal col-
umns and the adjacent gray matter at the level of injection
of saline or LPS, labeled with an antibody against HIF-1a.
Basal HIF-1a immunoreactivity is evident in the dorsal white
matter of saline- and LPS-injected animals at all time points,
but is increased following LPS injection. HIF-1a–positive cells
are scattered throughout the dorsal columns at 12 hours
and 1 day following LPS injection, but become more
focused at the base of the dorsal columns ipsilateral to the
injection after 2 days. (B) Double label immunofluorescence
with antibodies against adenomatous polyposis coli (APC)
(oligodendrocytes; green) and HIF-1a (red), counterstained
with 4,6-diamidino-2-phenylindole (DAPI) for nuclei (blue) at
24 hours after LPS injection. Scale bars 5 200mm (A) and
20 mm (B).
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decreased at 3 days (p< 0.01; Fig 2Bi); no change in oligo-

dendrocyte number was observed in saline-injected controls.

Pimonidazole
Immunoreactivity for pimonidazole was prominent

throughout the spinal cord at the level of LPS injection

from 12 hours to 2 days after lesion induction, several

days prior to the onset of demyelination (see Fig 2).

Labeling was most obvious in the gray matter, especially

adjacent to the injection, but intense punctate labeling

of glial cells was also present throughout the white mat-

ter, particularly within the dorsal columns; pimonidazole

does not label myelin, so the white matter misleadingly

appears at first glance to be less intensely labeled than

the gray matter. Quantification revealed that labeling in

the gray matter was significantly elevated in animals

injected with LPS at 1 day (p< 0.001) and 2 days

(p 5 0.014) postinjection, compared with saline-injected

controls. Labeling for pimonidazole in the dorsal col-

umn white matter was significantly greater (p< 0.005)

than controls at 1 day after LPS injection, and double-

label immunofluorescence revealed colabeling of pimoni-

dazole with carbonic anhydrase 2, a marker of oligoden-

drocytes, and glial fibrillary acidic protein, a marker of

FIGURE 4: Oxidative and nitrosative stress in the lipopolysaccharide (LPS) dorsal column lesion. (A, Top) Representative confo-
cal micrographs showing the base of the dorsal columns and adjacent gray matter at the level of the injection of saline and
LPS, 12 hours, and 1 and 2 days postinjection, examined for superoxide-induced fluorescence (DHE), with insets showing the
spinal cord at lower magnification. Following the injection of LPS, there is an increase in superoxide-induced fluorescence in
both the white and gray matter at each of the time points examined. The increase is particularly intense ipsilateral to the site
of injection at 1 day in the white matter and adjacent gray matter, and more generalized at 2 days. (A, Middle) Immunoreactiv-
ity for inducible nitric oxide synthase (iNOS) is absent in control tissue, but prominent in the dorsal columns, particularly in the
adjacent gray matter at 12 and 24 hours following the injection of LPS. Cells positive for iNOS also cluster at the base of the
dorsal columns and in the immediately adjacent gray matter. Labeling for iNOS is decreased by 2 days after injection. (A, Bot-
tom) Representative micrographs of spinal cord sections showing the dorsal columns at the level of the injection of saline or
LPS, labeled with an antibody against 3-nitrotyrosine (3-NT). In the acute lesion (12 hours to 2 days), immunoreactivity for 3-
NT is evident in the dorsal columns of LPS-injected animals, but is absent in saline-injected controls. Positive cells can be seen
dispersed throughout the dorsal white matter, but the labeling is most intense ipsilateral to the site of injection, at the base of
the dorsal columns, and in the adjacent gray matter. (B) Double label immunofluorescence with antibodies against 3-NT (green)
and carbonic anhydrase 2 (CA2; oligodendrocytes; red), counterstained with 4,6-diamidino-2-phenylindole (DAPI; nuclei; blue)
at 24 hours after LPS injection. Scale bars 5 200 mm (A; 500mm in DHE insets) and 20mm (B).
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astrocytes. No such labeling was present in saline-

injected controls.

