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Abstract
The rigorous coupled-wave analysis (RCWA) is one of the most successful and widely used
methods for modeling periodic optical structures. It yields fast convergence of the
electromagnetic far-field and has been adapted to model various optical devices and wave
configurations. In this article, we investigate the accuracy with which the electromagnetic near-
field can be calculated by using RCWA and explain the observed slow convergence and
numerical artifacts from which it suffers, namely unphysical oscillations at material boundaries
due to the Gibbs phenomenon. In order to alleviate these shortcomings, we also introduce a
mathematical formulation for accurate near-field calculation in RCWA, for one- and two-
dimensional straight and slanted diffraction gratings. This accurate near-field computational
approach is tested and evaluated for several representative test-structures and configurations in
order to illustrate the advantages provided by the proposed modified formulation of the RCWA.

Keywords: computational electromagnetic methods, diffraction gratings, plasmonics, optics at
surfaces

1. Introduction

The study of the interaction of electromagnetic waves with
matter has spawned a large variety of methods to analytically
or numerically solve the Maxwell equations (MEs). The
results obtained from those methods are invaluable for
understanding, validating, predicting, and guiding experi-
mental efforts and for the design process of electromagnetic
and optical devices. Amongst the numerical methods used in
computational electromagnetics, one can fundamentally dis-
tinguish between time-domain methods, which directly
incorporate the transient behavior of electromagnetic waves,
such as the finite-difference time-domain method [1], and
frequency-domain methods, like the finite-element frequency-
domain method [2], which directly determine time-harmonic
solutions to MEs. The former methods are general purpose
methods and are capable of simulating virtually any

electromagnetic structure comprising metallic or dielectric
objects of arbitrary size and shape. However, for certain
structures and applications, other methods can be superior in
terms of runtime and accuracy. For example, the multiple
scattering method [3] is a series expansion method in the
frequency domain that is tailored to calculate interaction of
light and clusters of spherical particles [4] or cylindrical rods
[5], and as such it is superior to other methods when applied
to these particular geometries.

An important field of applications, where several spe-
cialized numerical algorithms exist [6], is the study of peri-
odic optical structures, including diffraction gratings [7] and
periodic metamaterials [8]. Amongst the numerical methods
for periodic structures, such as the differential theory of
gratings [9], the -method [10], integral methods [6, 11], and
the generalized source method [12, 13], the most widely used
method is the rigorous coupled-wave analysis (RCWA) [14–
16]. It is a modal method in the frequency domain and is
based on the decomposition of the periodic structure and the
pseudo-periodic solution of MEs in terms of their Fourier
series (FS) expansion, hence the periodicity is naturally
incorporated into the numerical method. RCWA was initially
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developed for modeling one-dimensional (1D) diffraction
gratings, but with the introduction of fast converging Fourier
factorization rules for modeling 1D [17, 18] and two-
dimensional (2D) [19–21] structures, its formulation for iso-
tropic and anisotropic materials [22] as well as multilayered
[23] and oblique structures [24], RCWA has evolved to
describe arbitrary, 2D-periodic structures. The method has
been successfully applied to model diffraction gratings, dif-
fractive optical elements, surface coatings, spectroscopic
applications, photonic crystals, and periodic metamaterials. It
should be noted, that in most cases the functionality of these
applications of periodic structures depends on the electro-
magnetic far-field, i.e. the propagating diffraction orders, and
it is known that the RCWA delivers fast converging and
accurate far-field results, as reported in many works [14–24].

There is, however, a range of novel applications, which
rely on the optical near-field of a periodic structure, especially
at their surface, such as surface-enhanced Raman spectro-
scopy [25], surface second-harmonic generation [26–28], and
near-field sensing [29–32]. These applications require a sui-
tably designed near-field distribution, usually optimized for
maximum field enhancement within specific spatial domains.
Although there have been significant advances in experi-
mental optical near-field measurement techniques [33], these
techniques are still in their development state and not readily
available to accurately characterize complex photonic
nanostructures. These applications and experimental short-
comings lead to a critical demand for numerical methods for
periodic structures that can facilitate an accurate calculation of
electromagnetic near-fields, and more importantly, the design
of gratings with optimized near-field patterns. With very few
exceptions [20, 34, 35], a thorough investigation of numeri-
cally calculated near-fields in the RCWA has been largely
neglected during the development of the method, as it is often
merely considered a post-processing step. Moreover, addi-
tional reasons for the scarcity of reports on the convergence
and the accuracy of the numerically computed electro-
magnetic near-field in RCWA, are the slow near-field

convergence and spurious oscillations displayed by these
fields [35].

In this paper we address the issue of inaccurate near-field
calculations in the RCWA in several ways. First, we use some
generic cases of diffraction gratings to illustrate the slow
convergence of RCWA for near-field calculations and reveal
the reasons for this behavior. Based on this analysis and the
continuity properties of the electromagnetic fields, a new
formulation of the field evaluation is proposed, which yields
faster convergence of the electromagnetic near-fields and
explicitly fulfills the continuity properties of the electro-
magnetic field at material interfaces. This improved for-
mulation of the numerical evaluation of the near-fields is then
benchmarked against the current formulation, with the aim of
making RCWA an effective numerical method for modeling
modern nanophotonic applications that rely on highly accu-
rate near-field calculations.

