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Semi-local scaling exponent estimation with
box-penalty constraints and total-variation

regularisation
J. D. B. Nelson, C. Nafornita, and A. Isar

Abstract—We here establish and exploit the result that 2-D
isotropic self-similar fields beget quasi-decorrelated wavelet co-
efficients and that the resulting localised log sample second
moment statistic is asymptotically normal. This leads to the
development of a semi-local scaling exponent estimation frame-
work with optimally modified weights. Furthermore, recent
interest in penalty methods for least squares problems and
generalised Lasso for scaling exponent estimation inspires the
simultaneous incorporation of both bounding box constraints and
total variation smoothing into an iteratively reweighted least-
squares estimator framework. Numerical results on fractional
Brownian fields with global and piecewise constant, semi-local
Hurst parameters illustrate the benefits of the new estimators.

I. INTRODUCTION

COLLECTIVELY known as scaling processes, both long-
range dependent and self-similar processes continue to

offer rich and flexible models for a wide variety of signal
and image processing problems including recent innovations
in texture analysis for super-resolution [1], classification [2],
segmentation [3], condition monitoring [4], decluttering [5],
denoising [6], [7], [8], and general reconstruction [9].

In broad terms, scaling processes are characterised by the
property of scaling behaviour whereby no one single scale
is dominant. The most commonly studied subclasses of scal-
ing processes, namely self-similar and long-range-dependent,
possess two key features that manifest in the wavelet domain.
The first is that the wavelet variance follows a power law
with respect to scale; the energy decreases exponentially
with finer scale levels. Secondly, the wavelet coefficients are
quasi-decorrelated; i.e. the covariance between two wavelet
coefficients decreases to zero rapidly with respect to lag and/or
differences in scale.

The texture or roughness of a scaling process is determined
by the decay, or scaling exponent, of the power law. Owing to
the ubiquity of scaling processes, or at least of processes which
comprise components that are scaling processes, it is perhaps
not surprising that the scaling exponent has been exploited for
a wide variety of signal and image processing applications.

Perhaps one of the most effective applications of scaling
exponent estimation in image processing has been recon-
struction. It is here that the wavelet domain provides an
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especially appealing setting in that it not only offers a con-
venient way to estimate scaling exponents but also provides a
statistically well-principled means, via shrinkage, to perform
denoising and reconstruction. Example applications include
velocity measurements in the atmospheric boundary layer, [8];
synthetic aperture radar imagery, [10]; Weierstrass processes
[6]; heart rate variability signals [7]; and natural imagery [11].

As Legrand and Lévy-Véhel intuitively explain, denoising
can be performed by increasing the scaling exponent at each
point [10]. This general idea is formalised into a Bayesian
Energy Fraction Estimation approach by Vidakovic et al. [8].
Flandrin et al. used empirical mode decomposition, instead of
fixed wavelet bases, to perform denoising of low frequency
oscillation embedded in fractional Gaussian noise [7]. Fur-
thermore, by interpreting the oscillatory component as signal,
they also constructed a detrending method based on the (Hurst)
scaling exponent.

Broadly put, these methods posit that either the signal or
noise of interest satisfy a power-law relationship. Wavelet
domain shrinkage or rescaling is then used to ‘correct’ any
coefficients that significantly deviate from this prior model.
Often, the scaling exponent is known or assumed, as in
[8]. However, the work of Echelard and Lévy-Véhel [6], for
example, estimates the scaling exponent using coefficients that
are relatively uncorrupted by noise and uses this to adaptively
correct the corrupted coefficients. This is also an idea that was
explored, by Nafornita et al. [12], in the piecewise-constant
Hurst scaling parameter and high-frequency noise setting; the
authors noted there that improved scaling exponent estimation
led directly to improved reconstruction results. This was also
recently corroborated and extended by Nelson et al. [13]
where a robust estimator of the Hurst parameter was used
to subsequently suppress band-limited noise.

Intuitively, the ability of such a reconstruction paradigm
is limited by the ability to segment the data into parts that
are relatively noisy and those that are relatively noise-free.
In turn, this ability is limited to the accuracy of the local
scaling exponent estimates. It therefore follows that better
scaling exponent estimates will deliver better solutions to tasks
such as scaling exponent-based segmentation, reconstruction,
and so on. In short, scaling parameter estimation is a relevant
research goal in its own right.

Statistically rigorous wavelet-based approaches towards
scaling parameter estimation were largely formalised by a
series of research efforts by Abry, Veitch, and others, at the
turn of the millennium, for processes on the real line [14],
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[15], [16]. That the scaling parameter can be estimated so
conveniently and robustly via wavelets, and with such weak
assumptions, is largely testament to a fundamental property of
wavelet bases, namely their scale invariance— each wavelet
member is merely a dilated (and translated) version of any
other member.

We here revisit some of this earlier development and extend
a key result to processes on R2, namely that (isotropic)
self-similar processes (fields) give rise to quasi-decorrelated
wavelet coefficients. Following and adapting Abry et al., this
example leads us to propose an estimator for the semi-local
scaling exponent parameter which, in turn, suggests a well-
principled, modified, locally-weighted least-squares regression
approach.

Since the power law and the quasi-decorrelation properties
lead to a regressand which is asymptotically normal and
since it might be natural for some problems such as texture
segmentation, for example, to assume that the scaling exponent
rate of change is limited, it is therefore tempting to extend the
resulting weighted-least squares estimator by adding appropri-
ate penalty terms to the (`2) log-likelihood and utilising some
very recent developments in statistical regularisation. This is a
highly active area of modern signal processing, computational
statistics, and machine learning, which continues to exploit
and develop a range of algorithms, many of which are inspired
from the convex optimisation work of Boyd and Vandenberghe
[17] and others, that perform estimation subject to prior
knowledge, expressed in the form of constraints.

Against this backdrop, Nafornita et al. [12] and Pustelnik
et al. [3] both very recently explored the use of total vari-
ation to spatially regularise the scaling exponent estimate.
Inclusion of this penalty term is equivalent to assuming that
the spatial differences of the scaling exponent are distributed
as a Laplacian. It is therefore well-suited for estimation of
piecewise-constant varying scaling exponents— a setting that
has received relatively scant attention, especially for processes
defined over R2.

Following this regularisation theme, we here introduce box-
constraints into the estimation framework to reflect the fact that
the scaling exponent is confined to a prescribed interval. As
is especially evident for antipersistent processes with small
scaling exponents, we will show with experiments that this
furnishes more robust estimates.

Furthermore that the new developments are accommodated
so readily into the regularisation framework leads us quite
naturally to incorporate them into the generalised Lasso, total
variation estimator devised by Nafornita et al. [12]. Our
resulting approach, therefore, is able to permit any combina-
tions of the proposed optimally-weighted semi-local estimator,
the total-variation regulariser, and the new box-constraints.
Remarkably, a very simple algorithm, based on the iteratively
reweighted least-squares iterations is all that is required to
perform the estimation for any such combination thereof.

Related work

With the advent of the multifractal formalism, focus in
scaling processes on R2 has shifted away from multifractional

models, i.e. the pointwise measurement of regularity, and
instead towards a description of how regularity varies stochas-
tically over space [18], [19], [20]. Whilst the multifractal
formalism is a rich, fruitful, and current area of research that
has led to many interesting results and useful applications,
activity there can be contrasted with the relative apparent
neglect of processes which have properties somewhere in-
between the extremes of globally-fixed, and stochastically
pointwise-varying, scaling exponents. Much of the interest
in multifractional models [21], where the scaling parameter
is allowed to vary smoothly or deterministically, is largely
restricted to financial time-series models defined over the real
line, such as in [22].

As such, there have only been a few efforts to estimate
a spatially, smoothly varying scaling parameter. Extending
Nelson and Kingsbury’s local Hurst estimator [23], Nafornita
et al. proposed a total variation estimator which permitted a
generalised Lasso formulation [12]. Very recently, Nelson et
al. extended this to a robust framework to accommodate heavy-
tailed processes [13]. Pustelnik et al. used a local version of
wavelet leaders— a maxima of wavelet coefficients across
a local spatio-scale cone— together with a total variation
penalty, specifically to perform texture segmentation [3], [24],
[25]. Their (Hölder) scaling exponent estimation framework is
based on the forward-backward, primal-dual algorithm. Instead
of using local weights to accommodate the manner in which
the variance increases over the larger scale levels, as we
propose here, their algorithm attaches unknown weights to
all the space-scale wavelet (leader) coefficients and optimises
these jointly together with the local scaling exponent estimate.
Furthermore, Pustelnik at al. do not constrain the scaling ex-
ponent parameter as we propose here. Also worth noting here
is that piecewise constant Hurst estimation was very recently
generalised by Regli and Nelson, via a Markov random field
based approach, to realise a piecewise parameterised estimator
[26].