HIF-1a
The pimonidazole findings were corroborated using

immunohistochemistry for the endogenous marker HIF-

1a. HIF-1a–positive cell counts were increased in the

dorsal columns of LPS-injected animals (Figs 3A, 2Bii)

at 12 hours (p 5 0.011), 1 day (p 5 0.029), and 2 days

(p 5 0.002) postinjection, compared with saline-injected

controls. HIF-1a labeling was observed in the cytoplasm

and nuclei of cells throughout the dorsal columns and

adjacent gray matter 12 hours to 2 days after LPS injec-

tion; these were identified as oligodendrocytes based on

double label immunofluorescence (see Fig 3B). By 3 days

after injection, HIF-1a labeling was restricted to the ipsi-

lateral white matter–gray matter border.

Superoxide
DHE fluorescence was observed at a basal level through-

out the spinal cords of all saline-injected animals, but

was increased in the spinal cords of animals injected with

FIGURE 5: Regional vulnerability of the naive spinal cord to hypoxia. (A) Spinal cord sections from naive rats exposed to 21%
(room air) or 10% oxygen in conjunction with systemically administered pimonidazole (PIMO). In room air there is no labeling
for tissue hypoxia, but there is prominent labeling for bound pimonidazole when breathing 10% oxygen. The labeling primarily
occurs in patches in the spinal white matter, particularly around the base and dorsolateral edges of the dorsal columns. The
outline of the gray matter is indicated by dashed lines. (B) Superimposed confocal micrographs of adjacent spinal cord sections
from an animal perfused with DiI, showing the base of the dorsal columns and the adjacent gray matter. The rich vascular den-
sity in the gray matter and the relative paucity of vessels in the dorsal column white matter are evident, particularly at the
base of the dorsal columns. (Ci) Transverse section of spinal cord from a rat exposed to 10% oxygen, and immunolabeled with
pimonidazole (brown) and RECA-1 (black; endothelial cell marker), showing areas of intense pimonidazole labeling at the base
of the dorsal columns, some of which are outlined in yellow. The image to the right shows one of the outlined regions at
higher magnification, superimposed on a fluorescent image of the same section showing perfused vessels labeled with DiI (red
fluorescence). The endothelial labeling coincides with the DiI labeling, indicating both the presence of endothelial cells and
blood perfusion. The outlined area of intense pimonidazole labeling is devoid of blood vessels (as revealed by the absence of
RECA-1 and DiI labeling). A glial cell (arrow) labeled intensely with pimonidazole (brown) is distinguished from a blood vessel
(black) by the absence of DiI labeling. (Cii, Ciii) Three-dimensional reconstruction of the dorsal columns from an animal exposed
to 10% oxygen. The reconstruction shows the location of areas of intense pimonidazole labeling (yellow) obtained from a
series of adjacent transverse sections taken over a 1mm length of spinal cord, as viewed from the head to the tail (Cii), or
obliquely (Ciii). Scale bars 5 500mm (A) and 200 lm (B, C). Micrographs are representative.
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LPS by 1 day post-injection, and focused on either side

of the white matter–gray matter border adjacent to the

injection site and involving the base of the dorsal col-

umns (Fig 4A). By 2 days, the observed superoxide-

induced fluorescence was still greater than in saline-

injected controls, but more uniformly distributed

throughout the gray and white matter.

Nitric Oxide
Counts of iNOS-positive cells were significantly greater

in the dorsal columns of animals injected with LPS at 12

hours (p< 0.001), 1 day (p< 0.001), and 2 days

(p 5 0.011) following injection, compared with saline-

injected animals, with the greatest density observed at 1

day (see Fig 4A). Cells positive for iNOS were dispersed

diffusely throughout the dorsal columns of LPS-injected

animals. Positive cells were also found in the adjacent

gray matter, with a dense cluster localized to the white

matter–gray matter border at the base of the dorsal col-

umns and ipsilateral to the injection. No such labeling

was present in saline-injected controls, or in LPS-injected

animals by the second day after injection.

Nitrotyrosine
The formation of peroxynitrite was disclosed via the

immunohistochemical detection of nitrotyrosine residues.

Immunoreactivity in the dorsal columns of LPS-injected

animals conformed to the spatiotemporal pattern of

iNOS and superoxide labeling. Labeling was present 12

hours after LPS injection, but most prominent at 1 day,

before decreasing by 2 days (see Fig 4), and was notably

evident in oligodendrocytes (see Fig 4B). No labeling for

nitrotyrosine was evident in saline-injected controls, or in

LPS-injected animals by the third day after injection.