The remainder of the paper is organized as follows:
section 2 will introduce the reader to the problem of inaccu-
rate/spurious near-fields in RCWA for 1D structures and
explain the overall strategy for the accurate field evaluation.
Section 3 will extend the ideas gained from the analysis of 1D
structures to arbitrary, straight or obliquely etched 2D grat-
ings and will present the underlying mathematical formalism.
Then in section 4, computational results for 2D gratings will
be presented and discussed. Section 5 will investigate near-
and far-field convergence of the modified method for slanted
gratings, before final conclusions about the capability of the
improved RCWA for modeling electromagnetic near-fields
will be drawn in section 6.

2. Accurate near-field evaluation for 1D-periodic
structures

Although the last major roadblock that was precluding
RCWA from becoming a highly effective method for mod-
eling 1D periodic structures has been removed when the
correct Fourier factorization rules for transverse magnetic
(TM) polarization were introduced [17, 18], a few topics have
continued to attract attention, namely the convergence for
slanted 1D-periodic gratings [24] and the numerical instabil-
ities associated to highly conductive gratings [36]. These
improvements and refinements of the method are concerned
with the accuracy of the far-field calculation and they achieve
excellent convergence results for the coefficients of and
power carried by the diffraction orders in the cover and
substrate regions of a grating, namely the far-field. This pic-
ture changes if the near-field is considered. Thus, in this
section we investigate the numerically calculated near-field
inside the periodic grating region via RCWA, and explain its
slow convergence and the origin of the observed high spatial
frequency oscillations. Our approach is based on a numerical
method introduced in [34], for improved near-field accuracy
and reduced numerical artifacts for straight 1D-periodic
gratings. This numerical approach is thoroughly investigated
here and will form the basis of the general formalism for
accurate near-field evaluation in arbitrary, straight or slanted,

Figure 1. Grating structures mounted on a homogeneous substrate
(refractive index, ns) considered in this study: (a) 1D binary grating,
filling factor, ρ; (b) 1D binary grating, slanted by θ = π/4 w.r.t. the
x-axis. (c) 2D grating with rectangle-semi-circular cross-section. (d)
2D cylindrical grating, slanted by θ = π/4 w.r.t. the x-axis. The
height of all gratings is denoted with h, their period is Λ1 (and Λ2 for
2D-periodic gratings), and their refractive index is denoted by ng.
The cover medium is vacuum with nc = 1.
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1D- and 2D-periodic gratings proposed in the subsequent
sections.

The ideas developed in this paper are applicable to any
periodic grating structure with sharp boundaries, but in order
to conduct a comprehensive assessment of the accuracy of the
near-field calculations achievable with the improved RCWA
introduced in this work, a number of generic test structures
(1D- and 2D-periodic, straight and slanted) have been chosen,
as per figure 1. To widen the spectrum of test configurations,
three different materials are considered for the grating: silica
(SiO2) as a dielectric with low index of refraction
(n n 1.45g SiO2= = ), silicon (Si) as a high refractive index
dielectric (ng = nSi = 3.4) and a metal, gold (Au), with index
of refraction ng = nAu = 0.97 + 1.87i [37]. In all examples
the substrate is SiO2 (n ns SiO2= ). Normal incidence and TM-
polarization is considered in all of the sections, i.e. the inci-
dent electric field amplitude is oriented along the x-axis:

EE x x1, 0, 0 .T
inc inc( ) ( ) ( )=

The example considered in this section is depicted in
figure 1(a). It consists of a binary grating with period,
Λ1 = 1 μm, height, h = 0.25 μm, and filling factor, ρ = 0.5.
The grating is illuminated by a normally incident plane wave
with wavelength, λ = 0.51 μm.

As the first step of our investigation, we used RCWA to
calculate the far-field. In order to quantify the convergence of
the RCWA method, the relative error of the far-field is
defined as:

e N
T T R R

T R
, 1

N N

F

ref 2 ref 2

ref 2 ref 2
( ) ( )

( ) ( )

=
- + -

+

where T(N) (R(N)) denotes the relative transmitted (reflected)
power corresponding to a discretization with 2N + 1 complex
FS coefficients. The discretization parameter, N, represents
the number of harmonics retained for each dimension.
Moreover, T ref(Rref) is a reference value that is considered
to be the exact solution or a sufficiently good approximation
of the exact solution. Due to the absence of the exact solution
of the diffraction grating problem, the reference values are
chosen to be numerical values obtained by high-N simula-
tions; in our case we chose Tref = T(905) and Rref = R(905).

The far-field relative error, e N ,F ( ) for increasing number
of harmonics, N = 5, K, 640, is depicted in figure 2. As this
figure illustrates, RCWA converges quickly for all three
materials. Specifically, in order to achieve a self-error of
e N 1%F ( ) < (as a generic criterion adopted here for an
accurate far-field calculation), for the three materials, silica
(red crosses), silicon (blue stars), and gold (green triangles), a
relatively small number of harmonics is necessary, namely
N > 5, N > 25, and N > 13, respectively.

As mentioned in the introductory section, the far-field of
optical gratings and periodic structures has been the physical
quantity of most interest from experimental point of view,
hence the characterization of a numerical method by means of
the far-field convergence has usually been the adopted strat-
egy. This approach, however, largely neglects the electro-
magnetic near-field predicted by a specific method. On the
other hand, the near-field is of fundamental importance for
modeling plasmonic effects or optical nonlinear phenomena
in devices with size comparable to or smaller than the oper-
ating wavelength, effects whose description relies on accurate
calculations of the electromagnetic near-field.

