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Enhanced B-wavelets via mixed, composite packets
J. D. B. Nelson, Member, IEEE,

Abstract—A modified B-wavelet construction with enhanced
filter characteristics is considered. The design comprises a super-
position of tessellated, integer dilated, ‘sister’ wavelet functions.
We here propose a cascaded filter-bank realisation of this wavelet
family together with some notable extensions. We prove that
modifications of low-order members exist in the multiresolution
subspace spanned by the half-translates of the original wavelets
and hence that the resulting modified wavelet coefficients can be
computed as convolutions of the undecimated original wavelet
coefficients. Finite impulse response filters are thus designed and
incorporated into a B-wavelet packet architecture such that the
mainlobe-to-sidelobe ratio of the resulting wavelet filter charac-
teristic is improved. This is achieved by designing the filters so
that zeros are introduced near to the maxima of the harmonics.
It is shown that the numbers of zeros can be balanced with the
length of the corresponding filters by controlling the ‘modification
order’. Several constructions are presented. We prove that two
such constructions satisfy the perfect reconstruction property for
all orders. The resulting modified wavelets preserve many of the
properties of the original B-wavelets such as differentiability,
number of vanishing moments, symmetry, anti-symmetry, finite
support, and the existence of a closed form expression.

Index Terms—B-wavelets, wavelet packets, filter characteristic

I. INTRODUCTION

ADVANCES in modern linear and quadratic optimisation,
and the subsequent popularity of the ‘sparse way’ [12]

afforded by lasso, compressive sensing, and other such ap-
proaches, has generated continued interest in adaptive signal
representations such as wavelet packets and other related
non-standard wavelet transform architectures. A key, early
approach to adapt a packet representation to signals was the
best basis method of Coifman and Wickerhauser [8]. This
employed an entropy-driven criterion to find the ‘best basis’
for a given signal. As such, the method explicitly incorporated
a flexible, data-driven approach to signal processing into the
multiresolution cascade structure of the wavelet packet trans-
form itself. Various adaptive algorithms have since exploited
the sparsifying properties of wavelet bases, frames, packets,
and dictionaries and there now exist many extensions and
generalisions of best basis principles such as the matching
pursuit algorithm of Mallat and Zhang [13], the basis pursuit
of Chen et al [5], the wavelet footprints of Dragotti and Vetterli
[10], and more recently, the scattering transform of Andén and
Mallat [1].

Indeed, basic developments in wavelet packet construction
are still ongoing. The very interesting work of Weickert et al
[22] incorporates Kingsbury’s approximate shift invariant dual-
tree complex wavelets [11], [17] into a filter-swapping, packet
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architecture. The result extends wavelet packets to analytic
wavelet packets. In a more general setting, Chebira et al [4]
recently constructed a fusion frame version of wavelet packets.

The wavelet packet transform effects a tiling of the fre-
quency domain which is finer than the octave-based analysis
offered by the usual fast wavelet transform. This is achieved
by applying low- and high-pass filters to the detail coefficients.
Instead of focussing explicitly on tilings and partitions of the
time-frequency plane, we are here more interested in the filter
characteristic shape of the resulting decomposition. It is well
known that the decay of the filter characteristic determines the
number of vanishing moments and therefore the ability of the
wavelet to represent most signals in a sparse manner. Similarly,
and irrespective of any notion of sparsity, in some applications
such as digital communications [9] and antenna design [6], the
mainlobe-to-sidelobe ratio of the filter characteristic is widely
accepted as a key measure of filter efficacy.

Whilst Bayram and Selesnick [3] introduced wavelets that
possess a higher, and constant, ‘Q-factor’ (ratio of centre
frequency to bandwidth) little attention has been paid to
exploiting extended constructions such as packets to explicitly
improve the filter characteristic shape. We explore this idea
with B-wavelets, first proposed by Chui [7] as the natural
wavelet companions of the classical cardinal B-splines [16].

Wavelet construction from B-splines is attractive because
the spline functions are very simple. Their impulse responses
are merely autoconvolutions of the characteristic function on
the unit interval. As such, they have finite support, a closed
form expression in both time and frequency, and the number of
autoconvolutions explicitly controls the number of vanishing
moments. Indeed, as Unser et al [20] have so skillfully illus-
trated with their Riesz-Laplace construction, there is still much
continued interest in wavelets constructed from B-splines.

The frequency decay of the B-wavelets is related to the or-
der of smoothness which, of course, in turn dictates the number
of vanishing moments [2]. However, Nelson [14] constructed
a modified B-wavelet family and illustrated that, at least in
some local frequency band, higher vanishing moments (i.e.
higher spline order) are not necessarily required to obtain a
more favourable frequency characteristic decay. This modified
family amends the B-wavelets by forming a superposition of
tessellated, integer dilated, ‘sister’ wavelet functions such that
the filter characteristics are enhanced. However, it is not clear
how such a family could be implemented via finite impulse
response (FIR) filters in a multiresolution analysis, cascaded
fliterbank framework. We revisit this construction and here
show that a dilated subset of this family can be realised by
applying additional finite impulse response filters to ordinary
B-wavelet detail coefficients in a wavelet packet architecture.
This results in a packet scheme which is ‘mixed’, in the
sense that it contains more than one set of low- and high-
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pass filters, and which is ‘composite’ in the sense that the
usual downsampling operation that immediately follows the
high-pass filter is delayed until after the application of the
additional filters.

In contrast to the M -band wavelets [15], which decomposes
the signal into M -many different bands at each scale level,
from Figure 3 it can be seen that the proposed construction is
‘folded’ into the usual, more common, 2-band framework.

Further modifications are introduced to our mixed, compos-
ite design in order to generalise the result to satisfy perfect
reconstruction and all orders of smoothness. We thus arrive at
a construction which accommodates the modified B-wavelets
inside the usual 2-band fast wavelet architecture. The resulting
wavelets share the same elegantly simple scaling functions,
and preserve many of the properties, of the unmodified B-
wavelets such as differentiability, smoothness, number of
vanishing moments, symmetry, anti-symmetry, finite support,
perfect reconstruction, and the existence of a closed form
expression (for both the impulse response and filter char-
acteristic). In addition, the wavelet characteristic function is
enhanced without resorting to higher vanishing points.

In Section II, we offer a brief introduction to the modified
B-wavelets proposed in [14]. Theoretical results are presented
in Section III which motivate a wavelet packet architecture
as a means of modifying the B-wavelet family such that the
mainlobe-to-sidelobe ratios are improved. However, it is also
shown that only the least smooth B-wavelets can be realised in
such a packet scheme. In Section IV extensions to smoother,
higher-order wavelets and perfect reconstruction wavelets are
presented.

II. ENHANCED B-WAVELET FAMILIES

The enhanced wavelet construction in [14] takes an existing
wavelet ψ, supported on T := [0, t), t ∈ N∗, say, and adds
weighted, dilated, and translated versions of itself, viz.