This paper is structured as follows. We review some of the
wavelet analysis of scaling processes in Section II and extend
the result, that (isotropic) self-similar processes (fields) give
rise to quasi-decorrelated wavelet coefficients, from the reals
to R2. We propose a semi-local and optimally weighted scaling
exponent in Section III. These estimators are embedded into a
new box-constrained, total variation algorithmic framework in
Section IV. Numerical experiments are performed in Section V
for the case of self-similar processes which confirm the utility
of the semi-local weighted estimator and the box-constraints.
A summary is offered in Section VI where a number of ideas
for further work are also outlined.

II. SCALING EXPONENT ESTIMATION

Abry et al. [14] show that the spectral slope of self-
similar processes, long-range dependent processes, second-
order stationary 1/f processes, and fractal processes can all be
treated and estimated in broadly equivalent ways. In particular,
all of these so-termed scaling processes have second moments
that, at least asymptotically, follow a simple power law. They
also all have pseudo-decorrelated wavelet coefficients. Placing
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the development of Abry et al. [14] into the local scaling
exponent setting, we discuss below how these two properties—
power law and decorrelation— naturally lend themselves to a
simple least-squares estimation framework.

If a stochastic field X : T 7→ R, defined over some spatial
support T ⊂ R2, has a second moment which follows a power
law then

E
∣∣(WX)(· ; j, θ)

∣∣2 ∝ 22j(H+1), (1)

where W is the wavelet operator defined by

(WX)(t; j, θ) = 2−j
〈
X,ψθ(2

−j · −t)
〉
L2(T )

,

with wavelet ψ defined over space t, orientation θ, and jth
finest scale level. Sometimes, as is the case of long-range
dependent processes for example, the proportionality in (1) is
replaced with the weaker asymptotic equivalence but, in that
case, the ensuing analysis is largely the same. Without loss of
generality we refer to the H as the scaling exponent throughout
this work. It determines the power-law rate of decay of the
(wavelet) spectrum as the scale level becomes finer and finer.

For critically decimated wavelet coefficients, the transform
is computed over j ∈ Z, k = (k0, k1) ∈ Z2 via the fast wavelet
pyramidal algorithm. For an image of size

√
n0 ×

√
n0, this

results in nj = 2−2jn0 many wavelet detail coefficients, per
directional subband, at the jth finest level, namely:

dj [k] := 2−j〈X,ψ(2−j · −k)〉L2(T ), k = 1, . . . , nj ,

where we now drop the orientation parameter θ for
convenience— although anisotropic estimation is possible (e.g.
[23]), the analysis is broadly the same as the isotropic case
but merely performed on a directional sub-band-by-sub-band
basis. To estimate the scaling parameter H , it is therefore
natural to consider the sample second moment of the wavelet
coefficients:

µj :=
1

nj

nj∑
k=1

|dj [k]|2 =
1

nj

∥∥dj [·]∥∥2

`2({1:nj})
, (2)

as an approximation to the expectation in Equation (1). For
then, H can be estimated by regressing yj = log2 µj on j. To
help fix some notation the explicit problem can be written as

min
β
‖y −X0β‖22 , (3)

where y =
(
(yj)

j+
j=j−

)>∈ RJ0 , β ∈ R2, and

X>0 =

[
1 . . . 1
j− . . . j+

]
∈ R2×J0 .

The fact that we can legitimately regress log2 µj onto j is
not altogether trivial. We note that Eµj ∝ 22j(H+1). However,
in general E log2 µj 6= log2 Eµj = 2j(H + 1) + C. Instead,
we appeal to the second property, namely that the wavelet
coefficients of scaling processes are quasi-decorrelated. This
is a well-reported result for 1-D processes. A similar result also
holds in the isotropic 2-D case. To serve as a motivating ex-
ample [14], it is instructive to consider self-similar processes.
These will subsequently be studied further with numerical
experiments in Section V. To this end, we note the following
definition and result.

Example 2.1: A stochastic field X : T 7→ R, with
finite variance and spatial support T ⊂ R2, is weak
statistically self-similar, or H-ss, if EX(α·) = αHEX and
EX(αt)X(α·) = α2HEX(t)X(·), for H,α > 0. In addition,
if X also has stationary increments then it is called H-sssi
and the scaling parameter 0 < H < 1 is, in this case, also
termed the Hurst parameter or exponent.

It is well-known and easy to show that self-similar processes
satisfy the power-law property described by Equation (1). The
following result establishes the second property of interest,
namely pseudo-decorrelation.

Theorem 2.2: Let the compactly supported wavelet
ψ : R2 7→ R possess M -many vanishing moments. Then the
wavelet coefficients dj [k] = 〈BH , ψjk〉 of an isotropic H-sssi
field BH , defined over R2 with Hurst parameter H , satisfy the
pseudo-decorrelation property, namely:

Edj [k]dj [k
′] = O

(∥∥2j(k − k′)
∥∥2(H−M)

)
. (4)

The 1-D version of this result (i.e. for BH defined over
the reals) was established by, for example, Tewfik [27]. We
present the 2-D version of the proof in Appendix A along with
complementary results and note that this can be extended, quite
readily, to higher dimensions. A similar result also holds for
long-range dependent processes and fields as well as scaling
processes/fields in general. It turns out that this result helps
simplify a lot of the statistical analysis necessary to charac-
terise the scaling exponent wavelet estimator. For Gaussian
scaling processes, the wavelet coefficients are Gaussian and
the quasi-decorrelation results in quasi-independence. As a
result, we can venture the claim that µj is approximately
Chi-squared. To make this more precise, we follow a similar
argument to Abry et al. [14] and note that under the slightly
stronger condition of decorrelation, together with the Gaussian
assumption, we have that

nj
Eµj

µj
d∼χ2(nj), (5)

the Chi-squared distribution with nj degrees of freedom.
Hence

log2 µj
d∼ log2 Eµj − log2 nj + log2 χ

2(nj)

d∼ 2j(H + 1) + log2 C − log2 nj +
lnχ2(nj)

ln 2
,

and it follows (see Abry et al. [14]) that

E log2 µj = 2j(H + 1) + log2 C + g[j]

var log2 µj =
ζ(2, nj/2)

ln2 2
,

with g[j] = Ψ(nj/2)/ ln 2 − log2(nj/2) and where Ψ(z) =
Γ′(z)/Γ(z) is the Psi function and ζ(z, ν) is the gener-
alised Riemann Zeta function. Abry et al. [14] also note the
asymptotic behaviour g[j] ∼ −(nj ln 2)−1 and var log2 µj ∼
2(nj ln2 2)−1, and Abry et al. [28] show that, asymptotically

log2 µj
d∼N

(
2j(H + 1) + log2 C,

2

nj ln2 2

)
, (6)
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which suggests, in the ideal case, a weighted least-squares
regression of log2 µj onto j, namely

min
β

∥∥∥W1/2
0 (y −X0β)

∥∥∥2

2
, (7)

with W0 = diag(wj)
j+
j−

and wj = 2−2j . In fact, as discussed
in [14], [15], [16], the Gaussianity of log2 µj holds approxi-
mately quite well even for small data size and mild departures
from decorrelation and distributional (Gaussian) assumptions.
As such, Theorem 2.2 provides principled statistical justifica-
tion to introduce a (weighted) least-squares approach to scaling
exponent estimation of scaling processes over R2.

III. PROCESSES WITH A PIECEWISE-CONSTANT VARYING
SCALING EXPONENT

That the asymptotic result (6) holds approximately, even
for small sample size, suggests a more local analysis may
be feasible. Indeed, this lends some theoretical strength to
least-squares approaches that estimate scaling exponents as a
piecewise constant [12], [13], [23], or piecewise parameterised
[26], function. In the below, we first construct a semi-local
scaling exponent estimator in Section III-A and then adapt and
place this into an optimally weighted-least squares scheme in
III-B.