In order to characterize the numerically obtained near-
fields, we define the grating norm, G· , of a scalar or
vectorial function, f, in the grating region as follows:

f f x z x z, d d , 2G

h

0 2

2
2

1

1
1
2

∣ ( )∣ ( )
⎛
⎝⎜

⎞
⎠⎟ò ò=

-L

L

where the z-integration extends over the bulk of the periodic
region. The grating norm is used to define the near-field error,
e E ,N{ }( )

a of the scalar field components E(N)
α , α = x, y, z, of a

near-field, EN , numerically obtained using N harmonics:

e E E E E . 3N N
G G

ref ref{ } ( )( ) ( )= -a a a a

Here, Eα
(N) denotes the FS reconstruction given by the 2N + 1

central Fourier coefficients, Eαn, which are calculated by
RCWA:

E x E n xexp i
2

.N

n N

N

n
1

( )( ) ⎛
⎝⎜

⎞
⎠⎟å p

=
La a

=-

Similarly to the far-field calculations, E Eref 905( )= is
obtained by a high-resolution RCWA simulation with
N = 905. The near-field self-convergence for the tangential
component, Et = Ez, and the normal component, En = Ex, of
the electric field is depicted in figure 3. For all three materials,
the self-convergence of Et (blue circles) is fast and compar-
able to the far-field self-convergence (see figure 2). The
normal component, En (red crosses), however, exhibits much
slower convergence and even at the highest numerical reso-
lution of N = 640 a relative error of e E 0.9%x

640{ }( ) > still
remains, whereas the error of the tangential field,
e E 0.08%,z

640{ }( ) < for all materials.
One intriguing question raised by the data plotted in

figures 2 and 3 is why the normal component of the near-field
converges much more slowly than the far-field power and the
tangential component of the near-field. Or put it the other way
around: How can the far-field converge quickly when the

Figure 2. Far-field relative error versus the number of harmonics,
determined for three different materials.
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near-fields have not converged yet? There are two factors that
explain this behavior: (i) the far-field consists of a super-
position of a small number of propagating diffraction orders,
i.e., plane waves. Hence, the far-field requires a small number
of FS components to be reconstructed and does not suffer
from the Gibbs phenomenon. (ii) RCWA does not depend on
the representation of the discontinuous normal field En.
Instead, the method relies on the correct Fourier factorization
of the continuous normal component of the displacement
field, Dn, which can be accurately described by a FS, i.e.
without spurious oscillations. The second observation is at the
core of the accurate near-field calculation that is introduced in
this work. Specifically, instead of reconstructing a dis-
continuous physical quantity, i.e. En x( ), directly from its FS
coefficients, it is more effective to reconstruct a continuous
quantity, the normal component of the displacement field, Dn

x( ), and then divide it by a discontinuous quantity, the electric
permittivity, ε0ε x ,( ) which is known in the space-domain
where one seeks to solve the diffraction problem.

For 1D-periodic gratings, we define the modified normal
component of the electric field:

E Dx x x , 4
N N

n 0
1

n
˜ ( ) ( ) ( ) ( )( ) ( )e e= -

where ε0 is the vacuum permittivity and ε x( ) the relative
permittivity at position, x. Note that E xN

n ( )( ) and E xN
n

˜ ( )( )

represent the same physical quantity, namely the normal
component of the electric field. However, whereas the former
is found by using RCWA to solve directly for the electric
field, the latter one is determined by first calculating the
displacement field and then the electric field via equation (4).

The error, e E ,N
n{ ˜ }( ) of the modified normal component,

E ,n˜ is shown in figure 3 and encoded in green triangle. It is
found to converge as fast as the fast-convergent tangential
component, Et, and as fast as the power in the far-field shown
in figure 2. Even at the highest considered resolution,
N = 640, the conventional formulation of the RCWA yields a
self error of e E 9 10n

640 3{ }( ) > ´ - for all three materials.

By contrast, the same self error e E 9 10N
n

3{ ˜ }( ) < ´ - of
the modified normal field En˜ can be achieved by using as few
as N = 70 harmonics.

The spatial profile of the electric field in the grating
region illustrates the full benefits of the modified field cal-
culation. Figure 4(a) depicts the conventional normal field
component E Exn

21 21∣ ∣ ∣ ∣( ) ( )= in the gold grating for a mod-
erately coarse discretization of N = 21 harmonics. It can be
seen that En

21∣ ∣( ) exhibits unphysical oscillations with a spatial
frequency equal to the period of the smallest spatial frequency
component in the FS expansion of the solution. This is the
well known Gibbs phenomenon, which occurs when
describing a discontinuous function with a truncated FS. On
the other hand, the modified normal field, E ,n˜ does not suffer
from such spurious oscillations at the interface. In particular,
even for a small number of harmonics, N = 21, En

21˜ ( ) is
smooth, as per figure 4(b). At very large number of harmo-
nics, N = 640, the modified normal field is free of any
numerical artifacts, as can be seen in figure 4(c).

