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ABSTRACT

We analyzed four Spitzer/IRAC observations at 3.6 and 4.5 μm of the primary transit of the exoplanet GJ 436b, by
using blind source separation techniques. These observations are important for investigating the atmospheric
composition of the planet GJ 436b. Previous analyses claimed strong inter-epoch variations of the transit
parameters due to stellar variability, casting doubts on the possibility of conclusively extracting an atmospheric
signal. Those analyses also reported discrepant results, hence the necessity of this reanalysis. The method we used
has been proposed in Morello et al. to analyze 3.6 μm transit light curves of the hot Jupiter HD 189733b. It
performes an Independent Component Analysis on a set of pixel light curves, i.e., time series read by individual
pixels, from the same photometric observation. Our method only assumes the independence of instrumental and
astrophysical signals, and therefore guarantees a higher degree of objectivity compared to parametric detrending
techniques published in the literature. The data sets we analyzed in this paper represent a more challenging test than
the previous ones. Contrary to previous results reported in the literature, our results (1) do not support any
detectable inter-epoch variations of orbital and stellar parameters, (2) are photometrically stable at the level ∼10−4
in the IR, and (3) the transit depth measurements at the two wavelengths are consistent within 1σ. We also (4)
detect a possible transit duration variation of ∼80 s (2σ significance level) that has not been pointed out in the
literature, and (5) confirm no transit timing variations 30 s.

Key words: methods: data analysis – planets and satellites: atmospheres – planets and satellites: individual
(GJ 436b) – techniques: photometric

1. INTRODUCTION

Transit spectroscopy and differential photometry are largely
used to investigate the composition and structure of exoplane-
tary atmospheres. The large majority of transiting exoplanets are
“hot Jupiters,” i.e., planets similar in size to Jupiter orbiting very
closely to their host star (semimajor axis ~ -0.01 0.5 AU).
Their typical surface temperatures are 1000 K.

GJ 436b is a Neptune-sized planet orbiting around an M
dwarf with radius ∼0.46 R at a distance ∼0.03 AU. This
planet is interesting for several reasons. It is one of the
smallest (radius ∼4.3 ÅR ) and coolest (∼700 K) exoplanets
for which optical-to-IR spectra have been measured (Demory
et al. 2007; Gillon et al. 2007; Alonso et al. 2008; Coughlin
et al. 2008; Cáceres et al. 2009; Deming et al. 2009; Pont
et al. 2009; Ballard et al. 2010; Stevenson et al. 2010;
Beaulieu et al. 2011; Knutson et al. 2011, 2014). The primary
transit depth is ∼0.7%. Another peculiarity of GJ 436b is its
high orbital eccentricity (e ∼ 0.16), inferred from radial
velocity measurements (Maness et al. 2007) and from
secondary eclipse phasing (Deming et al. 2009). Both the
physical and dynamical properties of GJ 436b are debated in
the literature.

Maness et al. (2007) and Demory et al. (2007) investigated
the origin of the high orbital eccentricity of GJ 436b,
concluding that the circularization timescale (∼108 yr) is
significantly smaller than the age of the system (6 × 109).
Maness et al. (2007) also found a long trend in radial velocity
measurements. They suggested the presence of an external
perturber on a wider orbit to explain both the high eccentricity
of GJ 436b and the long trend in radial velocity measurements.
Ribas et al. (2008) hypothesized a Super-Earth on a close orbit

to explain those evidences, but later retracted. Transit timing
variations (TTVs) reported by Alonso et al. (2008) and
Cáceres et al. (2009) do not support any evidence of external
perturbers. Stevenson et al. (2012) claimed the possible
detection of two nearby sub-Earth-sized exoplanets transiting
in GJ 436 system; according to the authors, the dynamic of the
proposed system is consistent with the current non-TTV-
detections.
Based on multiwavelength infrared eclipse measurements,