Spatial and Cellular Vulnerabilities to Hypoxia
Exposure to 10% oxygen was used to disclose anatomical

and cellular vulnerabilities to hypoxia in the naive rat

spinal cord. Accordingly, labeling for pimonidazole was

negative in the spinal cord of animals breathing room air

(n 5 3), but was prominent in all animals breathing 10%

oxygen for 6 hours (Fig 5A) or 24 hours (data not

shown; n 5 3). The white matter was selectively affected,

with labeling preferentially located along the white mat-

ter–gray matter border at the base of the dorsal columns,

in the white matter adjacent to the dorsal root entry

zone, and in subpial areas throughout the cord. Visual-

ization of the spinal vascular network with DiI revealed a

relative scarcity of vessels in these same white matter

locations (see Fig 5B). Sections used for DiI vessel loca-

tion were then subjected to double label immunohisto-

chemistry for pimonidazole and RECA-1, revealing that

FIGURE 6: Cellular vulnerabilities to hypoxia in the naive spinal cord. Confocal fluorescence images show spinal cord sections
from animals exposed to 10% oxygen for 24 hours, double-labeled for pimonidazole (PIMO; green), and carbonic anhydrase 2
(CA2; oligodendrocytes; red), glial fibrillary acidic protein (GFAP; astrocytes; red), or ionized calcium-binding adapter molecule
1 (IBA; microglia; red). Colocalization indicates that oligodendrocytes, but neither astrocytes nor microglia, selectively label for
pimonidazole during exposure to 10% oxygen. Scale bars 5 100 lm. All micrographs are representative.
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regions labeled with pimonidazole were typically located

between blood vessels (see Fig 5Ci). 3D reconstruction

of these areas revealed the vascular vulnerability of the

base of the dorsal columns and the white matter–gray

matter border to hypoxia.

Exposure to 10% oxygen for 6 (n 5 3; data not

shown) or 24 hours (n 5 6; Fig 6) resulted in clearly

defined cell-specific pimonidazole labeling in the spinal

cord white matter. Double-label immunofluorescence in

longitudinal sections revealed arrays of glial cells with

selective oligodendrocyte labeling with pimonidazole;

astrocytes and microglia were not labeled (see Fig 6).

Oxygen Therapy and Demyelination
Characteristic primary demyelinating lesions were

observed at the gray–white matter border in control

animals maintained in room air (n 5 8) for 14 days fol-

lowing intraspinal LPS injection. In contrast, the area of

demyelination was dramatically and significantly

(p< 0.001) reduced, or even absent, in rats treated with

80% oxygen during the first 2 days after LPS injection

(n 5 11), as determined by the loss of LFB staining (Fig

7). The histochemical results were confirmed by analysis

of resin sections, and magnetic resonance images, the lat-

ter of which revealed that both the length and 3D vol-

umes of lesions in animals exposed to 80% oxygen were

significantly reduced (length, p 5 0.003; volume,

p 5 0.010), compared with room air controls (see Fig

7B). The maximum cross-sectional area of myelin loss as

determined by LFB staining, and confirmed in resin sec-

tions, was significantly correlated with maximum cross-

sectional area as assessed by MRI (p< 0.001, r 5 0.958).

FIGURE 7: Oxygen therapy and demyelination. (A) Representative ex vivo magnetic resonance images of Luxol fast blue (LFB)/
periodic acid–Schiff (PAS)/hematoxylin (H)-stained cryosections and resin-embedded sections of the lesion epicenter of LPS-
injected animals exposed to either room air or 80% oxygen, showing that treatment with 80% oxygen decreases the size of
demyelinating lesions. Many demyelinated axons are evident following treatment with room air (inset), whereas rims of myelin
appear to be preserved around axons in animals treated with oxygen (inset). (Bi) Graphical representation of the average size
of demyelinated lesions (as a percentage of the entire dorsal column area) in LFB/PAS/H-stained sections showing significantly
smaller demyelinated lesions in animals treated with 80% oxygen (n 5 11) compared with those treated with room air (n 5 8;
mean 6 SEM). (Bii, Biii) Quantification of magnetic resonance images revealed that lesion length (Bii) and lesion volume (Biii)
are also significantly reduced following treatment with 80% oxygen, compared to room air controls (mean 6 SEM). Statistical
significance was determined by independent t test (**p < 0.01, ***p < 0.001). Scale bars 5 500 mm (100mm in insets). Note:
notches in resin sections were used to confirm the side of injection during processing. MRI 5 magnetic resonance imaging.
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Discussion

We have studied factors that precede the formation of an

experimental demyelinating lesion that appears to be an

accurate model of the MS lesion described in different

studies as the “initial,” “primary,” “primordial,”

“prephagocytic,” or “pattern III” demyelinating lesion.