The improved formulation of RCWA exhibits another
benefit, namely En˜ is by construction discontinuous and
exactly fulfills the corresponding boundary condition

E x n E x n, 5s s
in in out out( ) · ( ) · ( )( ) ( ) ( ) ( )e e=

at surface points of the grating, x ,s where Ein and ε(in) (Eout

and ε(out)) denote the electric field and permittivity inside
(outside) the grating, respectively, and n is the unit vector
normal to the surface. In the conventional formulation of the
RCWA, the field En

N does not satisfy equation (5), because
E n

n
( ) is—as a FS containing a finite number of terms—

inherently continuous. The closeup of the interfacial field
around x = 0.25Λ in figure 5 emphasizes these ideas. Thus,

Figure 3. Self convergence of the tangential and normal electric field
components Ez and Ex and Ex˜ inside the grating structure described
by their self-errors Δ Et(N) (green triangles), Δ En(N) (red crosses)
and Δ En˜ (N) (blue circles), respectively for the three benchmark
structures made of silica (a), silicon (b) and gold (c).

Figure 4. Near-field distribution of the normal component of the
electric field, E E ,xn∣ ∣ ∣ ∣= in and around the Au grating. (a)
Calculated with N = 21 harmonics using the conventional RCWA
method (unphysical field oscillations can be observed). (b)
Calculated using the improved formulation, E D ,n n˜ e= and N = 21
harmonics. (c) Calculated using the improved formulation and
N = 640 harmonics.
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the normal component of the field calculated using the
conventional formulation of RCWA shows spurious oscilla-
tions for both small N = 21 (dashed green) and high N = 640
(solid red) number of harmonics, whereas the modified
formulation is free of such unphysical oscillations and
discontinuous for any number of harmonics, N (see the
dotted purple and dashed–dotted blue lines corresponding to
N= 21 and N= 640, respectively).

It should be clear now that the modified normal-field
evaluation in 1D by means of the displacement field repre-
sents an improvement of the conventional evaluation of En in
two ways: first, it exhibits optimal self-convergence in the
sense that it is as accurate as the far-field and the continuous
tangential field component. Second, it explicitly fulfills the
boundary condition (5) at the material interfaces. Equally
important, the improved near-field calculation is achieved
with minimal additional computational cost and does not alter
the mathematical framework of the core RCWA algorithm
in 1D.

3. Formulation of accurate near-field evaluation for
2D-periodic structures

The ideas of the previous section are straightforward to
implement because in 1D-periodic structures there is a trivial
and unambiguous distinction between the tangential and
normal components of E. However, this situation becomes
more intricate in the case of 2D-periodic diffraction gratings.

As it will be shown now, accurate near-field evaluation is
strongly related to correct Fourier factorization in 2D-periodic
structures. Fourier factorization means in this context the
decomposition of a product of periodic functions, f = g · h,
into its periodic factors g and h. Depending on the continuity
properties of the factors and the product, different rules must
be applied in order to obtain fast convergence when
increasing the number of FS terms According to these rules, if
f and h possess simultaneous discontinuities, but g is con-
tinuous at those locations, the product rule yields fast con-
vergence with respect to the number of FS terms, namely one
uses f = g · h. Moreover, if g and h are simultaneously
discontinuous, but f is continuous, the inverse rule should be

used, i.e., f must be factorized as f = (1/g)−1 · h. A rigorous
explanation of these rules and the solution to the 1D Fourier
factorization problem is given in [18].

Because of the trivial distinction between the continuous
(tangential) and discontinuous (normal) components of the
electric field in 1D, Fourier factorization is straightforward in
that case. But for 2D-periodicity, three different approaches to
achieve the correct Fourier factorization have been proposed:
(i) approximate the material boundaries by a coordinates-
aligned staircase-contour [19]. (ii) Devise a coordinate system
in which a given grating geometry is coordinate system
aligned and use approach (i) to obtain the correct Fourier
factorization [20, 38]. (iii) Construct a normal vector field
(NVF) to decompose E into its normal and tangential com-
ponents and then apply the corresponding correct factoriza-
tion rules to them [21].

Since the accurate near-field evaluation relies on the
decomposition of the electric field into normal and tangential
components, it is natural to use the factorization approach
(iii), the NVF approach. It is out of the scope of this paper to
derive the full formulation of 2D-RCWA, so that only the
crucial and unconventional steps will be given here. Thus, the
normal and tangential components of D Ee= have to be
decomposed using the product- and inverse rule, respectively.
This leads to the following relations for the α-component of
the displacement field [21, 24, 39]:

D E , 60
1

3

, [ ][ ] ( ) ( )åe d e= - Da
b

a b ab b
=

 

where δαβ is the Kronecker delta. Here, f[ ] denotes the vector
of FS coefficients of a scalar function f, g  is the Toeplitz
matrix of FS coefficients of g, and the matrix Δαβ is given by

N N N N1

2 ( )D = D + Dab a b a b    with 1 1e eD = - -   
and Nα is the α-component of the NVF, N N NN , , ,T

1 2 3( )=
of the material boundary. The matrix ,d e - Da b ab  imple-
ments the three steps of the Fourier factorization: the
decomposition of E into normal and tangential components
(Nβ in N Na b ), factorization using either the inverse rule
( 1 1e -  ) or the product rule ( e  ), and back-projection to
Cartesian coordinates (Nα in N Na b  ).

Note that one can also use asymptotically equivalent
definitions of Δαβ. However, our investigations have shown
that despite the fact that the choices N ND = Dab a b  and

N ND = Dab a b  produce similar convergence speed, they do
not conserve the power for lossless structures, whereas the
choice N ND = Dab a b    yields power conservation but at
the price of slower convergence. All three formulations are
asymptotically equivalent with respect to the number of terms
in the FS expansion, due to the commutation of Toeplitz
operators [39].