A. Semi-local scaling exponent estimation

Localised estimation of the scaling exponent parameter
requires a local estimate of the second moment in (1) about
a point, ti, say. Some previous work [23], [12] has reported
some success by merely interpolating the decimated wavelet
energies at each scale level up to the zeroth level. One
then arrives at a point estimate of the second moment about
location ti ∈ T at the jth finest scale level, namely µj [i].
Setting yj [i] = log2 µj [i], the resulting regression problem
then becomes a set of equations

yj [i] = β1[i] + jβ2[i] + ε[i], (8)

with β2[i] = 2(Hi + 1), and where Hi = H(ti) is the local
scaling exponent which can now vary with location ti. The
(global) least-squares problem described by (3) now becomes a
set of local least-squares problems, viz. minβi

‖yi −X0βi‖
2
2 ,

with yi =
(
(yj [i])

j+
j=j−

)> ∈ RJ0 , βi = (β1[i], β2[i])> ∈ R2,
and where X0 is as defined earlier. It will be convenient, for
some of the extensions that follow, to write these equations in
a single problem minβ ‖y −Xβ‖22 , where X is defined, and
y and β are redefined, as follows

y = (y>1 , . . . ,y
>
n0

)> ∈ Rn,
β = (β>1 , . . . ,β

>
n0

)> ∈ Rp,
X = In0

⊗X0 ∈ Rn×p,

with the n0 × n0 identity In0
, the Kronecker product ⊗, n =

J0n0, and p = 2n0.
Performing a point estimate of the second moment at the

zeroth level domain T = {ti} is not necessarily optimal.
Ideally, the second moment should be estimated by perform-
ing summations over wavelet coefficients which lie in those

tj,1 tj,2

tj,3 tj,4

τj+1,1

∪4
k=1τj,k

tj+1,1

Fig. 1. The quad-tree structure of dyadically sampled wavelet coefficients
over the two-dimensional lattice. The coefficient tj+1,1 at the (j+1)th finest
scale level is centred at a point in space which is equidistant from the four
neighbouring ‘children’ coefficient locations {tj,i}4i=1, say, at the jth finest
scale level. Likewise the region τj+1,1 centred on tj+1,1 with width 2j+1

covers the same spatial support as the union of the four regions {τj,k}4k=1,
say, with widths 2j , centred on the points {tj,i}4i=1.

regions where the scaling exponent is constant. Unfortunately,
these regions are not known a priori. Herein lies a trade-off. If
the sizes of region over which the sample second moment is
computed is too large then the estimator will fail to adequately
capture the locally varying nature of the scaling exponent. In
this case, coefficients sampled from regions with other scaling
exponent values will contaminate the samples used in the
second moment estimate. On the other hand, if the region is
too small, then one may not be making full use of the data at
hand; instead a suboptimal estimate of the second moment will
be used. In this case, relevant coefficients will not be included
in the summation. Clearly, the trade-off will largely depend
on how quickly the scaling parameter varies over space. As
such, the choice of region size is a parameter setting that must
be decided or optimised based on some a priori knowledge or
optimisation criterion.

When the summation region size is greater than a single
pixel, the numbers of decimated wavelet coefficients involved
in the estimate will vary with respect to scale level. Similar to
the global estimation case, the variance at each scale level will
vary according to the numbers of coefficients summed. It is
therefore important to understand how this relationship works
in the semi-localised case where the moment is computed
over a region with size somewhere in-between that of a pixel,
at the one extreme, and the entire spatial support, on the
other. To proceed, it is necessary to define what is meant by
the magnitude of a decimated wavelet coefficient about an
arbitrary location ti in the spatial support T .

The centre of mass of the wavelet at the (j+1)th finest scale
level is centred at a point equidistant from four neighbours at
the jth finest level. This quad-tree structure cascades down
through all the scale levels. Let the set {tji}i ⊂ T denote the
spatial locations of the wavelet coefficients at the jth finest
level. Define τj0i ⊂ T to be the square region, centred on the
point tj0i, and without loss of generality, with width 2j0 , cf.



5

Fig 1.
To choose a region of size, say 2j0 , over which to form a

semi-local estimate of the sample second moment, the wavelet
energies at scales coarser than j0, i.e. for j > j0, are simply
upsampled (interpolated) to the points {tj0i}i. On the other
hand, at scale levels finer than j0 (namely j < j0) the wavelet
energies are averaged over the region τj0i, i.e. |dj [i]|2 are
averaged over the indexes κj0ji := {k : tjk ∈ τj0i}. In effect,
all the coarser levels, greater than j0, are upsampled to {tj0i}i
and all the finer levels, smaller than j0, are ‘downsampled’
via summation to {tj0i}i. This leads to the semi-local sample
second moment

µj [i] =


(
2(j−j0) ↑ |dj |2

)
[i], j ≥ j0∣∣κj0ji ∣∣−1 ∥∥dj [·]∥∥2

`2(κ
j0
ji )
, j < j0

(9)

with κj0ji :=
{
k : tjk ∈ τj0i

}
and where a ↑ x symbolises

the operation of interpolating the sequence x by a factor of
a. This could, for example, be via nearest neighbour or by
bilinear interpolation.

As an example, one could consider the spatial support T =
(0, 2J)2. If this is sampled uniformly then the zeroth level over
which the process is observed has, as its discrete domain, the
2-d lattice {t0i}i = (k1 − 1/2, k2 − 1/2)2J

k1,k2=1. The wavelet
coefficients at the jth finest scale level will then be centred
at the points {tji}i :=

(
2j−1(2k1− 1), 2j−1(2k2− 1)

)2J−j

k1,k2=1

and the region centred on tji with width 2j is

τji =
[
2j(k1 − 1), 2jk1

)
×
[
2j(k2 − 1), 2jk2

)
.

B. Locally weighted scaling exponent parameter estimation

When downsampling by a factor of s = 2j0 , say, there will
be a factor of 22(j0−j) many more coefficients involved in the
estimate of the sample second moment at the jth finest level
(when j < j0) than the j0th finest level. On the other hand, the
jth finest scale levels for j > j0 have just as many coefficients
as the j0th finest level, courtesy of the upsampling. Therefore,
we propose that weights of 22(j0−j) be attached to the finer
scale levels j < j0 whereas weights of 1 are used for all the
coarser scale levels j > j0.

Furthermore, from Equation (9) it can be seen for scales
finer than the j0th finest level (i.e. for j < j0) the µj statistic
is derived from averaging over 22(j0−j) wavelet coefficients.
Hence, using exactly the same arguments as were applied in
the global case, we have that µj is Chi-squared, cf. Equation
(5), only this time it is of order 22(j0−j) rather than order
N2−2j . On the other hand, for the coarser scale levels (j >
j0) only one (interpolated) coefficient is used— i.e. a point-
estimate. If nearest neighbour interpolation is used then this
point-estimate is distributed as Chi-squared, order one. This
results in a slight modification of Equation (6), namely

log2 µj
d∼


N
(

2j(H + 1) + log2 C,
2s2

nj ln2 2

)
, j < j0

N
(

2j(H + 1) + log2 C,
2

ln2 2

)
, j > j0

Hence, for a downsampling factor of s, we propose the
optimal semi-local weighted-least squares (WLS) approach

min
β

∥∥∥W1/2 (y −Xβ)
∥∥∥2

2
, (10)

where, now
y = (y>1 , . . . ,y

>
nj0

)> ∈ Rn,

β = (β>1 , . . . ,β
>
nj0

)> ∈ Rp,
X = Inj0

⊗X0 ∈ Rn×p,
W = Inj0

⊗W0 ∈ Rn×p,

with a slight abuse of the notation n = n(s) = J0n0/s
2 and

p = p(s) = 2n0/s
2; and with the n0 × n0 identity In0 , the

Kronecker product ⊗, and weights W0 = diag(wj)
j+
j−

, where

wj = max
(
1, s22−2j

)
. (11)

C. Simulation

The next section presents some estimation algorithms based
on the preceding analysis. To study the efficacy, fractional
Brownian fields are simulated according to the incremental
Fourier synthesis method first proposed by Kaplan and Kuo
[29]. Their method, which is also a key part of the Fraclab
toolbox [30], provides a good balance between accuracy and
computational complexity. This is important since, although
on the one hand it is of course important to reproduce some
of the key statistical properties of fractional Brownian fields,
there is also often the requirement to perform many trials of
many experiments over fields of various sizes, etc.

