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Kohn-Sham density functional theory (DFT) has become established as an indispensable tool for
investigating aqueous systems of all kinds, including those important in chemistry, surface science,
biology, and the earth sciences. Nevertheless, many widely used approximations for the exchange-
correlation (XC) functional describe the properties of pure water systems with an accuracy that
is not fully satisfactory. The explicit inclusion of dispersion interactions generally improves the
description, but there remain large disagreements between the predictions of different dispersion-
inclusive methods. We present here a review of DFT work on water clusters, ice structures, and liquid
water, with the aim of elucidating how the strengths and weaknesses of different XC approximations
manifest themselves across this variety of water systems. Our review highlights the crucial role of
dispersion in describing the delicate balance between compact and extended structures of many
different water systems, including the liquid. By referring to a wide range of published work, we
argue that the correct description of exchange-overlap interactions is also extremely important, so that
the choice of semi-local or hybrid functional employed in dispersion-inclusive methods is crucial.
The origins and consequences of beyond-2-body errors of approximate XC functionals are noted,
and we also discuss the substantial differences between different representations of dispersion. We
propose a simple numerical scoring system that rates the performance of different XC functionals
in describing water systems, and we suggest possible future developments. C 2016 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4944633]

I. INTRODUCTION

Water is an endlessly fascinating substance with many
anomalous properties, of which its expansion on freezing and
its density maximum at 4 ◦C are just two of the most famous.
The fascination is only deepened by the apparent simplicity
of the H2O molecule itself. Because of its importance for
life, for the Earth’s geology and climate, and for innumerable
domestic and industrial processes, water in all its forms has
been one of the most widely studied of all substances. From
the theoretical viewpoint, it offers unrivaled opportunities
to deepen our understanding of hydrogen bonding (H-
bonding). A little over 20 years ago, the first attempts
were reported to derive and interpret the properties of liquid
water from electronic-structure calculations based on density
functional theory (DFT).1–3 This idea has proven immensely
productive and has been developed by many research groups,
but the search for a fully satisfactory DFT description of
water systems has been unexpectedly arduous and is not
yet complete. Our aim here is to review what has been
learnt so far and to assess the challenges that remain. An
important feature of the review is that we aim to cover DFT
work not only on the liquid but also on clusters and ice
structures.

a)Author to whom correspondence should be addressed. Electronic mail:
gillan.mike@gmail.com

The first ever DFT simulations of liquid water, pioneered
by Parrinello, Car, and co-workers,1–5 followed a long history
of water modeling based on force fields (see, e.g., Refs. 6–11).
It was recognized over 80 years ago that the bent shape
of the H2O molecule and the electronegativity of oxygen
make electrostatic forces very important.6 The earliest force
fields represented the Coulomb interactions in terms of point
charges, with overlap repulsion and dispersion modeled by
simple potentials and the molecules being assumed rigid and
unpolarizable. Such elementary models can be remarkably
successful for the ambient liquid,12,13 but their transferability
is poor. The dipole moment of the H2O molecule is known
to increase by 40% − 50% from the gas phase to the ice
and liquid phases,14–17 so that the neglect of polarizability
is a serious limitation. A large research effort has been
devoted to the development of accurate models that treat
the molecules as polarizable and flexible18–22 and include the
weak intermolecular covalency that has often been thought
significant.23–26 The most sophisticated of these models have
the declared aim of describing all water systems, from clusters
through ice structures to the liquid (see, e.g., Refs. 27 and 28).
Reviews of the many force fields that have been proposed can
be found elsewhere, e.g., Refs. 12, 29, and 30.

By definition, close approximations to the true exchange-
correlation (XC) functional of DFT would automatically
deliver everything offered by force-fields and more. The search
for such approximations for pure water systems is important

0021-9606/2016/144(13)/130901/33/$30.00 144, 130901-1 © 2016 AIP Publishing LLC
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for several reasons. DFT gives direct access to electronic
charge distributions, which are important for the interpretation
of experimental observables such as infra-red spectra,31,32

dielectric properties,33 x-ray scattering intensities,34 and
surface potentials.35 It also provides a way of investigating
water systems completely independent of force-fields, so
that it gives the possibility of fruitful dialog between the
approaches. Although our review is restricted to pure water
systems, the development of improved XC approximations
reviewed here is highly relevant to the DFT description of
more general aqueous systems, including solutions and acid-
base systems,36–46 as well as confined water47–49 and water
adsorbed on surfaces.50–56 The crucial role of H-bonding in
the cohesion of water systems57,58 makes them an outstanding
paradigm of this bonding mechanism, which is so widespread
in many other molecular systems, including those important
in biology.59 This means that the challenges to DFT to be
described here for pure water systems will have a wide
relevance.

The XC functionals known as generalized gradient
approximations (GGAs) are among the most popular and
successful for a great variety of condensed-matter systems,
and they were used for the first DFT simulations of liquid
water. Appropriately chosen GGAs were found to give quite
satisfactory binding energies for the water dimer60–63 and
the common form of ice,64,65 and when used in molecular
dynamics (MD), simulations gave a reasonable structure for
the liquid.1,3,5 The early successes prompted a surge of interest
in the use of GGA-based simulations to explore a wide
range of important questions concerning water itself, such as
H-bond dynamics, electronic properties, and the structure and
diffusion of hydronium and hydroxyl ions. Simulations of this
kind have also been very widely used to probe the solvation
shells around a variety of ions and other neutral solutes in
water. A review of DFT-based MD work both on pure water
and on a wide range of aqueous systems can be found in
Ref. 46. The widespread use of DFT for simulating interfaces
involving aqueous systems and water adsorbed on surfaces is
also noteworthy (see, e.g., Refs. 50–53, 66, and 67). The new
insights gained in these investigations would in many cases
have been difficult or impossible to achieve with force-field
methods, and the enormous value of DFT-based simulations
of aqueous systems is beyond dispute.

Nevertheless, it became clear over 10 years ago that
the description of liquid water given by GGAs was not
completely satisfactory.68–72 Fortuitous cancelation of errors
in the earlier work had made the approximations seem more
accurate than they really were.69,73,74 It was also discovered
that GGA predictions of energy differences between extended
and compact structures of some water systems, including
larger clusters and ice, are qualitatively wrong.75–78 These
discoveries stimulated a re-examination of XC approximations
for pure water systems that continues to this day, and
we shall try to describe what has been learnt from this.
An important outcome will be that dispersion is crucially
important, and that some of the errors of GGAs come
from their failure to describe dispersion correctly. It has
been recognized for many years that H-bonding is the
dominant mechanism of cohesion in water systems.57,58

However, H-bonding is a complex phenomenon, which can be
analyzed into electrostatic attraction, polarization, dispersion,
and partial covalency,79 though the relative contributions of
these components in water remain controversial, depending
significantly on definition.26 The contribution of partial
covalency (often termed charge transfer), for example, has
been particularly contentious.23,24,80,81 In addition, good XC
functionals must correctly describe exchange-repulsion and
monomer deformation. Our point of view here will be that all
these energy components can be in error, and our review of
the research will try to assess where the main errors lie. The
evidence will indicate that dispersion is far from being the
only culprit.

We will start by reviewing DFT work on the water
monomer and water clusters. The DFT description of
the monomer (Sec. II) is important for the electrostatic,
polarization, and monomer deformation parts of the energy,
while the dimer (Sec. III) provides tests of H-bonding, where
exchange-repulsion, dispersion, and weak covalency also play
a role. Energies of the dimer in non-H-bonding geometries
may help in separating the covalency contribution. DFT work
on clusters from the trimer to the pentamer (Sec. IV) gives
further information about polarizability, while the isomers of
the hexamer (Sec. V) and larger clusters (Sec. VI) help to
separate dispersion and exchange repulsion. We shall see that
the energetics of ice structures (Sec. VII) is vital in assessing
the roles of these energy components. The lessons learnt up
to this point form the background to our review of DFT work
on the liquid (Sec. VIII). In Sec. IX, we draw together the
evidence from all the water systems to assess the ability of
current XC functionals to account for all the components of
the energy. We summarize by proposing a simple scoring
scheme, which assigns a numerical score to any given XC
functional, based on the quality of its predictions for clusters
and ice structures. The scheme may help to gauge the likely
performance of the functional on the liquid. We should note
at the outset that water is a vast subject, so that our review
will inevitably be incomplete, as well as reflecting our own
personal perspective. We provide in the Appendix a brief
survey of the main XC approximations that will be relevant.

II. THE WATER MONOMER

Since electrostatic interactions are very important in all
water systems, we need to know that available XC functionals
reproduce the charge distribution of the free H2O monomer,
or at least its leading multipole moments. This will ensure the
correctness of the so-called first-order electrostatic energy,
i.e., the Coulomb interaction energy of an assembly of
molecules when the monomer charge distributions are taken
to be those of free monomers. In reality, the electric fields of
the monomers distort each other’s charge distributions, so it is
important that XC functionals reproduce the polarizabilities of
the free monomers, and ideally this should mean the response
of the dipole and higher multipole moments to dipolar and
higher multipolar fields.

Almost all published DFT work on the charge distribution
of the free H2O monomer reports only the dipole moment µ,
though some information is available for the quadrupole
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moments. Only a limited number of GGAs appear to have
been studied, but the BLYP82,83 and BP8682,84 functionals
reproduce the benchmark value of µ to within ∼3%, and the
hybrid functionals B3LYP85,86 and PBE087,88 are even better
than this.88–90 The rather sparse results for the quadrupole
moments indicate that these are also correct to within a few
percent.91 So far as we are aware, DFT calculations have been
reported only for the components of the dipolar polarizability,
and there is general agreement that GGAs always overestimate
them by ∼10%.88,89,91–93,95 (The overestimation of molecular
polarizabilities by GGAs is a general phenomenon, which
arises from the underestimation of the energies of virtual
Kohn-Sham states relative to those of occupied states,
which in turn is related to the incorrect behavior of the
Kohn-Sham potential in the asymptotic region far from the
molecule.93,94) Hybrid functionals do much better, with the
average polarizability from B3LYP and PBE0 being in error
by ∼2% and less than 1%, respectively.88,93,95,96

The water monomer is flexible, and a correct description
of its deformation energetics is likely to be important, for
two reasons. One is that, in water clusters and condensed
phases, formation of a H-bond weakens and lengthens the OH
bond of the donor, and these effects help to determine the
strength of the H-bond. The other reason is that the spectrum
of intramolecular vibrations is an important experimental
diagnostic of H-bond formation, which it is desirable to
reproduce in simulations.

The ability of GGA and hybrid functionals to describe
monomer deformation was investigated by Santra et al.,97

who showed that the energy cost of stretching the O–H bonds

of the monomer is significantly underestimated by PBE and
BLYP but is very accurately given by PBE0. This is shown
in panel (a) of Fig. 1 which plots the deformation energy E1b
in the symmetric mode as a function of the departure δRO−H
of the O–H bond length from its equilibrium value, E1b being
computed with the PBE, BLYP, and PBE0 approximations
and with the benchmark CCSD(T) technique (coupled-cluster
with single and double excitations and a perturbative treatment
of triples98). (We note that the small offsets of the minima
of the plots of E1b vs δRO−H are due to the fact that δRO−H
is computed in all cases relative to the equilibrium bond
length given by PBE, which is slightly greater than the bond
lengths given by PBE0 and CCSD(T).) The deviations of
the GGA values of E1b from the benchmark values (inset
of panel (a)) are ca. 100 meV for a bond stretch δRO−H of
0.1 Å, but the errors of PBE0 are much smaller. The authors
examined the consequences of this for the liquid by drawing
a large sample of monomers from an MD simulation of liquid
water performed with flexible monomers. They found that
bond stretches of up to ca. 0.1 Å are very common, and
they confirmed the accuracy of PBE0 and the substantial
underestimates of the deformation energy given by PBE and
BLYP (see panel (b) of Fig. 1). This underestimate by GGAs,
also noted by other authors,99–101 correlates with an erroneous
softening of the intramolecular OH stretch frequencies, which
are underestimated by ∼3% and ∼4.2% with PBE and BLYP,
respectively, but are reproduced almost exactly by PBE0.97

The comparisons for the monomer thus help us to assess
the accuracy of XC functionals for three important parts
of the energy in general water systems, namely, first-order

FIG. 1. (a) Variation of the monomer deformation energy E1b with deviation δRO−H of the O–H bond length of an H2O molecule from its equilibrium value
in the symmetric stretch mode, calculated with CCSD(T), PBE, BLYP, and PBE0. Inset shows the errors ∆E1b of the deformation energy with the three XC
functionals relative to CCSD(T) (benchmark minus DFT value of E1b). (Note that δRO−H is computed relative to the equilibrium value of the O–H bond length
given by PBE, which is slightly greater than that calculated with PBE0 and CCSD(T).) (b) Errors ∆E1b for deformed monomers drawn from a simulation of
liquid water as a function of the longest O–H bond of each monomer. The vertical dashed line indicates the gas-phase equilibrium O–H bond length (0.97 Å) of
a monomer (optimized with PBE) and the horizontal solid, dashed, and dashed-dotted lines represent the average errors of PBE, BLYP, and PBE0, respectively.
Note that a positive error ∆E1b indicates that it is too easy to stretch O–H bonds of the monomers with a given XC functional compared with CCSD(T).
Reproduced with permission from J. Chem. Phys. 131, 124509 (2009). Copyright 2009 AIP Publishing LLC.
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electrostatics, polarization and monomer deformation. For
all three, GGAs appear to give reasonable, but far from
perfect accuracy, while the accuracy of hybrid functionals is
considerably better.

III. TESTING HYDROGEN-BONDING: THE DIMER

The dimer is the simplest water system we can use to test
the accuracy of XC functionals for the energy of interaction
between H2O monomers in H-bonding and other geometries.
The (H2O)2 system has been thoroughly studied by very
accurate CCSD(T) calculations, which are believed to give
the interaction energy in any geometry with errors relative
to the exact value of no more than ∼5 meV.102,103 We know
from such calculations that the geometry having the global
minimum energy is the configuration labeled SP1 in Fig. 2.
This is a typical H-bonding geometry, with the OH bond of
the donor directed towards the O atom of the acceptor. We
define the dimer binding energy Edim

b as twice the energy of an

FIG. 2. Geometries of the 10 Smith stationary points SPn (n = 1,2, . . .10) of
the water dimer, with their point-group symmetries.

isolated equilibrium monomer minus the energy of the dimer
in its global-minimum geometry. According to CCSD(T), Edim

b
is 217.6 ± 2.0 meV, the equilibrium O–O distance Rdim

OO being
2.909 Å;103 these values are consistent with the somewhat
uncertain experimental values.104–106

Acceptable DFT approximations must reproduce bench-
marks for the binding energy Edim

b and the geometry of
the global minimum, and in fact most DFT work on the
water dimer has focused exclusively on this configuration.
However, this is not enough, because both in the liquid
and in compressed ice phases, water monomers approach
each other closely in non-H-bonded geometries, and the
energetics of such geometries is very important. A simple
way of going beyond the global minimum is to study the set
of configurations on the energy surface of the dimer known
as the Smith stationary points (Fig. 2),107 some of which
resemble geometries found in dense ice structures. We also
review here assessments of XC functionals made using large
statistical samples of dimer geometries designed to be relevant
to condensed phases.

We discuss first local and semi-local XC functionals,
including the local density approximation (LDA108–110), GGAs
of different kinds, and hybrids, confining ourselves initially
to the global minimum geometry. (See the Appendix for
information about the relevant XC approximations.) Several
extensive surveys have been published on the predictions
of semi-local functionals for the water dimer.63,99,111 In
some work on the dimer, full basis-set convergence was
not achieved, so that the accuracy of the functionals
themselves was not completely clear. However, Ref. 63
reported calculations very close to the complete basis set
(CBS) limit for 16 semi-local functionals applied to the dimer
and other small water clusters. Table I reproduces some of
the Edim

b and Rdim
OO values from that work, supplemented with

results from Ref. 112 and from our own calculations performed

TABLE I. Binding energies Edim
b (meV units) and equilibrium O–O dis-

tances Rdim
OO (Å units) of the H2O dimer in its global minimum configura-

tion computed with a variety of semi-local, hybrid and dispersion-inclusive
XC approximations. Benchmark values from CCSD(T) calculations are
Edim

b = 217.6 meV, Rdim
OO = 2.909 Å. References to semi-local functionals:

LDA,109,110 PBE,302 revPBE,119 PBEsol,118 BLYP,82,83 PBE0.88,302

Semi-local Disp-inclusive

Method Edim
b Rdim

OO Method Edim
b Rdim

OO

LDA 380a 2.72a

PBEsol 265a 2.81a

PBE 220b 2.90a PBE-D3 239a 2.89a

PBE-DRSLL 245a 2.94a

PBE-TS 241a 2.89a

BLYP 181b 2.95a BLYP-D3 219a 2.94a

revPBE 156a 3.01a revPBE-DRSLL 183a 3.03a

PBE0 215b 2.89c PBE0-TS 234a 2.89a

optPBE-DRSLL 215a 2.95a

optB88-DRSLL 212a 2.96a

rPW86-DF2 217a 2.97a

aReferences to numerical values: this work.
bReferences to numerical values: Ref. 63.
cReferences to numerical values: Ref. 112.
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in the present work. We performed our own calculations using
the 113 and 114 codes, following the procedures
described elsewhere.115 The wide spread of predicted binding
energies is striking. The LDA is clearly unacceptable, since it
overbinds the dimer by nearly a factor of 2,116,117 and there
are other functionals, such as PBEsol,118 which also overbind
significantly. At the other extreme, functionals such as BLYP
and revPBE119 underbind quite seriously. Among the best
functionals for Edim

b are PBE and its hybrid version PBE0. It
will become clear below that functionals predicting a good
Edim

b can still give a poor description of larger clusters, ice
structures, and liquid water. The wide variability of Edim

b with
different semi-local functionals will turn out to be crucial for
the understanding of extended water systems.

The reason why different semi-local functionals give such
different binding energies in dimers of small molecules such
as water is well known. It was recognized long ago120 that
the gross overbinding given by LDA arises from a spurious
exchange attraction. In GGAs, this spurious attraction is
suppressed by the exchange-enhancement factor FX(s), which
depends on the reduced gradient x = |∇ρ|/ρ4/3 of the electron
density ρ through the quantity s = x/(2(3π2)1/3). Roughly
speaking, the exchange-overlap interactions of BLYP and
revPBE are strongly repulsive and those of PBE and PW91
are weakly repulsive because of the very different behavior of
their FX(s) factors in the region of large s where the tails of the
monomer densities overlap.121–126 This important difference
between GGAs will be referred to again several times.