Normal vector fields can be constructed analytically for a
variety of structures and automated algorithms to obtain a
NVF for arbitrary grating geometries have been developed
[40]. It should be noted that this formulation allows inclined
NVFs, i.e. NVFs with simultaneously non-vanishing x, y, and
z components. Such a NVF is required to accurately model
obliquely etched structures (see figure 1(d)) and hence can be

Figure 5. Closeup of the normal component of the electric field, En∣ ∣
and E ,n∣ ˜ ∣ near the metal–air interface at z = h/2, computed using the
conventional and modified RCWA methods, respectively.
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viewed as a generalization of the methods presented in [24]
(Ny = 0, figure 1(b)) and [21] (Nz = 0, figure 1(c)).

Given the constitutive relation (6), one can derive the
RCWA eigenvalue-problem

S

S

U

U

S

S

U

U

7

x

y

x

y

x

y

x

y

[ ]

[ ]

[ ]

[ ] ( )

⎛

⎝

⎜⎜⎜⎜⎜

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

⎞

⎠

⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

⎞

⎠

⎟⎟⎟⎟⎟
b=M

for the electromagnetic modes described by S[ ] and U[ ] and
propagation constant, β. The most general formulation of the
system-matrix M reads:

B
,

x zx x zy

y zx y zy

yx yz zx x y x x yz zy y

x xz zx y y y x xz zy xy

x y x x

y y y x

yz y yz x

xz y xz x

⎛

⎝

⎜⎜⎜⎜
⎞

⎠

⎟⎟⎟⎟

=

D D
D D

D + D D - + D D -
- D D - - D D - D

-
- -

D -D
-D D

M

K B K B
K B K B
B K K K K B C

C B K K K K B

K BK I K BK
K BK I K K
BK K
BK BK

with zz
1( )e= - D - B and .e= - Da aa C The matrices

kdiag n( )=a aK are diagonal matrices of the in-plane
propagation constants, kxn for α = x and kyn for α = y, of
the diffraction orders and I is the identity matrix. The size of
matrices ,B ,aC ,aK and I is N0 × N0, whereas the size ofM is
4N0 × 4N0, where N0 = (2N + 1)2 is the total number of FS
coefficients in the calculation and the same number of FS
terms for the truncation of the FS in the x- and y-direction is
assumed.

The mode amplitudes S[ ] and U[ ] are determined by
matching the tangential components of the electromagnetic
field at the top and bottom of the grating region, whereas
multilayered structures are described by the staircase
approximation in conjunction with the numerically stable 
-matrix algorithm. This yields the FS coefficients, E ,[ ] of the
electric field everywhere in the grating region, in the cover,
and the substrate.

Let us now denote by f([ ]) the FS reconstruction of a
Fourier coefficient vector f ,[ ]

f x y f m x n y, exp i
2

i
2

,
n N

N

m N

N

nm
1 2

([ ])( )
⎛
⎝⎜

⎞
⎠⎟ å å p p

=
L

+
L=- =-

where f fnm n N N m N2 1 1[ ]( )( )= + + + + + are the N0 FS coefficients
of f. Within the conventional RCWA framework, each
component of E is evaluated as:

E E . 8N ( )[ ] ( )( ) =a a

This relation does not take into account the continuity
properties of the different components of E and hence will
lead to spurious oscillations and slow convergence of the
near-field as it was seen in section 2.

The modified field evaluation for 2D-periodic diffraction
gratings requires one to define the continuous normal

component of D and the tangential component of E. Their FS
coefficient vectors are given by:

aD NN NN E
1

2
1 1 , 9T T

n 0
1 1( )[ ] [ ] ( )e e e= +- -      

bE NN E , 9T
t[ ] [ ] ( )= - 

where  denotes the 3 × 3 identity matrix and NNT is the
3 × 3 projection matrix defined by the NVF at any point in
space, x. Note that by construction, Dn[ ] and Et[ ] are FS
coefficient vectors of vector fields that are continuous at
material interfaces. Hence their reconstructions, Dn([ ]) and

E ,t([ ]) do not suffer from the Gibbs phenomenon at the
interface. With this observation in mind, the electric field in
the improved RCWA method for 2D-periodic structures at a
point, x, is given by:

E x D x x E x 10N
0

1
n t( ) ( )[ ] [ ]˜ ( ) ( ) ( ) ( ) ( )( )  e e= +-

and is expected to yield fast near-field convergence and non-
oscillatory spatial field profiles. To investigate the validity of
these predictions, the accurate field evaluation was imple-
mented in a commercially available RCWA computer soft-
ware, OmniSim/RCWA [41].

It should be noted that the other electromagnetic fields
can be easily calculated with our improved method, too.
Specifically, the displacement field, D, can be evaluated using
the modified electric field E,˜ namely
D x x E x ,N N

0( ) ( ) ˜ ( )( ) ( )e e= and hence will have the same
convergence properties as E.˜ The magnetic induction B and
the magnetic field H Bm= do not require special attention,
because they are continuous in non-magnetic materials and
hence behave similar to the continuous tangential component
of the electric field.

4. Quantification of the accurate near-field
evaluation in 2D-periodic structures

In this section, the improved formulation for accurate near-
field calculations in 2D-periodic structures is assessed using
two test structures under different configurations. To this end,
we first extend the definition of the grating norm (2) of a
scalar or vector function, f, to 2D-periodic structures in the
following straightforward way:

f f x y z x y z, , d d d , 11G

h

0 2

2

2

2
2

2

2

1

1
1
2

∣ ( )∣ ( )
⎛
⎝⎜

⎞
⎠⎟ò ò ò=

-L

L

-L

L
 

where the integral is evaluated over the three-dimensional
grating region.