The incremental approach is based on the standard Fourier
synthesis approach which, as the name suggests, simulates a
field in the Fourier domain and then inverts it to arrive at
BH . The method proceeds by simply scaling a white noise
process ε(·) iid∼N (0, 1), by the (generalised) power spectral
density of a fractional Brownian field with Hurst parameter
H , namely ρ(·) := ‖·‖−2H−2

ε(·). The phase θ is drawn
from the uniform distribution θ(·) iid∼ Uniform[0, 2π), to give
the simulated spectrum B∧H = ρeiθ. Finally, the fractional
Brownian field is rendered via BH = <((ρeiθ)∨).

The key drawbacks to the standard synthesis method is that
it results in a stationary process and fails to demonstrate the
self-similarity property. Although a similar process is followed
by the incremental Fourier synthesis approach, this time, the
(stationary) first and second order increments of BH are
simulated first via the Fourier method. These are then carefully
summed to produce the (non-stationary) fractional Brownian
field. As Kaplan and Kuo illustrate, the incremental approach
reproduces the self-similarity property more faithfully than
the standard Fourier synthesis method with only double the
computational cost [29].

Fields with piecewise, locally varying Hurst parameter can
be constructed as follows. Consider a disjoint covering of
the domain T , namely

⋃
k Tk = T , and Tk ∩ T` = ∅, for

k 6= `. Construct the masks Sk(t) := I(t ∈ Tk), with the
indicator function I : T 7→ {0, 1} and let {η(k)}k determine
the codomain of the Hurst parameter H = H(t), t ∈ T ; i.e.
the finite set of unique Hurst parameters present in the field.
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TABLE I
CODOMAIN OF HURST VALUES IN SIMULATED DATA

Name Codomain
chequers {1/5, 2/5, 3/5, 4/5}
chequers A {3/10, 13/30, 17/30, 7/10}
curves3 {1/3, 2/3, 1}
curves3A {2/5, 1/2, 3/5}
curves4 {1/4, 1/2, 3/4, 1}
curves4A {2/5, 1/2, 3/5, 7/10}
curves5 {1/5, 2/5, 3/5, 4/5, 1}
curves5A {3/10, 2/5, 1/2, 3/5, 7/10}

(a) Chequers (b) Curves3 (c) Curves4 (d) Curves5

(e) Chequers A (f) Curves3A (g) Curves4A (h) Curves5A

Fig. 2. Piecewise-varying Hurst parameter for the chequers and curves
simulated data.

First of all the set of surfaces Bη(k) = Bη(k)(·; ε0) are
simulated with the incremental Fourier synthesis method,
using the same white noise process ε0 for each surface. Then,
a fractional Brownian field with locally varying H can be
constructed with BH =

∑
k SkBη(k)(·; ε0). The resulting field

will have Hurst parameter η(k) at t ∈ Tk.
The piecewise varying Hurst parameter function H = H(t)

of some of the simulated data used in the experiments in
Section V is plotted in Figure 2. The codomains are tabu-
lated in Table I. ‘Chequers’ simply comprises four smaller
square regions where the Hurst parameter takes the values
1/5, 2/5, 3/5, 4/5, top to bottom, left to right, starting in the
top left corner. It therefore contains regions of both small
transitions, between 1/5 and 2/5, say, as well as large jumps—
for example between 1/5 and 3/5. The curves data have
transitions along various curved edges. Note here that the
alternative (‘A’) versions in the bottom panels of Figure 2 have
smoother varying H . An instance of the ‘Curves5A’ data is
depicted in Figure 3. Note how the local texture is rougher in
the upper-left corner and becomes evermore smoother towards
the lower-right corner as the Hurst parameter increases.

IV. ESTIMATION ALGORITHMS

We here extend the idea of exploiting prior information
regarding: (i) how the scaling parameter varies over the spatial
support and (ii) the fact that the scaling exponent often lies
on some bounded, or semi-bounded interval, which is known
apriori. Self-similar processes offer an example of a scaling
exponent which lies on the unit interval.

More generally, the practitioner may have some prior knowl-
edge about what interval(s) the scaling exponent may lie.

Fig. 3. An instantiation of the Fractional Brownian field ‘Curves5A’.

This could come from training data, physical models, or other
intuition about the data. Even quite conservative constraints on
where the scaling exponent lies would offer extra information
that one should ideally exploit.

We will see that it is possible to accommodate both the
spatial regularisation and scaling exponent constraints with the
flexible computational framework provided by the iteratively
reweighted least-squares (IRLS) scheme.

Although not new, IRLS is a very flexible and extensible
scheme has attracted some very recent attention. Most notable
is that of Daubechies et al. [31] whose modifications ensure
algorithm convergence. This is significant because the IRLS
has exponentially fast convergence. Although each step in
the algorithm can be expensive owing to a matrix inversion,
Chen et al. recently formulated a preconditioner which greatly
reduces this cost [32], [33] and Zhou et al. recently proposed
the combination of IRLS with the popular alternating direction
method of multipliers to avoid direct inversion [34].

A. Total variation

The semi-local weighted scheme in the previous section
explicitly exploited the assumed piecewise constant behaviour
of the Hurst/scaling parameter. Another means to incorporate
this prior knowledge is via statistical regularisation. To this end
Nafornita et al. [12], proposed the total-variation regularised
estimator

argmin
β
‖y −Xβ‖22 + λ ‖∇β‖1 , (12)

where ∇ ∈ Rm×p performs a spatial regularisation on β
(and therefore on H). The parameter λ controls the amount of
spatial smoothness that is assumed in the solution. The prob-
abilistic interpretation is that a negative-log-Laplacian prior is
applied to the spatial differences and added to the negative-
log-likelihood to establish the negative-log-posterior. In effect,
Expression (12) describes a maximum a posteriori solution.
Furthermore, Nafornita et al. [12] showed that this problem
was an instance of a generalised Lasso, first considered by
She [35]. Although She used a simulated annealing-based
approach, the first path algorithm was found by Tibshirani and
Taylor [36]. As the name suggests, this recovers all solutions
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β(λ) over the values of λ. Recently, Nelson et al. [13]
established an iteratively reweighted least-squares algorithm
to solve (12). Their development proceeds by firstly noting
that the usual Lasso objective can be rewritten as a weighted
ridge regression one, namely:∥∥y −Xβ

∥∥2

2
+ λ
∥∥β∥∥

1
=
∥∥y −Xβ

∥∥2

2
+ λ
∥∥Ω1/2β

∥∥2

2
,

where Ω = diag
(
|βi|−1 )p

i=1
∈ Rp×p. This then suggests the

following iterations which simply alternate between solving a
weighted ridge problem and updating the weights:

β(`+1) = (X>X + λΩ(`))−1X>y,

Ω(`+1) = diag
(
|β(`+1)
i + δ|−1

)p
i=1

, (13)

where δ can be a small, fixed constant or updated as in [31].
However, as Nelson et al. [13] show, a very similar algo-

rithm can also be realised for the generalised Lasso. In partic-
ular, we note that the generalised penalty in Equation (12) can
be written as ‖∇β‖1 =

∑
i

∣∣∇>i β∣∣ =
∑
i

∣∣∇>i β∣∣−1
(∇>i β)2,

where ∇i ∈ Rp×1 such that ∇ = (∇>1 , . . . ,∇
>
m)>. The

generalised Lasso objective can then be formulated in terms
of a weighted ridge regression, viz.∥∥y−Xβ

∥∥2

2
+λ
∥∥∇β

∥∥
1

=
∥∥y−Xβ

∥∥2

2
+λ
∥∥Ω1/2∇β

∥∥2

2
, (14)

where, now, Ω = diag
(
|∇>i β|−1

)m
i=1
∈ Rm×m. In this

way, their development leads to Algorithm 1 (for the case
W = I). We note the generalisation W 6= I is now possible
as a consequence of the downsampled, weighted estimator pre-
sented in Section III-B. Again, this alternates between a ridge
problem and an update. In practice, the algorithm is stopped
if it either reaches some maximum number of iterations or if
the distance between two successive estimates is smaller than
some predefined threshold. It should be noted that, as is typical
with IRLS-based algorithms, although convergence is reached
very quickly (potentially exponentially fast [31] compared to
the O(1/k2) complexity of gradient descent methods such as
FISTA [37]) computational issues can arise when the data
size, n0 is large. For then, the inversion of the p × p matrix,
required when estimating β`+1, can be problematic even
when Cholesky factorisation and/or sparse matrix structures
are exploited. Fortunately, one approach advocated here is
the use of the downsampling factor. It is perfectly reasonable
to combine this with the total-variation regularisation. Recall
that downsampling by a factor of s = 2j0 has the effect of
shrinking p = p(s) = 2n0/s

2 by a factor of s2 = 22j0 .
Therefore, even a modest amount of downsampling, such as
s = 4, say, can reduce the problem size significantly.