Dispersion plays a vital role in the energetics of water
systems, as we shall see later, but is not correctly described
by the semi-local functionals discussed above. The past
20 years have seen the introduction of several different ways
of accounting for dispersion (see the Appendix and recent
reviews127,128). One approach consists of the addition of poten-
tials of various kinds to existing functionals, first explored
nearly 20 years ago (see, e.g., Refs. 123, 129, and 130) and
then extensively developed by Grimme,131–133 Tkatchenko
and Scheffler (TS),134 and others. An alternative is the
incorporation of explicitly non-local correlation functionals,
pioneered by Lundqvist, Langreth, and others.135–137 The
DCACP (dispersion-correcting atomic-centered potentials)
method of Rothlisberger and co-workers138 and the closely
related DCP method of Ref. 139 are also noteworthy. In
all these methods, a representation of non-local correlation
energy is added to a chosen semi-local functional. The naming
of these different approaches is not completely uniform in the
literature, so we summarize briefly the nomenclature used
throughout this review. The approach now generally known
as the Grimme method comes in three versions, which we
denote by func-D1, func-D2, and func-D3, where “func” is
the name of the semi-local or hybrid functional to which
dispersion is added. Similarly, we denote TS methods by
func-TS, and methods based on the non-local functional of
Ref. 135 by func-DRSLL (the acronym DRSLL stands for the
authors of Ref. 135). We denote by rPW86-DF2 the method
of Ref. 140 (sometimes known as LMKLL after the authors of
this reference), which employs a modified form of the DRSLL
non-local correlation functional added to a revised version of
the PW86 semi-local functional.84

We summarize in Table I the dimer binding energies
Edim

b and equilibrium O–O distances predicted for the global
minimum geometry by some of these schemes. This shows that
the addition of dispersion to a semi-local functional always
increases Edim

b , as expected. For BLYP and revPBE, which
significantly underestimate Edim

b , the dispersion-inclusive
versions BLYP-D3 and revPBE-DRSLL give improved values
of Edim

b , though the latter functional is still significantly
underbound. By contrast, the addition of TS dispersion to
PBE and PBE0, which already gave accurate values of
Edim

b , inevitably worsens the predictions. The DRSLL-type
functionals are particularly instructive in this regard. Their
original form,135 based on revPBE, generally underbinds
molecular dimers, so the underestimate of Edim

b for the
H2O dimer by revPBE-DRSLL comes as no surprise. It was
pointed out136,141 that better binding energies are obtained
if less repulsive semi-local functionals are used in place of
revPBE. It turns out that PBE is too weakly repulsive, so that
PBE-DRSLL generally overbinds molecular dimers, including
(H2O)2. However, if the exchange functional is appropriately
tuned, much better approximations can be obtained. This is
illustrated in the table by the optPBE-DRSLL and optB88-
DRSLL approximations, which are based on tuned forms of
the PBE and B88 functionals. Similar arguments underlie the
rPW86-DF2 non-local functional.140 The comparisons shown
in the table indicate that the addition of dispersion increases
Edim

b by up to ∼35 meV. This is comparable with the variation
of Edim

b resulting from different choices of semi-local or
hybrid functional. We shall see in Sec. VIII that addition of
dispersion to a semi-local functional can bring large changes
in the structure and equilibrium density of the liquid, so that
errors as large as 35 meV in Edim

b are important.
We noted earlier the importance of accuracy for

configurations other than the global minimum, and many
authors have drawn attention to the role of non-H-bonded pair
configurations in condensed phases of water.111,112,123,142–144

The Smith stationary points (Fig. 2) provide some relevant
geometries, but the only systematic studies of DFT errors in
these configurations appear to be those of Refs. 101 and 145.
Anderson and Tschumper145 studied 10 different GGA and
hybrid methods. All approximations gave the correct energy
ordering, but most of them overestimated the energies relative
to that of the global minimum, particularly for configurations
SP4, SP5, and SP6, which closely resemble configurations in
ice VIII. Relative energies for some semi-local and hybrid
functionals are summarized in Table II, which shows that
PBE and BLYP both overestimate the relative energy of
configuration SP6 by over 30 meV. Hybrid approximations are
appreciably better, but still overestimate the relative energies.
Calculations of the energies relative to the global minimum
with dispersion-inclusive methods do not appear to have been
published, so we have made our own (see Table II). We
find that optPBE-DRSLL and rPW86-DF2 are both quite
satisfactory, their errors in the relative energies all being less
than 15 meV. However, both PBE-TS and PBE0-TS are less
satisfactory, giving relative energies of configurations 4, 5,
and 6 in error by ∼30 meV.

A characterization of XC errors for the global minimum
and some special geometries is illuminating and useful, but a
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TABLE II. Energies (meV units) of the Smith stationary points of the water dimer relative to the energy of the
global-minimum geometry given by benchmark CCSD(T) calculations (bench) and by a selection of semi-local
and dispersion-inclusive exchange-correlation functionals. Benchmark values and values computed with PBE,
BLYP and PBE0 are taken from Ref. 101; dispersion-inclusive values were obtained within the present work.
Geometries of the stationary points are shown in Fig. 2.

s.p. Bench PBE BLYP PBE0 PBE-TS PBE0-TS revPBE-DRSLL optPBE-DRSLL

1 0 0 0 0 0 0 0 0
2 21 25 23 24 24 23 17 20
3 25 35 32 30 35 29 24 28
4 30 46 49 44 48 47 35 36
5 41 65 65 60 68 63 45 49
6 44 74 73 65 78 70 49 54
7 79 96 96 92 93 90 66 79
8 154 160 155 160 149 151 121 143
9 77 95 95 90 92 88 63 77
10 117 132 125 127 130 125 92 112

full characterization should cover all relevant O–O distances
and monomer orientations. One way of doing this is to analyze
the errors for large samples of dimers drawn from a MD
simulation of the liquid, as has been done by Santra et al.97

and Gillan et al.101 For this purpose, we must separate 1-body
and 2-body errors in the sense of the many-body expansion
(MBE),146–148 which will also be important later. In general,
the total energy E(1,2, . . . N) of a system of N monomers can
be exactly expressed as

E(1,2, . . . N) =

i

E(1)(i) + 1
2


i, j

′
E(2)(i, j)

+
1
6


i, j,k

′
E(3)(i, j, k) + · · ·. (1)

Here, E(1)(i) is the 1-body energy of monomer i in free
space, with the argument i being short-hand for the set of
coordinates specifying its geometry. Similarly, E(2)(i, j) is the
2-body energy of dimer (i, j), i.e., its total energy minus the
1-body energies of monomers i and j, with the arguments i
and j being short-hand for the geometries of the monomers
(the prime on the summation indicates the omission of terms
i = j). The 3-body and higher terms needed for systems larger
than the dimer are defined analogously. The zero of energy
is conveniently taken as N times the energy of an isolated
equilibrium monomer. To analyze the errors of a chosen XC
functional, the total energy of each dimer in the sample and
the 1-body energies of its monomers are computed, and the
2-body energy is obtained by subtracting from the total dimer
energy the sum of the two monomer energies. The 1- and
2-body errors are then obtained by subtracting benchmark
values of the 1- and 2-body energies, typically computed with
CCSD(T).

Santra et al.97 analyzed the errors of the BLYP, PBE, and
PBE0 functionals for dimers drawn from the liquid. BLYP
values of the 2-body energies were underbound by an average
of ∼40 meV, while PBE and PBE0 values were overbound
by ∼10 meV. Interestingly, the errors of all three functionals
showed a scatter of around ±15 meV about their averages at
typical O–O nearest-neighbor distances of ∼2.8 Å. There may
be a link here with the errors in the relative energies of the

Smith stationary points. An interesting finding from the same
work97 was that the known enhancement of H-bond energy by
elongation of the donor OH bond is significantly exaggerated
by both GGA functionals. The work of Ref. 101 examined
the 2-body errors computed with semi-local functionals for a
thermal sample of dimers covering a range of O–O distances
from 2.5 to over 7.0 Å. This revealed the expected systematic
underbinding of BLYP over this range, and the much smaller
errors of PBE, as illustrated in Fig. 3. We also present in
this figure calculations on the same thermal sample performed
with the BLYP-D3, PBE-D3, PBE-TS, and PBE-DRSLL
functionals. We see that the excessive repulsion of BLYP
is largely eliminated by BLYP-D3, which becomes slightly
overbound between 3.0 and 4.0 Å. However, the PBE-based
functionals are all overbound, with the overbinding errors
of PBE-DRSLL being particularly strong in this range.
Interestingly, the typical difference of 2-body energy between
the BLYP and PBE functionals is comparable with the shifts
due to dispersion, so that addition of D3 dispersion to BLYP
brings its 2-body energy rather close to that of uncorrected
PBE. The typical energy difference between the dispersion-
corrected functionals BLYP-D3 and PBE-DRSLL is on the
same scale as the energy shifts due to dispersion, so that
the robustness of the methods clearly needs discussion. It is
notable that the substantive differences between the various
PBE-based methods in the region 3.0-4.0 Å exist despite
the close agreement between their global-minimum binding
energies (Table I).

It has been shown by Bartók et al.149 that machine-
learning techniques operating on very large thermal samples
of dimers can be used to create very accurate, but rapidly
computable representations of the 1- and 2-body errors
of chosen XC functionals. These techniques, based on the
GAP (Gaussian approximation potential) method of machine
learning,150 give a way of compensating almost exactly for the
1- and 2-body errors of any chosen XC functional. We review
below (Secs. VI and VII) work on large water clusters and ice
based on XC functionals corrected in this way.

In summary, we have seen that both semi-local and
dispersion-inclusive functionals vary quite widely in their
predictions of the H-bond energy. The variability affects the
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FIG. 3. Errors of (a) semi-local
functionals PBE and BLYP and
(b) dispersion-inclusive functionals
BLYP-D3, PBE-D3, PBE-TS, and
PBE-DRSLL for the 2-body energies
of a sample of dimer geometries
drawn from a MD simulation of liquid
water.101

2-body energy in the important region of O–O separation
extending from 2.5 to at least 4.0 Å. We have noted
the importance of the exchange-enhancement factor as one
cause of this variability. The variation between different
functionals is comparable with the increase of binding energy
resulting from the addition of dispersion. The energies of the
Smith stationary points relative to the global minimum are
significantly overestimated by both semi-local and dispersion-
inclusive functionals.

IV. COOPERATIVE HYDROGEN-BONDING
IN SMALL CLUSTERS

It has long been known that hydrogen bonding in water
and in many other molecular systems is a cooperative effect:
if molecule A donates a H-bond to molecule B, the propensity
of molecule B to donate a H-bond to molecule C is thereby
enhanced.59,151–154 The cooperativity manifests itself in the
non-additivity of H-bond energies. In suitable geometries, an
assembly of water molecules is stabilized by the mutual
enhancement of H-bonds,146,147,155,156 so that the overall
binding energy is greater than the sum of dimer binding
energies. This non-additivity of binding energies can be
understood as resulting from molecular polarizability: the
electron cloud on each monomer is distorted by the electric
fields of its neighbors, and this changes its electrostatic
interaction with other monomers. We noted in the Introduction
that this is a strong effect, since molecular polarizability
enhances the dipole moment of water monomers in ice
and liquid water by 40%-50% above that of monomers in
free space.5,14,15,17 It was suggested by Frank and Wen151

that the cooperativity would play an important role in
the dynamical making and breaking of H-bonds in liquid
water, and subsequent calculations and experiments have
fully confirmed the importance of H-bond cooperativity
in water systems of all kinds, including ice and clusters
(see, e.g., Ref. 157). It is clearly important to know
whether DFT approximations reproduce these cooperative
effects.

Fortunately, H-bond cooperativity is already important in
small water clusters, where it has been extensively studied both
experimentally and theoretically.25,26,63,147,156,158–165 These
systems provide a simple way of testing the accuracy of
DFT approximations in describing non-additivity, since very
accurate benchmarks are readily available. We discuss here the
trimer, tetramer, and pentamer, leaving till Sec. V the hexamer,
which raises issues beyond H-bond cooperativity. Experiments
and accurate quantum chemistry calculations show that the
most stable configurations of the (H2O)n clusters with n = 3,
4, and 5 are quasi-planar and cyclic.147,156,158,160 An important
indication of the progressive strengthening of the H-bonds is
that the O–O distance shortens from ∼2.91 Å in the dimer
to 2.72 Å in the pentamer.63,160 Another commonly used
measure for the strength of a H-bond is the red-shift of the
intramolecular stretching frequency of the donor O–H bond.
Theory and experiment both find an increasing red-shift on
passing from the trimer to the pentamer.166

For reference data on the non-additivity of the binding
energies, we rely on benchmark second-order Møller-Plesset
(MP2) and CCSD(T) calculations near the CBS limit, since
accurate experimental data is not available. (MP2 is the
second-order Møller-Plesset approximation,98 which is often
nearly as accurate as CCSD(T) for water systems.) The non-
additivity can be quantified using the MBE introduced above in
Eq. (1). The non-additive parts of the energy are characterized
by the 3-body and higher-body terms E(n). For a small cluster
(H2O)n in a given geometry, it is straightforward to compute
benchmark total energies of all the monomers, dimer, trimers,
etc., that can be formed from the cluster, and from these, the
terms E(1)(i), E(2)(i, j), E(3)(i, j, k), etc., of the MBE can be
extracted. It has been shown by Xantheas156 that the 3-body
and higher components of the energy play a vital role in
determining the relative energies of different conformations
of the water trimer, tetramer, and pentamer.

The performance of a wide variety of semi-local and
hybrid XC functionals on the binding energies of the water
trimer, tetramer, and pentamer in their most stable geometries
has been assessed by Santra et al.63 MP2 energies near the
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CBS limit were used as reference, the evidence being that
these energies should differ from CCSD(T) values by no
more than a few meV per H-bond. The functionals studied
included the popular GGAs PBE, PW91, and BLYP and some
less common ones such as XLYP, PBE1W, mPWLYP, and
BP86, the hybrid functionals PBE0, B3LYP, and X3LYP, and
the meta-GGA functional TPSS (references to the definitions
of these functionals can be found in Ref. 63). As expected
from their performance on the dimer, BLYP was found to
be always quite strongly underbound, and PBE and PW91
always overbound. The B3LYP functional was a considerable
improvement on BLYP, while the hybrids PBE0 and X3LYP
gave almost perfect binding energies. The TPSS meta-GGA
turned out to be somewhat worse than its parent functional
PBE.

For present purposes, the most important finding of
Ref. 63 is that all the functionals reproduce semi-quantitatively
the cooperative enhancement of the H-bond energies given
by the MP2 benchmarks. According to the benchmarks, the
binding energy per H-bond is enhanced by a modest 6%
in the trimer, increasing to a more impressive 46% in the
pentamer. With very few exceptions, all the functionals give
enhancements between 4% and 8% in the trimer and between
45% and 55% in the pentamer. Notably, the enhancement is
overestimated by almost all the functionals in the tetramer and
pentamer, perhaps because most functionals overestimate the
polarizability of the water monomer (see Sec. II). It is also
noted in Ref. 63 that for all the functionals, the error in the
binding energy per H-bond is almost independent of cluster
size, though the error becomes more positive (more strongly
bound) for some functionals, including PBE. This suggests
that for a given DFT functional, its error in the H-bond energy
of the dimer is likely to be a good guide to its error in
the H-bond energy in larger water aggregates. The authors
also note that the known shortening of the equilibrium O–O
distance with increasing cluster size is also semi-quantitatively
reproduced by all the functionals.

To summarize, the work on small clusters up to the
pentamer shows that H-bond cooperativity becomes a strong
effect as we go to larger aggregates, but most XC functionals
appear to describe the non-additivity of energies fairly
accurately. Semi-local functionals generally overestimate the
enhancement of H-bond strength, but hybrid functionals do
better than GGAs.

V. COMPACT VERSUS EXTENDED GEOMETRIES:
THE HEXAMER

The hexamer occupies a special place in water studies,
because it is the smallest cluster for which three-dimensional
structures compete energetically with the two-dimensional
cyclic structures just discussed for the trimer, tetramer, and
pentamer. There are many local minima on its complex energy
surface,167–169 but here we pay particular attention to four of
them, known as the prism, the cage, the book, and the ring
(Fig. 4). In the ring, each monomer is H-bonded to two
neighbors, and all six H-bonds are of canonical form, with
the donor O–H bond pointing directly at the acceptor O
atom. In the prism, by contrast, each monomer is 3-fold

FIG. 4. Isomers of the water hexamer: (a) prism, (b) cage, (c) book, and
(d) ring.

coordinated, but the nine H-bonds are strongly distorted. In
their coordination and H-bond count, the cage resembles the
prism and the book resembles the ring. Are the extended ring
and book structures with fewer but stronger H-bonds more
or less stable than the compact cage and prism with more
but weaker bonds? This is an important question, because
the competition between compact and extended structures is
central to the energetics of solid and liquid water phases.

In fact, CCSD(T) calculations close to the CBS limit
leave no doubt that the energy ordering from lowest
to highest is prism < cage < book < ring.77,101,170–172

This ordering is confirmed by diffusion Monte Carlo
(DMC) calculations,173,174 which give total binding energies
relative to free monomers and total energy differences
between the isomers in accord with CCSD(T) to within
∼5 meV/monomer.75 The fact that the compact prism and
cage are more stable than extended structures such as the ring
was already suggested by early MP2 calculations.148,167,175

It is now established that MP2 in the CBS limit gives the
same stability ordering as CCSD(T) for the prism, cage, book,
and ring, though MP2 underestimates the difference of total
binding energy of the ring and prism by ∼25 meV.75,77,170,171

The prism and cage isomers are very close in energy, but
CCSD(T) makes the prism more stable by ∼10 meV.171 (We
note that this statement refers to energy-minimized structures;
in the real world, zero-point and thermal vibrational energies
appear to be large enough to reverse the stabilities of these
two isomers.176,177)

Several detailed studies have investigated the accuracy of
DFT approximations for the relative energies of the different
isomers and also for their overall binding energies with
respect to free monomers. Between them, these studies cover
a wide variety of methods. The works of Dahlke et al.77

and Santra et al.75 investigated, respectively, 11 and 12
different functionals, including GGAs, meta-GGAs, hybrids,
and hybrid-meta-GGAs. Later studies101,172,178,179 covered a
range of GGAs and hybrids, and Ref. 179 studied a number
of dispersion-inclusive methods. The remarkable outcome of

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  151.224.223.115 On: Sat, 02

Apr 2016 13:34:12



130901-9 Gillan, Alfè, and Michaelides J. Chem. Phys. 144, 130901 (2016)

these studies is that almost all the semi-local approximations
erroneously make the ring or book more stable than the
prism and cage. The only exceptions reported in these papers
are the three Minnesota functionals M06-L, M05-2X, and
M06-2X.77 On the positive side, a number of commonly used
functionals (e.g., PBE, PBE0) give quite accurate values for
the average binding energies of the four isomers, though others
(e.g., BLYP, revPBE) are seriously underbound. The problems
of semi-local XC functionals are illustrated in Table III,
where we compare their predicted binding energies with the
CCSD(T) and DMC benchmarks.