ψ∗N :=

N∑

n=1

γnTnψ , (1)

where we define the family of mappings Tn : T 7→ T over the
support of ψ by

Tnψ :=

(dn−1)t∑

k=0

ψ(dn · −k) ,

where {dn} = {1, 3, 5, 7, 11, 13, 15, . . .} is the sequence of
ascending, odd, square-free integers (i.e. with distinct divisors,
where no prime factor is repeated). Throughout we define

d :=

N∏

n=1

dn .

For the M th order B-wavelet, the weights {γn} are

γn =
µ(n) d1−Mn

(2M − 1)(dn − 1) + 1
,

where µ is the Möbius arithmetic function, defined by

µ(n) :=





1, n = 1

(−1)k, n is the product of k distinct primes
0, otherwise

Example 2.1: For M = 1, N = 3, we have d1 = 1, d2 =
3, d3 = 5, d = 15 which gives an enhanced Haar wavelet
defined by

ψ∗31 := ψ1 −
1

3

(
ψ1(3·) + ψ1(3 · −1) + ψ1(3 · −2)

)

−1

5

(
ψ1(5·) + . . .+ ψ1(5 · −4)

)
.

Unfortunately, although Nelson [14] showed that this ‘family
of family’ of wavelets (over M and N ) has an associated
fast integral wavelet transform, there is no obvious way to
implement the discrete transform with a multiresolution anal-
ysis, critically sampled, filter-bank such as the fast wavelet, or
packet, transforms. Instead, we consider a dilated version of
this construction, namely

ψN
M := ψ∗NM

(
1

d
·
)
.

The impulse responses and filter characteristics of the first few
members of this family are plotted in Figure 1. For illustrative
purposes, the impulse responses have been dilated to give
equal support to the modifications (N = 2, 3). Likewise, the
filter characteristics for N = 2, 3 are dilated to help illustrate
that the modified wavelets do indeed mitigate sidelobe energy
in a local frequency band about the fundamental frequency
of the wavelet. Since the aim of these wavelets is to improve
the mainlobe-to-sidelobe ratios, the precise amount of dilation
is not of primary importance; however we note that for this
family the dilation by d−1 =

∏N
n=1 d

−1
n guarantees that the

zeros of ψ1
M coincide with the modified versions at {4kπ}k∈Z.

For the case N = 2, the sidelobe energy at the first harmonic
is attenuated. For N = 3, the first and second harmonics
are attenuated. From [14] (see Theorem 3.2 therein), this
results from the fact that the filter characteristic energy is
zeroed at 2kπ/d for all k ∈ dnN, n = 2, . . . , N . It is visibly
evident that, as the order of modification N is increased, the
mainlobe-to-sidelobe ratios are improved. Hence, the modified
wavelets constitute a doubly-indexed family of wavelets {ψN

M}
such that the mainlobe-to-sidelobe ratios are controlled by the
modification order N and the number of vanishing moments
is controlled by smoothness order M .

III. CONSTRUCTION

A key relationship in the standard multiresolution analysis is
the ‘wavelet equation’ which relates the wavelet function to the
scaling function φM via ψM =

√
2
∑

k h1[k]φM (2 · −k) and
where the scaling function satisfies the refinement equation
φM =

√
2
∑

k h0[k]φM (2 · −k). If two such finite sequences
exist then a fast wavelet transform architecture can be realised.

In this section Theorem 3.3, below, establishes the result
that the modified wavelets lie in the subspace spanned by
the B-wavelet scaling functions. The result, which applies
to all smoothness orders, affords an FIR implementation of
the modified wavelet transform whereby an extra filter-bank
is applied to the (undecimated) scaling coefficients. How-
ever, it is later shown that this extra processing sub-block
cannot satisfy FIR perfect reconstruction. This motives an
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Fig. 1. The impulse responses (a,c,e) and filter characteristics (b,d,f) of the B-wavelet ψM and modified B-wavelet ψN
M for ‘smoothness’ orders M = 1, 2, 3

and modification orders N = 1, 2, 3. The modified wavelets with N = 2 attenuate the the first harmonic by introducing zeros at 6kπ; likewise the wavelets
with N = 3 attenuate the the first and second harmonics by introducing zeros at 6kπ and 10kπ. Note that the impulse response functions for M = 2, 3
have been shifted vertically and the vertical axis of sub-figure (f) has been chosen for illustrate purposes (the main lobe magnitude is 1).

alternative strategy. To this end, Theorem 3.4, below, shows
that low-order members of the modified family exist in the
multiresolution subspace spanned by the half-translates of the
original wavelets. Together with Proposition 3.5 provides a
means by which the modified wavelet coefficients can be
computed as convolutions of the undecimated original wavelet
coefficients. In other words, we show that the family {ψN

1 }
of wavelets with smoothness order M = 1 can be realised
with FIR filters, applied in a wavelet packet-like architecture
where an additional analysis/synthesis processing sub-block is
added to the detailed coefficient branch of the usual filter-
bank architecture. Although notation is defined in context
throughout, some of the key terms are collected together in
Table I for convenience.

We will first need to establish the fact that a dilated B-spline
can be written as a superposition of non-dilated B-splines.

Lemma 3.1: Let φM := φ1 ∗ φM−1 denote the M th order
B-spline with φ1(x) := 1 if x ∈ [0, 1) and zero otherwise.
Then, for n ∈ N∗

φM

(
1

n
·
)

=
1

nM−1
∑

k

1M
n [k]φM (· − k) ,

where 1M
n is the M -fold convolution of the sequence of n-

many ones, 1n.

TABLE I
NOTATION

Term Definition

φM ;j,k
B-spline scaling function with smoothness order M at the
jth finest scale level and kth integer translate, cf. Eqn. (5)

ψM ;j,k B-wavelets with smoothness order M , cf. Eqn. (6)

ψN
M ;j,k

modified B-wavelets (modification order N , smoothness
order M )

1M
n

M -fold convolution of n-many ones

↑ · upsampling operator (Definition 3.2)

di ith square-free odd integer

h0, h1 B-wavelet scaling and wavelet FIR filters

h2, h3
proposed mixing filters which act upon the undecimated
detail

d
(i)
j

wavelet coefficients, from jth finest scale level, of the
schemes presented in Fig 2 (for i ∈ {0, 1}) and Fig. 3 (for
i ∈ {2, 3}).

Proof We have

φ2

(
1

n
·
)

= (φ ∗ φ)

(
1

n
·
)

=

∫
φ(x)φ

(
1

n
· −x

)
dx .

Now, using the identity φ
(
n−1·

)
=
∑

k 1n[k]φ (· − k) twice
and making substitutions (see Appendix) we have that

φ2

(
1

n
·
)

=
1

n

∑

k,`

1n[k]1n[`− k]

∫
φ(x)φ(· − `− x) dx
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=
1

n

∑

`

(1n ∗ 1n) [`] (φ ∗ φ) (· − `) ,

which proves the result for M = 2. A simple inductive
argument is used (see Appendix) to complete the proof.