Unlike many other methods, IRLS can be quite naturally
extended to overlapping mixed, grouped-sparse, norms [32].
Indeed, very recent fast preconditioning IRLS-based methods
have emerged [32], [33] which compare favourably to gra-
dient descent methods and a variety of other state-of-the-art
approaches. Furthermore, it should also be noted that, unlike
ADMM, FISTA, and other convex optimisation approaches,
IRLS can easily accommodate non-convex terms that, for
example, could result from positing a hyper-Laplacian prior
‖∇·‖p, with 0 < p ≤ 1 on the spatial differences to induce a
greater amount of sparsity than is available to the `1 penalty

[31]. Moreover, it can also easily incorporate non-smooth
fidelity terms which give rise to heavier-tailed likelihoods and,
hence, can offer more robustness to non-Gaussian, noise [13].

In contrast to Tibshirani’s generalised Lasso algorithm [36],
IRLS (like other non-path algorithms such as FISTA [37] etc)
does not yield the full solution path— for all λ. In practice,
however, it is common and considered reasonable to select
a suitable λ and solve over the β coefficients. The λ can
be chosen with respect to some theoretical criterion such as
AIC/BIC, etc, or alternatively is ‘learnt’ via cross-validation or
otherwise. Further algorithmic considerations and comparisons
to ADMM, gradient descent, and extensions thereof is beyond
the scope of the paper and is left as further work.

Algorithm 1 Generalised Lasso (or total variation least
squares) via iteratively reweighted least squares

1: Inputs:
design matrix X, wavelet log-variances y,
regularisation parameter λ

2: Initialize:
Ω(0) = I

3: for ` = 0, 1, . . . , `max do
4: β(`+1) = (X>WX + λ∇>Ω(`)∇)−1X>Wy
5: Ω(`+1) = diag

(
|∇>i β

(`+1) + δ|−1
)m
i=1

6: end for

B. Box-constraints

A common problem with scaling exponent estimation is that
sometimes the estimates end up outside the defined, a priori, or
reasonable, range of the given exponent. For example, it can
be the case that Hurst parameter estimates land outside the
valid interval [0, 1]. In broader terms, the practitioner may be
in one of the following scenarios: they have access to at least
limited training data from which to estimate, learn, or tune
sensible bounds; they have a physical model which suggests
that the exponent to be estimated lies on some interval; and/or
wish to constrain the solution to a known particular interval,
as is sometimes the case in filtering or denoising tasks. It
should also be worth mentioning that the bounds need not be
optimally tight to the ‘real’ values of the scaling exponents
in order to garner some benefits of introducing this prior
knowledge. In this sense, even quite conservative bounds may
be of some use to the extent that the incorporation of some
prior information is better than none at all.

The occurrence of values outside the permitted range only
increases when fewer samples are used— in particular, when a
localised Hurst estimation strategy is followed. Although one
could threshold values to force them to lie inside a reasonable
or valid range, this is clearly not an ideal policy. Instead,
we propose to incorporate constraints into the least-squares
framework. Surprisingly, it appears that this has not been
attempted before for scaling exponent estimation. Indeed it
has not, in particular, been attempted for Hurst parameter
estimation.

Happily, as with total-variation smoothing, we find that the
constraints can be accommodated quite readily not only by
the regularisation/penalty method but also by our iteratively
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reweighted computational framework. We proceed by outlin-
ing the penalty approach to the ordinary least-squares problem,
as outlined by Mead and Renaut [38]. They approach the
constrained least-squares problem

min
β

‖y −Xβ‖22 , (15)

subject to β− 6 β 6 β+

Writing the box-constraint bounds as quadratic constraints

min
β

‖y −Xβ‖22 ,

subject to
(
β[i]− β[i]

)2 ≤ σ2
i ,

where [i] indicates the ith element of the vector; and with
β = (β++β−)/2, and σ = (β+−β−)/2, allows the problem
to be expressed in penalty form, namely

min
β

∥∥y −Xβ
∥∥2

2
+
∥∥C−1/2

ε

(
β − β

)∥∥2

2
, (16)

with Cε := εC and ε is reduced, from unity, at each step as
shown in line 8 of Algorithm 2. Note that the I symbol on
line 6 denotes the indicator function which returns unity if the
argument statement is true and otherwise returns zero. The
condition z 6= 1 on line 3 requires that all elements of z are
unity or true before the loop stops. In practice, this could be
relaxed to some maximum number of iterations or minimum
difference in consecutive estimates of β.

The adaptation to scaling exponent estimation can be
achieved by letting y be the wavelet log-variances and then,
assuming (cf. Eqn. 10) that the β = (β[i])2n0

i=1 are arranged as

β =
[
β1[1], β2[1], β1[2], β2[2], . . . , β1[n0], β2[n0]

]>
gives the constraints as

β−[2i] = B−, β−[2i+ 1] = −L,
β+[2i] = B+, β+[2i+ 1] = L.

Setting L to be large ensures that only the log-slope parameters
β2[i] are constrained. The intercept is left unconstrained. Note
that the unweighted case can be selected by simply choosing
the weights W to be the identity matrix. A specific example,
for Hurst exponent estimation for self-similar processes, say,
would be to set B− = 2 and B+ = 4. This would ensure that
the estimate for H lies in [0, 1].

C. Box-constrained total variation

Since both total-variation and box-constraints can be man-
aged under a similar penalised, iterative computational frame-
work it seems quite natural to fuse them under our existing
system. This hence leads us to propose the Bounded box
constrained total variation (BBC-TV) least-squares scaling
exponent estimation method as outlined in Algorithm 3.1

To help justify this, we note that since the total variation
penalised least squares can be written as a weighted ridge
regression, cf. (14), it can therefore be rewritten, in block-
form, as a least-squares problem. Hence, it can be treated as

1Unlike Beck and Teboulle [37], who consider constrained TV regularisa-
tion for denoising and deblurring, the proposed algorithm is based on IRLS
and is applied to the problem of scaling exponent estimation.

Algorithm 2 Bounded box constrained (BBC) least-squares
via the penalty method

1: Inputs:
design matrix X, data y, weights W,
downsample factor s = 2j0 ,
constraints {β−,β+}

2: Initialize:
unweighted: W = I or weighted:
W = Inj0

⊗
diag(max(1, s22−2j))

j+
j−

β = (β+ + β−)/2,

C−1
ε = diag

(
4

(β+[i]− β−[i])2

)p
i=1

ε = 1, ` = 0, z = 0 ∈ Rp

3: while z 6= 11 do
4: β̂ = (X>WX + C−1

ε )−1(X>Wy + C−1
ε β)

5: for i do
6: z[i] = I(β−[i] 6 β̂[i] 6 β+[i])
7: end for
8: ε =

ε

1 + `/10
9: C−1

ε = diag(1 + ε−1z[i])C−1
ε

10: ` = `+ 1
11: end while

a constrained least-squares problem in much the same way as
the basic least-squares set-up, cf. (15). In summary (14) and
(15) are combined to give

min
β

‖y∗ −X∗β‖22 ,

subject to β− 6 β 6 β+

with

y∗ :=

[
y
0

]
, X∗ :=

[
X√

λΩ1/2∇

]
, (17)

Substituting y∗ and X∗ from (17) into Algorithm 2 gives
Algorithm 3.

V. EXPERIMENTS

We here focus on Hurst estimation for self-similar processes
but note that the ideas can be readily transferred to the
more general case of scaling parameter estimation for any
process which possesses a power-law and quasi-decorrelation
properties.