The semi-local functionals just referred to do not
explicitly describe dispersion, and it is natural to assume
that this is the main cause of the erroneous stability ordering
of the hexamers. This makes physical sense, because compact
structures will be more strongly stabilized than extended
structures by a pairwise attraction. The importance of
dispersion has been confirmed by several studies of the
hexamer,75,180,181 showing that different dispersion-inclusive
DFT methods all correct the wrong stability ordering and
bring the relative energies of the isomers into respectable
agreement with the benchmarks, as can be seen from the
illustrative examples given in Table III.

In spite of this compelling evidence, there are clear
indications that dispersion is not the only source of errors
in the XC functionals. These indications come from the
many-body analyses reported in several papers. We saw in
Secs. III and IV how the binding energies of clusters can
be separated into their 1-body, 2-body, and beyond-2-body
components. The same approach can be applied to the errors
of XC functionals, i.e., the deviations of approximate DFT
energies from benchmarks. If the errors of XC approximations

TABLE III. Binding energies (meV/monomer) of the prism, cage, book,
and ring isomers of the H2O hexamer according to CCSD(T) and DMC
benchmark calculations and a selection of semi-local, hybrid, and dispersion-
inclusive exchange-correlation functionals. The lowest energy structure(s) for
each approach is indicated in bold. Energies relative to the prism are given in
parenthesis. Geometries of the isomers are shown in Fig. 4.

Method Prism Cage Book Ring

CCSD(T)171 332 330 (2) 325 (7) 319 (13)
DMC75 332 330 (2) 328 (4) 321 (11)

PBE75 336 339 (−3) 346 (−10) 344 (−8)
BLYP75 274 277 (−3) 288 (−14) 290 (−16)
PBE075 323 325 (−2) 331 (−8) 331 (−8)
B3LYP75 294 297 (−3) 305 (−11) 307 (−13)

PBE-D75 378 380 (−2) 378 (0) 367 (11)
BLYP-D75 360 360 (0) 356 (4) 345 (15)
BLYP-D3179 353 347 (6) 344 (9) 339 (24)
PBE-TS75 370 373 (−3) 371 (−1) 361 (9)
PBE0-TSa 353 356 (−3) 354 (−1) 347 (6)
PBE0-D75 361 362 (−1) 359 (2) 351 (10)
revPBE-DRSLLa 275 275 (0) 276 (1) 272 (3)
rPW86-DF2a 329 328 (1) 325 (4) 316 (13)
optPBE-DRSLL136 335 334 (1) 332 (3) 323 (12)
optB88-DRSLL136 347 347 (0) 344 (3) 334 (13)

aThis work.

for the hexamer were entirely due to poor dispersion, we
would expect them to be mainly 2-body errors, because
beyond-2-body dispersion is generally much less significant
than 2-body dispersion in water systems. (See, e.g., Ref. 182,
which indicates that 3-body dispersion contributes ca. 100
times less than 2-body dispersion to the cohesive energy of
ice Ih.) However, the reality is more complex. For the energy
differences between the isomers, the errors of the BLYP and
revPBE approximations are indeed mainly 2-body errors, but
it turns out that the errors of PW91, PBE, and PBE0 are largely
beyond-2-body errors.101,172,178,183 The importance of beyond-
2-body errors in the energetics of the hexamer has been noted
in Ref. 179. On the other hand, the average binding energy of
the four isomers is quite accurately given by PBE and PBE0
(see above), which reproduce both its 2-body and beyond-
2-body components. (By “average binding energy” we mean
the sum of the binding energies of the four isomers divided
by 4.) However, the large error in the average binding energy
given by BLYP arises from its excessive 2-body repulsion
together with a smaller but still significant beyond-2-body
overbinding.101,183 These facts indicate that the errors cannot
be explained by incorrect dispersion alone.

It has been proposed recently178 that the many-body
errors of GGAs for water (and other molecular systems) are
closely linked to the choice of exchange-enhancement factor
FX, which we know has an important influence on the 2-body
interaction energy (see Sec. III). It appears that an FX that
gives excessive exchange-overlap repulsion in the dimer also
tends to produce an overly attractive 3-body interaction, while
an FX whose 2-body exchange-overlap repulsion is too weak
produces a spurious 3-body repulsion. The suggestion is that
the accurate dimer binding energy given by PBE results from
an overly weak exchange-repulsion mimicking the missing
dispersion, the indirect consequence being the erroneous
stability ordering in the hexamer due to the exaggerated
3-body repulsion. Conversely, the excessive 2-body repulsion
of BLYP, to which dispersion should be added, is linked to the
unduly attractive 3-body interaction noted above. The idea of
an inverse correlation between the 2-body and beyond-2-body
errors of semi-local functionals is confirmed by recent work
on a wide range of molecular trimers.184

The extensive work on the hexamer teaches us several
lessons. First, good accuracy for the dimer (and other
clusters smaller than the hexamer) is no guarantee of even
qualitative correctness for the relative stability of compact
and extended conformations. Second, many-body errors may
be at least as important as 2-body errors, but the relative
importance of the two kinds of error depends strongly on the
exchange-correlation functional. Third, dispersion is crucial
and demands to be correctly described. Fourth, dispersion is
not the only source of errors, and there is evidence that the
many-body errors are associated with exchange. We shall see
in the following how these lessons are reinforced by DFT
work on larger clusters, ice structures, and the liquid.

VI. LARGER CLUSTERS

For many years, quantum-chemistry benchmark calcu-
lations were feasible only on rather small clusters, with
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the hexamer representing the practical limit for basis-set
converged CCSD(T). However, technical innovations are
now helping to extend the calculations to much larger
clusters without significant loss of accuracy. In fact, well
converged MP2 calculations were possible on clusters of 20-
30 monomers several years ago, but with the development
of linear-scaling methods, they can now be applied to
even larger systems.185,186 Corrections for the difference
between CCSD(T) and MP2 can then be made using the
many-body expansion for this difference.187 In addition,
there is growing evidence that the accuracy of quantum
Monte Carlo methods173,174 rivals that of CCSD(T) for non-
covalent interactions,78,101,188–191 and the mild scaling of these
methods with system size and their high efficiency on parallel
computers make it practical to compute benchmarks for water
systems containing 30 or more monomers.192,193

The availability of very accurate benchmark energies for
large clusters opens the interesting possibility of tracing out
the development of DFT errors as a function of cluster size.
The notion here is that as we go to ever larger clusters the
errors should come to resemble ever more closely those seen
in ice structures and the liquid. Furthermore, an analysis of
the errors into their 2-body and beyond-2-body components,
similar to that discussed above for the hexamer, allows us
to deepen our understanding of the continuous connections
between these errors in clusters and in condensed phases.

These ideas have been explored192 for thermal samples of
water clusters containing up to 27 monomers, the benchmark
energies being computed with the DMC technique. The sets
of configurations for each water cluster were drawn from MD
simulations performed with a realistic force field that treats
the monomers as flexible and polarizable. For large enough
clusters, these configurations should be roughly typical of
those found in small water droplets. The time-varying radius
of a cluster of N monomers can be characterized by the
quantity Rgyr(t) defined by

Rgyr(t)2 = 1
N

N
i=1

|ri(t) − r̄(t)|2, (2)

where ri(t) is the position of the O atom of monomer i at
time t, and r̄(t) is the centroid of these O positions. This
“radius of gyration” Rgyr(t) fluctuates in time as the cluster
spontaneously breathes in and out, exploring compact and
extended configurations. We saw in Sec. V that the errors of
GGAs for the hexamer grow more positive as we pass from
extended to compact isomers, and one might expect a similar
dependence on Rgyr for thermal clusters.

This expectation is amply fulfilled for the GGAs
examined so far, namely, BLYP and PBE. The analysis of
the errors of these approximations has been reported115,192 for
thermal clusters containing N = 6, 9, 15, and 27 monomers,
with the GAP techniques mentioned above (Sec. III) used
to correct almost exactly for 1- and 2-body errors. If only
1-body errors are corrected (the resulting approximations are
called BLYP-1 and PBE-1), it is found for all the clusters
that BLYP-1 has large positive errors, while PBE-1 has much
smaller errors, the errors in both cases growing more positive
with decreasing Rgyr (see Fig. 5). After correction for both

FIG. 5. Errors in computed binding energy per monomer (meV units) of the
water 27-mer as a function of radius of gyration (see text). Binding energies
are computed with the PBE and BLYP functionals, corrected for 1- and
2-body errors, with benchmark values from diffusion Monte Carlo (DMC)
calculations. Adapted with permission from J. Chem. Phys. 141, 014104
(2014).

1- and 2-body errors (approximations BLYP-2 and PBE-2),
BLYP-2 has negative errors showing a weak downward trend
with decreasing Rgyr, while PBE-2 has almost the same errors
as PBE-1, trending upwards with decreasing Rgyr (Fig. 5).
All these trends are very much the same as for the isomers
of the hexamer, though the magnitude of the errors increases
markedly with cluster size. Exactly as for the hexamers,
the erroneous destabilization of compact relative to extended
configurations is mainly a 2-body effect with BLYP, but mainly
a beyond-2-body effect for PBE. We shall see exactly the same
patterns of erroneous energetics in the ice structures.

VII. ICE STRUCTURES

Water ice exhibits a rich and complex phase diagram.
Besides the hexagonal Ih structure, familiar as the ice and snow
found in colder regions of the Earth’s surface, and the closely
related cubic ice Ic, there are 15 other experimentally known
structures.194 Ice Ih and some of the other phases are “proton
disordered,” meaning that the molecular orientations show
a degree of randomness, with a corresponding orientational
entropy. However, at low temperatures, the proton-disordered
phases all undergo transitions to proton-ordered structures;
for example, ice Ih transforms to proton-ordered ice XI at
ca. 72 K.195,196 Quite moderate pressures of up to a few kbar
are enough to stabilize a series of well characterized structures.
The energy differences between the structures are remarkably
small, being considerably lesser than “chemical accuracy”
of 1 kcal/mol (43.4 meV). This means that ice energetics
provides an exquisitely delicate test of DFT methods. We
will concentrate here mainly on the sublimation energies and
equilibrium volumes predicted by DFT approximations, with
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some comments also on proton order-disorder energetics and
the relative energies of the Ih and Ic phases. When we refer
to a computed “sublimation energy” Esub here, we mean the
energy of an isolated, relaxed, static water monomer minus
the energy per monomer of a relaxed, static ice structure, with
no account taken of zero-point vibrational energy. (A greater
Esub signifies a more strongly bound ice structure.) When
we compare a computed Esub with experiment, a calculated
or estimated value of the zero-point vibrational contribution
must first be removed from the experimental value.

The performance of LDA and GGAs for the sublimation
energy and equilibrium volume of ice Ih was first investigated
by Hamann.64 To deal with the proton-disorder, Hamann
followed Bernal and Fowler6 in representing the structure
approximately by a 12-molecule repeating cell, a procedure
that is known to incur only very small errors (see,
e.g., Ref. 197). His calculations showed that LDA overbinds
ice Ih by ∼70% and underestimates its equilibrium volume by
∼20%, these very large errors being expected from its poor
treatment of the water dimer. The GGAs studied by Hamann
performed better, though substantial over- or under-binding
was found in some cases. More accurate DFT calculations
on ice Ih were reported later by Feibelman,65 who studied
a rather broad set of GGAs, finding that the predicted
sublimation energies come in the order revPBE < RPBE
< BLYP < PBE <AM05 < PW91 < PBEsol < LDA. (We gave
references for most of these functionals earlier, but we note
here the references for RPBE,198 AM05,199 and PW91.200,201)
Of the GGAs considered, PBE predicts a sublimation energy
of ca. 640 meV/H2O, which is only ca. 30 meV/H2O
larger than the experimental value of 610 meV/H2O.202 This
experimental value, which excludes zero-point contributions,
was reported many years ago by Whalley,202 but has since been
corroborated by two kinds of high-level electronic structure
calculations. These consist of DMC calculations,78 which

gave Esub = 605 ± 5 meV/H2O, and CCSD(T) calculations183

implemented with an embedded many-body expansion, which
gave 601 meV/H2O. The substantial spread of Esub values
found in the GGA calculations of Feibelman has been
confirmed by other, more recent studies,203,204 as we show
in Table IV, where we summarize the Esub values obtained
from a range of semi-local functionals. (The table also reports
dispersion-inclusive predictions, which will be discussed later
in this section.)

The ordering of sublimation energies of ice Ih given by
the GGAs in Table IV is reminiscent of the ordering of GGA
dimer energies (Table I) and ring-hexamer energies (Table III).
To bring out the close relationship between these different
manifestations of H-bond energy in water, we show in Fig. 6
plots of the GGA errors of the ice Ih sublimation energy and
the ring-hexamer binding energy vs the corresponding error
in the binding energy of the dimer in its global-minimum
geometry. The close relationship between the three kinds of
error is immediately apparent, and the smoothness of the
curves indicates that for GGAs a knowledge of the error in the
dimer energy suffices to predict the errors in the hexamer and
ice Ih energies. It is noteworthy that the plots in Fig. 6 pass
almost exactly through zero, something that would presumably
not happen if GGA errors of polarizability caused a serious
mis-description of the cooperative enhancement of H-bonding
(see also Sec. IV). Hybrid approximations give more accurate
polarizabilities than GGAs (Sec. II), so it is interesting to
compare hybrids with their parent GGAs for the sublimation
energy of ice Ih. Published information on this is very sparse,
but we include in Fig. 6 the sublimation energy from PBE0,
which is smaller than from PBE by ca. 40 meV. This difference
is certainly not negligible but only a part of this appears to be
due to errors of cooperative enhancement.

We turn now to the energetics of compressed ice
structures. Experiment tells us that as the pressure increases

TABLE IV. Sublimation energies (meV units) E Ih
sub and EVIII

sub of ice Ih and VIII (zero-point vibrational energies
omitted) from experiment, DMC, and a number of XC functionals. Also reported is the difference of sublimation
energies ∆E Ih−VIII

sub between ice Ih and VIII. The deviation of each computed value from experiment is given in
parenthesis.

Method E Ih
sub EVIII

sub ∆E Ih−VIII

Expt.202 610 577 33
DMC78 605 575 30

LDA204 943 (333) 813 (236) 130 (97)
PBE205 636 (26) 459 (118) 177 (143)
BLYP203 555 (−55) 347 (−230) 208 (175)
revPBE203 499 (−111) 291 (−286) 208 (175)
PBE0205 598 (−12) 450 (−127) 148 (115)

PBE-TS205 714 (104) 619 (42) 95 (62)
PBE0-TS205 672 (62) 596 (19) 76 (43)
PBE-D3203 755 (145) 624 (47) 131 (98)
BLYP-D3203 690 (80) 594 (17) 96 (63)
revPBE-D3203 659 (49) 555 (−22) 104 (71)
revPBE-DRSLL205 559 (−51) 517 (−60) 42 (9)
rPW86-DF2205 619 (9) 586 (9) 33 (0)
optPBE-DRSLL205 668 (58) 630 (53) 38 (5)
optB88-DRSLL204 696 (86) 670 (93) 26 (7)
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FIG. 6. Errors of sublimation energy per monomer of ice Ih crystal (blue
squares) and binding energy per monomer of ring-hexamer (red circles)
plotted against error of dimer binding energy for chosen semi-local and hybrid
exchange-correlation functionals.

from atmospheric to ∼3 GPa, the most stable low-temperature
structures of ice pass through the series known for historical
reasons as Ih, IX, II, XIII, XIV, XV, VIII. Fortunately, only
a few key features of these structures need concern us here.
The first is that the H2O monomers retain their integrity
in all the structures, though there are small changes in the
intramolecular geometries. A second feature is that the number
of H-bonds per monomer does not change, each monomer
donating two H-bonds and accepting two from four of its
neighbors. Even the O–O distance in each H-bond changes
only a little through the series, the surprising fact being
that it is slightly longer in the more compressed structures.
Nonetheless, the volume per monomer decreases strongly
from Ih to VIII, the volume in ice VIII being about two thirds
that of ice Ih at zero pressure.202 This dramatic compression
is entirely due to the ever closer approach of monomers that
are not H-bonded to each other as we progress through the
series. The coordination number is four in ice Ih but is eight
in ice VIII, the O–O nearest-neighbor distance for the four
non-H-bonded neighbors in ice VIII being slightly shorter
than for the four H-bonded neighbors. Remarkably, in spite
of the enormous compression, extrapolation of experimental
data shows that the energies per monomer in the Ih and VIII
structures, when both are at zero pressure, differ by a mere
33 meV. This very small experimental energy difference is
corroborated by both DMC and CCSD(T) calculations, which
concur in predicting an energy difference between Ih and VIII
of ca. 30 meV/H2O.78,183

Semi-local XC functionals completely fail to reproduce
the small energy differences between compressed ice
structures and ice Ih, as can be seen from the calculated
sublimation energies of ice VIII at zero pressure summarized
in Table IV. With PBE and BLYP, the energy differences per
monomer between zero-pressure ice VIII and Ih are calculated

to be 177 and 208 meV, respectively, which are ∼6 times the
experimental value of 33 meV. We show in Fig. 7 plots of
the errors of selected functionals for the sublimation energies
of the sequence of increasingly compressed ice structures
Ih, IX, II, and VIII, reproduced from Ref. 205. The rapidly
growing errors of PBE along the sequence are striking, and
we note that the hybrid functional PBE0 shows a very similar
trend. Since PBE0 gives much better polarizabilities than
PBE, the large semi-local errors clearly cannot stem mainly
from errors of polarizability. The energies of compressed
ice structures relative to ice Ih have been computed with a
very wide range of semi-local functionals in Refs. 203 and
206. The functionals studied include the GGAs PW91, PBE,
PBEsol, BLYP, RPBE, and revPBE, the hybrid functionals
PBE0 and B3LYP, the range-separated hybrid HSE06, and the
meta-GGAs TPSS and M06L. In almost every case, the energy
difference between ice Ih and VIII was found to be grossly
overestimated. This indicates that essentially all semi-local
and hybrid functionals suffer from the same kind of problem.