4.1. Analysis of a 1D-periodic grating using 2D-RCWA

The first 2D-periodic diffraction grating under consideration
is a 1D binary grating, as shown in figure 1(a), rotated by π/4
in the x–y-plane. It should be obvious that it can be modeled
as a double-periodic 2D grating with periods Λ1 = Λ2 =

2 2 m,˜ mL = where 1L̃ = L is the period of the grating
when it is viewed as a 1D-periodic structure. For clarity, the
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primary unit cell of the grating is depicted in the inset of
figure 6(a). With this choice, the reference quantities R ref,
T ref, and E ref can be calculated using 1D simulations, an
approach inspired by an example in [21].

The error in the calculation of the far-field, eF from
equation (1), when 2D simulations are employed is depicted
in figure 6(a). The convergence of the calculations for the
silicon and gold gratings closely follows the convergence
trends observed when 1D simulations are performed and, as
expected, it shows somewhat worse, yet still good, agreement
for the silica structure. This difference is explained by the fact
that the NVF introduced in the 2D-RCWA formulation is
discontinuous away from material interfaces and hence it can
degrade the convergence rate, especially for the low-index of
refraction contrast case.

The conclusions of our analysis of the convergence of the
near-field are summarized in figures 6(b)–(d). Thus, for both
the silica and gold diffraction gratings, the normal component
of the modified electric field, E,˜ exhibits faster convergence
than this same field component calculated using the conven-
tional form of RCWA. In both cases, e En

20{ ˜ }( ) is one order of
magnitude smaller than e E .n

20{ }( ) For the silicon grating, only
marginal differences between the two formulations can be
observed. This is in agreement with the results obtained in the
1D case, as per figure 3(b). For small N, E N˜ ( ) and E N( ) are
determined with a comparable degree of accuracy, but for the
larger number of harmonics considered in figure 6(c), i.e.

N = 30, a higher accuracy of our improved formulation of the
RCWA can clearly be observed.

These conclusions are further validated by the profile of
the electric field, as presented in figure 7. This figure shows
the spatial distribution of the normal component of the elec-
tric fields, E 27( ) and E ,27˜ ( ) calculated in the median plane of
the grating. A simple examination of these field profiles
confirms that the spurious oscillations of the field E 27˜ ( ) near
the surface have much smaller amplitude as compared to that
of the variations of E .27( ) Moreover, a closer inspection of the
surface-fields shows that the boundary condition (5) is ful-
filled by E 27˜ ( ) only. This first test-case already reveals that the
improved near-field evaluation is more accurate in the case of
2D-periodic structures, too.

4.2. Near-field calculations for an intrinsically 2D-periodic
grating

In order to thoroughly test the near-field evaluation for 2D-
periodic structures using the improved RCWA presented in
this article, in what follows we consider the challenging test
structure depicted in figure 1(c). The grating region consists
of a coordinate system aligned parallelepiped with the length
of the sides aligned to the x-, y-, and z-axis being a = 0.5Λ1,
2a, and h, respectively, placed adjacently to a semicircular
cylinder with radius a and height h, with
Λ = Λ1 = Λ2 = 0.25 μm. The structure is illuminated nor-
mally by a x-polarized plane wave with wavelength
λ = 0.5 μm.

Since it is generally computationally time consuming to
obtain high-accuracy solutions in the case of 2D-periodic
structures and due to the fact that the higher the ratio Λ/λ and
the refractive index n ,∣ ∣ the more harmonics are necessary to
achieve convergence [35], a relatively small period-to-wave-
length ratio of Λ/λ = 0.25 μm/0.5 μm = 0.5 is chosen for
this example.

As reference values in the definition of the far-field error,
eF from equation (1), T ref = T 31 and R ref = R31, namely
results obtained from simulations with N = 31 are chosen.

Figure 6. Computational results for a rotated binary 1D grating. (a)
Error of calculated far-field versus N, determined for three gratings
made of different materials. The decrease in the error follows that of
the far-field (dashed lines) of the 1D simulations (see also section 2).
(b)–(d) Near-field error corresponding to the silica, silicon, and gold
grating, respectively.

Figure 7. (a) Normal component of the electric field, E ,n∣ ∣ in the
grating region at z = h/2, determined by using the conventional
RCWA and N = 27. (b) Normal electric field component, E ,n∣ ˜ ∣
determined for the same grating parameters as in (a) but using the
improved algorithm. The blue vertical line was added for clarity and
merely separates the two plots.
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The convergence of the far-field, e N ,F ( ) is shown in
figure 8(a), where the far-field physical quantity considered
are the transmission and reflection coefficients, T and R,
respectively. As expected, the fastest convergence can be
observed for the silica grating, because it has a low refractive
index. The numerical error obtained for the gratings made of
gold and silicon are one and two orders of magnitude larger
than in the case of the silica grating, respectively. This
behavior is similar to that seen in the 1D case for a small
number of harmonics, N < 30 (see figure 2).

Figures 8(b)–(d) contain the dependence of the near-field
self-error determined for the three material configurations,
silica, silicon, and gold, respectively. The three physical
quantities plotted in each case are the z-component of E and
the in-plane components, E EE , , 0xy x y

T≔ ( ) and
E EE , , 0 ,xy x y

T˜ ≔ ( ˜ ˜ ) obtained by using the conventional and
improved versions of RCWA, respectively. Note that the in-
plane component contains the discontinuous normal compo-
nent, N E· (N E· ˜ ), and the continuous tangential compo-
nent, NN ET

xy( )- ( NN ET
xy( ) ˜- ).