Stevenson et al. (2010) proposed a high CO-to-CH4 ratio
compared to thermochemical equilibrium models for hydrogen-
dominated atmospheres. Their atmospheric model includes
disequilibrium processes, such as vertical mixing and poly-
merization of methane to explain the observed deficiency of
CH4. Beaulieu et al. (2011) suggested strong CH4 absorption at
3.6, 4.5, and 8.0 μm Spitzer/IRAC passbands from primary
transit observations, and their reanalysis of secondary eclipse
data is consistent with this detection. Knutson et al. (2011)
measured significant time variations of the transit depths at the
same wavelengths, which strongly affects the inferred trans-
mission spectrum. They attributed such variations to the stellar
activity and found that different results are obtainable
depending on the observations considered. By rejecting those
observations that they believe to be most strongly affected by
stellar activity, their final results support CO as the dominant
carbon molecule, with very little, if any, CH4. More recent
Hubble/WFC3 observations in the 1.2−1.6 μmwavelength
interval, analyzed by Knutson et al. (2014), indicate a
featureless transmission spectrum, which is consistent with a
relatively hydrogen-poor atmosphere with a high cloud or haze
layer.
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In this paper we reanalyze four transit light curves obtained
with Spitzer/IRAC at 3.6 and 4.5 μm passbands (channels 1
and 2 of IRAC). We adopt a non-parametric data detrending
technique, based on Independent Component Analysis (ICA)
applied to single pixel light curves, to ensure a higher degree of
objectivity. This method has been proven to give robust results
when applied to the transits of the hot Jupiter HD 189733b
observed with IRAC at 3.6 μm (Morello et al. 2014). We
further test the performance of this detrending technique with
the more challenging data sets of the Neptune-sized planet GJ
436b, for which the transit depth is comparable with the
amplitude of the instrumental pixel-phase signal, and the transit
duration is very similar to the period of that signal.
Additionally, we discuss the stellar and orbital stability of the
GJ 436 system, the repeatability of transit measurements
(potentially affected by stellar, planet, and instrument varia-
bility), and the atmospheric contribution. We also discuss the
reliability of our results in light of other observations reported
in the literature, in particular Beaulieu et al. (2011), Knutson
et al. (2011, 2014).

2. DATA ANALYSIS

2.1. Observations

We analyze four photometric observations of GJ 436b,
which are part of the Spitzer program ID 50051. They include
two 3.6 and two 4.5 μm primary transits, as detailed in Table 1.
Each observation consists of 1,829 exposures using IRAC’s
sub-array mode, taken over 4.3 hr: 0.8 hr on the primary transit
of the planet, the remaining 3.5 hr before and after transit. The
interval between consecutive exposures is 8.4 s. Each exposure
includes 64 consecutive frames integrated over 0.1 s. We
replaced the single frames of each exposure with their averages
to reduce the random scatter and the computational time.4

During an observation, the centroid of the star GJ 436 is stable
to within one pixel.

2.2. Detrending Method, Light Curve Fitting, and Error Bars

Here we outline the main steps of the analysis: data
detrending, light-curve fitting, and estimating parameter error
bars. Further details are reported in Morello et al. (2014).

To detrend the transit signals from single observations, we
performed an ICA decomposition over selected pixel light
curves, i.e., time series from individual pixels. We considered
5 × 5 arrays of pixels with the stellar centroids at their centers.
In this way, we obtain a set of maximally independent
components: one of them is the transit signal, others may be
instrumental systematics and/or astrophysical signals.
Observed light curves are linear combinations of these

independent components, and the coefficients of the linear
combinations can be calculated by fitting the out-of-transit
parts. To estimate the transit signal in a robust way, the fit is
performed on the out-of-transit of the relevant integral light-
curve, i.e., the sum of the pixel light curves from the array used,
including all the non-transit components, plus a constant term.
The detrended transit signal is obtained by subtracting all the
non-transit components, properly scaled by their fitting
coefficients, from the integral light-curve. It is renormalized
by the mean value on the out-of-transit, so that the out-of-
transit level is unity.
After the extractions of the detrended and normalized transit

time series, we modeled them by using the Mandel & Agol
(2002) analytical formulae. We originally assumed the orbital
period, P, and the epoch of the first transit, Etr, reported by
Cáceres et al. (2009); the eccentricity, e, and the argument of
periastron, ω, reported by Maness et al. (2007). They are
consistent with those reported by previous papers (Butler
et al. 2004; Gillon et al. 2007; Deming et al. 2009), and more
accurate. We tested two different sets of quadratic limb
darkening coefficients for the star (Howarth 2011b), γ1 and γ2,
derived by an Atlas (Kurucz 1970; Howarth 2011a) and a
Phoenix (Allard & Hauschildt 1995; Allard et al. 2001) model
(see Section 2.3.1). With these settings, we estimated the
planet-to-star radii ratio, =p