Why do semi-local and hybrid approximations incorrectly
destabilize the compact, high-pressure ice structures relative
to the more extended low-pressure structures? There appears
to be a connection here with their behavior for the compact
and extended configurations of the hexamer (Sec. V) and
the larger water clusters (Sec. VI). For the hexamer, we
saw the clear evidence that lack of dispersion is one of the
main reasons for the wrong compact-extended balance given
by semi-local approximations, and we will see the same
for the ice structures. However, before reviewing dispersion-
inclusive approximations for ice, we recall the many-body
evidence that dispersion is not the only cause of trouble
for the compact-extended balance in the hexamer. A similar
many-body analysis has been reported for the errors of BLYP
and PBE for the relative energies of high- and low-pressure ice
structures.183 The outcome was that for BLYP, the enormous
overestimate of the energy difference between VIII and Ih
is mainly a 2-body error, and that good relative energies are

FIG. 7. Differences Esub(Exp)−Esub(Calc) between experimental and cal-
culated values of the zero-pressure sublimation energies of the ice Ih, IX,
II, and VIII structures. Calculated values employ the semi-local functionals
PBE and PBE0, a selection of dispersion-inclusive functionals, and diffusion
Monte Carlo (DMC). Zero-point vibrational contributions to the experimental
values have been subtracted. Adapted with permission from J. Chem. Phys.
139, 154702 (2013).
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obtained once this error is corrected. However, the same is not
true of PBE, where there appears to be a large beyond-2-body
contribution to the error in relative energies.

A variety of dispersion-inclusive DFT approaches have
been used to study the energetics of ambient and compressed
ice phases, including Grimme DFT-D methods,203,204,206 TS
dispersion paired with PBE and PBE0,78,205 and DRSLL-
type approximations.204,205,207–209 Most of these have paid
particular attention to the energy differences between
compressed structures and ice Ih, and in some cases have
studied the equilibrium volumes of the structures and the
transition pressures between them. All the different ways of
including dispersion give a large improvement in the relative
energies of the extended and compact structures. However,
not all the methods are equally good, because in some cases
the improvement in the relative energies is accompanied by a
worsening of the sublimation energy of the ice Ih structure.

The range of results that can be given by different
dispersion-inclusive methods is illustrated by the work of
Ref. 205, where the performance of different versions of the
TS and DRSLL-type schemes was compared (see Fig. 7).
The work showed that the original version of DRSLL based
on revPBE,135 referred to here as revPBE-DRSLL, gives
very satisfactory energies of the structures IX, II, and VIII
relative to ice Ih, but that all the structures are underbound
compared with experiment by ∼50 meV. This is expected
because the excessive exchange-repulsion of revPBE-DRSLL
generally gives underbinding in H-bonded systems, as we saw
for the water dimer and ring-hexamer in Secs. III and V.
The optPBE-DRSLL approximation has weaker exchange-
repulsion and performs better for H-bonding energies, giving
much better dimer and ring-hexamer energies. It also gives
accurate energies of the IX, II, and VIII structures relative
to Ih, but all these structures are now overbound. However,
the revised version of DRSLL due to Lee et al.,140 which
we refer to as rPW86-DF2, performs very well for both
the relative energies and the sublimation energies of the ice
structures, (Fig. 7), as was also found by Murray and Galli.209

Not reported in Fig. 7 but given in Table IV are results for
optB88-DRSLL. As with optPBE-DRSLL, it describes the
energy difference between ice I and VIII well but overbinds
both phases.

Predictions from the scheme of Tkatchenko and
Scheffler134 in which dispersion is added to PBE or PBE0
provide an instructive contrast. Since ice Ih is already
somewhat overbound with PBE, it is no surprise that PBE-
TS overbinds this structure by over 100 meV/monomer.
Nevertheless, PBE-TS gives a considerable improvement
over PBE itself for the relative energies, though it is not
as good as any of the DRSLL-type methods. The PBE0-TS
approximation also overbinds ice Ih, but only by ∼60 meV,
and the difference between the energies of the VIII and Ih
structures is also slightly better than with PBE-TS. Also
included in Fig. 7 are the predictions obtained by adding
many-body dispersion210 to PBE0. These differ only slightly
from PBE0-TS, so that the effects of beyond-2-body dispersion
appear to be very small for these ice structures, as might be
expected from previous work on the contribution of 3-body
dispersion to the energetics of ice.182

Insight into the performance of the DFT-D methods of
Grimme et al. for the energetics of ice structures can be gained
from Refs. 203 and 206, both of which demonstrate the major
improvements brought by the inclusion of dispersion. In the
first of these papers, the binding energies of 10 ice structures
were computed with Grimme D3 dispersion added to a variety
of semi-local functionals. These DFT-D3 approximations give
reasonably good binding energies of ice Ih, except for PBE-
D3, which is overbound by an unacceptable ∼140 meV. The
PBE-D3 approximation also gives a greatly overestimated
value of ∼130 meV for the energy difference between the
ice VIII and Ih structures, which is also overestimated by the
other DFT-D3 approximations, though less seriously.

Turning now to the equilibrium volumes, we report in
Table V results for ice I and VIII from a selection of GGAs,
PBE0, and several dispersion inclusive functionals. By and
large, the trends found for sublimation energies are mirrored
in the predictions of equilibrium volumes. For example, at
the GGA level, the sublimation energies decrease from PBE
to BLYP to revPBE, while the equilibrium volumes show
the opposite trend, with revPBE > BLYP > PBE. The errors
in the volumes for ice Ih predicted by GGAs are less than
4%, but they are much larger for ice VIII, in the range
9%-28%, as might be expected from the substantial under-
binding of ice VIII predicted by GGAs. It has been shown
that in ice VIII, zero-point effects increase the equilibrium
volume by ca. 5%,203,205,209 so in assessing the errors in
the predicted volumes, we compare with the experimental
volume reduced by this amount. Zero-point corrections to
the equilibrium volume are much smaller for ice Ih,203,205,209

so for this phase we simply compare with the uncorrected

TABLE V. Comparisons of the calculated and experimental equilibrium vol-
umes (Å3/H2O) of ice Ih and VIII. Note that calculations with a range of
XC functionals203,205,209 suggest that zero-point energy effects are ca. 5% in
ice VIII. The experimental value has therefore been corrected by removing
this 5% zero-point expansion, with the uncorrected value given in square
brackets. In ice Ih, the zero-point expansion is much less and varies by several
percent from one functional to the next,203,205,209 so we have not corrected the
volume of this phase. The percentage deviation of each computed value from
experiment is given in parenthesis.

Method Ih VIII

Expt.202 32.05 19.1 [20.09]
DMC78 31.69 19.46

PBE205 30.79 (3.9) 20.74 (8.6)
BLYP203 32.2 (0.5) 22.0 (15.2)
revPBE203 33.1 (3.3) 24.5 (28.3)
PBE0205 30.98 (3.3) 20.27 (6.1)

PBE-TS205 29.67 (7.4) 20.13 (5.4)
PBE0-TS205 29.88 (6.8) 19.70 (3.1)
PBE-D3203 29.1 (9.2) 19.1 (0.0)
BLYP-D3203 30.4 (5.1) 19.4 (1.6)
revPBE-D3203 30.4 (5.1) 19.7 (3.1)
revPBE-DRSLL205 34.38 (7.3) 22.96 (20.2)
rPW86-DF2205 33.69 (5.1) 21.27 (11.4)
optPBE-DRSLL205 31.63 (1.3) 20.55 (7.6)
optB88-DRSLL296 30.2 (5.8) 19.1 (0.0)
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experimental value. As shown in Table V, accounting for
exact exchange by going from PBE to PBE0 does little to
reduce the errors in the volumes. By contrast, dispersion has a
significant impact on the volumes, generally decreasing them,
as one would expect. However, the results are very sensitive to
the particular choice of dispersion inclusive functional. Of the
functionals reported, BLYP-D3, revPBE-D3, optPBE-DRSLL
do reasonably well for the two phases, while revPBE-DRSLL
stands out as offering the worst performance (volume of
ice VIII overestimated by 20%). Despite performing very
well in terms of sublimation energies, the volumes predicted
by rPW86-DF2 are rather disappointing. Overall, it is clear
that for predictions of equilibrium volumes in the ice phases,
there is still considerable room for improvement.

We noted at the start of this section that proton-disordered
ice phases such as Ih transform to proton-ordered structures
at low temperatures. This is a subtle phenomenon in both
experiment and theory. The very slow kinetics of molecular
reorientation at low temperatures makes it difficult to measure
the true thermodynamic transition temperatures accurately,
and unambiguous identification of the symmetry of the proton-
ordered phase has sometimes been controversial. Widely used
force fields sometimes yield completely erroneous predictions
for these transitions,211 so that there has been considerable
interest in DFT treatments.197,212–219

The transformation of ice Ih to a low-temperature
ordered phase was conjectured over 60 years ago,220 but the
experimental evidence for a transition near 72 K appeared only
more recently.195,196 Simple electrostatic arguments211,220,221

suggest that the low-temperature phase ice XI should be
antiferroelectric, but this expectation is contradicted by
diffraction and thermal depolarization experiments,222,223

which indicate that it is actually ferroelectric, though the
interpretation of the experiments has been challenged.224 DFT
calculations based on the BLYP functional,213 in conjunction
with graph-theoretic methods used to enumerate H-bonding
topologies,225,226 support the ferroelectric assignment. The
parameterized models produced in the course of this
computational approach, when used in statistical-mechanical
calculations, yield a transition temperature of 98 K213 in
respectable agreement with the experimental value. It was
shown later214,216,217 that this outcome is not significantly
altered if other XC functionals are used in place of BLYP.
Remarkably, even the unsophisticated LDA functional yields
essentially the same result.216 It has been argued from this that
the electrostatic part of the energy dominates the energetics
of proton ordering, as originally proposed by Bjerrum,220

and that the inability of common force fields to describe
the energetics correctly arises from their failure to reproduce
the high multipole moments of the charge distribution of the
H2O monomer.216,217 Another approach to the transformation
between ice Ih and XI was taken by Ref. 227. There, MC
sampling based on the dispersion-inclusive functionals PBE-
D2 and BLYP-D2, and also their hybrid counterparts PBE0-
D2 and B3LYP-D2, was used to compute the static dielectric
constant ϵ and the ice Ih/XI transition temperature. It was
found that PBE0-D2 at T = 273 K gives ϵ roughly 20% greater
than the experimental value of 95, while the value with PBE-
D2 is roughly 50% greater, so that the over-polarizability of

the H2O molecule with PBE (see Sec. II) is clearly significant.
The transition temperature computed with PBE0-D2 in this
work was in the range 70-80 K, in satisfactory agreement with
experiment.

Calculations combining DFT with graph-theoretic
methods have also been successful in treating the
transformation of other proton-disordered phases to their
low-temperature ordered counterparts, including ice VII to
VIII,214,216 XII to XIV,215 and V to XIII.228 Where comparison
with experiment is possible, the symmetries of the ordered
phases are correctly predicted, and the transition temperatures
are approximately correct. However, there appears to be one
exception, namely, the transition from ice VI to XV, where
experiment shows the ordered phase to be antiferroelectric,229

while DFT calculations consistently make the most stable
structure ferroelectric.219,230 Hybrid and dispersion-inclusive
functionals give the same result, as do calculations based on
MP2 and the random phase approximation (RPA),219 which
are expected to be even more accurate. In discussion of the
possible origins of this paradox, it was suggested in Ref. 219
that the so-called “tin-foil” boundary conditions implicitly
used in conventional electronic-structure calculations on
periodic systems may not be appropriate for the ice VI-XV
transition. It was shown that if instead the boundary conditions
are allowed to reflect the electrostatic environment in which
ice XV grows, then the ferroelectric phase may be sufficiently
disfavored for the antiferroelectric phase to become more
stable. The experimental work of Ref. 231 appears to offer
support for this idea.

Although hexagonal ice Ih is the naturally occurring
form under ambient conditions, there is evidence that the
cubic variant known as ice Ic can form in the upper
atmosphere,232,233 though it is not yet clear whether pure
ice Ic or only a disordered mixture of ice Ic and Ih is
formed.234,235 In either case, the question of the energy
difference between the two forms of ice is of some importance
for environmental science. Raza et al.236 tackled this question
by performing DFT calculations on the lowest-energy proton-
ordered forms of the two crystal structures, using the XC
functionals PBE, PBE0, BLYP-D3, and optPBE-DRSLL;
accurate reference calculations with DMC were also reported.
The conclusion from their work was that the two structures are
isoenergetic within the technical tolerances of the calculations,
the indication being that the energy difference is less than
1 meV/monomer. This conclusion is supported by later work
from Geiger et al.237 It has been shown very recently238 that
the clear preference for ice Ih over ice Ic observed in nature
may be due to the difference of anharmonic vibrational energy
between the two phases.

We conclude this section by commenting briefly on
the influence of isotope effects on the properties of ice.
In hydrogen bonded solids, the replacement of a heavier
isotope by a lighter one can cause a change of the equilibrium
volume. For ice, the equilibrium volume of the H2O form
of ice Ih is slightly less than that of the D2O form.239 It
was shown recently240 that this arises because of a balance
between the way the heavier and lighter isotopes influence
intermolecular versus intramolecular vibrational modes. It has
been noted recently241 that the same mechanism has an effect
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on the temperature of the transition from ice Ih to XI and,
more broadly, to water and hydrogen bonded materials in
general.262

VIII. DFT SIMULATION OF LIQUID WATER

Our review of DFT work on liquid water will be concerned
with the structure of the liquid, its thermodynamic properties,
and the dynamics of the molecules. We shall pay particular
attention to the three radial distribution functions (rdfs) gαβ(r),
the density ρeq of the liquid at near-ambient pressure, and
the self-diffusion coefficient D, all of which are available
from experiment. Some aspects of the DFT simulation of
the liquid have recently been reviewed by Khaliullin and
Kühne.242

As initial orientation, we refer to panel (a) of Fig. 8,
showing the O–O rdf gOO(r) from recent high-energy
x-ray diffraction measurements243 performed at temperatures
close to 297 K. (The simulation results shown in the Figure
will be discussed later.) It is worth commenting here that
there have been many experimental measurements of gOO(r)
over the years (see literature cited in Ref. 243), and there
has been considerable controversy about the height of the
first peak, but the measurements we compare with here
are generally accepted to supersede earlier work. The first
peak at O–O separation ROO = 2.80 Å and the second
peak at ROO = 4.5 Å correspond rather closely to the
first- and second-neighbor O–O distances in ice Ih. The
first-neighbor coordination number N1 in the liquid is not
uniquely defined but is conventionally taken to be the integral
N1 = 4πn

 rmin
0 dr r2gOO(r) under the first peak (n is the bulk

number density) up to the radius rmin
OO of the first minimum.

The diffraction experiments all give a coordination number N1
in the region of 4.3, which is consistent with roughly fourfold
tetrahedral bonding. However, there is clearly considerable
disorder, since the experimental gOO(r) is quite close to unity
over the range 3.0 < ROO < 4.0 Å, throughout which there are
no neighbors in ice Ih; all diffraction measurements agree that
the value of gOO(r) at its first minimum is gmin

OO = 0.84 ± 0.02.
This means that there is substantial penetration of molecules
from the second shell into the shell of H-bonded first
neighbors.

The phenomenon of cross-shell penetration (CSP) is
crucially important in liquid water and is closely linked to
the density increase on melting. The amount of penetration
is sensitive to pressure, and diffraction experiments244–246

show that a pressure of only ∼1 GPa (10 kbar) is enough to
increase the O–O coordination number from ca. 4 to ca. 8,
an effect that occurs by collapse of the second shell into
the region of the first shell, without significant breaking of
H-bonds.244 This implies that the penetration in the liquid
is closely related to changes of ice structure with increase
of pressure, exemplified by the presence of non-H-bonded
first neighbors at approximately the same distance as the
H-bonded neighbors in ice VIII. Cross-shell penetration also
appears to be intimately linked to diffusion, which requires
molecules to cross the region 3.0 < ROO < 4.0 Å; since the
lifetime of H-bonds under ambient conditions is estimated

FIG. 8. Panels (a), (b) and (c) show O–O, O–H and H–H radial distribution
functions (rdfs) of liquid water at ambient temperature and experimental
density from experiment and from MD simulations based on the PBE and
RPBE approximations (results from BLYP are also shown for gOO(r )). Sim-
ulation rdfs with PBE and RPBE are from Ref. 264 and results with BLYP
from Ref. 248. Experimental rdf gOO(r ) is from high-energy x-ray diffraction
measurements,243 and rdfs gOH(r ) and gHH(r ) are from joint refinement of
neutron and x-ray diffraction measurements.319

to be in the region of 1 ps,247,248 this crossing must be
frequent.

We saw in Sec. VII that GGAs grossly exaggerate the
energy difference between the extended ice Ih structure and
compact structures such as ice VIII. They make it too
difficult for a molecule to approach another molecule that
is already H-bonded to four others, and the problem is cured
by accounting for dispersion. We can anticipate that the
same mechanisms will operate in the liquid, so that GGAs
will generally hinder penetration, making the liquid over-
structured and under-diffusive, with a high pressure needed
to maintain the experimental density. Accordingly, a leading
theme of our survey of DFT work on the liquid will be
the concerted efforts of the past few years to address the
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difficulties of liquid structure, thermodynamics, and dynamics
with dispersion-inclusive methods. We shall see that these
efforts have enjoyed considerable success, but it will also
become apparent that current dispersion-inclusive methods
are still immature, and that over-correction can be as much
of a peril as under-correction. We shall also see that purely
technical issues have sometimes made it difficult to judge the
true capabilities of any given DFT method.

A. Technical issues

It is not trivial to assess how well an XC functional
performs for the liquid, because the first-principles simulation
of the liquid raises many tricky technical issues that are
completely absent from the study of clusters or static
ice structures. Thermodynamic, structural, and dynamical
quantities such as the pressure P, the radial distribution
functions gαβ(r), and the self-diffusion coefficient D are all
calculated as time averages over the duration of the simulation,
which must be long enough to yield useful statistical accuracy.
Furthermore, collection of the data to be averaged can only
begin after the system has been “equilibrated,” i.e., simulated
for long enough to ensure that memory of the initial conditions
has been lost. The problems of equilibration and time
averaging are exacerbated in water by the wide separation
of time scales between intramolecular and intermolecular
motions, which hinders energy transfer between these
degrees of freedom. Memory times can be reduced by
the use of thermostats, but dynamical quantities may then
be falsified. In MD simulations of water based on force
fields, the equilibration and production phases commonly
have durations of 100 ps or more (see, e.g., Refs. 27, 249,
and 250), but such durations have been impractical in DFT
simulations until recently.242,251 (In the earliest first-principles
simulations of water,1–3,5,16 these durations were between
2 and 10 ps.)