Definition 3.2: Define the upsampling operator ↑ by

(
(↑n)h

)
[k] :=

{
h[k/n], if k ∈ nZ
0, otherwise

Theorem 3.3: As above, let ψN
M denote the (M,N)-order

modified wavelet and let φM denote M th order B-spline.
Then,

ψN
M =

K∑

k=0

g[k]φM (2 · −k) ,

with the finitely supported, square summable sequence

g =

N∑

n=1

γn

(
1M
d∼
n
∗ (↑d∼n )h1 ∗ (↑2d∼n ) 1

d
(M)
n

)
,

where d∼n := d/dn.
Proof The result follows by noting that the definition of the
modified wavelet is equivalent to a filtering on a dilated version
of ψM which, itself, can be written in terms of a filtering of a
dilated version of φM (2·) which, courtesy of Lemma 3.1 can
be written as a filtering of φM (2·). To start with we have, by
definition, that

ψN
M =

∑

n

γn (Tnψ)

(
1

d
·
)
. (2)

But, using d∼n := d/dn, we note that

(Tnψ)

(
1

d
·
)

=

(dn−1)t∑

k=0

ψM

(
1

d∼n
· −k

)

=
∑

k

1
d
(M)
n

[k]ψM

(
1

d∼n
· −k

)
(3)

where we have set d(M)
n := (dn−1)t+1 and where we recall

that t = |suppψM | = 2M − 1 for B-wavelets. From Lemma
3.1, we use the result

φM

(
2

d∼n
·
)

=
∑

`

1M
d∼
n

[`]φM (2 · −`)

and the wavelet equation to find that

ψM

(
1

d∼n
·
)

=
∑

k

h1[k]φM

(
2

d∼n
· −k

)

=
∑

k,`

h1[k] 1M
d∼
n

[`]φM (2 · −`− d∼n k)

=
∑

`

(
1M
d∼
n
∗ (↑d∼n )h1

)
[`]φM (2 · −`) (4)

Gathering equations (2), (3), and (4), we have

ψN
M =

N∑

n=1

∑

k,`

γn1
d
(M)
n

[k]
(
1M
d∼
n
∗ (↑d∼n )h1

)
[`]φM (2·−`−2d∼n k),

Substituting `′ = `+ 2d∼n k gives

ψN
M =

∑

`

N∑

n=1

γn

(
1M
d∼
n
∗ (↑d∼n )h1 ∗ (↑2d∼n ) 1

d
(M)
n

)
[`]φM (2·−`)

which is of the desired form.
Theorem 3.3 implies that the modified wavelets ψN

M lie
in the span of φM (2·). As such, it may seem natural to
simply obtain the modified wavelet coefficients 〈f, ψN

M 〉 by
employing h0 and g0 = 2−1/2g in a standard two-channel filter
bank. However, in order for FIR perfect reconstruction to be
satisfied, and hence the transform to be invertible, the analysis
filters h0 and g0 must be complementary; equivalently, a
necessary and sufficient condition for perfect reconstruction to
hold is that P (z) + P (−z) ∝ z−2`−1, for some ` ∈ Z where
the polynomial P is defined as P (z) := H0(z)G0(−z) and
where H0 and G0 are the z-transforms of the filter sequences
h0 and g0 (cf. Fact 3.1 and Equation (41) on page 2218 of
Vetterli [21]). However, clearly, this beaks down in even the
most simple non-trivial case (M = 1, N = 2) where we find
that P (z)− P (−z) = 2z−6 − 2z−4 − 2z−2 + 2.

Alternative architectures are thus motivated. One could, for
example, consider the architecture depicted in Figure 2 which
resembles a packet-like scheme. First, the usual low-pass filter
h0 is applied to the scaling wavelet coefficient cj−2 at the
(j−2)th finest scale level, with downampling, to obtain cj−1,
the scaling wavelet coefficient at the (j − 1)th level. Then
the filter g0, say, is applied before downsampling. The result,
d
(0)
j , is the modified wavelet coefficient. In order to realise a

filterbank implementation with perfect reconstruction we are
then free to construct a complementary filter g1 which must
necessarily exist along with the duals g∼0 , g

∼
1 [18]. Note also

that this result holds for all M and N because Theorem 3.3
states that there exists finite length g0 = 2−1/2g such that

ψN
M ;j,k =

∑

n

g0[n]φM ;j−1,2k+n ,

where here, and throughout, we define

φM ;j,k := 2−j/2 φM
(
2−j · −k

)
, (5)

ψN
M ;j,k := 2−j/2 ψN

M

(
2−j · −k

)
. (6)

It follows immediately that

d
(0)
j [k] :=

〈
f, ψN

M ;j,k

〉
=

(
gT0 ∗ cj−1

)
[2k]

=: (↓2)
(
gT0 ∗ cj−1

)
[k] ,

where superscript T denotes a (temporal) flip, gT0 := g0[−·],
and where cj := 〈f, φM ;j,k〉. The superscript 0 on the right
hand side refers to the result of filtering cj−1 by the sequence
g0. Likewise, the coefficients d(1)j = (↓2)

(
gT1 ∗ cj−1

)
[k] are

the result of filtering cj−1 by the complementary filter g1.
Of course, Figure 2 is markedly different from the con-

ventional packet architecture which simply applies a further
low- and high-pass filter bank after the usual high-pass and
downsampling operations. Instead, Figure 2 applies two filters
g0 and g1 immediately after the low-pass filter h0 (without
downsampling first). However as discussed later in Section
IV-B it turns out that, as defined, there do not exist any dual
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Fig. 2. A mixed, composite wavelet packet architecture. In the analysis phase, the undecimated original scaling (a.k.a approximation) coefficients are filtered
by g0 and (if it exists) its complementary filter g1 and then downsampled by two to get the modified wavelet coefficients d(0)j (together with d(1)j ), say. For
synthesis/reconstruction, these coefficients are upsampled before the dual filters (if they exists) g∼0 and g∼1 are applied. This processing sub-block (delimited
by the dashed box) can be applied to any subset of nodes in the usual fast wavelet transform tree. Note that the removal of the sub-block simply returns the
usual fast (decimated) wavelet transform analysis/synthesis diagram and that the scaling coefficient at cj can be obtained, in the usual manner, by applying
the scaling filters h0 to cj−1 and downsampling.
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h2

h3
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↓2

d
(2)
j

d
(3)
j

· · ·

· · ·

↑2

↑2

h∼
2

h∼
3

⊕
↓2 . . . ↑2 h∼

1

⊕
↓2 . . . ↑2 h∼

0

c∼j−1

Fig. 3. A mixed, composite wavelet packet architecture. In the analysis phase, the undecimated original wavelet detail coefficients (as opposed to the scaling
coefficients in Figure 2) are filtered by h2 and (if it exists) its complementary mirrored filter h3 and then downsampled by two to get the modified wavelet
coefficients d(2)j (together with d(3)j ), say. For synthesis/reconstruction, these coefficients are upsampled before the dual filters (if they exist) h∼2 and h∼3 are
applied. This processing sub-block (delimited by the dashed box) can be applied to any subset of nodes in the usual fast wavelet transform tree. Note that
the removal of the sub-block simply returns the usual fast (decimated) wavelet transform analysis/synthesis diagram and that the scaling coefficient at cj can
be obtained, in the usual manner, by applying the scaling filters h0 to cj−1 and downsampling.

filters g∼0 , g
∼
1 (for the wavelet ψN

M ) such that the synthesis part
of Figure 2 holds. (For example, for M = 1, N = 2, the z-
transform of the filter g0 = [1, 2, 1,−1,−2,−1] factorises as
G0(z) = (z+1)2(1−z)(1+z+z2) which clearly has zeros in
pairs at ±1 and therefore breaks the conditions in Proposition
4.6 in Section 4 below— cf. Proposition 4.2, page 2222 of
Vetterli [21].)