r

R

p

s
, the orbital semimajor axis in

units of stellar radii, =a a

R0
s
, and inclination, i. First estimates

were obtained through a Nelder-Mead optimization algorithm
(Lagarias et al. 1998); they were used as optimal starting points
for an Adaptive Metropolis algorithm with delayed rejection
(Haario et al. 2006), generating chains of 20,000 values.
Updated best estimates and (partial) error bars of the
parameters, σpar,0, are the means and standard deviations of
the relevant (Gaussian distributed) sampled chains, respec-
tively. The final parameter error bars are:
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For completeness, and for comparison with the literature, we

also calculated the transit depth, p2, the impact parameter, b,
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Table 1
Spitzer Observations of Primary Transits of GJ 436b

Obs. Number Detector Wavelength (μm ) UT Date Orbit Number

1a IRAC, ch1 3.6 2009 Jan 9 234
1b IRAC, ch1 3.6 2009 Jan 28 241
2a IRAC, ch2 4.5 2009 Jan 17 237
2b IRAC, ch2 4.5 2009 Jan 31 242

4 Computational time is dominated by the time for transit fitting, which
strongly depends on the algorithms (and settings) used. In our case, transit
fitting time was several hours, and it scales as  dN( ), being d the number of
free transit parameters, and N the data points.
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For a more thorough analysis, we performed other fits with
different choices of the free parameters, introducing a phase-
shift parameter to consider possible timing error/variations, and
simultaneous fits on more than one multiple light curves with
some common free parameters.

2.3. Application to Observations

Figure 1 reports the raw “integral light curves” observed and
Figure 2 reports the corresponding central pixel light curves.
The main systematic effect for IRAC channels 1 and 2
observations is an almost regular undulation with period
∼3000 s, so-called pixel-phase effect, because it depends on the
relative position of the source centroid with respect to a pixel
center (Fazio et al. 2004; Morales-Caldéron et al. 2006). This
effect is particularly difficult to detrend from these data sets
because its timescale is similar to the transit duration, and its
amplitude is comparable to the transit depth. Recently, a time
dependence of the pixel-phase effect has been suggested
(Stevenson et al. 2010; Beaulieu et al. 2011).

If considering the whole data sets for detrending, our ICA
algorithm is able to remove most of the non-flatness on the out-
of-transits, and visibly improve the in-transit shapes, but some
visible issues remain (see Figure 16). We noted that results
improve significantly if a number of data points from the
beginning of each observation are rejected. This is discussed on
a statistical basis in Section 3.1. A possible explanation is that
the first data points contain a long-tail variation until the
stabilization of the instruments (Fazio et al. 2004, see also
Appendix A.1), but this is not a crucial point for the data
analysis. In the rest of this paper we discuss the results obtained
after rejecting the first 450 exposures from each observation,
corresponding to ∼3780 s, for which the ICA performances are
optimal. It is worth pointing out that different choices
(including no data rejections) give consistent results (within
1σ), with larger or similar error bars.

2.3.1. Limb Darkening Coefficients

Table 2 reports the quadratic limb darkening coefficients
used at 3.6 and 4.5 μm IRAC passbands. Both the Atlas and
Phoenix models are computed with Teff = 3680 K,

=glog 4.78 (Torres 2009), and solar abundances (Asplund
et al. 2009).

3. RESULTS

3.1. Tests of Pixel-phase Correlations

To investigate the effectiveness of the data detrending
we measure the correlations of the signals with the pixel-phase
position, before and after the corrections. We refer to
the Pearson product-moment correlation coefficient (PCC),

Figure 1. Raw integral light curves of the four primary transit observations. Data points on the left of the black vertical lines have been discarded for the analysis. Note
that the transit depth is comparable with the amplitude of systematics.