The findings illuminate why, how, and where the experi-

mental lesion forms, and we propose that pattern III

lesions in MS may form by similar mechanisms. Under-

standing how the experimental lesion is formed has

revealed a novel therapeutic strategy to prevent the demy-

elination from occurring. Notably, hypoxia emerges as a

decisive constituent of the factors causing pattern III

demyelination in our experiments. Thus our earlier and

current observations together implicate tissue hypoxia as

playing a key role in 2 of the most important aspects of

MS, namely the production of neurological deficits,29

and at least some of the demyelination.

Why?
We have employed the endotoxin LPS to provoke an

innate inflammatory reaction that is well established as

initiating the release of a number of toxic mediators

including superoxide and nitric oxide, and here we

describe the additional, and seemingly decisive, presence

of tissue hypoxia. The inflammatory reaction is followed

by the appearance of a demyelinating lesion in which the

demyelination is achieved by the distinctive pattern III

mechanism.4,6,26 The experimental lesion is achieved by

the same mechanisms as implicated in the human MS

lesion,27,28 and notably it does not seem to result from

autoimmune mechanisms.

POTENTIAL RELEVANCE TO MS. In the LPS lesion,

the demyelination results from the focal administration

of a bacterial toxin, but although some have suggested

that MS may arise from bacterial activity,31 there is no

reason from our data to believe that other mechanisms

that result in similar activation of the innate immune sys-

tem, such as Epstein–Barr virus infection,32 would not

also cause demyelination. If so, the precise identity of the

infective agent may be less important than its ability in a

particular person to induce a local environment toxic to

oligodendrocytes, such as one characterized by hypoxia,

nitric oxide, and superoxide. The responsible agents may

alternatively not be infective, but might arise as an

extreme expression of more routine events promoting

hypoxia that may precipitate an energy crisis of similar

magnitude and consequence. Once the lesion is initiated,

acquired immune events may amplify the nascent lesion,

expanding it into the “active” demyelinating lesion com-

monly described.

How?
The current study implicates the expression of tissue

hypoxia in association with nitric oxide and superoxide

during the first 2 days after intraspinal LPS injection,

and as each of these factors can impair mitochondrial

function, it appears likely that their combined effect dur-

ing the first 2 days is sufficient to cause an energy deficit

that kills vulnerable cells such as oligodendrocytes by the

third day, with the hypoxia-like, pattern III demyelin-

ation apparent a few days later.

HYPOXIA. Oxygen tension in the central nervous sys-

tem (CNS) is normally relatively low, and within the

white matter it is especially low, such that nearly anoxic

values of <1mmHg have been recorded, even in normal

tissue (reviewed in Ndubuizu and LaManna33). There-

fore, cells of the CNS, particularly axons and oligoden-

drocytes in the white matter, habitually exist near the

limit of oxidative phosphorylation. Upon the superimpo-

sition of more profound hypoxia, such as we report here,

the most susceptible cells, including the oligodendrocytes,

will be severely and perhaps lethally compromised, result-

ing in demyelination.

NITRIC OXIDE. The findings show that iNOS is prom-

inent in the early LPS lesion,26,27 and nitric oxide is

strongly implicated in neurodegeneration34; many of the

mechanisms thought responsible for neuronal loss will

also apply to oligodendrocytes. Nitric oxide competes

with oxygen for the same binding site on mitochondrial

cytochrome c oxidase, raising the Michaelis constant for

oxygen, so the combination of raised nitric oxide with

reduced oxygen can be lethal to cells such as oligoden-

drocytes, even if either complication can be tolerated

alone.35

SUPEROXIDE. The fluorescent labeling at the lesion

following the systemic administration of DHE indicates

the enhanced production of superoxide and its related

cascade of reactive oxygen species. Oligodendrocytes are

particularly sensitive to oxidative damage.36

VULNERABILITY OF OLIGODENDROCYTES TO

ENERGY INSUFFICIENCY. Selective white matter dam-

age is a common consequence of hypoxia,37 ischemia,38

and inhibitors of mitochondrial oxidative phosphoryla-

tion,39 and this vulnerability can explain the pattern III

demyelination observed in this study.