Instead, the following theorem provides some way forward,
albeit for the single case M = 1. It suggests that the modified
wavelet coefficients can be realised by working with the
high-pass, rather than low-pass coefficients. This result is
consolidated by Proposition 3.5 and Corollary 3.6 below which
explicitly find the relevant filter coefficients that make this
possible.

Theorem 3.4: Let ψN
M denote the (M,N)-order modified

wavelet and let K ∈ N. Then, the condition

ψN
M ∈ span

{
ψM

(
· −1

2
k

)
, 0 ≤ k ≤ K

}
(7)

only holds for M = 1.

Proof From Theorem 3.3 we have that

ψN
M =

∑

`

∑

n

(
αn ∗ (↑d∼n )h1

)
[`]φM (2 · −`) .

In order for ψN
M to satisfy condition (7), there must exist a

square summable, FIR a such that
∑

n

(
αn ∗ (↑d∼n )h1

)
= a ∗ h1 ,

i.e. there must exist a collection of FIRs an ∈ `2(Z), 1 ≤ n ≤
N such that

(↑d∼n )h1 = an ∗ h1 .

Taking Z-transforms of both sides (an 7→ An, h1 7→ H1),
we see that this is equivalent to the existence of Laurent
polynomials An(·) such that

An(z) =
H1(zd

∼
n )

H1(z)
, z ∈ C .

However, this is only possible if all the roots of H1(z) have
modulus one; otherwise, H1(z) does not divide into H1(zd

∼
n ).
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The only B-wavelet with filter coefficients with such roots is
the Haar wavelet (M = 1) with coefficients H1 = [1,−1]/

√
2.

Proposition 3.5: Let ψ be a wavelet associated with a
multiresolution analysis generated by the scaling function φ.
Suppose there exists h2 ∈ `2(Z) such that a modified version
ψN of the wavelet ψ satisfies

ψN
jk =

∑

`

h2[`]ψj,k+ 1
2 `
.

Then
〈f, ψN

jk〉 = (↓2)
(
hT2 ∗ hT1 ∗ 〈f, φjk〉

)
[k] .

Proof

ψN
jk =

∑

`

h2[`]ψj,k+ 1
2 `

=
∑

`,n

h2[`]h1[n]φj−1,n+2k+`

=
∑

`

(h2 ∗ h1) [`]φj−1,2k+`

=
∑

`

(h2 ∗ h1)
T

[`]φj−1,2k−` .

Hence, for f ∈ L2(R), define cj [n] := 〈f, φjn〉. Then,

〈f, ψN
jk〉 =

∑

`

(h2 ∗ h1)
T

[`] 〈f, φj−1,2k−`〉

=
(
hT2 ∗ hT1 ∗ cj−1

)
[2k]

= (↓2)
(
hT2 ∗ hT1 ∗ cj−1

)
[k] .

Corollary 3.6: Let ψN
M ;jk denote the (M,N)-order modified

wavelet. Then

〈f, ψN
1;jk〉 = (↓2)

(
hT2 ∗ hT1 ∗ cj−1

)

with
h2[k] =

∑

n

γn 12
d∼
n
∗ (↑2d∼n ) 1dn (8)

Proof From Theorem 3.3 we have that

ψN
1 =

∑

`

∑

n

(
αn ∗ (↑d∼n )h1

)
[`]φ1(2 · −`) ,

where αn := γn1d∼
n
∗ (↑ 2d∼n ) 1dn

. We make notationally
explicit here the fact the filter sequence h1 depends on M
by writing h1 = hM,1 and note that (↑d∼n )h1,1 = 1d∼

n
∗h1,1 .

Hence

ψN
1 =

∑

`

∑

n

(
αn ∗ 1d∼

n
∗ h1,1

)
[`]φ1(2 · −`)

=
∑

k

∑

n

(
αn ∗ 1d∼

n

)
[k]ψ1

(
· − 1

2
k

)

=:
∑

k

h2[k]ψ1

(
· − 1

2
k

)

Theorem 3.4 and Proposition 3.5 complete the proof.
Proposition 3.5 is important because, together with Theorem

3.4, it states that the modified discrete B-wavelet transform
coefficients can be computed from the (undecimated) original

B-wavelet coefficients hT1 ∗ cj−1 by first convolving with a
flipped version of the FIR filter h2 given by Corollary 3.6
and then downsampling by two. This architecture, shown in
Figure 3, resembles the usual wavelet packet scheme more
closely than that of Figure 2.

IV. EXTENSIONS

There now remain two immediate outstanding challenges.
The first, addressed in Section IV-A is that, as defined above,
the modified wavelets do not satisfy the architecture, described
by Figure 3, for M > 1. The second challenge, addressed in
Section IV-B is to satisfy this architecture for all M such
that perfect reconstruction is maintained— i.e. to ensure the
existence of the dual filters h∼2 and h∼3 .

A. Extension to higher order B-wavelets

A consequence of Theorem 3.4 and Proposition 3.5 is that,
as defined, the modified wavelets only satisfy the architecture
in Figure 3 for M = 1. In other words, the identity

ψN
M =

∑

k

hNM,2[k]ψ

(
· − 1

2
k

)
(9)

only holds for M = 1 and there does not exist any filters hNM,2

such that (9) holds for M > 1. This motivates us to extend
the modified wavelets such that a result akin to Theorem
3.4 is satisfied for all smoothness orders M . Since the filter
characteristics of all members of the B-wavelets (over all M )
share the same zeros it is natural to consider using the same
filter hN1,2 (for all M ) to describe the modified wavelets in
terms of the half-sample translates of the original B-wavelets;
this alternative family takes the form

ψN,1
M :=

∑

k

hN,1
M,2[k]ψM

(
· −1

2
k
)
,

with, cf. Equation (8)

hN,1
M,2 := hN1,2

:=

N∑

n=1

γn 12
d∼
n
∗ (↑2d∼n ) 1dn

.

for all M ∈ N∗. By Corollary 3.6, this modification can now
be realised by FIR filter banks. Note that, for M = 1, this
alternative family is equivalent to the original modified family,
namely ψN,1

1 ≡ ψN
1 .