First-principles simulations can be performed by Born-
Oppenheimer MD (BOMD) in which the Kohn-Sham orbitals
are relaxed to the self-consistent ground state at every
time step, or by Car-Parrinello MD (CPMD), in which
the orbitals are treated as dynamical degrees of freedom,
their dynamics being governed by a fictitious mass µ. The
method known as second-generation CPMD251–253 combines
the strengths of these two techniques. In addition, first-
principles Monte Carlo simulation is also feasible.73 If
rigorously implemented, all these techniques should be
equivalent, but practical compromises in the setting of
technical parameters can cause differences. It took several
years to discover that the close agreement with experiment
reported in some early papers5,16,254 was partly due to
simulation errors caused by µ being set too high.68–74

Significant discrepancies may also arise from the use of
different statistical-mechanical ensembles, which are expected
to yield identical results in the thermodynamic limit, but not
in finite systems. Inadequate basis sets too can be a source
of inaccuracy. System-size errors present yet another hazard:
ideally, the size of the periodically repeated simulation cell
should be systematically increased at constant density until
the observables of interest settle to converged values, but

in practice the cell size is constrained by the computer
budget.

These and other technical difficulties plagued much of the
pioneering DFT work on water, but the problems started to be
clearly identified and addressed around 10 years ago68–73 and
it is now understood in principle how to bring most of them
under firm control. The conditions necessary for adequate
equilibration, statistical averaging, and thermostating were
analyzed in Ref. 74. The equivalence of Car-Parrinello and
Born-Oppenheimer dynamics and the range of fictitious mass
needed to ensure this equivalence were established in Refs. 70
and 255. System-size errors have turned out to be only a minor
concern for many thermodynamic and structural quantities,
provided systems of 64 molecules or more are used,74,251

although substantial (but well understood) size corrections
are needed for the diffusivity.251 Increasing computer power
has made it much less necessary to compromise on
basis-set completeness. Nevertheless, technical uncertainties
continue to be troublesome even now, as will become clear
below.

B. Quantum nuclear effects (QNEs)

In addition to the technical issues just outlined, there
is also the physical phenomenon of QNEs. Almost all
first-principles simulations of water have treated the nuclei
classically, but it is well known from diffraction experiments256

and force-field simulations27,250 that QNEs due to the
light mass of hydrogen are not negligible. Path-integral
simulation257–260 allows QNEs to be included almost
exactly, at least for thermodynamics and structure, but the
computational cost then escalates still further. (We note,
however, that recent algorithmic developments261 mitigate
the additional cost.) If QNEs are not included in simulations
of the liquid, then perfect agreement with experimental data
cannot be expected, but it is not straightforward to separate
errors due to neglect of QNEs from those due to inaccuracy
of the XC functional. We will note the possible influence
of QNEs where appropriate in the following, but we do not
aim to treat this important matter in depth in this review,
since QNEs in water have recently been reviewed by Ceriotti
et al.262

C. GGAs and hybrids

We start our survey of DFT methods for liquid water
by focusing on GGAs, and since BLYP and PBE have been
the most widely used GGAs we discuss these first. After
this, we summarize the rather few simulations that have been
performed with other GGAs and with hybrid functionals.
Most simulations have been performed at constant volume,
corresponding to an experimental density close to 1 g/cm3,
and these conditions apply unless we mention otherwise. A
summary of the main features of the simulations reviewed
here is provided in Tables VI and VII.

Well over 20 substantial simulations of the near-ambient
liquid have been reported with the BLYP functional since
the resolution of the technical difficulties mentioned above
(references in Table VI). Most of these simulations appear
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TABLE VI. Summary of DFT simulations of liquid water performed with BLYP functional. Columns show: literature reference, simulation-algorithm (ensemble
and sampling technique: BO = Born-Oppenheimer, CP = Car-Parrinello, MC =Monte Carlo), number N of monomers in cell, temperature T (K), equilibrium
density ρeq (g/cm3), duration of production run tpr (ps) (MD simulations only), distance to first maximum rmax

OO (Å), height of first maximum gmax
OO , distance to

first minimum rmin
OO (Å) and height of first minimum gmin

OO in O–O rdf, diffusion coefficient D (10−9 m2/s). All constant-volume simulations performed at density
close to 1.0 g/cm3, unless otherwise noted.

Reference sim-alg N T ρeq tpr rmax
OO gmax

OO rmin
OO gmin

OO D

BLYP functional

69 NVE/CP 32 293 . . . 20 2.73 3.60 3.33 0.39 0.1
271 NVT/CP/slaba 256 300 0.85 5 . . . . . . . . . . . . . . .
73 NVE/NVT/CP/BO/MC 64 323 . . . 10 2.76 2.98 3.32 0.60 0.4
71 NVE/BO 64 300 . . . 11-32 2.78 3.20 3.33 0.60 0.2
313 NVE/BO 32 300 . . . 17-32 2.78 3.30 3.30 0.55 . . .
74 NVE/CP, BO 32 324 . . . 20 2.75 3.03 3.28 0.55 0.5
272 NPT/MC 64 298 0.79 . . . 2.80 ∼2.70 3.40 ∼0.65 . . .
314 Gibbs/MCb 64 323 0.84 . . . 2.80 3.10 3.45 0.50 . . .
263 NVT/CP 32 300 . . . 30 2.80 2.90 3.65 0.60 . . .
266 NVT/CP 32 350 . . . 10 2.79 3.00 3.31 0.48 0.48
255 NVE/CPc 64 423 . . . 30 2.80 2.30 3.6 0.75 12
315 NVE/CP 32 309 . . . 60 2.80 2.88 3.35 0.62 0.6
258 NVT/CP(PI)d 64 300 . . . 13 2.75 3.20 (2.83) 3.32 0.42 (0.60) . . .
265 NVT/BO 64 300 . . . 15-50 2.73 3.40 3.25 0.43 . . .
251 NVT/BO 64 300 . . . <250 2.79 2.92 3.33 0.57 . . .
273 NPT/BO 64 330 0.77 25-45 2.83 3.18 3.50 0.35 . . .
143 NVE/CP 64 316 . . . 20 2.77 2.94 3.30 0.60 . . .
281 NVT/BO 128 317 . . . 57 2.80 3.30 3.40 0.40 0.20
274 NVT/BO/slabe 216 300 ∼0.8 15 2.82 3.17 3.53 0.23 . . .
283 NVT/BO 125 436 . . . ? 2.82 2.25 3.50 0.95 . . .
276 NVE/CP 64 319 . . . 50-117 2.77 2.86 3.31 0.66 1.0
275 NPT/CP 64 300 0.92 20 2.77 3.16 3.40 0.45 . . .
149 NVE/BO 64 308 . . . 25 2.77 3.20 3.30 0.57 . . .
192 NVT/BOf 64 350 0.78 20 2.82 2.90 3.50 0.48 . . .
277 NPT/MC 64 295 0.78 . . . 2.83 2.44 3.46 0.35 . . .
248 NVE/BO 64 353 . . . 40 2.77 2.99 3.27 0.62 1.14
270 NPT/MC 64 295 0.80 . . . 2.83 3.04 3.46 0.44 . . .

aSlab with free surfaces.
bGibbs ensemble,316 ρeq density of liquid in coexistence with vapor.
cDensity of simulated system 0.71 g/cm3.
dPerformed with and without path-integral (PI) representation of quantum nuclear effects, values with PI in parentheses.
eSlab with free surfaces.
f Density of simulated system 0.78 g/cm3 gives pressure close to 0.

to be free of major technical limitations, and there is now a
reasonable consensus about the properties predicted by BLYP.
Comparison of the O–O rdf gOO(r) with neutron and x-ray
diffraction data is generally regarded as the cleanest way
of testing the liquid structure, since this rdf is much less
affected by QNE than gOH(r) and gHH(r).27,250 An example
of the comparison between BLYP and experiment is shown
in panel (a) of Fig. 8. As in most BLYP-based simulations
published over the past 10 years, the liquid is somewhat
over-structured, the height of the first peak and the depth of
the first minimum being somewhat exaggerated, but the radial
positions of all the main features agree well with experiment
(see Table VI). Many of the BLYP-based simulations have
reported values of the self-diffusion coefficient D, for which
accurate experimental values are available over a range of
temperatures for both light and heavy water. As might be
expected from the over-structuring, the values of D given by
BLYP (see Table VI) are lower than the experimental values,
usually by a factor of ∼3.

Some BLYP-based studies have also reported the O–H
and H–H rdfs gOH(r) and gHH(r). The O–H rdf is instructive,
because its peak at r ≃ 1.75 Å directly probes the H-bond
between the donor H and the acceptor O. All the BLYP-based
simulations that reported gOH(r) (see, e.g., Refs. 69, 149,
248, 258, and 263) found the height of this H-bond peak
to be overestimated by ∼30%. Both force-field and DFT-
based simulations that have accounted for QNE by the path-
integral technique27,258 suggest that the quantum nature of the
proton might explain as much as half of this overstructuring.
However, there is little doubt that the other half is due to
errors of the BLYP functional. The overstructuring also affects
gHH(r).69,149,258,263

The disagreements with experiment are more severe
with the PBE functional. All the PBE-based simulations
reported over the past 10 years (references in Table VII)
give a substantially over-structured liquid, the height of the
first peak and the first minimum in gOO(r) being typically
gmax

OO ≃ 3.4 and gmin
OO ≃ 0.4, respectively, compared with the
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TABLE VII. Summary of simulations of liquid water performed with PBE, revPBE, RPBE, and PBE0 function-
als. Columns as in Table VI. All constant-volume simulations performed at density close to 1.0 g/cm3, unless
otherwise noted.

Reference sim-alg N T ρeq tpr rmax
OO gmax

OO rmin
OO gmin

OO D

PBE functional

286 NVE/CP 54 291 . . . 20 2.70 3.35 3.27 0.45 0.3
69 NVE/CP 54 295 . . . 20 2.71 3.27 3.32 0.46 0.1
70 NVT /BO 64 306 . . . 20 2.72 3.83 3.25 0.33 0.1
72 NVT /CP 32 325 . . . 20 2.70 3.32 3.30 0.27 0.12
74 NVE/CP,BO 32 337 . . . 20 2.71 3.18 3.25 0.42 0.6
266 NVT /CP 32 350 . . . 10 2.70 2.99 3.29 0.47 0.47
287 NVT /BO 54 320 . . . 20 2.78 3.0 3.30 0.60 . . .
317 NVT /BO 64 300 . . . 15 2.72 3.57 3.22 0.30 . . .
268 NVE/BO 64 313 . . . 13 2.70 3.40 3.28 0.38 . . .
265 NVT /BO 64 300 . . . 15-50 2.70 3.50 3.25 0.40 . . .
251 NVT /BOa 64 300 . . . <250 2.73 3.25 3.28 0.44 . . .
273 NPT /BO 64 330 0.87 25-45 2.76 3.54 3.40 0.30 . . .
269 NVT /BO 64 330 . . . 30 2.70 3.55 3.30 0.35 . . .
112 NVE/BO 32 297 . . . 20 2.71 3.67 3.24 0.28 . . .
32 NVE/BO 32 367 . . . 17 2.70 3.35 3.33 0.40 . . .
285 NVE/BOb 64 299 . . . 10 2.75 2.93 3.38 0.63 . . .
276 NVE/CP 64 314 . . . 50-117 2.72 3.19 3.27 0.43 0.3
264 NVE/BO 64 334 . . . 17 2.72 3.30 3.27 0.37 . . .
267 NVT /CP 64 300 . . . 20 2.69 3.28 3.28 0.37 0.20
279 NPH/BO 64 349 0.87 20 2.75 3.40 3.40 0.30 . . .
280 NVT /BO 64 400 0.81 8 × 20 . . . . . . . . . . . . . . .

revPBE functional

266 NVT /CP 32 350 - 10 2.81 2.29 3.34 0.80 1.8
251 NVT /BOa 64 300 - <250 2.77 3.01 3.31 0.50 . . .
144 NVE/BOc 64 341 - 20 2.83 2.35 3.45 0.85 2.7
276 NVE/CP 64 323 - 50-117 2.80 2.38 3.34 0.90 2.1

RPBE functional

313 NVE/BO 32 300 . . . 17-32 2.82 2.50 3.40 0.95 . . .
265 NVT /BO 64 300 . . . 15-50 2.78 2.60 3.27 0.70 . . .
251 NVT /BOa 64 300 . . . <250 2.75 3.19 3.32 0.42 . . .
264 NVE/BO 64 295 . . . 17 2.76 2.80 3.30 0.68 . . .

PBE0 functional

266 NVT /CP 32 350 . . . 10 2.74 2.58 3.35 0.73 2.8
268 NVE/BO 64 325 . . . 13 2.70 3.30 3.30 0.40 . . .
269 NVT /BO 64 330 . . . 30 2.70 3.45 3.30 0.40 . . .
112 NVE/BO 32 330 . . . 20 2.68 3.01 3.31 0.58 . . .
32 NVE/BO 32 374 . . . 17 2.73 2.95 3.37 0.60 . . .
267 NVT /CP 64 300 . . . 20 2.71 2.96 3.30 0.53 0.67
280 NVT /BO 64 400 0.71 8 × 20 . . . . . . . . . . . . . . .
270 NPT /MC 64 295 0.83 . . . 2.78 3.28 3.42 0.35 . . .

aEmploys a form of coupled electron-ion dynamics that maintains the system close to the BO surface.
bIntramolecular O–H bond-lengths fixed at gas-phase value.
cDensity of simulated system 0.95 g/cm3.

experimental values of 2.57 and 0.84 (Fig. 8 and Table VII).
The very deep first minimum is particularly significant, since
it indicates a strong suppression of close approaches by
non-H-bonded monomers. The overstructuring is even more
striking in gOH(r) and gHH(r),70,264 with the height of the
H-bond peak in gOH(r) at r ≃ 1.75 Å being overestimated
by ∼50% and similarly large errors in gHH(r) (see Fig. 8).
Correspondingly, the self-diffusion coefficient is grossly

underestimated, being too low compared with experiment
by about a factor of 10. The only other GGAs that have seen
more than occasional use in water simulations are revPBE
and the closely related RPBE (references in Table VII).
Almost all the simulations reported with these functionals
agree that they yield a liquid with much less structure (see
Fig. 8) and a higher diffusivity than BLYP and PBE (but see
Ref. 251).
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The foregoing comparisons show that the structure and
diffusivity of the liquid differ substantially for different GGAs.
It would be surprising if this were not so, since we saw in
Secs. III, V, and VII that the H-bond energy depends strongly
on the choice of GGA, and Fig. 6 demonstrates the close
relationship between the errors in GGA binding energies of
clusters and ice. The properties of the liquid at specified
density and temperature presumably depend on the H-bond
energy, and it is natural to ask if the trends in predicted
structure and diffusivity correspond in some way to the trends
illustrated in Fig. 6. The paper of Mattsson and Mattsson265

appears to be the only one that has systematically addressed
this important question, and we reproduce in Fig. 9 their O–O
rdfs computed at T = 300 K with the series of semi-local
functionals RPBE, BLYP, PBE, AM05, PBEsol, LDA. The
functionals that yield highly overstructured water are likely
to give a glassy state at 300 K, but the trend of increasing
structural ordering along this series is nonetheless clear, as
is the steady leftward shift of the first-peak position rmax

OO .
The order of this trend is also the order of increasing dimer
binding energy (see Table I), with the possible exception of
the AM05 approximation, which appears to give a slightly
lower dimer binding energy than PBE.265 We return later to
the close correlation between structural ordering in the liquid
and H-bond energy.

As noted in Secs. II and IV, GGAs generally overestimate
the polarizability of the water molecule by ∼10%, so
that they might be expected to exaggerate the cooperative
enhancement of H-bonding in condensed phases. Furthermore,
they underestimate the stretching frequencies of the water
monomer by 3%-5%, and the excessive flexibility of the
intramolecular OH bonds may further strengthen H-bonding.
These are reasons for expecting hybrids to soften the
structure of the liquid, since they give better polarizabilities
and monomer frequencies. The evidence on this point is
not entirely unanimous. The early simulations of Todorova
et al.,266 performed at T = 350 K, showed a substantial
softening when the PBE functional is replaced by PBE0,
with gmax

OO decreasing from 2.99 to 2.58 and gmin
OO increasing

from 0.47 to 0.73. Subsequent work of Zhang et al.100,112

FIG. 9. The O–O rdf of liquid water at experimental density and T = 300 K
computed with a series of semi-local functionals. Adapted from Ref. 265,
with permission.

and DiStasio et al.267 also found that PBE0 produces a softer
structure than PBE, but the softening found in the latter work
is fairly weak, with gmax

OO decreasing from 3.22 to 2.98 and gmin
OO

increasing from 0.38 to 0.52. Simulations reported by Guidon
et al.268,269 found very little change in structure from PBE to
PBE0 even when the fraction of exact exchange in PBE0 is
increased from its normal value of 25% all the way to 100%.
However, there is very recent evidence270 that basis-set errors
in the ADM (Auxiliary Density Matrix) technique employed
in Ref. 269 may have had the effect of slightly hardening the
structure, so that the small softening due to exact exchange
was perhaps masked.

All the comparisons we have presented so far for GGA
and hybrid functionals have been for fixed densities very close
to the experimental value. However, a major failing of GGAs
is that they give very inaccurate pressure-volume relations
for the liquid. One manifestation of this is that if simulations
are performed at zero pressure, for example by working
with the (N PT) ensemble, then the average density ρeq
deviates markedly from the experimental value. Equivalently,
in simulations at fixed volume, the average pressure is poorly
predicted. Since pressure is routinely calculated (though not
always reported) in constant-volume simulations, these errors
are straightforward to detect.