A. Simulated data

Figure 4 illustrates the absolute errors of the WLS Hurst
estimates (cf. Eqn. (10)) for fractional Brownian fields of size
256 × 256 with globally constant Hurst with two different
downsampling values, namely s = 16 and s = 32, and
using three different weighting strategies. The unweighted
scheme simply assigns wj ≡ 1. The naive weighted scheme
has wj = 2−2j ; and, cf. Eqn. (11), the (proposed) weighted
scheme chooses wj = max

(
1, s22−2j

)
. The proposed weights

outperform both the naive weighted, and unweighted, schemes.
Figure 5 shows the absolute errors of Hurst estimates

for fractional Brownian fields of size 256 × 256 with a
globally constant Hurst parameter for the unconstrained and
constrained, weighted and unweighted, methods. It can be
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(a) Unconstrained weighted (WLS) and unweighted (OLS) least-squares.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

M
e
a
n
 a

b
s
o
lu

te
 e

rr
o
r

Hurst parameter

 

 

unweighted, s=16

weighted, s=16

unweighted, s=32

weighted, s=32

unweighted, s=64

weighted, s=64

unweighted, s=128

weighted, s=128

(b) Constrained weighted (BBC-WLS) and unweighted (BBC-OLS).

Fig. 5. Mean absolute errors of local Hurst estimates obtained on fractional Brownian surfaces with globally constant Hurst parameter, for different values
of the downsampling parameter s. Left: without constraints (OLS and WLS); right: with constraints (BBC-OLS and BBC-WLS).

Algorithm 3 Bounded box constrained total variation (BBC-
TV) least-squares via the penalty method and iteratively
reweighted least-squares

1: Inputs:
design matrix X, data y, weights W,
downsample factor s = 2j0 ,
constraints {β−,β+}
regularisation parameter λ

2: Initialize:
unweighted: W = I or weighted:
W = Inj0

⊗
diag(max(1, s22−2j))

j+
j−

β = (β+ + β−)/2,

C−1
ε = diag

(
4

(β+[i]− β−[i])2

)p
i=1

ε = 1, ` = 0, z = 0 ∈ Rp

3: while z 6= 11 do
4: β̂=(X>WX+λ∇>Ω(`)∇+C−1

ε )−1(X>Wy+C−1
ε β)

5: Ω(`+1) = diag
(
|∇>i β̂ + δ|−1

)m
i=1

6: for i do
7: z[i] = I(β−[i] 6 β̂[i] 6 β+[i])
8: end for
9: ε =

ε

1 + `/10
10: C−1

ε = diag(1 + ε−1z[i])C−1
ε

11: ` = `+ 1
12: end while

seen that the weighted scheme holds an advantage over the
unweighted scheme for all globally constant Hurst values and
for both unconstrained and constrained.

The errors in both Figure 4 and Figure 5a are generally
slightly greater for small Hurst values. At these parameter
values, the spectral slope is quite shallow and small positive
errors in the log2 µj statistic can lead to overly small, or indeed
negative, Hurst estimates. This issue can be resolved somewhat
by increasing the finest scale level j− to be used in the
regression. However, that may result in worse performance for
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naive weighted, s=32

weighted, s=32

Fig. 4. Mean absolute errors of local Hurst estimates obtained on fractional
Brownian surfaces with globally constant Hurst parameter, for different values
of the downsampling parameter s and using: no weighting; naive weighting;
and our proposed weighting across different scale levels.

larger values of the Hurst parameter. Since the Hurst parameter
is not known a priori, practitioners must fix j− (and j+) based
on cross-validation or other empirical testing. A comparison
between the left and right panels of Figure 5 reveals that
the constraints offer generally better estimates and that this
advantage is especially evident, in this experiment, for the
small values of the Hurst parameter. The right panel confirms
that the proposed constraints can be successfully combined
with the proposed weighted scheme.

Note that for both constrained or unconstrained the larger
the downweighting factor s, the smaller the error. This is
not surprising since the fractional Brownian field used to
test the estimators in this experiment was endowed with a
globally constant Hurst parameter. As such, the spatial locality
sacrificed by choosing a large s has no detrimental effect.

On the other hand, when the Hurst parameter varies over
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(d) curves5

Fig. 6. Mean absolute errors of local Hurst parameter estimates obtained
on fractional Brownian surfaces with spatially varying Hurst parameter for
different values of the downsampling parameter s.

space, arbitrarily larger downsampling factors do not necessar-
ily improve the estimates. Instead, a trade-off must be struck
between the computational speed-up afforded by downsam-
pling and the resulting loss in estimate accuracy relative to
how locally one expects the Hurst parameter to vary.

Figure 6 uses box plots to illustrate the absolute errors of a
variety of Hurst estimation methods using the data ‘chequers’,
and ‘curves’ 3-5 (cf. Figs. 2a-2d) with size 64×64. The labels
along the abscissa denote the unconstrained least-squares
method with/without constraints (WLS/OLS), the constrained
method with/without weights (BBC-WLS/BBC-OLS), using
downsampling rates of 1, 16, and 32; e.g. the label ‘BBC-
OLS16’ in the figure refers to the constrained, non-weighted
least-squares scheme with a downsampling of s = 16.

From the figure, one can draw several conclusions,
namely: the constraints generally improve accuracy (compare
with/without BBC); some subsampling can be beneficial on
data where the variation of the Hurst parameter is rela-
tively small (compare OLS16 with OLS1 for ‘chequers’ and
‘curves3’); however, when too much subsampling is used or
when the Hurst parameter varies more locally the estimates
lose local information and become poorer (compare OLS32
against OLS16 and OLS1)— hence here lies a trade-off
between estimation error and computational speed; when too
much subsampling is used, the weighting method appears to
help with accuracy in this experiment (compare OLS32 with
WLS32) although this benefit is mitigated somewhat when the
constraints are added and is only small or negligible when the
subsampling rate is small (compare other OLS against WLS).

Hence, overall, both the constrained method and the weight-
ing method may have their use depending on the data, prior
assumptions, other parameter settings such downsampling
factor, and application considerations such as computational
resources, time constraints, and required accuracy.

Figure 7 and 8 compare the absolute errors of the uncon-
strained and proposed constrained (total-variation regularised)
Hurst estimation methods over different total-variation reg-
ularisation parameters using 64 × 64 versions of the data
illustrated in Figure 2. Here the constrained version holds an

(a) chequers (b) curves3

(c) curves4 (d) curves5

Fig. 7. Mean absolute errors of local Hurst parameter estimates obtained
on fractional Brownian surfaces (chequers and curves3, 4, 5) with spatially
varying Hurst parameter using total variation regularisation with/without
constraints, over different values of the regularisation parameter λ. Error bars
represent upper-lower quartiles.

(a) chequers A (b) curves3A

(c) curves4A (d) curves5A

Fig. 8. Mean absolute errors of local Hurst parameter estimates obtained on
fractional Brownian surfaces (chequers A and curves3A, 4A, 5A) with spa-
tially varying Hurst parameter using total variation regularisation with/without
constraints, over different values of the regularisation parameter λ. Error bars
represent upper-lower quartiles.

advantage over the unconstrained one. In Figure 7, the optimal
regularisation value of the constrained method is quite close
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to zero. Whereas, when the alternative data is used (which
contains less variation in the Hurst parameter) the optimal
value is, as expected, larger. These results indicates two main
behaviours. Firstly, since the constraints essentially restrict the
interval over which the estimates can lie, less regularisation
is required to optimise the resulting objective function; in a
sense, the constraint performs some level of regularisation in
addition to the total variation. Secondly, when less (Hurst)
variation is present in the data, the optimal level of total
variation will be larger so as to properly reflect the prior
information that the Hurst parameter varies more smoothly.

B. Real data

As discussed in the introduction, as long as model assump-
tions hold, empirical results have corroborated the logic that
improved Hurst estimation will give rise to better performance
in scaling exponent-led image processing tasks such as seg-
mentation or denoising. It is therefore anticipated that, with
suitable adaptation, the superior performance of the weighted,
TV-smoothing, and constrained strategies will further enhance
many existing applications. Although a full exploration of
these are beyond the present scope, we here offer a motivating
example of segmentation for synthetic aperture sonar imagery.
The upper panel of Figure 9 illustrates sonar imagery captured
by the MUSCLE sensor. This imaging modality is used by
environmental and defence scientists, amongst others, for
a broad range of tasks including seabed classification and
segmentation.