In Figure 4, the filter characteristics of ψN,1
M are plotted for

the first few orders. Unfortunately, although the filter hNM,2

does indeed introduce zeros near to the maxima of some of
the sidelobes, the decay of the characteristic is insufficient to
offer any benefit. Indeed, the sidelobes are even larger than
the mainlobe. A straightforward way to counteract this effect
is to use an autoconvolved version of hNM,2— i.e. to define

ψN,2
M :=

∑

k

hN,2
M,2[k]ψM

(
· −1

2
k
)
,

with hN,2
M,2 := ∗Mm=1 h

N
1,2 . The filter characteristics of an

example of this family are also plotted in Figure 4. As an
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aside, it is also worth noting here that we we do not necessarily
have to convolve hN1,2 with itself to guarantee a suitable decay.
We could, instead, convolve it with some of its constituent
convolutive factors as required. Since the filters hN1,2 form the
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(a) M = 2, N = 3

Fig. 4. Filter characteristic comparison between ψ3,1
2 and ψ3,2

2 . Although
the dilated version of the wavelet ψ3,1

2 possesses zeros in the 1st and 2nd
harmonics of the B-wavelet, it has undesirable decay. On the other hand, the
wavelet ψ3,2

2 shares the zeros of ψ3,1
2 and otherwise has a filter characteristic

decay close to the original wavelet.

building blocks of the two families of wavelets {ψN,1
M } and

{ψN,2
M } introduced thus far, we now present a simple example

as follows.
Example 4.1: For N = 2, we have d1 = 1, d2 = 3, d∼1 =

3, d∼2 = 1 and, cf. Equation (8)

h21,2 =

2∑

n=1

γn12
d∼
n
∗ (↑2d∼n ) 1dn

= = 12
3 ∗ (↑6) 11 −

1

3
12
1 ∗ (↑2) 13

= [1, 2, 3, 2, 1]− 1

3
[1, 0, 1, 0, 1] =

2

3
[1, 3, 4, 3, 1] .

An alternative family of constructions, worthy of note, is
obtained by eliminating all but d1 = 1 and dN from the
set {d1, . . . , dN} in the original definition given by Equation
(1). This yields the wavelet

(
γ1T1 + γNTN

)
ψ and d = dN

which will attenuate the (N − 1) harmonic only (rather than
all harmonics up to the (N − 1)th one). In a similar way to
{ψN

M}, when dilated by 1/d, this alternative construction can
be realised by FIR filters, namely

ψN,3
M :=

∑

k

hN,3
M,2[k]ψM

(
· −1

2
k
)

with

hN,3
1,2 := 1dN

∗ (↑2dN ) 11 + γN12
1 ∗ (↑2) 1dN

= 12
dN

+ γN (↑2) 1dN
.

The filter characteristics of this family for N = 2, 3, 4 and
M = 1 are plotted in Figure 5. We can see that the filter
characteristic

∣∣ψN,3∧
1

∣∣ does indeed contain zeros such that the
energy at the (N − 1)th harmonic (sidelobe) is attenuated.
However, and similar to the case of the family ψN,1

M , the decay
of the filter characteristic is insufficient for M > 1. Again,
defining the higher order filters hN,3

M,2 as autoconvolutions of
the filter hN,3

1,2 can deal with this problem. However, removing
the third harmonic (say) whilst leaving the first harmonic
in tact does not appear to be particularly well-aligned with
the main aim of designing wavelet filter realisations with

improved mainlobe-to-sidelobe ratios. Happily, it turns out that
combining hN,3

M,2 with hN−1,3M,2 for N > 2 leads to a filter
characteristic which suits our purpose quite well. We define:

ψN,4
M :=

∑

k

hN,4
M,2[k]ψM

(
· −1

2
k
)
,

with
hN,4
M,2 := hN−1,31,2

M∗
m=1

hN,3
1,2 .

The (dilated) impulse responses and filter characteristics are
plotted in figures 6 and 7. We can see that for N = 3 the
first 3 harmonics of the filter characteristic are attenuated and
for N = 4 the first five are attenuated. As the figure also
illustrates, this feature also holds for higher order (M > 1)
wavelets. The building blocks of this family are the filters
hN,3
1,2 . A couple of examples are given as follows
Example 4.2: For N = 2, we have:

h2,31,2 = 12
3 −

1

3
(↑2) 13 = h21,2 =

2

3
[1, 3, 4, 3, 1] .

For N = 3:

h3,31,2 = 12
5 −

1

5
(↑2) 15 =

2

5
[2, 5, 7, 10, 12, 10, 7, 5, 2] .

For N = 4:

h4,31,2 = 12
7 −

1

7
(↑2) 17

=
2

7
[3, 7, 10, 14, 17, 21, 24, 21, 17, 14, 10, 7, 3] .

Note that, as expected (by definition) the filter hN,3
1,2 , and

therefore hN,4
1,2 , are integer-valued (up to a constant).

B. Extensions with perfect reconstruction

We now consider the existence of synthesis filters. We start
by recalling the usual perfect reconstruction equations for FIR
filters.

Definition 4.3: (Perfect reconstruction (PR) and comple-
mentary filter, see e.g. Strang and Nguyen [18]) The FIR
filters g, h, g∼, h∼, with Z-transforms G,H,G∼, H∼, satisfy
the perfect reconstruction property if

G(z)G∼(z) +H(z)H∼(z) = 2z−`, ` ∈ N
H(−z)H∼(z) +G(−z)G∼(z) = 0.

Furthermore, g (resp. g∼) is said to be the complementary
filter of h (resp. h∼) and vice versa.
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Fig. 5. The filter characteristics of the family ψN,3
M for M = 1 and N =

2, 3, 4. We can see that N = 2 attenuates the first harmonic, N = 3 attenuates
the second, and N = 4 attenuates the third.
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Fig. 6. The filter characteristics of the family ψN,4
M for M = 1, 2 and N =

3, 4 compared to that of the unmodified B-wavelets ψM and the modified
wavelets {ψN

M} from [14]. Plot (d) is merely a zoomed version of (c). For N
= 3 we see that the family ψN,4

M attenuates the first three harmonics. Likewise,
for N = 4, the first five harmonics are attenuated. The level of attenuation is
greater than that of the family {ψN

M}.

Remark 4.4: Given a filter h2, we can find its dual
h∼2 (if it exists) by solving the system of equations
(↓2) (h2 ∗ h∼2 ) [−k] = δk,0, (cf. e.g. Mallat [12]).