The simulations of Kuo and Mundy,271 in which BLYP-
based simulations were used to study the density profile
in a water slab with free surfaces, suggested that BLYP
underestimates ρeq by ∼15%, giving a value of ∼0.85 g/cm3.
An underestimate of this order was confirmed soon afterwards
by simulations performed in the (N,P,T) ensemble using
MC sampling,272 which also employed the BLYP functional.
These indicated an equilibrium density at T = 298 K of
ca. 0.80 g/cm3. This substantial underestimate has since
been confirmed by many studies,149,192,273–277 though the
numerical values have been surprisingly variable, with ρeq
ranging from 0.74 g/cm3 273 to 0.92 g/cm3.275,276 Related
work has shown that revPBE gives even lower densities,144,276

with ρeq ranging from 0.69 to 0.85 g/cm3. PBE also
underestimates the density,144,273,276,278–280 but more modestly,
with ρeq varying from 0.86 to 0.96 g/cm3 in different studies.
One of the few DFT studies of the moderately compressed
liquid is that of Ref. 115, which reported BLYP and PBE
simulations at a density of 1.245 g/cm3, and T = 420 K,
where the experimental pressure is 15 kbar. As would be
expected from the predictions of these GGAs near ambient
conditions, BLYP was found to give a greatly overestimated
pressure of 32 kbar, while the PBE value of 24 kbar was
less in error. Values of the equilibrium density from GGA
simulations are summarized in Tables VI and VII, and we
note that all studies that compare values of ρeq predicted by
different functionals agree that the estimated densities come
in the order revPBE < BLYP < PBE < expt. This trend
is consistent with the natural supposition that ρeq computed
with GGAs will tend to increase with increasing H-bond
energy.

The large body of work based on semi-local and hybrid
functionals thus indicates that increasing the H-bond energy
enhances the ordering of the liquid and reduces the diffusivity,
and also (slightly more tentatively) increases the equilibrium
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density. However, functionals that give a more realistic degree
of ordering and diffusivity also severely underestimate the
equilibrium density. This comes as no surprise, since the work
on clusters and ice structures taught us that to get both good
H-bond energies and a correct extended-compact balance,
dispersion is needed.

D. Dispersion-inclusive approximations

With these ideas in mind, we now turn to simulations
of the liquid performed with dispersion-inclusive DFT
approximations, which have been reported using various
representations of dispersion added to a number of
different GGAs and hybrids. The main features of the
simulations reviewed here are summarized in Tables VIII
and IX. We start by discussing the very popular approach
in which correction potentials are added to the BLYP
functional.143,248,273–277,281–283 As noted in the sections on
clusters and ice structures and in the Appendix, there are

a number of methods of this type, including the different
versions of BLYP-D due to the Grimme group,131–133 and
DCACP-corrected BLYP as developed by Rothlisberger and
co-workers.138 It is convenient to include here simulations
based on BLYP+GAP,149,192 which corrects almost exactly
for the 1- and 2-body errors of BLYP and therefore accounts
for dispersion, which is expected to be mainly a 2-body
interaction in water systems.182 We already know that all
these methods give a much better description of clusters and
ice structures than BLYP itself, so there is good reason to
hope for improvements in the liquid as well.

Almost all the simulations based on corrected BLYP
agree that the addition of dispersion substantially increases
the equilibrium density ρeq, softens the liquid structure,
and increases the diffusivity. Since uncorrected BLYP
considerably underestimates ρeq, somewhat overstructures the
liquid, and suppresses diffusion, this means that the changes
brought by dispersion are all in the right direction. The
large differences in the liquid properties given by different

TABLE VIII. Summary of DFT simulations of liquid water performed with dispersion-inclusive functionals
based on BLYP and PBE. Columns as in Tables VI and VII, but with column 2 showing dispersion type.
All constant-volume simulations performed at density close to 1.0 g/cm3, unless otherwise noted. Dispersion
types: D1, D2, D3 are Grimme dispersion of Refs. 131–133, respectively; DCACP (dispersion-correcting atomic-
centered potentials) is technique of Ref. 138; TS is Tkatchenko-Scheffler technique;134 DRSLL is non-local
correlation technique of Dion et al.;135 GAP (Gaussian approximation potential) is technique of Refs. 149 and
150.

Reference disp sim-alg N T ρeq tpr rmax
OO gmax

OO rmin
OO gmin

OO D

Based on BLYP functional

273 D1 NPT /BO 64 330 0.99 25-45 2.80 2.78 3.45 0.80 . . .
275 D2 NPT /CP 64 300 1.07 20 2.73 2.84 3.50 1.00 . . .
274 D2 NVT /BO/slaba 216 330 ∼1.0 15 2.77 2.87 3.35 0.52 . . .
276 D2 NVE/CP 64 321 . . . 50-117 2.78 2.83 3.44 0.77 1.6
248 D2 NVE/BO 64 328 . . . 40 2.76 3.17 3.40 0.63 0.71
281 D3 NVT /BO 128 322 . . . 122 2.85 2.76 3.50 0.80 1.6
283 D3 NVT /BO 125 385 . . . 13 2.79 2.40 3.65 0.90 . . .
277 D3 NPT /MC 64 295 1.07 . . . 2.78 3.01 3.51 1.00 . . .
248 D3 NVE/BO 64 330 . . . 40 2.79 2.80 3.47 0.80 1.81
270 D3 NPT /MC 64 295 1.07 . . . 2.78 2.78 3.51 0.92 . . .
143 DCACP NVE/CP 64 325 . . . 20 2.79 2.67 3.38 0.85 . . .
276 DCACP NVE/CP 64 308 . . . 50-117 2.79 2.72 3.36 0.85 1.7
149 GAP NVE/BO 64 308 . . . 25 2.79 2.85 3.35 0.76 1.7
192 GAP NVT /BOb 64 350 1.05 20 2.75 2.60 3.50 0.90 . . .

Based on PBE functional

273 D1 NPT /BO 64 330 0.94 25-45 2.76 3.35 3.35 0.45 . . .
276 D2 NVE/CP 64 324 . . . 50-117 2.72 3.23 3.30 0.47 0.6
277 D3 NPT /MC 64 295 1.06 . . . 2.73 3.24 3.15 0.73 . . .
264 D3 NVE/BO 64 348 . . . 17 2.72 3.30 3.27 0.42 . . .
248 D3 NVE/BO 64 324 . . . 40 2.72 3.38 3.29 0.42 0.39
280 D3 NVT /BO 64 400 1.02 8 × 20 . . . . . . . . . . . . . . .
270 D3 NPT /MC 64 295 1.06 . . . 2.73 3.07 3.25 0.69 . . .
276 DCACP NVE/CP 64 323 . . . 50-117 2.71 3.27 3.28 0.40 0.5
267 TS NVT /CP 64 300 . . . 20 2.71 2.99 3.27 0.54 0.44
144 DRSLL NVE/BO 64 304 1.13 20 2.83 2.17 3.38 0.92 2.08
112 DRSLL NVE/BO 32 295 . . . 20 2.80 2.77 3.34 0.71 . . .
278 DRSLL NVE/BO 128 301 1.18 20 2.80 2.51 3.40 1.00 1.7
248 DRSLL NVE/BO 64 328 . . . 40 2.82 2.41 3.58 1.03 2.57

aSlab with free surfaces.
bDensity of simulated system 1.05 g/cm3 gives pressure close to 0.
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TABLE IX. Summary of DFT simulations of liquid water performed with dispersion-inclusive functionals
based on revPBE, RPBE, optB88, optPBE, rPW86, and PBE0. Columns as in Table VIII. All constant-volume
simulations performed at density close to 1.0 g/cm3, unless otherwise noted. Dispersion types: D2, D3 are
Grimme dispersion of Refs. 132 and 133, respectively; DCACP (dispersion-correcting atomic-centered potentials)
is technique of Ref. 138; TS is Tkatchenko-Scheffler technique;134 DRSLL is non-local correlation technique of
Dion et al.;135 rPW86-DF2 is revised form of DRSLL due to Lee et al.;140 VV10 is non-correlation technique of
Vydrov and Van Voorhis;137 rVV10-b9.3 is revised form of VV10 due to Sabatini et al.311

Reference disp sim-alg N T ρeq tpr rmax
OO gmax

OO rmin
OO gmin

OO D

Based on revPBE functional

276 D2 NVE/CP 64 322 . . . 50-117 2.80 2.34 3.55 0.95 3.4
248 D3 NVE/BO 64 316 . . . 40 2.81 2.54 3.51 0.83 1.85
276 DCACP NVE/CP 64 331 . . . 50-117 2.74 2.94 3.35 0.76 1.6
144 DRSLL NVE/BO 64 300 1.02 20 2.92 2.35 3.46 1.10 2.63

Based on RPBE functional

264 D3 NVE/BO 64 314 . . . 17 2.80 2.58 3.40 0.83 . . .

Based on optB88 functional

112 DRSLL NVE/BO 32 326 . . . 20 2.78 2.83 3.33 0.73 . . .
248 DRSLL NVE/BO 64 341 . . . 40 2.76 2.75 3.33 0.75 1.57
270 DRSLL NPT /MC 64 295 1.08 . . . 2.74 2.94 3.34 0.80 . . .

Based on optPBE functional

285 DRSLL NVE/BO 64 276 . . . 10 2.88 2.32 . . . . . . . . .

Based on rPW86 functional

112 rPW86-DF2 NVE/BO 32 291 . . . 20 2.84 2.54 3.56 0.94 . . .
285 rPW86-DF2 NVE/BO 64 283 . . . 10 2.90 2.50 . . . . . . . . .
278 VV10 NVE/BO 200 300 1.19 20 2.75 3.1 3.3 0.60 . . .
279 rVV10-b9.3 NPH/BO 64 342 0.99 20 2.75 2.95 3.30 0.63 1.5
270 rVV10 NPT /MC 64 295 1.08 . . . 2.73 3.22 3.32 0.79 . . .

Based on PBE0 functional

267 TS NVT /CP 64 300 . . . 20 2.72 2.76 3.31 0.70 0.98
277 D3 NPT /MC 64 295 1.02 . . . 2.74 3.23 3.30 0.67 . . .
280 D3 NVT /BO 64 400 0.96 8 × 20 . . . . . . . . . . . . . . .
270 D3 NPT /MC 64 295 1.05 . . . 2.74 2.88 3.29 0.79 . . .

simulations based on uncorrected BLYP (see above) carry over
to dispersion-corrected BLYP, as can be seen in Table VIII.
Focusing on the areas of agreement first, we note from the
Table that all the correction methods increase ρeq by between
0.10 and 0.25 g/cm3.192,273–277 Taken together, the calculations
suggest that with dispersion-corrected BLYP, ρeq is slightly
overestimated, perhaps by ∼5%. This is not unexpected, since
we saw that BLYP corrected for 1- and 2-body errors using
GAP overbinds both water clusters and ice structures and tends
to compress both. The liquid structure is softened in similar
ways by the different forms of dispersion-corrected BLYP, the
value of gmax

OO being lowered by ∼0.30 and the value of gmin
OO

being raised by ∼0.20. Perhaps most important is that most
of the simulations give gmin

OO ≃ 0.78, which is close to the well
established experimental value of 0.84 and is very much better
than the value of gmin

OO ≃ 0.60 given by uncorrected BLYP. An
example of the softening effect of adding dispersion to BLYP
is shown in Fig. 10. (We include in this figure gOO(r) obtained
from the recent high-energy x-ray data of Ref. 243, which
is expected to be more accurate than earlier experimental

measurements of gOO(r).) As expected from the structural
softening, all the simulations agree that correcting BLYP for
dispersion increases the diffusion coefficient D by a factor
of 2-3, thus bringing it into fair agreement with experiment
(correction for system-size errors is essential in making this
comparison, as emphasized above). The general consensus is
that BLYP corrected for dispersion, whether in the form of
BLYP-D, BLYP-DCACP, or BLYP+GAP, is a considerable
improvement over BLYP itself, as might be hoped from the
reasonable performance of these approximations for clusters
and ice structures.

Two caveats should be noted, however. First, the BLYP-
D2 simulation of Ma et al.,275 which gave a high ρeq of
1.07 g/cm3, predicted a significant under-structuring of the
liquid. The authors of Ref. 275 stress that their simulations are
performed very close to the CBS limit, and they suggest that
the basis sets used to generate Grimme’s D2 representation of
dispersion may not have been large enough to guarantee
compatibility with their own basis sets. This suggestion
appears to deserve further investigation. Second, dispersion-
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FIG. 10. Oxygen-oxygen rdf gOO(r ) of liquid water from BLYP and
dispersion-inclusive DFT approximations, compared with experiment. Sim-
ulation results are from Ref. 248. Experimental results are from joint refine-
ment of neutron and x-ray measurements319 (expt. 1: solid black curve) and
from high-energy x-ray diffraction measurements243 (expt. 2: dashed black
curve).

corrected BLYP cannot be regarded as fully satisfactory, since
we know that it suffers from beyond-2-body over-binding,
which is presumably the reason why its value of ρeq is too
high by a few percent in most of the simulations.

The PBE approximation has rivalled BLYP in popularity
as a starting point for adding dispersion, with a wide variety
of techniques used to represent the dispersion. Simulations
of liquid water have been published using the representations
of dispersion due to Grimme264,273,277,280 and Tkatchenko-
Scheffler,267 as well as the DCACP method.276 Furthermore,
several simulations have been reported in which the non-local
correlation functional pioneered by Lundqvist, Langreth, and
co-workers is paired with PBE.100,112,144 We also refer here
to a simulation of the compressed liquid based on GAP-
corrected PBE.115 As expected, the addition of dispersion
to PBE generally increases ρeq, though this leads to an
overestimate by ∼13% in the case of PBE-DRSLL (see
Table VIII). Interestingly, the almost exact GAP correction
for 1- and 2-body errors gives very little change of pressure
in the compressed liquid at density 1.245 g/cm3,115 so that
the error in the pressure given by PBE appears to be mainly a
beyond-2-body effect.

With PBE as the starting approximation, the effect of
dispersion on the liquid structure depends strongly on the
method used to represent dispersion. The simulations based
on Grimme PBE-D248,264,273,277,280 all show that the addition
of dispersion does not cure the marked over-structuring given
by PBE itself. In these simulations, the values of gmax

OO and
gmin

OO are 3.2-3.4 and 0.4-0.5, respectively, compared with
the experimental values 2.57 and 0.84 (see Table VIII), as
we illustrate for the case of PBE-D3 in Fig. 10. The same
lack of structural softening was found with PBE-DCACP,276

but the PBE-TS approximation appears to produce a modest
softening,267 the dispersion-corrected values of gmax

OO and gmin
OO

being 2.99 and 0.54. However, with DRSLL the softening
is much stronger,100,112,144,248,278 the corrected values of gmax

OO
and gmin

OO being typically ∼2.6 and ∼0.8 (see Fig. 10). Such
large differences between the PBE-based methods seem less
surprising if one recalls (Sec. III) the strong overbinding
produced by PBE-DRSLL in the range of O–O distances
3.0-4.0 Å compared with PBE-D3 and PBE-TS. We note also
our earlier comments about the wisdom of adding 2-body
dispersion to PBE, given that PBE already slightly overbinds
ice Ih and is known to suffer from significant beyond-2-body
errors. We return to this question later.

We know from our discussion of ice energetics that the
success of the Lundqvist-Langreth approach depends very
much on the underlying exchange functional with which
dispersion is coupled. In addition to the PBE-DRSLL work
just discussed, there have been several other simulations of
the liquid in which DRSLL-type representations of dispersion
are used in conjunction with different GGAs. The original
version of DRSLL135 was based on the revPBE approximation,
and simulations employing this version, referred to here
as revPBE-DRSLL, have been reported by Wang et al.144

We recall that uncorrected revPBE and RPBE are the only
GGAs discussed earlier that do not suffer from significant
overstructuring, their O–O rdfs at a density of 1.00 g/cm3

being in fair agreement with experiment, though revPBE gives
an unacceptably high pressure at this density. According to the
simulations,144 the use of DRSLL dispersion in conjunction
with revPBE corrects the large error in pressure, but seriously
worsens the liquid structure. In particular, revPBE-DRSLL
produces a completely spurious peak in gOO(r) in the region
where the first minimum should be. The poor performance
of this functional is not unexpected, since we know that it
binds the water dimer and ice Ih structure much too weakly.
We have also found284 that the 2-body energy given by
revPBE-DRSLL is significantly overbound in the important
region 3.0 < ROO < 4.0 Å, and this presumably worsens the
liquid structure still further. The effect of adding Grimme D2
or D3 dispersion to revPBE has been studied by Lin et al.276

and Bankura et al.,248 who both found moderate agreement
with experiment (see Fig. 10). Strangely, revPBE-DCACP
appears to be somewhat more structured than revPBE,276

though the authors caution that the DCACP parameters may
be unphysical in the case of revPBE.276

The known underbinding of revPBE-DRSLL and
overbinding of PBE-DRSLL make it interesting to investigate
versions of DRSLL that give better H-bond energies, examples
of which are the optB88-DRSLL and optPBE-DRSLL
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functionals proposed by Klimeš et al.,136 and the rPW86-DF2
approximation.140 Simulations of the liquid based on optB88-
DRSLL and rPW86-DF2 have been described by Zhang
et al.,112 who found that the former gave a gOO(r) in
rather close agreement with experiment, while the latter
produced a somewhat understructured liquid. The rPW86-DF2
approximation was also employed by Møgelhøj et al.,285 who
found a more severe understructuring, with the second shell
of gOO(r) almost completely washed out. The same authors
also performed simulations based on optPBE-DRSLL, which
also gave a seriously understructured liquid, with gOO(r) in
poor agreement with experiment. It should be noted that the
simulations of Møgelhøj et al.285 may not give a true indication
of the performance of rPW86-DF2 and optPBE-DRSLL for
the liquid, since they were performed with the intramolecular
O–H bond length held fixed at a value close to the gas-phase
value. It is known that fixing the O–H distance in this way
can substantially soften the liquid structure and increase the
diffusivity.286,287 On the other hand, the simulations of Zhang
et al. were performed on systems of only 32 monomers,
which may have the effect of hardening the liquid structure,
according to Ref. 251. More recently, simulations employing
optB88-DRSLL with a 64-molecule cell, reported by Bankura
et al.,248 confirm that this functional gives a gOO(r) in quite
close agreement with experiment (Fig. 10).