POTENTIAL RELEVANCE TO MS. Evidence of hypoxia

has been reported in the MS brain, but these findings

have previously been attributed to “virtual hypoxia,”7

arising not from a low oxygen concentration but rather

from nitric oxide-mediated mitochondrial inhibition.34
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The mechanisms underlying virtual hypoxia are likely to

play a role, but here we introduce the new finding that a

state of actual hypoxia, a low oxygen concentration, pre-

cedes the demyelination.

The most obvious potential cause of hypoxia in

MS is inadequate vascular perfusion, which does not nec-

essarily imply a reduction in perfusion from normal lev-

els, but several studies have nonetheless revealed cerebral

hypoperfusion in MS (recently reviewed in D’Haeseleer

et al,22 Juurlink,23 Paling et al24).

Where?
A surprising feature of the LPS lesion is its location.

Intraspinal injection of demyelinating agents typically

results in lesions centered on the site of injection, but the

demyelination resulting from LPS injection instead

extends along the white matter–gray matter border and

often into the base of the dorsal columns. This shift in

location is noticeable and consistent, and it implies that

the LPS does not cause the lesion directly, but rather that

it initiates a sequence of events culminating in lesion for-

mation at the neighboring site a week later.

The shift in lesion location from the site of injec-

tion correlates with our observations that the white mat-

ter–gray matter border at the base of the dorsal columns

is inherently susceptible to hypoxia, and that even in

normal animals it becomes selectively hypoxic upon sim-

ply breathing 10% oxygen. This is likely a consequence

of the relative paucity of blood vessels in this region, and

this will be exacerbated by the gross vascular anatomy of

the spinal cord, namely that, as in humans, the base of

the dorsal columns is located at a watershed between the

terminal branches of 3 arterial supplies.40,41 In support

of this notion, watershed tissue is the first to lose perfu-

sion, forming watershed infarcts, upon a global reduction

in vascular supply, such as due to a reduction in blood

pressure.42

In addition to being located at a watershed, the

base of the dorsal column is also at risk because it is sup-

plied by blood that has been partially or largely deoxy-

genated during its prior perfusion through the hypoxic

gray matter. It seems that the depleted blood contains

insufficient oxygen to maintain oligodendrocyte vitality,

especially in the presence of nitric oxide and superoxide,

resulting in the demyelination observed.

We propose that the coincident presence of

hypoxia, nitric oxide, and superoxide results in the initia-

tion of events culminating in oligodendrocyte loss, and

ensuing primary demyelination, in the LPS lesion. Cer-

tainly the spatial distribution of these factors predicts the

exact location of the demyelinated lesion that forms

approximately 1 week later.

POTENTIAL RELEVANCE TO MS. The principles

established in the LPS lesion of the rat spinal cord can

be extrapolated to the human brain, where a system of

nonanastomosing end-arteries penetrates from the brain

surface to supply the deeper tissues, which contain a low

density of vessels.17,43 The vascular anatomy imposes

some well-known watersheds or border zones, such as

between the various cerebral arteries,17 along the spinal

cord44 and the optic nerves,45 and particularly, involving

the periventricular white matter (a distal irrigation

field).17 It is notable that these watershed regions are

prone to MS lesions (intercerebral arteries,17,18,21 spinal

cord,15 optic nerve,16 and periventricular white matter17),

although conditions that favor lesion formation can also

arise from microwatersheds between smaller arteries, and

in nonwatershed tissue. The tendency of lesions to form

in watersheds has recently been reported by 2 independ-

ent groups, which have published heat maps revealing

that approximately 90%21 or 86 to 100%18 of their

patients had lesions in the watershed between the ante-

rior and middle cerebral arteries. Interestingly, MRI

reveals that blood flow in the cerebral border zone

regions in healthy individuals is significantly lower than

in non–border zone regions, with longer arterial transit

times.46 Long arterial transit times substantially increase

the vulnerability of arterial blood to become deoxygen-

ated by supplying oxygen to surrounding tissue, particu-

larly if it is hypoxic.