In defence applications, for example, one is typically con-
cerned with the detection of mine-like objects. Unfortunately,
as Groen et al. point out, computer-based mine-like detectors
suffer from dramatic increases in false positives when con-
fronted with sand-rippled seabeds [39]. This inspired Nelson
and Kingsbury to propose a wavelet-based shrinkage method
to adaptively suppress ripple energy and, hence, mitigate the
deleterious effects of the seabed type on detection performance
[5], [40], [41].

More precisely, the sonar imagery is modelled as a random
field over the lattice X : T 7→ R with some underlying
hidden state Y : T 7→ {0, 1} defined at each site, where
0 denotes non-ripple and 1 denotes ripple. The ripples are
adaptively shrunk in the wavelet domain via a shrinkage op-
erator defined as the multiplication of the wavelet coefficients
with the marginal posterior probability of non-ripple, namely
(S·)i := ·P(Yi = 0|Xi). The result is then transformed
back into the original domain: X̃ := W−1SWX thanks to
the perfect reconstruction property of the dual-tree complex
wavelet basis used. The adaptive (non-linear) filtered image
X̃ will contain significantly less energy than the original in
the scale-orientation-spatial locations of the ripple. However,
elsewhere, the filtered and original image should be very
similar or exactly the same.

Happily, an effective choice of the likelihood function is
the local and directional scaling exponent estimate. As such,
this application represents a good, real-world application of a
scaling exponent-based denoising task discussed, in generality,
by [7] and, also [6], [10], [8]. In particular, here there is a

need to adaptively separate the power-law signal (non-rippled
seabed) and the pseudo-periodic noise (sand ripples).

The key to this task is performing an accurate and stable
directional estimate of the scaling parameter. For that, the
analysis in the preceding sections is applied to each wavelet
sub-band direction separately. This results in a semi-local
and directional estimate of the scaling parameter, say Hm(t)
as plotted in the bottom panel of Figure 9. For the dual-
tree complex wavelets used here, there are six directions,
namely (30m − 15)◦ for m = 1, . . . , 6. Four combinations
of methods are used for comparison, with/without constraints
and with/without total variation smoothing. It can be seen that,
in all methods, sub-bands two and three show a reasonably
clear region of small scaling exponent in the ripple field and
a relatively larger scaling exponent estimate outside the ripple
field. This reflects both the location and general directionality
of the sand ripples. On close inspection one may also be able
to observe that the smoothing method offers more spatially
coherent estimates, and that the constrained methods offer
more homogeneous estimates, of the scaling exponent.

For illustrative clarity, Figure 10 shows thresholded versions
of the estimates. Ideally, these should contain a contiguous
black region in sub-bands two and three which reflects the
position of the ripple field. It should arguably maybe contain
some content inside the ripple region in the neighbouring
bands one and four and be fairly clean in the other bands. The
superiority of the TV smoother is evident. Rows two and four
are both cleaner outside bands two and three and, at the same
time, the dark region in bands two and three capture the true
ripple field more faithfully than rows one and three. A modest
improvement in the use of the constraints is also evident here.
For example, the black regions in bands two and three of the
fourth row cover more of the ripple field — there are fewer and
smaller holes— than the second row. The segmentation results
are, by no means, perfect. However, it should be noted that,
(i) in practice one may either use the non-thresholded values
to construct a likelihood of the ripple directly and/or combine
this with a neighbourhood structure prior, such as a Markov
random field to improve the segmentation; (ii) performing this
segmentation in the wavelet domain affords the possibility to
carry out shrinkage and suppress the ripple effects in a broadly
similar way to [40]; (iii) the more accurate one can make the
segmentation at this stage in the processing, the easier and
more effective steps (i) or (ii) above will be.

VI. CONCLUSION

Theorem 2.2 and subsequent statistical analysis above es-
tablished the fact that, since the wavelet coefficients of self-
similar processes are quasi-decorrelated, the least-squares-
based approach is properly motivated and can also be extended
to the semi-local case. As a direct result, the following two
main methodological developments have thus been added to
the local scaling exponent estimation framework.

1) The first development, suggested by our semi-local
version of Abry’s asymptotic result, was the proposed
weighting scheme. This provides a statistically well-
principled means to conduct semi-local weighted-least
squares estimation.
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Fig. 9. Upper panel: MUSCLE sonar imagery, courtesy of the Centre for
Maritime Research and Experimentation. Note the sand rippled region in the
upper-left part of the image. Also present are two mine-like objects. Bottom
panel— estimated scaling exponent of the MUSCLE data using: unconstrained
without TV smoothing [row 1]; unconstrained with TV smoothing [row 2];
constrained without TV smoothing [row 3]; constrained with TV smoothing
[row 4]. The columns of the estimate sub-figures the directional response
(30m− 15)◦, for m = 1, . . . , 6.

2) The second development was to pull through work
on the use of the penalty method to incorporate box-
constraints into the least-squares framework.

We have shown that, thanks to the least-squares framework
and iteratively reweighted least squares algorithm, these two
innovations can be successfully combined and, indeed, can
be incorporated into the recent total variation regularisation
framework to achieve better estimates. Table II summarises
the various combinations of methods introduced here.

There remain many open questions for further study, includ-
ing the following.

Fig. 10. Thresholded versions of the lower panel of Figure 9, namely the
estimated scaling exponent of the MUSCLE data using: unconstrained without
TV smoothing [row 1]; unconstrained with TV smoothing [row 2]; constrained
without TV smoothing [row 3]; constrained with TV smoothing [row 4].The
columns of the estimate sub-figures the directional response (30m − 15)◦,
for m = 1, . . . , 6.

(F1) Although no obvious convergence problems were suf-
fered during our simulations, a convergence proof for the
proposed BBC-TV algorithm is outstanding and would
provide a natural research target.

(F2) The quasi-decorrelation result, along with the weighted,
constrained, and TV-regularised estimation, could be
extended to the anisotropic case. This would provide
an updated framework of the anisotropic OLS work in
[23] and/or a non-stationary extension of [42].

(F3) An alternative direction would be to consider estima-
tor robustness for the non-Gaussian case. Abry et al.
[14] studied the robustness of the Hurst estimator as
the Gaussianity assumptions were relaxed somewhat. A
theoretical and numerical study of such robustness for
the model discussed here would be of interest. Recent
work by Nelson et al. [13] has generalised the Gaussian
likelihood to the exponential family in the regularised
Hurst estimation framework to accommodate outliers.
Their analysis was by no means complete in that the
source of the outliers was not rigorously described. It
would be of interest to incorporate such analysis into
the framework presented here and to further strengthen
the theory.

(F4) The estimation framework here is based purely on a
maximum a posteriori approach. This does not im-
mediately offer confidence intervals on the estimates.
Any estimation variance reported here is arrived at
empirically via repeated experiment with full knowledge
of ground truth. Generating uncertainty bounds without
recourse to ground truth would, of course, be preferable.

(F5) The related work of Pustelnik et al. [3], [24], [25]
comprises some noteworthy features which could offer
interesting ways forward when combined with the work
herein. The use of wavelet leaders for overcomplete
bases such as the dual-tree complex wavelets used here
is yet to be investigated, for example.

(F6) A comparison of scaling exponent based methods with
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TABLE II
THE FAMILY OF THE PROPOSED CONSTRAINED, WEIGHTED

LEAST-SQUARES AND TOTAL VARIATION LOCAL HURST ESTIMATION
METHODS: f(β;W, λ) =

∥∥W1/2(y −Xβ)
∥∥2
2
+ λ

∥∥β∥∥
1

,
WITH/WITHOUT CONSTRAINTS β− 6 β 6 β+

Form Name Proposed (as Hurst estimator)
Unconstrained

f(·; I, 0) OLS (e.g. Nelson and Kinsgbury [23])
f(·;W, 0) WLS here: Eqn (10) (cf. [14], [15], [16])
f(·; I, λ) TV (gen. Lasso) Nafornita et al. [12], [13] (cf. [36])
f(·;W, λ) TV (weighted) here: Algorithm 1
Constrained

f(·; I, 0) BBC-OLS here: Algorithm 2 (cf. [38])
f(·;W, 0) BBC-WLS here: Algorithm 2
f(·; I, λ) BBC-TV here: Algorithm 3
f(·;W, λ) BBC-WTV here: Algorithm 3

other approaches to common image processing tasks
such as denoising, deblurring, segmentation, etc.
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APPENDIX A
PROOF OF 2D WAVELET COVARIANCE DECAY

To prove Theorem 2.2 we first establish a couple of results
as follows.