It has been argued in recent papers267,277,280 that the most
accurate XC functionals for water will need to include both
dispersion and a fraction of exact exchange. We noted above
the evidence that the over-structuring of the liquid predicted
by PBE is reduced both by adding the TS form of dispersion
and by replacing PBE by the hybrid functional PBE0, and
DiStasio et al.267 have shown that PBE0-TS produces an O–O
rdf that agrees fairly closely with diffraction data, if allowance
is made for QNE. However, one should bear in mind the
deficiencies of PBE0-TS for ice energetics, and particularly
its overbinding of ice Ih and its substantial overestimate of
the energy difference between ice VIII and ice Ih. There
is evidence that PBE0-D3 gives a satisfactory equilibrium
density of the liquid.277,280

Several things are clear from our survey of DFT
simulations of the liquid. First, no GGA can simultaneously
describe its structure, dynamics, and thermodynamics; second,
a fraction of exact exchange appears to help but does not solve
the essential problem; third, there are promising signs that a
fully satisfactory description may be achievable by dispersion-
inclusive DFT, if the large inconsistencies between different
approaches can be understood and resolved. In Sec. IX, we
try to draw together the main lessons that can be learnt
from DFT work on all the water systems discussed in this
review. In the light of those lessons, we will then offer a more
detailed interpretation of DFT approximations for the liquid in
Sec. IX C.

IX. DISCUSSION AND OUTLOOK

A. Overview

The extensive DFT work on water systems reviewed
here contains a wealth of information about the strengths

and weaknesses of a wide variety of XC approximations.
Encouragingly, there are now dispersion-inclusive methods
among them that describe fairly accurately the properties of
water clusters, ice structures, and the liquid. One of our aims
here has been to aid further progress by elucidating the main
reasons why some approximations are more successful than
others. We have approached our task by attempting to analyze
the performance of XC functionals in describing the main
components of the energy, namely, first-order electrostatics,
polarization (induction), dispersion, and weak covalency
(charge transfer), all acting in concert with exchange-overlap
interactions. In addition, we have noted that the energetics
of intra-molecular deformation can be important. We try to
summarize here what we have learnt.

B. Components of the energy

Since first-order electrostatics depends only on the
charge distributions of unperturbed molecules, it is accurately
reproduced by a functional that describes the monomer
correctly. Likewise, the polarizability part of the energy is
correct if the functional describes the response of the monomer
to appropriate electric fields. We saw in Sec. II that GGAs
generally describe the dipole and quadrupole moments of the
monomer quite well. However, they somewhat overestimate
polarizabilities, the predicted dipolar polarizability being
typically 10% too large. Hybrid functionals such as PBE0
and B3LYP give much more accurate polarizabilities. As
noted in Sec. IV, the GGA errors of polarizability would
be expected to exaggerate the cooperative enhancement of
H-bond energies, which should be better described by hybrids,
and this is indeed the case for small clusters. In line with this,
we saw in Sec. VII that the PBE binding energy of ice Ih is
stronger than the PBE0 binding by nearly 40 meV/monomer,
which is a significant difference. We comment below on the
effect of GGA polarizability errors in the liquid. We saw in
Sec. II that the intramolecular vibrational frequencies provide
an important measure of the deformability of the monomer
from its gas-phase geometry. The O–H stretch frequencies are
appreciably underestimated by GGAs, so that the monomer
is too easily deformable, but hybrid functionals are more
accurate. The effect of deformability errors on the liquid will
be noted later.

We now turn to dispersion, which has been the focus
of much of the more recent work reviewed here. We have
shown that semi-local functionals are generally incapable
of accounting for the energy balance between extended and
compact structures of water systems. They incorrectly favor
the ring and book isomers of the hexamer over the prism
and cage (Sec. V), and they grossly exaggerate the energy
differences between compressed ice structures such as ice VIII
and the ambient Ih structure (Sec. VII). We have reviewed
work based on a variety of dispersion-inclusive approaches,
including those based on true non-local functionals,135–137,140

those that add heuristic dispersion potentials to chosen semi-
local functionals,131–134 and those employing parameterized
electron-ion potentials to mimic dispersion effects.138 Our
survey has shown that all these approaches achieve greatly
improved energy differences between extended and compact
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structures in clusters and ice structures. The crucial role
of dispersion is thus beyond doubt. However, not all the
dispersion-inclusive methods are equally good, because some
of them achieve their improvements at the expense of worse
H-bond energies in the dimer, the ring-hexamer, and ice
Ih. These problems are connected with the description of
exchange-overlap interactions. We have also seen (Sec. III)
that there can be substantial differences in the distance
dependence of the 2-body energy predicted by different
dispersion-inclusive methods, even when these are based on
exactly the same semi-local functional.

We have shown that H-bond energies predicted by GGAs
and hybrids in the dimer, the ring hexamer, and ice Ih vary over
a wide range, their strength being underestimated by ∼25%
by revPBE and overestimated by ∼30% by PBEsol. (LDA
overestimates by ∼80%.) We noted that this wide variation
is mainly due to the very different behavior of the exchange-
enhancement factor at large reduced density gradient, and
we recalled that this mechanism was first recognized many
years ago as a general effect for dimers of closed-shell
atoms and molecules. Some approximations such as PBE
give an attractive interaction between closed-shell systems
which mimics dispersion, but is in fact a mis-description
of the exchange-overlap interaction. More strongly repulsive
GGAs such as BLYP give no such attraction. This means that
in order to reproduce the H-bond energy while also obtaining
the correct extended-compact balance, dispersion should be
added to a semi-local functional whose overlap interaction
is given by an appropriately designed exchange-enhancement
factor. This idea underlies the design of improved versions
of the dispersion-inclusive functionals136,140 based on the
approach of Dion et al.,135 and the general importance of
the choice of semi-local functional in constructing dispersion-
inclusive approximations has been stressed by a number of
authors.140,144,181,288 An interesting example of this is that the
good accuracy of the PBE approximation for the H-bond
energies of the dimer, the ring hexamer, and ice Ih is due
to its spurious exchange attraction mimicking the missing
dispersion.

If dispersion could be mimicked by spurious exchange
attraction without other errors, the failure of PBE to describe
the extended-compact energy balance would be paradoxical.
However, we saw in our discussion of the hexamer, the
larger thermal clusters, and the ice structures that the paradox
is resolved by many-body errors. Exchange-enhancement
factors that create a spurious 2-body exchange attraction
also give a spurious beyond-2-body repulsion, and this
explains why PBE incorrectly destabilizes the prism and cage
isomers of the hexamer; the same mechanism contributes to
its destabilization of compressed ice structures. The same
beyond-2-body errors are seen in the large thermal clusters
(Sec. VI). By contrast, the BLYP approximation exaggerates
2-body exchange repulsion and beyond-2-body exchange
attraction, so that correction for its 2-body errors gives a
moderate degree of overbinding, as we saw for the ice
structures. The implication is that to obtain both correct
binding energies of extended structures and correct relative
energies of compact and extended structures, it is essential
to use functionals that give both correct dispersion and

correct exchange-overlap interactions. This is the message
that emerges from the work on clusters and ice structures.

The final energy component needing comment is weak
covalency, sometimes referred to as “charge transfer” or
“delocalization” energy. We noted in the Introduction that the
contribution of this mechanism to H-bonding in water systems
has been much debated. It has been claimed23 that Compton
scattering can be used to characterize the strength of partial
covalency in ice Ih, but subsequent analysis80,81 suggests
that this is not the case. However, later experimental work
based on photoelectron and x-ray absorption spectroscopy24

has been interpreted to indicate that electron transfer between
monomers plays a significant part in determining charge
redistribution in ice, and by implication in liquid water.
It seems clear that quantitative statements about partial
covalency depend significantly on the definition adopted.
However, whatever definition is used, it appears to us that
the self-interaction error committed by most practical XC
approximations is likely to exaggerate the degree of partial
covalency, as has been noted in the general context of
H-bonding in Ref. 289. This may be the reason why GGAs,
and to a lesser extent hybrids, systematically overestimate the
energy difference between non-H-bonded geometries of the
water dimer and its global minimum. We noted in Sec. VII that
this error may contribute to the destabilization of compressed
ice structures. This possibility merits further study.

To summarize our analysis of DFT errors in the various
energy components: the most important deficiencies of
conventional GGAs and hybrids lie in their poor description
of dispersion and exchange-overlap interactions; dispersion-
inclusive methods must describe both correctly if binding
energies and the extended-compact energy balance are to come
out right. Accurate polarizabilities and monomer deformation
energies are also not unimportant, so the incorporation of an
appropriate fraction of exact exchange is desirable. Errors in
describing partial covalency may not be entirely negligible.

C. Interpreting DFT simulations of the liquid

The strengths and weaknesses of XC approximations for
clusters and ice structures that we have just outlined help to
explain the characteristic features of DFT simulations of the
liquid. We noted in Sec. VIII that a key structural feature of
the ambient liquid is the degree of CSP, i.e., the probability
of finding molecules at O–O separations in the range between
3.0 and 4.0 Å that is unoccupied in ice Ih. We can characterize
CSP crudely by the value of gmin

OO , the value of gOO(r) at
its first minimum. We saw that gmin

OO depends strongly on
XC approximation, ranging from ∼0.4 for uncorrected PBE
to ∼0.9 for dispersion-inclusive revPBE-DRSLL, compared
with the experimental value of 0.84 at ambient conditions. The
diffusion coefficient D correlates with gmin

OO , being too small
by a factor of ∼10 when gmin

OO ≃ 0.4 and being in reasonable
agreement with experiment when gmin

OO ≃ 0.8.
Two important energies would be expected to govern the

degree of CSP. The first is the H-bond energy, characterized
roughly by the sublimation energy EIh

sub of ice Ih, which is
closely correlated with the binding energy Edim

b of the dimer
(Fig. 6). If the H-bond energy is too strong, it will be too
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difficult to break H-bonds in the liquid, which will become
too ordered, with too little CSP. But we must also consider
the energy change associated with the close approach of
molecules that are not H-bonded to each other, which can
be crudely characterized by the difference of sublimation
energy ∆EIh−VIII

sub between ice VIII and ice Ih. Even if an
XC approximation gives EIh

sub correctly, the liquid can still
be over-structured because ∆EIh−VIII

sub is too large, as is the
case with uncorrected PBE. In addition to these two key
energies, the distance dependence of the 2-body energy is also
important.

By varying the semi-local functional and the dispersion
that is added to it, we control both EIh

sub and ∆EIh−VIII
sub . We

saw in Sec. VIII that as we pass through the series of
GGAs in order of increasing EIh

sub, the values of gmin
OO and

D systematically decrease, while the equilibrium density ρeq
increases. However, good values of all three quantities cannot
be obtained simultaneously with any GGA, and in addition
∆EIh−VIII

sub is always seriously in error. If we add suitable
dispersion to an appropriately chosen GGA, we can ensure
that both EIh

sub and ∆EIh−VIII
sub are correct, as we know from

the work on ice structures (Sec. VII). We saw in Sec. VIII
that there are functionals that are not far from satisfying these
conditions, while also giving a good description of the liquid:
optB88-DRSLL is one example. This encourages optimism
that satisfactory practical XC functionals for water systems
are achievable.

We consider that correct values for EIh
sub and ∆EIh−VIII

sub
are necessary for an XC functional to be satisfactory, but
they may still not be sufficient to guarantee good liquid
properties. We saw in Sec. III that the PBE-D3, PBE-TS,
and PBE-DRSLL functionals give almost the same dimer
binding energy, but the distance dependences of their 2-
body energies differ greatly, and this appears to explain their
very different liquid structures. This may be an example
of a general problem concerning the distance dependence
of dispersion, which deserves closer scrutiny. For the water
systems we have reviewed, correctness of the 2-body energy
over the range of O–O distances out to ∼4.0 Å appears to be
essential.

Compared with the large effects of dispersion and
exchange-overlap errors, the errors of polarizability and
monomer deformability on the properties of the liquid
appear to be less important. Nevertheless, we have noted
that the overestimated polarizability found with GGAs will
tend to enhance the H-bond strength, and we reviewed the
evidence for a small resulting suppression of CSP. A similar
overstructuring may well be caused by the overestimated
monomer deformability given by GGAs, though as far as we
know this possible effect has never been quantified. The errors
of both polarizability and deformability are much smaller with
hybrid functionals, which should ideally be used as the basis
for dispersion-inclusive simulations, if the computer budget
permits.

D. A scoring scheme

In order to characterize the errors of XC functionals for
water systems, we have devised a scoring scheme, which

assigns a percentage score to any chosen approximation,
according to its performance for the properties of the water
monomer, the dimer, the hexamer, and ice structures. The
physical quantities employed in the present form of our
scoring scheme are as follows. We score the binding energy
of the dimer Edim

b , the binding energy per monomer of the
ring-hexamer Ering

b , and the sublimation energy EIh
sub of ice Ih,

because these characterize the H-bond energy. The difference
per monomer∆Eprism−ring

b ≡ Eprism
b − Ering

b between the binding
energies of the prism and ring isomers of the hexamer, and the
difference ∆EIh−VIII

sub ≡ EIh
sub − EVIII

sub of the sublimation energies
of ice Ih and ice VIII are also crucial, as we have seen.
In addition, we regard the equilibrium O–O distance Rdim

OO
of the dimer and the equilibrium volumes per monomer V Ih

eq
and V VIII

eq of ice phases Ih and VIII as important. Since
the O–H bond-stretch energetics of the H2O monomer may
be important, we characterize this by the symmetric stretch
frequency f mono

ss of the monomer. We have seen that errors in
the distance dependence of the 2-body energy of the dimer
can also be troublesome, and these should clearly be scored,
but we prefer not to attempt this until we have been able to
report on a more detailed examination of dimer energetics
with dispersion-inclusive functionals.284

For each of the scored quantities, the chosen XC
functional gives some value x, which generally deviates from
the benchmark value xbench. We assign a score of 100% if
the magnitude of the deviation is less than a chosen tolerance
δxtol. Otherwise, we deduct 10% for each successive increment
δxtol in |x − xbench|. If |x − xbench| > 11δxtol, a zero score is
given. For the binding energies Edim

b , Ering
b , and EIh

sub, and for
the compact-extensive differences ∆Eprism−ring

b and ∆EIh−VIII
sub ,

we adopt a tolerance of 10 meV, except that in the case of
Eprism−ring

b prediction of the wrong sign gets a score of zero.
For the equilibrium O–O distance of the dimer, the tolerance
is 0.01 Å and for the equilibrium volumes of the ice Ih and
VIII phases our tolerance is a 1% error. We allow a tolerance
of 20 cm−1 for the monomer frequency f mono

ss . Finally, the
overall percentage score for a given functional is simply the
average of all the individual scores.

We present in Table X the individual and overall scores
for the local and semi-local functionals LDA, PBE, BLYP, and
PBE0 and for a selection of dispersion-inclusive functionals.
The XC functionals scored here are those for which data
are readily available, but in the future it would be useful to
score a wider range of functionals. We see from the table
that the local, semi-local, and hybrid functionals all score
rather poorly because they completely fail to reproduce the
energy differences ∆Eprism−ring

b and ∆EIh−VIII
sub , and they also

struggle with the volume per monomer of ice VIII. Some
of the dispersion-inclusive functionals score much better, but
others, such as revPBE-DRSLL, PBE-TS, and BLYP-D3 do
poorly, because of problems with ice energetics and volumes.
Overall, the highest scoring functionals are optPBE-DRSLL,
optB88-DRSLL, PBE0-TS, and rPW86-DF2, although they
have notable deficiencies. It is striking that some functionals
that score well for the binding energies of the dimer and the
ring hexamer and for the relative energy of the ring and prism
isomers of the hexamer can still do poorly for the energies
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TABLE X. Percentage scores of selected XC functionals computed using the scheme explained in Sec. IX D. Physical quantities scored are monomer symmetric

stretch frequency f mono
ss , dimer binding energy Edim

b , ring-hexamer binding energy per monomer E ring
b , ice Ih sublimation energy E Ih

sub, difference ∆Eprism−ring
b

of binding energies per monomer of prism and ring isomers of the hexamer, difference ∆E Ih−VIII
sub of sublimation energies of ice Ih and VIII, equilibrium O–O

distance Rdim
OO in dimer, and equilibrium volumes per monomer V Ih

eq , VVIII
eq of ice Ih and VIII. The total score in the final column is the average of the nine

individual scores. Numerical values leading to the individual scores are taken from earlier Tables in this paper, except for the stretch frequencies f mono
ss . These

frequencies were computed as part of this work, apart from those predicted by LDA, BLYP, and BLYP-D3 functionals. For LDA, the value is taken from
Ref. 318, for BLYP the value is taken from Ref. 97, and the BLYP-D3 and BLYP values are assumed to be the same. Note that data are not available for LDA
for all criteria; the average is made over the 5 data points reported, but it is clear that it is abysmal.

Method f mono
ss Edim

b E
ring
b E Ih

sub ∆E
prism−ring
b ∆E Ih−VIII

sub Rdim
OO V Ih

eq VVIII
eq Total

LDA 60 0 - 0 - 10 0 - - 14
PBE 50 100 80 80 0 0 100 70 20 56
BLYP 20 70 80 50 0 0 60 100 0 42
PBE0 80 100 90 90 0 0 90 70 40 62
revPBE-DRSLL 30 70 60 50 100 100 0 30 0 49
optPBE-DRSLL 40 100 100 50 100 100 60 90 30 74
optB88-DRSLL 60 100 90 20 100 100 50 50 100 74
rPW86-DF2 20 100 100 100 100 100 40 50 0 68
PBE-TS 50 80 60 0 100 40 90 30 50 56
PBE0-TS 80 90 80 40 100 60 90 40 70 72
BLYP-D3 20 100 90 30 100 40 70 50 90 66

and volumes of ice structures. This may be due to errors in
the distance dependence of dispersion.

Any recommendation of the “best” functional must be
tentative, since our scoring table shows that all the functionals
assessed here have faults. The optB88-DRSLL functional
appears to be the most satisfactory, since it has the highest
score and also gives a good liquid structure, according to
Refs. 112 and 248 (see also Table IX). Its strong overbinding
of ice Ih is a cause for concern, but this may be due to
the excessive long-range attraction of the 2-body energy,
which seems to be a feature of DRSLL non-local correlation.
Of the next highest scorers, rPW86-DF2 appears to give
an understructured liquid,112 and optPBE-DRSLL may do
the same.285 Next in the scoring comes the hybrid-based
PBE0-TS, which gives a good liquid structure, but would be
expensive for general use.