Table 2
Quadratic Limb Darkening Coefficients Computed by Atlas and Phoenix

Stellar Models for IRAC 3.6 and 4.5 μm Bands

Atlas 3.6 μm 4.5 μm

γ1 5.489 × 10−2 1.331 × 10−2

γ2 3.0653 × 10−1 2.8396 × 10−1

Phoenix 3.6 μm 4.5 μm

γ1 3.87 × 10−3 3.27 × 10−3

γ2 2.3615 × 10−1 1.8193 × 10−1

3
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Figure 2. Central pixel light curves of the four primary transit observations. Data points on the left of the black vertical lines have been discarded for the analysis. Note
that pixel light curves are dominated by systematics, and the transit signal is not visible by eye (but it is present, as proven by ICA retrieval).

Figure 3. Time series of the pixel-phase values for the four observations. Data points on the left of the black vertical lines have been discarded for the analysis; dashed
green lines delimit the ends of pre-transits and the beginning of post-transits; dashed red lines delimit the in-transits.

4
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defined as:

s s
=

X Y
PCC

cov( , )
(4)

X Y

where cov(X,Y) is the covariance of the signals X and Y, and
σX and σY are the standard deviations. In this context, X and Y
are temporal series of fluxes and pixel-phases. The PCCs are
measured over three intervals: pre-, in-, and post-transit, where

the astrophysical signals are expected to be almost flat.5 In
general −1⩽PCC⩽+1, where +1 is total positive correla-
tion, −1 is total negative correlation, and 0 is no correlation.

Figure 4. PCCs between fluxes and pixel-phases for pre-, in-, and post-transits of the four light curves. Blue circles indicate raw data, green rightwards triangles
indicate ICA detrended data with no rejections, and red upwards triangles indicate ICA detrended data after rejecting the first 450 points.

Figure 5. Significance level of correlation between fluxes and pixel-phases for the four observations. Green rightwards triangles indicate ICA detrended data with no
rejections and red upwards triangles indicate ICA detrended data after rejecting the first 450 points.

5 We used the following definitions: pre-transit (ϕ < −0.0082); in-transit
(−0.00433 < ϕ < 0.00416); post-transit (ϕ > 0.0082). These have been decided
so that all the transit models obtained during the analysis, modified with no
limb darkening, are flat in these three intervals. We checked that other
reasonable choices of the limits do not affect this analysis.

5
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Figure 3 reports the temporal series of pixel-phases. Figure 4
reports the values of the PCCs measured on the pre-, in-, and
post-transit for each observation, uncorrected, and corrected
without and with pre-transit truncation. The original data are
strongly anticorrelated with the pixel-phase, with PCC  −0.9
for channel 1, and PCC ∼ −0.7 for channel 2. After the ICA
detrending including all the data, these correlations are
significatively reduced ( <∣ ∣PCC 0.3). If we remove the first

450 data points, the ICA detrending generally performs
significantly better ( ~∣ ∣PCC 10−3−7 × 10−2). Figure 5 reports
the level of significance of the residual correlations in the
detrended data, calculated with a permutation test. When we
reject the first 450 data points, the residual correlations in the
detrended data are below 1.5σ, except for Obs. 2a, for which
the residual correlation is higher in any case. The residual
correlations without the cut of the first 450 data points are

Figure 6. Left panels: (blue) detrended light curves for the four observations with (red) best transit models overplotted, binned over seven points; best transit models
are calculated with p, a0, and i as free parameters, and Phoenix quadratic limb darkening coefficients (see Section 2.3.1). Right panels: residuals between detrended
light curves and best transit models; the black horizontal dashed lines indicate the standard deviations of residuals.
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larger: >4σ in the post transit, with the exception of Obs. 1b,
for which the residual correlations are below 1σ in any case.

3.2. Fitting p, a0, and i

Figure 6 reports the detrended light curves, binned over
seven points, with the relative best transit models, and the
residuals. The transit models in Figure 6 are computed with γ1
and γ2 Phoenix coefficients. Analogous transit models
computed with γ1 and γ2 Atlas coefficients are very similar,
with average standard deviations 1.9 × 10−5, and maximum
discrepacies 10−4. Discrepancies between the transit models
and the detrended light curves are at the level ∼2.0 × 10−4 for
IRAC channel 1, and ∼2.6−2.9 × 10−4 for IRAC channel 2,
therefore it is not possible to distinguish between Atlas and
Phoenix models from the data. Best parameter results and error
bars are reported in Figure 7, and in Tables 3 and 4. Atlas and
Phoenix stellar models lead to two systematically different
parameter sets, but both are within the error bars. All the
parameters from different observations are comparable within
1σ, even neglecting the detrending errors (σICA), except the
transit durations for Obs 1a and 1b. This is discussed in the
following sections.