Example 4.5: Recall, from Example 4.1, that h21,2 =
2
3 [1, 3, 4, 3, 1]. Then, the dual filter is h2∼1,2 = 1

4 [−1, 3,−1].
Choosing the common alternating signs pattern (namely,
in the Z-domain, H2

1,3(z) := H2∼
1,2 (−z) and H2∼

1,3 (z) :=
−H2

1,2(−z)), the complementary filter is found as h21,3 =
1
4 [1, 3, 1] and its dual as h2∼1,3 = 2

3 [1,−3, 4,−3, 1].
The discrete frequency responses of these filters are illus-
trated in Figure 8 (a). Later on, in Section V-B a simple
toy example will compare the result of applying h21,2 and
complements/duals with simply applying h0 and h1 and duals
instead. To this end, Figure 8 (b) illustrates the effects, in the
frequency domain, of the analysis/decomposition part of the
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Fig. 7. Impulse responses for the original B-wavelets ψM , and the family
ψN,4
M , for M = 1, 2, 3 and N = 1, 2, 3.

processing. For example, the characteristic |h∧2 h∧1 | shows the
effect of applying the filter h1, immediately followed by h21,2
as per the architecture defined by Figure 3.

Since h21,2 satisfies the PR conditions, we can now say that,
by definition, the wavelet family ψN,1

M ‘satisfies PR’ for N =
1 and for all M in the sense that the corresponding wavelet
transform can be realised with PR filter banks (albeit in the
wavelet packet architecture of Figure 3).

Proposition 4.6: (Vetterli and Herley, [21]) A filter H(z)
has a complementary filter if and only if H(z) has no zeros
in pairs at z = z0 and z = −z0.
Since Example 4.5 has shown that hN1,2 satisfies PR then it
follows from Proposition 4.6 that the family ψN,2

M has PR for
N = 1 and for all M . Unfortunately, neither ψN,1

M nor ψN,2
M

satisfies PR for N > 2. However, we do have the following
result.

Corollary 4.7: The wavelet families {ψN,3
M } and {ψN,4

M }
have the PR property.
Proof We have

hN,3
1,2 := 1dN

∗ (↑2d∼N ) 11 + γN12
1 ∗ (↑2) 1dN

= 12
dN

+ γN (↑2) 1dN

Taking Z-transforms:

HN,3
1,2 (z) := (1dN

)
2

+ γN1dN
(z2)

=

(
1− z−dN

1− z−1
)2

+ γN
1− z−2dN

1− z−2
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TABLE II
FILTER COEFFICIENTS FOR SOME LOW ORDER MEMBERS OF THE FAMILY

ψN,4
M (NOTE THAT ALL FILTERS HERE ARE SYMMETRIC WITH

ODD-LENGTH, K SAY. HENCE ONLY THE FIRST (K + 1)/2 COEFFICIENTS
ARE GIVEN.)

M,N
hN,4
M,2 h̃N,4

M,2

M=1 0.66667 -0.25000
N=2 2.00000 0.75000

2.66667

M=1 0.53333 -0.36875
N=3 2.93333 2.02812

8.00000 -5.55417
15.20000 10.63542
23.20000 -15.81146
29.86667 18.15208
32.53333

M=1 0.68571 -126.84898
N=4 3.31429 613.10342

8.68571 -1514.46740
17.94286 2873.16420
32.00000 -4783.61160
50.17143 7025.56426
71.20000 -9316.51387
92.68571 11423.22469
111.0857 -12851.8819
123.8857 13316.5361
128.6857

M,N
hN,4
M,2 h̃N,4

M,2

M=2 0.44444 -0.05729
N=2 2.66667 0.34375

7.55556 -0.89583
13.33333 1.25000
16.00000

M=2 0.42667 -0.19842
N=3 3.41333 1.58732

13.76000 -6.47354
38.50667 18.50414
85.65333 -41.85599

161.06667 78.57317
263.14667 -125.44563
379.62667 173.69785
489.70667 -211.01612
569.38667 225.25486
598.61333

M=3 0.29630 -0.01676
N=2 2.66667 0.15088

11.55556 -0.63379
32.00000 1.63037
63.11111 -2.81917
93.33333 3.38086

106.07407

=
1− z−dN

1− z−1
(

1− z−dN

1− z−1 + γN
1 + z−dN

1 + z−1

)
.

Hence HN,3
1,2 (z) has roots at

f0(z) :=
1− z−dN

1− z−1 = 0

and at

f1(z) := (1+γN )(1−z−dN−1)+(1−γN )(z−1−z−dN ) = 0 .

By Proposition 4.6 it suffices to show that HN,3
1,2 (z) does

not have zeros in pairs. Assume the contrary that it does
have zeros in pairs at (z0,−z0). Then so does either f0 or
f1. But, equating f0(z) = f0(−z) implies the contradiction
z−dN
0 = 0, whereas equating f1(z) = f1(−z), together with

the fact that dn is odd, leads to the contradiction z0 = ±1.
We therefore conclude that HN,3

1,2 (z) does not have zeros in
pairs and that, courtesy of Vetterli and Herley (Proposition
4.6), its complementary filter exists and perfect reconstruction
is possible. Since hN,3

M,2 merely comprises autoconvolutions of
hN,3
1,2 it too does not have zeros in pairs and also has PR.

Likewise, since hN,4
M,2 comprises the two factors hN−1,31,2 and

hN,3
1,2 which do not have zeros in pairs (on their own or jointly)

we also conclude that hN,4
M,2 has PR.

The main consequence of Corollary 4.7, of course, is that
Figure 3 can be realised for the wavelet families {ψN,3

M } and
{ψN,4

M }. Table II lists the filter coefficients of the generating
FIR hN,4

M,2 and its dual for some low-order members of the
family {ψN,4

M }. Note that all of these filters are symmetric with
odd-length, K say. Hence only the first (K+1)/2 coefficients
are given.
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Fig. 8. Individual and compounded characteristics for the ψ2,4
1 family. In (b)

the proposed mixed compounded filters can be compared to the undecimated
compounded Haar filters h0 ∗ h1 and h1 ∗ h1.

V. EXAMPLES

Although the theoretical results presented and proved here
illustrate that the proposed mixed composite packet construc-
tion improves the shape of the resulting wavelet filter, it is
perhaps nonetheless instructive to consider a toy example.
The example presented in Section V-B is designed to show
the benefits of a filter frequency characteristic that has good
mainlobe-to-sidelobe energy ratio. Intuitively, a consequence
of strong harmonics in the filter is that the wavelet will pick up
frequency content at higher frequencies. One simple result is
that it may therefore become difficult to distinguish different
frequency components. To aid the motivation, the following
subsection provides a discussion of the dangers that harmonics
present to poorly localised wavelet filter characteristics.

A. Motivation

For brevity of notation, we drop the M and denote the
N th order modified wavelets by ψN , where ψ1 is the original
B-wavelet of some order of smoothness M . The following
notation is introduced to help describe those regions of the
frequency domain for which the filter characteristic is rela-
tively large.

Definition 5.1: (Frequency domain λ-support). Define the
(frequency domain) λ-support of some ζ ∈ L2(R), as

Ω(ζ;λ) :=

{
ω ∈ supp ζ∧ :

|ζ∧(ω)|
|sup ζ∧(ω)| > λ

}
, 0 ≤ λ ≤ 1.