Veins are present at higher density in the deep

white matter and they can contain such deoxygenated

blood that they become sinks for oxygen,47 draining it

from the surrounding oligodendrocytes and axons, pro-

moting a hypoxic environment. In contrast to the earlier

suspicion that “something bad leaks from veins” to cause

perivenular demyelination, perhaps something good, oxy-

gen, fails to leak from veins.

A View of How Some MS Lesions May
Originate
We suspect that a number of mechanisms may be

involved in the formation of MS lesions, and that the

balance of mechanisms may vary between individuals

based on physiological and genetic factors, and even

between lesions in the same individual. However, we sug-

gest that one mechanism that has been insufficiently con-

sidered involves the activation of innate immune

mechanisms, perhaps by a local or systemic infection,

impaired perfusion, or the coincidence of physiological

events that may collectively compromise the local envi-

ronment or oxygen balance. It remains possible that, in

MS, innate immune mechanisms are activated in

response to an autoimmune attack, but the apparent
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paucity of T cells in the early pattern III lesion in MS,

and the seeming absence of a need for autoimmunity in

the laboratory model, argue against this possibility in

pattern III MS lesions. The activation of innate immune

mechanisms will promote an energy deficit arising, in

part, from mitochondrial dysfunction induced by tissue

hypoxia and the influence of nitric oxide and superoxide.

Breakdown of the blood–brain barrier will likely ensue,

and will augment microglial activation via exposure to

plasma proteins. In this environment, an imbalance

between oxygen supply and demand may overwhelm and

outpace the mechanisms responsible for oxygen homeo-

stasis, eroding the safety factor for oxygen and exposing

vulnerable areas such as those located at poorly vascular-

ized, watershed regions at the ends of long arterial

trees.41,48 Oligodendrocytes will be damaged, resulting in

frank demyelination a few days later, and axons may also

succumb, resulting in degeneration.26 The demyelination

will result in exposure of normal and modified myelin

antigens, which, in appropriate individuals, may incite an

acquired immune reaction (see eg Traka et al49) that fur-

ther promotes hypoxia, superoxide, and nitric oxide,

inducing the familiar actively demyelinating lesion that

appears in association with lymphocytes. The importance

of hypoxia in causing the demyelination is emphasized

by our ability to prevent demyelination by augmenting

oxygen delivery during the vulnerable period.

The selective vulnerability of the white matter to

hypoxia means that oligodendrocytes are more likely to

suffer from hypoxia than neurons, due to their location,

resulting in demyelination rather than degeneration. Axo-

nal integrity within a focal hypoxic region may be pro-

tected by the presence of lengths of the same axons still

residing in normally oxygenated tissue.

Therapy
It is striking that the demyelination can be greatly

reduced, or even prevented, by simply raising inspired

oxygen at normobaric pressure for the first 2 days when

the lesion is vulnerable to hypoxia. This finding suggests

a key role for hypoxia in the formation of pattern III

lesions. (The earlier clinical trials of hyperbaric oxygen

were not designed to prevent demyelination, and the

administration of oxygen was applied randomly with

regard to lesion formation.) Therapeutically, it is encour-

aging that oxygen is easily administrated and there is

substantial clinical evidence that oxygen administration is

generally safe, if delivered at moderate concentration and

duration. However, there is a theoretical safety concern

that increasing oxygenation could promote oxidative

damage, which is already implicated in MS pathol-

ogy.30,50,51 Furthermore, by analogy with reperfusion

injury, it is possible that the reoxygenation of hypoxic tis-

sue might particularly promote oxidative stress. In the

current experiments the oxygenation will have avoided

hypoxia in the first place, and so the therapy will not

have reversed ongoing hypoxia, as would be the case

with oxygen therapy applied early in lesion formation in

MS. Conversely, it is possible that the superoxide pro-

duction observed in the inflamed tissue may be a conse-

quence of the hypoxia itself,52 in which case the

oxidative stress may be avoided, rather than enhanced, by

oxygenation. The safety of oxygenation, including the

reversal of ongoing hypoxia, are current topics of investi-

gation in our laboratory, and we caution against the spec-

ulative use of oxygen as an acute therapy until the safety

is understood. Aside from the administration of oxygen

gas there are other potential avenues that can be consid-

ered, and the positive outcome of therapy with erythro-

poietin in optic neuritis53 encourages a view that such

avenues may be effective.
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