It may be worth commenting that our scheme has
something in common with the methods developed by Vega
et al.29,30 for characterizing the ability of force fields to
describe water systems, but differs from them in important
ways. Most significantly, our scheme works only with
simple and readily computable energies and structures that
characterize clusters and ice structures, focusing on those
quantities highlighted in the present review. By contrast,
the scheme of Vega et al. employs quantities such as the
temperature of the maximum density and the surface tension
of the liquid, whose calculation by DFT methods would be
very demanding. Our approach to scoring is based on the idea
that an XC functional should be required to work well for
clusters and ice structures before being seriously considered
for the liquid. However, we stress that a high score in our
scheme may not be either necessary or sufficient to ensure
success in describing the liquid at ambient conditions, since
even simple, unpolarizable force fields can succeed for the
ambient liquid29 in spite of their poor description of clusters,
and our scheme may not yet capture all the key features of
XC functionals. On the other hand, a low score alerts one to

the failure of a functional to describe at least some parts of the
energy adequately. We should also note that our scheme is not
meant to be definitive, and it can be extended and modified to
suit different purposes.

E. Outlook

Kohn Sham DFT is now 50 years old, and is one of
the great success stories of molecular simulations. It has
been extremely productive in furthering our understanding
of water. However, here we have deliberately dwelt on
the difficulties faced by current functionals in describing
water systems, because we think that an analysis of these
difficulties is needed for future progress. The past 10 years
have been immensely fruitful in highlighting the crucial role
of dispersion. However, some representations of dispersion
are clearly not under satisfactory control, since different
dispersion-inclusive methods can produce very different
results. We have also emphasized here the sensitivity of
predictions to the choice of the semi-local part of the XC
functional.

The erratic differences between the various represen-
tations of dispersion already manifest themselves in the
energetics of the dimer, and we think that satisfactory
functionals should be required to reproduce this energetics
accurately. In fact, the parameterization of some types of
dispersion-inclusive functional, including Grimme DFT-D
and the TS functionals, is explicitly based on benchmark
data for molecular dimers such as the S22 set.290 But for
water, the distance dependence of the dispersion damping is
vitally important, and this has sometimes not been considered.
The recent development of “extended” benchmark datasets
which include a range of inter-monomer distances and/or
monomer orientations291,292 is therefore very welcome. We
plan to report elsewhere on a more detailed study of
the energetics of the water dimer than has been possible
here.
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Good dimer energetics is, of course, not enough for water,
because some functionals suffer from substantial many-body
errors, which are unrelated to polarizability or many-body
dispersion, and which depend strongly on the choice of semi-
local functional. Until fairly recently, such many-body errors
for molecular systems have attracted rather little attention.
However, the situation is now changing, with publications
appearing that explicitly investigate these errors.178,184,293,294

The study of molecular trimers is already enough to quantify
some beyond-2-body errors, and in the case of water the
energetics of the hexamer is very informative. We believe that
the question of how to achieve small errors in both the 2-body
and beyond-2-body energies of molecular systems in general
and water in particular will repay deeper study.

This review has focused on the strengths and weaknesses
of XC functionals for a fairly limited set of properties:
mostly energies, structures, and to some extent dynamics.
Getting these basic issues right is a prerequisite to more
detailed study of, e.g., the electronic properties of water in
the condensed phases, dissociation, and proton transfer, the
anomalies mentioned in the Introduction, and, of course, a
mapping of the entire phase diagram of water with DFT.
Although some important work has been done with DFT in
some of these areas recently (see, e.g., Refs. 209, 227, 253,
295, and 296), much more work is needed with a broad range
of functionals before we can provide a full answer to the
question “How good is DFT for water?” The computational
cost of DFT is the main factor that slows progress when
it comes to establishing all the thermodynamic properties
needed to map out the phase diagram of water. With this
in mind, the development of DFT-based machine learning
potentials such as the GAP approach discussed here or the
neural networks from Behler and co-workers297 allow a wider
range of water properties to be explored more rapidly with
DFT-level accuracy.

As a final comment, it is worth noting that benchmark
electronic-structure calculations based on MP2, CCSD(T), and
quantum Monte Carlo are playing an increasingly important
role in assessing DFT methods for clusters and ice structures,
but until now experiment has been the only source of accurate
data for the liquid. The recent publication of simulations of
liquid water based both on MP2277 and on variational quantum
Monte Carlo298 suggests the exciting future possibility of
obtaining benchmark liquid-state data for quantities that
cannot be measured experimentally.
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APPENDIX: OVERVIEW OF
EXCHANGE-CORRELATION FUNCTIONALS

While this is primarily a review on DFT for water, we
include here a brief summary of the main features of some of
the key XC functionals discussed in the review. Our aim here
is not to provide a comprehensive overview of XC functionals,
but rather to provide some useful background information for
those less well versed in the details of the functionals we
refer to. We assume here a spin unpolarized system, whose
distribution of electron number density is ρ(r).

1. Local functionals

The LDA108 was the original approximation used in all
the earliest applications of DFT. Its XC energy ELDA

xc [ρ] is the
sum of the exchange energy ELDA

x and the correlation energy
ELDA

c , which are expressed in terms of the exchange energy
and the correlation energy per electron ϵ0

x(ρ) and ϵ0
c(ρ) in the

uniform electron gas (sometimes called “jellium”) of density
ρ. The approximation takes the form

ELDA
xc = ELDA

x + ELDA
c

=


dr ρ(r)ϵ0

x(ρ(r)) +


dr ρ(r)ϵ0
c(ρ(r)). (A1)

The exchange energy ϵ0
x(ρ) is given by the Hartree-Fock

formula (atomic units): ϵ0
x(ρ) = − 3

4 (3/π)1/3ρ1/3. Approxima-
tions for ϵ0

c(ρ) typically employ parameterized fits to quantum
Monte Carlo data for the uniform electron gas, these fits being
constrained to reproduce the leading terms of the high-density
expansion. For dimers of closed-shell atoms and molecules
(e.g., rare gases), the LDA gives an attraction that resembles
the dispersion interaction but is in fact an artefact due to the
approximation made for exchange.120

2. Generalized gradient approximations

In GGAs,299 the XC energy depends locally on the
gradient of the density ∇ρ as well as the density ρ. The
magnitude of the local gradient can be specified by the
so-called “reduced gradient,” defined as the dimensionless
quantity x ≡ |∇ρ|/ρ4/3 or sometimes as s ≡ x/(2(3π2)1/3), so
that GGAs have the general form

EGGA
xc = EGGA

x + EGGA
c =


dr fx(ρ(r), s(r))

+


dr fc(ρ(r), s(r)), (A2)

where fx and fc specify the local exchange and correlation
parts. However, the exchange part can be simplified, using
an exact condition that it must obey300 under uniform scaling
of the density, as a result of which the exchange part can be
expressed as

EGGA
x [ρ(r)] =


dr ϵ0

x(ρ(r))Fx(s(r)), (A3)

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  151.224.223.115 On: Sat, 02

Apr 2016 13:34:12



130901-28 Gillan, Alfè, and Michaelides J. Chem. Phys. 144, 130901 (2016)

where Fx, the so-called exchange-enhancement factor, depends
only on s. Many different GGAs have been proposed,
differing in their exchange-enhancement factors and the
approximations for fc(ρ, s). We note that the form of Fx(s)
at large reduced gradient is particularly important for non-
covalent interactions in molecular systems such as water,
because exchange-overlap interactions depend strongly on
the behavior of Fx(s) in the regions where electron densities
overlap, which is where s has large values.121–126 We note
next the main features of the GGAs relevant for this
review.
BLYP: This functional has been extensively used for water
systems and consists of the B88 and LYP approximations
for exchange and correlation, respectively.82,83 The B88
approximation of Becke82 has an exchange enhancement
factor designed to reproduce exactly the exchange energy
density in the limit of long distance from an isolated atom. It
depends on a single parameter, which is adjusted to minimize
the errors of the exchange energies of rare-gas atoms. For
molecular systems, this exchange functional has the desirable
feature124 that it eliminates the spurious exchange attraction
between rare-gas atoms exhibited by the LDA. The LYP
correlation functional, so named for the paper by Lee, Yang,
and Parr where it was introduced,83 is derived from an older
formula for correlation due to Colle and Salvetti,301 who
approximated it in terms of the electron density and the
non-interacting kinetic-energy density. The LYP functional
is a pure GGA constructed by replacing the kinetic-energy
density by its second-order gradient expansion.
BP86: This consists of exactly the same B88 functional82

for exchange as the BLYP functional, but replaces LYP
correlation by the correlation functional known as P86.
The latter functional was constructed by Perdew84 so as
to reproduce accurately the correlation energy of both the
uniform electron gas and the electron gas with small gradients
of the reduced density, and it also known to give accurate
correlation energies for free atoms and ions.
PBE: This widely used approximation302 adopts a simple
functional form for the exchange enhancement factor Fx(s)
proposed earlier by Becke299 to ensure satisfactory behavior
in the long-distance tails of free atoms. However, the
parameters appearing in this functional form are not regarded
as empirically adjustable, as was done by Becke, but are
determined by requiring that exact conditions be satisfied.
The form of the correlation energy density fc(ρ, x) is also
chosen so as to satisfy exact conditions on its behavior
for small and large reduced gradients, and the parameters
appearing in this form are likewise determined by the
requirement that they satisfy exact conditions. PBE is
therefore one of the few XC functionals whose parameters
are all (or almost all) fundamental constants, rather than
being adjusted to fit empirical data. However, the form of
the exchange enhancement factor at large reduced gradient
produces a spurious exchange binding of closed-shell atoms
and molecules.125

PW91: This approximation200,201 is a forerunner of the better
known PBE functional. It differs from PBE in employing more
complicated functional forms for the exchange and correlation
energies. These functional forms and the parameters that enter

them attempt to satisfy a wider range of exact conditions.
The energy predictions of PW91 are often close to those
of PBE. However, the forms of their exchange enhancement
factors at large reduced gradient are substantially different,124

and PW91 produces a spurious exchange binding of closed-
shell atoms and molecules that is larger than that of
PBE.
revPBE: This is a modification of the PBE functional. The
modification was proposed by Zhang and Yang,119 and consists
solely of changing the value of one of the constants appearing
in the exchange enhancement factor. This change achieves
considerably improved values of atomic total energies and
molecular atomization energies. For molecular systems such
as water, the change is important because it greatly increases
the overlap-repulsion between pairs of molecules.124

RPBE: This functional198 resembles revPBE in being a
modification of PBE formed by changing the exchange
enhancement factor, while leaving the correlation functional
unchanged. However, in the case of RPBE, the functional form
of Fx(s) is modified. The resulting Fx(s) is almost identical
to that of revPBE for small and moderate values of s, but
increases more slowly at large s values.198 Physical properties
predicted with RPBE and revPBE generally differ rather
little.
PBEsol: This is a modification of the PBE functional designed
to improve predictions for the energetics of densely packed
solids and their surfaces.118 It achieves this by keeping the
functional forms used for the exchange and correlation
energies of PBE, while modifying the two coefficients
specifying the expansion of these energies to second order
in the density gradient.
AM05: This functional, proposed by Armiento and Matts-
son,199 may be classified as a GGA, but the principles on which
it is based differ from those used to develop conventional
GGAs. Its aim is to improve predictions for surface properties,
which are often poorly predicted by functionals such as
PBE. It has the unique feature that it is constructed to
reproduce exactly the exchange-correlation energies of two
types of model system: uniform jellium and the jellium
surface.

3. Hybrids

A hybrid XC functional is one formed by addition
of a fraction of exact Hartree-Fock exchange to a chosen
linear combination of local or semi-local functionals. For
this purpose, the Hartree-Fock exchange energy is defined to
be

EHF
x = −

1
2


i, j

 
dr dr′ψ⋆

i (r)ψ j(r) 1
|r − r′|ψi(r′)ψ⋆

j (r′),

(A4)

where ψi(r) are the Kohn-Sham orbitals of DFT, and the
double sum goes over all pairs of occupied orbitals. Some
justification85 for mixing in a fraction of EHF

x is supplied
by the adiabatic connection theorem,303,304 which underpins
DFT methods. We provide here brief notes about the hybrid
methods that are relevant to this review.
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PBE0: This approximation is a hybrid version of the semi-
local PBE functional, which is defined by87,88

EPBE0
xc =

1
4

EHF
x +

3
4

EPBE
x + EPBE

c , (A5)

so that the exchange part of the functional is a linear
combination of EHF

x and the usual PBE for exchange, EPBE
x ,

while the correlation part of the functional has the normal
PBE form.
B3LYP: This widely used hybrid is somewhat more
complicated than PBE0, since the semi-local parts of the
XC functional themselves involve a linear combination of
GGAs and LDA. It is defined as85,86

EB3LYP
xc = a0EHF

x + axEB88
x + (1 − a0 − ax)ELDA

x

+ acELYP
c + (1 − ac)ELDA

c , (A6)

where EB88
x and ELYP

c are the exchange and correlation parts
of the BLYP functional (see above), and the numerical values
of the mixing coefficients are: a0 = 0.20, ax = 0.72, and
ac = 0.81.

4. Dispersion-inclusive methods

Dispersion refers to the attraction between atoms or
molecules due to the Coulomb interaction between correlated
quantum fluctuations of their electron densities. These are
also known as London forces and in the DFT functional
community often referred to as van der Waals forces. At long
distances, where overlap of these densities is negligible, the
dispersion energy falls off as the inverse 6th power of the
intermolecular distance R. At distances where the overlap
between the electron distributions vanishes, local, semi-local,
and hybrid functionals account only for interactions due to
electrostatics and polarization, and are incapable of describing
the 1/R6 behavior of dispersion. Several approaches have been
developed for overcoming this problem, as described in recent
reviews.127,128

One possible approach is simply to ignore the
“asymptotic” region where dispersion falls off as 1/R6,
and to treat only the intermediate and short-range region
where non-local correlation is expected to contribute most
to bonding. This is the approach of the so-called Minnesota
functionals305 in which meta-GGAs and their hybrids are
carefully parameterized to reproduce both covalent and
non-covalent binding energies, reaction-barrier energies, etc.
An alternative approach, which also aims to treat only
intermediate and short distances, involves the addition of
artificial nucleus-electron potentials designed to mimic the
energetics of non-local correlation, as in the DCACP and
DCP methods. The Minnesota functionals, as well as the
DCACP138 and DCP139 methods, have enjoyed some success
for molecular systems, and have been used to a limited extent
for water systems.

The simplest methods capable of accounting for
dispersion in the asymptotic 1/R6 region involve the
introduction of atom-atom pair potentials of the form−CAB/R6

between every pair of atoms A, B, which are added to chosen
semi-local or hybrid functionals, referred to here as “base”
functionals. This idea goes back nearly 20 years,123,129,130

and has been extensively developed by Grimme and co-
workers.131–133 The 1/R6 form must be damped at intermediate
and short distances, and Grimme proposed a damping scheme,
as well as a procedure for assigning values to the coefficients
CAB for several choices of base functional. This approach,
known as DFT-D or DFT-D2,132 has seen widespread use
and achieves major improvements in the description of non-
covalent interactions in molecular systems.

One deficiency of DFT-D2 is that it does not account for
the dependence of atom-atom dispersion interactions on the
chemical state and environment of the atoms. For example,
the electron distribution on an atom may be compressed by its
neighbors, so that its polarizability and hence its dispersion
interaction with other atoms are reduced. The TS scheme134 is
in the same general spirit as Grimme’s DFT-D2 method, but
it accounts for the dependence of dispersion interactions on
changes of electron density, using the Hirshfeld partitioning
scheme306,307 to assign a density distribution to each atom,
which can vary as the atoms move. The dependence of
dispersion on the chemical state of the atoms is also accounted
for in a later development of the Grimme scheme, known as
DFT-D3.133 In principle, both the Grimme and the TS schemes
can be used in conjunction with any base functional. We have
referred to the use of the DFT-D3 and the TS methods for
water systems throughout the present review, and in relation
to ice, we also referred to a modified version of the TS scheme
that accounts for many-body dispersion.210

A rather different approach to the representation of
dispersion is to include in the XC functional a non-local
correlation term Enl

c depending explicitly on electron densities
at spatially separated positions.135,308–310 When paired with
a conventional GGA representation of semi-local exchange-
correlation, the total XC functional then becomes

Exc = EGGA
x + ELDA

c + Enl
c . (A7)

The general form assumed for the non-local correlation term
has usually been

Enl
c =


dr1 dr2 n(r1)φ(r1,r2)n(r2), (A8)

where the kernel φ is itself a functional of the density, but
ensures the correct asymptotic behavior of the dispersion
interaction by falling off as 1/|r1 − r2|6 at large separations
|r1 − r2|. The earliest forms of this approach308–310 were
restricted to interactions between atoms or molecules whose
densities do not overlap, but an important advance came
with the proposal by Dion et al.135 of a functional form
valid for overlapping molecules in arbitrary geometries. The
base functional proposed in that paper consisted of revPBE
exchange and LDA correlation, and we refer to the entire
functional here as revPBE-DRSLL.

It was shown later that the particular choice of base
functional made by Dion et al. substantially underbinds
molecular dimers,136,141 and that the performance can be
greatly improved by choosing other base functionals. If PBE
is paired with the DRSLL form of non-local correlation,
giving the functional referred to here as PBE-DRSLL,
molecular dimers are significantly overbound.136 However,
if the exchange parts of PBE of BLYP are appropriately
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modified, giving base functionals known as optPBE and
optB88,136 then the resulting dispersion-inclusive functionals,
here called optPBE-DRSLL and optB88-DRSLL, give much
improved binding energies for dimers. Similar arguments
underlie the modified version of the DRSLL approach known
as rPW86-DF2140 in which a revised form of PW86 exchange
is paired with a new form of the non-local correlation
functional Enl

c .
A simplified version of the non-local correlation kernel

φ(r,r′) known as VV10 has been developed by Vydrov and
van Voorhis.137 This contains a free parameter b, which allows
the short-range damping of dispersion to be adapted to the base
functional. Technical developments due to Sabatini et al.311

allow this approach to be implemented at a cost not much
greater than that of standard GGAs. The base functional
originally recommended for VV10 consisted of revised PW86
exchange and PBE correlation, but other base functionals
could also be used.

5. And finally: Computational cost

Although it is difficult to be precise, we comment on the
relative approximate computational cost of the various func-
tionals discussed. In brief, there is no significant difference
between the cost of LDA and the GGAs. Dispersion correction
schemes such as the various generations of the DFT-D
approach or the TS method also do not incur any major
computational overhead compared to the base GGA they are
added to. Methods based on non-local correlation functionals
can lead to a slow-down of no more than ca. 50% compared to a
GGA calculation, when implemented efficiently.312 The hybrid
functionals, when employed in periodic boundary conditions,
as done for liquid water simulations, can be significantly
(roughly an order of magnitude) more expensive than a GGA.
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