Note that this is extends the usual definition of support in that
Ω(·; 0) ≡ supp · . Ideally, the λ-support would lie in the set of
connected intervals I on the real line for all λ; i.e., a bump
function centred on the fundamental. However, this is not the
case in practice for all but the most trivial wavelets. For the
(extended) B-wavelet family, for instance, we have that

Ω(ψN ;λ) = Ω0
N (λ)

⋃

k 6=0

Ωk
N (λ), Ω0

N ∈ I , (10)
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where Ω0 covers the frequency band region of the main lobe
and Ωk covers the (2k + 1)th harmonic and:

Ω0
N (λ)

⋂

k 6=0

Ωk
N (λ) 6= ∅ and mes

⋂

k 6=0

Ωk
N (λ) 6= 0 .

Here, trivially, Ω(ψN ;λ) 6∈ I. If we define the set ΛN as those
values of λ such that the frequency λ-support of the N th order
wavelet ψN is connected, namely

ΛN := {λ ∈ R : Ω(ψN ;λ) ∈ I} ,
then, it follows from the preceding analysis (cf. Figure 6) that

Λ1 ⊂ Λ2 ⊂ · · · ⊂ ΛN . (11)

A consequence of (11) is that N controls how much the
wavelet ψN will suffer from interscale interference. To see
this, note that, by construction, the filter characteristic of the
wavelet at the (j + `)-th level ψN

j+` is simply a 2`-dilated
version of the wavelet characteristic at the jth level. As such,
the baseband λ-support (Ω0

N from Equation 10) satisfies

D`Ω
0
N (ψj ;λ) = Ω0

N (ψj+`;λ) ,

where the dilation operator D is here defined as

D`(a, b) := (2−`a, 2−`b), (a, b) ∈ I.
Consequently, a smaller N -order implies that there exists a
larger set of λ values for which the harmonics at scale j
overlap the baseband at j + `, for some `, namely:

{ ⋃

k 6=0

D`Ω
k
N

}⋂
Ω0

N 6= 0 .

It is therefore possible for the frequency content of a signal
to excite not only the main lobe of the wavelet filter char-
acteristic at one level but also the harmonic lobes at other
levels. Moreover, if the signal itself contains harmonics or
sub-harmonics then these will both be excited at multiple
scales. It is then difficult, if not impossible, to distinguish the
fundamental content from one or more (sub-) harmonics. This
task becomes easier as the harmonic energy in the wavelet
filter characteristic is reduced (i.e., as N is increased).

B. Numerical experiments

The following numerical examples are designed as simple
instances of the arguments in the preceding subsection. Con-
sider a signal with a strong frequency component at ω (Hz.,
say) throughout the observable time interval, together with a
short-term, lower, sub-harmonic frequency at ω/ρ of smaller
amplitude, plus noise, namely:

f [ti] = sinπωti − αχT [ti] sin
πω

ρ
ti + εi , εi

iid∼N (0, σ2) ,

for α < 1, ρ > 1, ti = i/512, i = 1, . . . , 512, and where the
characteristic, or indicator function, is defined as

χT (t) :=

{
1, t ∈ T
0, otherwise

Throughout, we fix T = [300, 400]/512. Figures 9 through 14
illustrate the wavelet coefficient energies obtained for various

parameter choices. In the leftmost column of figure 9, the Haar
wavelet coefficient energies dj are plotted at three different
scale levels. The two rightmost columns show the correspond-
ing modified coefficients which result from applying the filters
h2,41,2 and h2,41,3 to the undecimated Haar detail coefficients (cf.
Figure 3). In other words, the fourth and fifth columns plot
the proposed modified wavelet coefficients d(2)j and d(3)j . For
comparison, the second and third columns show the wavelet
energies which result when we simply reuse and apply the
Haar low- and high-pass filters to the undecimated dj instead
of the proposed filters. These are denoted by 0d

(2)
j and 0d

(3)
j

where the subscript 0 denotes the fact that we are applying
zero-order B-wavelet filters and where the superscripts 2 and
3 denote the low- and high-passed coefficients, respectively.
The black, emboldened parts of the plot indicate the location
at which the extra component at ω/ρ Hz. is active in the signal
(i.e., the interval T ).

Note that there exist scale levels at which the modified
coefficients tend to be relatively strong in this region compared
with those that lie outside it and in the same scale level (cf.
d
(2)
3 and d

(2)
4 ). The same behaviour is not as apparent when

using the alternative filters 0d
(2)
j and 0d

(3)
j . This indicates that

the mixed composite packets are more successful at eliciting
the lower frequency component, which is active in the interval
T , from the dominant content.

This experiment is repeated in Figure 10 for different signal
model parameters. Figures 11 to 14 illustrate various other
experiments for the linear B-wavelet coefficients where the
proposed order M = 2, N = 2 filters, namely h2,42,2 and h2,42,3,
are compared to those of the linear B-wavelet ones 1d

(2)
j and

1d
(3)
j . Again, it is seen that the weaker, lower frequency com-

ponent appears to be more evident in the proposed modified
wavelet coefficients. The experiments thus corroborate the pre-
ceding theory that, owing to the enhanced filter characteristic
shape, the proposed modified wavelet coefficients serve as a
better model identification tool than both the B-wavelets and
the associated undecimated (and, hence, decimated) B-wavelet
tree.

VI. CONCLUSION

Table III offers an overview of the properties of the B-
wavelet families introduced in this paper. It is perhaps easier
to speak of the collection of families {ψN,q

M } and distinguish
between them using the label q = 1, 2, 3, 4. In the table
property headings, ‘multi-harmonic’ refers to the ability of the
wavelet family to attenuate multiple, contiguous harmonics—
e.g. all harmonics up to the (N − 1)th, say. The only family
which does not have this is q = 3. The heading ‘FIR’ refers to
the property that the wavelet transform can be realised by the
analysis part of the architecture illustrated in Figure 3; ‘Decay’
informally refers to the property that the filter characteristic
decays sufficiently quickly (cf. Figure 4). Finally, the ‘PR’
heading means that the associated FIR filter h2 has the PR
property and hence a dual and complementary filter exists, cf.
Definition 4.3.

The first family, {ψN
M}, is merely a dilated version of

the family discussed in [14]. Only the subset of wavelets
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Fig. 9. Wavelet coefficients for the Haar wavelet tree with σ = 0.15, α = 0.1, ρ = 3, and ω = 85. From left to right: dj are the usual Haar wavelet
coefficients; 0d

(2)
j and 0d

(2)
j denote the compounded Haar coefficients; d(2)j and d(2)j denote the proposed modified wavelet coefficients. The black bold part

of the plots indicate the location at which the extra sub-harmonic component is active in the signal.
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Fig. 10. Wavelet coefficients for the Haar wavelet tree with σ = 0.2, α = 0.15, ρ = 3.4, and ω = 100. From left to right: dj are the usual Haar wavelet
coefficients; 0d

(2)
j and 0d

(2)
j denote the compounded Haar coefficients; d(2)j and d(2)j denote the proposed modified wavelet coefficients. The black bold part

of the plots indicate the location at which the extra sub-harmonic component is active in the signal.