It can be seen that in all cases, the z-component of E,
which is continuous at vertical surfaces inside the grating
region, converges much faster than the in-plane component,
in both the conventional and modified formulations. In
addition, the modified formulation leads to a somewhat
smaller error than the conventional formulation. Specifically,
it was found that e eE E0.5xy

N
xy
N{ ˜ } { }( ) ( )» for the silica grating

and e eE E0.9xy
N

xy
N{ ˜ } { }( ) ( )» for the silicon and gold gratings.

However, the corresponding convergence speed, i.e. the slope

of e Exy
N{ }( ) and e E ,xy

N{ ˜ }( )
is the same. Moreover, in the

modified formulation of the RCWA the convergence speed of
the tangential component of the near-field is larger than that
of the in-plane component. Three factors contribute to this
behavior: (i) the decomposition of the near-field in a normal
and tangential component in 2D-periodic structures relies on
the specific definition of the NVF, N and it is not directly
performed in Cartesian coordinates as in the 1D case. Hence,
the inexact field decomposition by N introduces an additional
error. (ii) The field of normal vectors characterizing the
structure is only uniquely defined at the interfaces defining the
grating, except at the corners, and, more importantly, away
from the grating surface. This ambiguity can lead to choices
of NVFs which are not optimal for the convergence and
accurate calculation of the near-field. (iii) The NVF itself has
discontinuities, which can cause additional oscillations in the
spatial profile of the electromagnetic field.

It is also worthwhile to investigate the spatial profile of
the near-field. The dominant x-component of the electric field
in a horizontal cross-section through the grating region at
z = h/2 is depicted in figure 9. As in the 1D case, these maps
show that the field Ex˜ exhibits spatial oscillations with smaller
amplitude as compared to the variations of the field Ex,
especially at y-aligned interfaces (outlined with blue dashed
lines in figure 9).

5. Out-of-plane normal vector fields for oblique
diffraction gratings

Oblique diffraction gratings as those shown in figures 1(b)
and (d) are modeled in the RCWA within the staircase
approximation along a direction perpendicular onto the grat-
ing plane. Each computational slice is assumed to be a z-
independent structure, for which the eigenmodes can be found
numerically by solving equation (7). The field in each com-
putational layer is then found by using the boundary condi-
tions at the top and bottom interfaces of the grating,

Figure 8. Computational results for the 2D grating shown in
figure 1(c). (a) Error of calculated far-field versus N, determined for
three gratings made of different materials. (b)–(d) Near-field error
corresponding to the silica, silicon, and gold grating, respectively.

Figure 9. (a) Spatial distribution of the dominant component of the
electric field, E ,x∣ ∣ in the 2D grating region at z = h/2, determined by
using the conventional RCWA and N = 27. (b) Spatial distribution
of the dominant component of the electric near-field, E ,x∣ ˜ ∣
determined for the same grating parameters as in (a) but using the
improved algorithm. The blue vertical line was added for clarity and
merely separates the two plots.
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employing a numerically stable  -matrix formulation. The
validity of this staircase approximation for 1D-periodic grat-
ings under TE-polarization has been proven in [35]. In the
context of the NVF formulation of RCWA for oblique 1D-
periodic structures, it has been found that the use of an out-of-
plane NVF, i.e. N NN , 0, ,x z

T( )= is beneficial for the far-field
convergence speed [24, 35]. In this section we will study the
relation between the accurate field formulation (10) and the
near-field convergence speed for slanted 1D-periodic
structures.

The situation for oblique 2D-periodic structures has not
yet been explored in the context of RCWA. However, based
on the results presented so far, one can conjecture that both
the near- and far-field convergence of RCWA can be
improved by using an out-of-plane 3D NVF,

N N NN , , 0,x y z
T( )= ¹ and that the near-field evaluation

would be more accurate as well. The validity of this suppo-
sition will be explored in the second part of this section.

5.1. Analysis of slanted 1D-periodic binary diffraction gratings

In order to analyze oblique 1D-periodic structures, we con-
sider the slanted binary grating depicted in figure 1(b). The
period of the grating is Λ = 1 μm, the filling factor, ρ = 0.5,
the height, h = 0.25 μm, and the slanting angle is θ = π/4.
Only the gold grating is considered in this section as this
would be the most challenging case. If the unit cell is assumed
to extend from x = −Λ/2 to x = Λ/2 and the center of the
binary grating is set to be x = 0, z = h/2, a suitable out-of-
plane NVF is given by x y z x zN , , sign 2 1,0,1 .T˜ ( ) ( ) ( )= -

The two formulations of the RCWA compared in this
section are the in-plane NVF, which is used in conventional
RCWA together with the conventional field evaluation (8),
and the out-of-plane NVF, N,˜ combined with the improved
field evaluation formulation (10). In contrast to the results
presented in the previous sections, the two formulations yield
different results for both the near- and far-field quantities.
Moreover, for the sake of the clarity of the presentation, all
physical quantities corresponding to the out-of-plane NVF
formulation are denoted with a tilde symbol.