Lemma A.1: Let ψ : R2 7→ R be a separable (2-d) wavelet
which is constructed from a 1-d wavelet with M -many van-
ishing moments. Then, the function

Λ(t) :=

∫
R2

ψ(s)ψ(s− t)ds

has 2M vanishing moments in the non-diagonal directions and
4M vanishing moments in the diagonal directions in that∫

R2

‖t‖m Λθ(t)dt = 0, for m = 0, . . . ,Mθ − 1,

with Mθ = 2M for θ ∈ {0, 1}, say, and M2 = 4M .
Proof With some abuse of notation, separable two-dimensional
wavelets take the form ψ0(t0, t1) = φ(t0)ψ(t1), ψ1(t0, t1) =
ψ(t0)φ(t1), and ψ2(t0, t1) = ψ(t0)ψ(t1), say, where the
subscript on the ψ denotes orientation. We note that∫

R2

‖t‖m Λ(t)dt = −
∫
R2

∫
R2

‖s− t‖m ψ(s)ψ(t)dsdt

= −
∫
R2

∫
R2

m/2∑
n=0

(
m/2
n

)
(s0− t0)m−2n(s1− t1)2nψ(s)ψ(t)dsdt

Taking the summation outside the integrals reveals that, for
orientation θ = 0, say, we have a weighted sum of terms with
a factor of the form∫ ∫

(s1 − t1)2nψ(s1)ψ(t1)ds1dt1,

where n = 0, . . . ,m/2. The term (s1 − t1)2n, itself, admits a
binomial expansion, the terms of which are all be annihilated

by either the ψ(s1) or ψ(t1) functions courtesy of the vanish-
ing moments of ψ unless m > 2M . A similar argument for
θ ∈ {1, 2} completes the proof.

Theorem A.2: The wavelet coefficients of an isotropic self-
similar process with stationary increments defined over R2,
are stationary.
Proof First we note that the mean Edj [k] = 0 does not vary
with k. For isotropic H-sssi fields it is well known (e.g. [43])
that

γX(s, t) := EX(s)X(t) ∝ ‖s‖2H+‖t‖2H+‖s− t‖2H . (18)

For k, k′ ∈ Z2, and ψjk := 2−jψ(2−j · −k), we have

Edj [k]dj [k
′] = E

∫
R2

∫
R2

X(s)X(t)ψj,k(s)ψj,k(t)dsdt.

The expectation can be taken inside the integral and, from (18)
and some simple substitutions, we have

Edj [k]dj [k
′] = C

∫
R2

∫
R2

γX(s+k′, t+k)ψj,k(s)ψj,k(t)dsdt.

Since
∫
ψ(t)dt = 0, this becomes

Edj [k]dj [k
′] = C22j(H+1)

∫
R2

‖t+ k′ − k‖2H Λ(t)dt, (19)

with
Λ(t) :=

∫
R2

ψ(s)ψ(s− t)ds,

as in Lemma A.1. The result is then obtained by noting that
the right-hand-side is a function of lag (k − k′) only.

The main theoretical result is here established as follows.
Theorem A.3: Let the compactly supported wavelet

ψ : R2 7→ R possess M -many vanishing moments. Then the
wavelet coefficients dj [k] = 〈BH , ψjk〉 of an isotropic H-sssi
field BH , defined over R2 with Hurst parameter H , satisfy

Edj [k]dj [k
′] = O

(∥∥2j(k − k′)
∥∥2(H−M)

)
.

Proof From Theorem A.2 and Equation (19) we have

γdj (α) := Edj [·]dj [·+ α] ∝
∫
R2

‖t+ α‖2H Λ(t)dt.

We note that, since ψ has compact support so too does
Λ. Hence, the integral has finite support mes(S2) < ∞.
Furthermore, since ‖t+ α‖2H ≥ 0 and Λ(t) are bounded and
integrable over S2 it follows, from the Mean-Value Theorem
(for double integrals), that there exists t0 ∈ S2 such that∣∣∣∣∫

S2

‖t+ α‖2H Λ(t)dt

∣∣∣∣ = |Λ(t0)|
∫
S2

‖t+ α‖2H dt.

Similarly, there exists a t1 ∈ S2 such that∣∣∣∣∫
S2

(‖t‖+ ‖α‖)2H
Λ(t)dt

∣∣∣∣ = |Λ(t1)|
∫
S2

(‖t‖+ ‖α‖)2H
dt.

Now, since ‖t+ α‖2H 6 (‖t‖+ ‖α‖)2H
, it therefore follows

that there exists a ρΛ = |Λ(t0)/Λ(t1)| such that∣∣∣∣∫
S2

‖t+ α‖2H Λ(t)dt

∣∣∣∣ 6 ρΛ

∣∣∣∣∫
S2

(‖t‖+ ‖α‖)2H
Λ(t)dt

∣∣∣∣ .
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To this end, it is now possible to proceed, in spirit, in a similar
fashion to Tewfik et al. [27] by working with the right-hand-
side expression to establish a bound for the covariance. We
begin by reformulating this as∣∣γdj (α)

∣∣ 6 c1 ‖α‖2H
∣∣∣∣∫
S2

(‖t‖ / ‖α‖+ 1)
2H

Λ(t)dt

∣∣∣∣ .
For α sufficiently large (outside the smallest disc that encloses
S2, the (·)2H term can be expanded as an infinite binomial
series, viz.

(‖t‖ / ‖α‖+ 1)
2H

=

∞∑
m=0

ηm

(
‖t‖
‖α‖

)m
,

with
ηm =

1, for m = 0
2H(2H − 1) · · · (2H −m+ 1)

m!
, otherwise

Now, since Λ has 2M vanishing moments and since η is a
monotonically decreasing sequence, it follows that∣∣γdj (α)

∣∣ 6 c2 ‖α‖2H
∞∑
m=1

|ηm|
∣∣∣∣∫
S2

(
‖t‖
‖α‖

)m
Λ(t)dt

∣∣∣∣
6 c3 ‖α‖2H |η2M |

∞∑
m=2M

∣∣∣∣∫
S2

(
‖t‖
‖α‖

)m
Λ(t)dt

∣∣∣∣ .
By Cauchy-Schwartz |Λ(t)| = |〈ψ(s− t), ψ(s)〉| 6 ‖ψ‖2 and∣∣γdj (α)

∣∣ 6 c4 ‖α‖2H
∫
|ψ(s)|2 ds

∞∑
m=2M

∣∣∣∣∫
S2

(
‖t‖
‖α‖

)m
dt

∣∣∣∣
= c5 ‖α‖2H

∞∑
m=0

∫
S2

(
‖t‖
‖α‖

)m+2M

dt.

Hence, by another application of the Mean Value Theorem,
there exists a t0 ∈ S2 such that∣∣γdj (α)

∣∣ 6 c6 ‖α‖2H
∞∑
m=0

(
‖t0‖
‖α‖

)m+2M

= c7 ‖α‖2(H−M)
∞∑
m=0

(
‖t0‖
‖α‖

)m
.

Since α is sufficiently large, the summands are less than
one and the series converges. Pulling in the 22j factor from
Equation (19) into the norm and carrying this through all the
above arguments completes the proof.
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volatility models,” Mathematical Finance, vol. 24, pp. 364–402, 2014.

[23] J. D. B. Nelson and N. G. Kingsbury, “Dual-tree wavelets for estimation
of locally varying and anisotropic fractal dimension,” IEEE International
Conference on Image Processing, pp. 341–344, 2010.

[24] N. Pustelnik, H. Wendt, and P. Abry, “Local regularity for texture
segmentation: Combining wavelet leaders and proximal minimization,”
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing, pp. 5348–5352, 2013.

[25] N. Pustelnik, P. Abry, H. Wendt, and N. Dobigeon, “Inverse problem
formulation for regularity estimation in images,” IEEE International
Conference on Image Processing, pp. 6081 – 6085, 2014.

[26] J.-B. Regli and J. D. B. Nelson, “Piecewise parameterised Markov
random fields for semi-local Hurst estimation,” Proceedings of the
European Signal Processing Conference, 2015.

[27] A. Tewfik and M. Kim, “Correlation structure of the discrete wavelet
coefficients of fractional Brownian motion,” IEEE Transactions on
Information Theory, vol. 38, no. 2, pp. 904–909, 1992.
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