{ψN
1 } can be realised by an FIR filter acting on the high-pass

coefficients (as in Figure 3). Likewise, PR is only possible for
M = 1 and N ≤ 2.

The q = 1 family fixes the FIR problem but, as Figure
4 illustrated, this fix introduces a decay issue for M > 1.
Furthermore, it only has PR for N ≤ 2. The q = 2 family
fixes the decay but, again, PR is only possible for N ≤ 2.
It is important to note that the lack of PR does not render
this family useless. Indeed, there are plenty of uses for non-
invertible wavelet transforms. One quite common application
is to use wavelet coefficients or functions thereof as features
in machine learning classification algorithms.

The q = 3 family satisfies the PR conditions but cannot
attenuate, say, both the 1st and 2nd harmonic. Finally, the
q = 4 family satisfies all the properties. It can attenuate
multiple, contiguous harmonics. It can be realised with FIR
filters (cf. Figure 3); it has good decay and PR. All wavelets
introduced here inherit many of the properties possessed by
the original B−wavelets, namely: differentiability, number of
vanishing moments, symmetry, anti-symmetry, finite support,

TABLE III
OVERVIEW OF WAVELET FAMILIES

family multi-harmonic FIR Decay PR

ψN
M 3 5 3 5

ψN,1
M 3 3 5 5

ψN,2
M 3 3 3 5

ψN,3
M 5 3 3 3

ψN,4
M 3 3 3 3

and the existence of a closed form expression (for both the
impulse response and filter characteristic).

The wavelet families q = 1, 2, 3, 4 can be realised by a
wavelet packet-like architecture which contains a mixture of
different FIR filters and sampling operators and allows the user
to implement different combinations of wavelets according
to the required mainlobe-to-sidelobe ratios and desired filter
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Fig. 11. Wavelet coefficients for the linear B-wavelet wavelet tree with σ = 0.05, α = 0.1, ρ = 3.5, and ω = 85. From left to right: dj are the usual Haar
wavelet coefficients; 1d

(2)
j and 1d

(2)
j denote the compounded Haar coefficients; d(2)j and d(2)j denote the proposed modified wavelet coefficients. The black

bold part of the plots indicate the location at which the extra sub-harmonic component is active in the signal.
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Fig. 12. Wavelet coefficients for the linear B-wavelet wavelet tree with σ = 0.15, α = 0.2, ρ = 2.5, and ω = 90. From left to right: dj are the usual Haar
wavelet coefficients; 1d

(2)
j and 1d

(2)
j denote the compounded Haar coefficients; d(2)j and d(2)j denote the proposed modified wavelet coefficients. The black

bold part of the plots indicate the location at which the extra sub-harmonic component is active in the signal.

characteristic shape. It is perhaps tempting to associate some
kind of best-basis algorithm, akin to [5], [8], [10], [13], as a
means of automatically adapting the modification orders N ,
given data. This, along with extensions to fractional splines
and wavelets (cf. [19]) and/or complex wavelets (cf. [11], [17],
[20]), may provide an interesting topic for further study.

APPENDIX A
LEMMA 3.1

Recall

φ2

(
1

n
·
)

=

∫
φ(x)φ

(
1

n
· −x

)
dx .

Using the identity φ(n−1·) =
∑

k 1n[k]φ (· − k) gives

φ2

(
1

n
·
)

=
∑

k

1n[k]

∫
φ(x)φ(· − k − nx) dx .

Again, using φ(x) =
∑

k 1n[k]φ(nx− k) gives

φ2

(
1

n
·
)

=
∑

k,`

1n[k]1n[`]

∫
φ(nx− `)φ(· − k − nx) dx

=
1

n

∑

k,`

1n[k]1n[`− k]

∫
φ(x)φ(· − `− x) dx

as stated in the main body. To complete the proof, we use a
simple inductive argument by assuming the result is true for
M-1. We have

φM

(
1

n
·
)

= (φM−1 ∗ φ)

(
1

n
·
)

=

∫
φ(x)φM−1

(
1

n
· −x

)
dx

By assumption we have that

φM−1

(
1

n
· −x

)
=

1

nM−2
∑

k

1M−1
n [k]φM−1(· − k − nx) .
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Fig. 13. Wavelet coefficients for the linear B-wavelet wavelet tree with σ = 0.2, α = 0.1, ρ = 3, and ω = 125. From left to right: dj are the usual Haar
wavelet coefficients; 1d

(2)
j and 1d

(2)
j denote the compounded Haar coefficients; d(2)j and d(2)j denote the proposed modified wavelet coefficients. The black

bold part of the plots indicate the location at which the extra sub-harmonic component is active in the signal.

50 100 150 200 250
0

0.2

d1
50 100 150 200 250

0

0.1

0.2

1d
(2)
1

50 100 150 200 250
0

0.1

0.2

1d
(3)
1

50 100 150 200 250
0

0.5

d
(2)
1

50 100 150 200 250
0

1

d
(3)
1

20 40 60 80 100 120
0

0.5

d2
20 40 60 80 100 120

0

0.2

1d
(2)
2

20 40 60 80 100 120
0

0.5

1d
(3)
2

20 40 60 80 100 120
0

0.05

d
(2)
2

20 40 60 80 100 120
0

0.5

1

d
(3)
2

10 20 30 40 50
0

0.5

d3
10 20 30 40 50

0

0.1

1d
(2)
3

10 20 30 40 50
0

0.5

1d
(3)
3

10 20 30 40 50
0

0.1

d
(2)
3

10 20 30 40 50
0

0.2

0.4

d
(3)
3

Fig. 14. Wavelet coefficients for the linear B-wavelet wavelet tree with σ = 0.1, α = 0.1, ρ = 3.5, and ω = 160. From left to right: dj are the usual Haar
wavelet coefficients; 1d

(2)
j and 1d

(2)
j denote the compounded Haar coefficients; d(2)j and d(2)j denote the proposed modified wavelet coefficients. The black

bold part of the plots indicate the location at which the extra sub-harmonic component is active in the signal.

Hence,

φM

(
1

n
·
)

=
1

nM−2
∑

k

1M−1
n [k]

∫
φ(x)φM−1(·−k−nx) dx .

Now, we again use φ(x) =
∑

` 1n[`]φ(nx − `) to get that
φM (n−1·) is equal to

1

nM−2
∑

k,`

1n[`]1M−1
n [k]

∫
φ(nx− `)φM−1(· − k − nx) dx

=
1

nM−1
∑

k,`

1n[`− k]1M−1
n [k]

∫
φ(x)φM−1(· − `− x) dx

=
1

nM−1
∑

`

(
1n ∗ 1M−1

n

)
[`] (φ ∗ φM−1) (· − `)
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