Numerical results for increasing number of harmonics,
N = 2, K, 320, and number of computational layers, M = 2,
K, 256, are presented in figure 10. It can be inferred from this
figure that the in-plane formulation requires both a high
number of FS coefficients, N, and layers, M, to achieve
convergence to a result of Rref = 0.287 88, whereas the out-
of-plane formulation yields fast convergence to
R R 0.288 37ref 320,256˜ ( )= = with respect to N, as per
figures 10(a) and (b), respectively. This behavior is in
agreement with the findings reported in [24]. The con-
vergence of the calculated near-field, illustrated in
figures 10(c) and (d), exhibits similar features. Specifically,
the in-plane NVF formulation requires both high N and M to
achieve a small self-error of e E 4.7 10 ,226,256 2{ }( ) = ´ -

whereas this self-error can already be achieved with N = 10,
M = 256 in the out-of-plane formulation. This clearly
demonstrates a drastically improved efficiency to the calcu-
lation of the near-field of oblique diffraction gratings of the

approach based on the combination of out-of-plane NVF and
the accurate near-field formulation. The highly improved
near-field profile is illustrated in figure 11(b), which exhibits
no unphysical oscillations near the gold–vacuum interface.
This is in sharp contrast to the conventional field evaluation
of the in-plane formulation (see figure 10(a)), which clearly
suffers from spurious oscillations.

Figure 10. Computational results for the slanted 1D binary grating
shown in figure 1(b). (a) Far-field self-error e N M,F ( ) versus N and
M corresponding to the in-plane NVF formulation. (b) Far-field self-
error e N M,F˜ ( ) corresponding to the out-of-plane NVF formulation.
(c) Near-field self convergence e E N M,{ }( ) corresponding to in-plane
NVF. (d) Near-field self convergence e E N M,{ ˜ }( ) corresponding to
out-of-plane NVF.

Figure 11. (a) Spatial distribution of the electric near-field, E ,x
40,256∣ ∣( )

determined using the conventional in-plane NVF. (b) Spatial
distribution of the electric near-field, E ,x

40,256∣ ˜ ∣( ) determined for the
same grating parameters as in (a) but using the modified out-of-plane
NVF formulation.
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5.2. Analysis of slanted 2D-periodic cylindrical diffraction
gratings

In this section we investigate the efficiency of using the
accurate field evaluation and the out-of-plane NVF formula-
tion to model a challenging, slanted 2D-periodic diffraction
grating. The grating with periods, Λ1 = Λ2 = Λ = 1 μm, is
schematically depicted in figure 1(d) and consists of a
cylindrical rod with radius r = 0.3 μm and height
h = 0.125 μm, which is slanted by θ = π/4 along the x-axis.
Again, only the gold grating is considered in this section.
Finally, the incident plane wave is impinging onto the grating
along the normal direction, is polarized along the x-axis, and
has a wavelength of λ = 2 μm.

The reflection coefficient calculated for N = 3, K, 19
harmonics and M = 2, K, 32 layers is shown in figures 12(a)
and (b) and was determined by using the conventional in-
plane NVF and the out-of-plane NVF formulation, respec-
tively. It can be seen that both approaches converge rather
slowly, neither one achieves convergence even for the highest
considered values of M = 32 and N = 19. Moreover, in order
to characterize the error of the near-field calculations in the
two formulations, the self-error with respect to the reference
solutions obtained with N = 19 and M = 32 is presented in
figures 12(c) and (d). The in-plane formulation achieves a
relative self-error of e E 0.625,13,32{ }( ) = whereas for the
same values of N and M, the modified field evaluation in
conjunction with the out-of-plane NVF achieves a sub-
stantially lower self-error of e E 0.261.13,32{ }( ) = It has to be
stressed, that the necessary accuracy for full convergence
could not be achieved in our simulations. The evolution of the
computational results for the shown values of N 19 and

M 32 however can be interpreted in favor of the out-of-
plane NVF formulation, due to the lower near-field self-error
e eE E .13,32 13,32{ } { }( ) ( )< It can be supposed that future
simulations with finer discretization will reveal the practical
benefit of the out-of-plane NVF formulation in conjunction
with the modified field formulation for 2D-periodic slanted
structures, similar to the case of 1D-periodic slanted diffrac-
tion gratings.

6. Conclusions

To summarize, we have analyzed the numerical near-field
calculated using the RCWA and identified the Gibbs phe-
nomenon as the main reason for their slow convergence and
the spurious oscillations from which they suffer. As a solution
to these deficiencies of RCWA, we proposed an improvement
of this method that can be applied for modeling arbitrary
diffraction gratings and, more generally, periodic optical
structures. The modified formulation significantly improves
the accuracy of 1D-RCWA calculations, for both straight and
slanted gratings, where it speeds up convergence and removes
the numerical artifacts from the calculated near-fields. The
accuracy of 2D-periodic grating simulations can be enhanced,
however, to a lesser extent than in the 1D case. The reduced
performance in 2D can be attributed to the discontinuity and
non-exactness of the numerical NVF, which is at the core of
the modified formulation. Therefore, it might be fruitful to
investigate more elaborate NVF-formulations and their suit-
ability for near-field calculations, such as a complex valued
NVF [42], which unlike the NVF used here is continuous
everywhere in the grating region.

We expect that the proposed modification of the RCWA
method will greatly advance its computational capabilities,
especially for 1D periodic optical structures. In particular, this
improved method could prove instrumental to accurate
modeling of periodic plasmonic structures, diffraction grat-
ings, and surface-nonlinear devices, namely to simulation of
physical systems whose functionality rely on the electro-
magnetic near-field at interfaces.
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