3.2.1. Combining Observations

We performed two couples of simultaneos fits, one for the
3.6 μm and one for the 4.5 μm light curves, with Atlas and

Phoenix limb darkening coefficients, assuming common orbital
parameters (a0 and i), and potentially different transit depths
(p), in order to cancel the effects of parameter intercorrelations.
The assumption that orbital parameters are the same during
each observation is very reliable, because they are sparse over a
short period of time (less than one month, or nine planetary
orbital periods), so that variations due to relativistic effects,
external perturbers, or tidal effects would be very small
compared to the error bars (Alonso et al. 2008; Jordán &
Bakos 2008; Pál & Kocsis 2008).
The results of these combined fits are reported in Figures 8

and 9, and in Tables 5 and 6. The 4.5 μm transit depths become
identical, with an intermediate value between the two
determined with separate fits; the 3.6 μm transit depths slightly
diverges, but their separation is still less than 1σ. The standard
deviations of residuals between the detrended light curves and
the transit models increase ∼2−3 × 10−6 for Obs 2a and 2b
(negligible), and ∼7−8 × 10−6 for Obs 1a and 1b (comparable
with the σ0 uncertainties). The assumption of common orbital
parameters for Obs 2a and 2b may be valid, being the
consequent transit models as good as the individually fitted
ones. With the transit depths also being identical, the two light
curves are very well approximated by the same transit model.
The original discrepancies between the two sets of transit
parameters were enlarged by their intercorrelations. The same
assumption for Obs 1a and 1b lead to worse transit models and

Table 3
Transit Parameter Estimates for the Four Observations, by Fitting p, a0, and i as Free Parameters, with ATLAS Quadratic Limb Darkening Coefficients (Table 2)

Obs. Number Parameters Best Values 1σ Errors 1σ Errors 1σ Errors
(Residual Scatter Only) (ICA) (ICA Worst Case)

p 0.0834 3 × 10−4 7 × 10−4 9 × 10−4

a0 14.24 0.20 0.46 0.61
i 86.63 0.07 0.16 0.21

1a p2 0.00696 5 × 10−5 1.1 × 10−4 1.5 × 10−4

b 0.836 0.005 0.012 0.016
T(s) 2835 10 24 33
σ0 2.01 × 10−4 0.10 × 10−4 L L

p 0.0836 3 × 10−4 6 × 10−4 7 × 10−4

a0 13.93 0.19 0.39 0.48
i 86.57 0.07 0.14 0.17

1b p2 0.00699 5 × 10−5 9 × 10−5 1.2 × 10−4

b 0.834 0.005 0.011 0.013
T(s) 2916 10 20 25
σ0 1.96 × 10−4 0.10 × 10−4 L L

p 0.0833 3 × 10−4 5 × 10−4 5 × 10−4

a0 14.24 0.25 0.37 0.39
i 86.66 0.09 0.13 0.14

2a p2 0.00694 6 × 10−5 8 × 10−5 9 × 10−5

b 0.831 0.007 0.010 0.011
T(s) 2879 13 19 21
σ0 2.56 × 10−4 0.13 × 10−4 L L

p 0.0842 4 × 10−4 6 × 10−4 9 × 10−4

a0 13.38 0.23 0.40 0.57
i 86.34 0.09 0.15 0.21

2b p2 0.00709 6 × 10−5 1.1 × 10−4 1.6 × 10−4

b 0.854 0.006 0.010 0.014
T(s) 2860 16 27 39
σ0 2.87 × 10−4 0.15 × 10−4 L L

Note. We report the partial error bars obtained by the residuals, the final error bars, and the worst-case error bars (Equation (1), Section 2.2, and Appendix A.3).

7

The Astrophysical Journal, 802:117 (17pp), 2015 April 1 Morello et al.



more divergent transit depths, but, in both cases, not
dramatically.

3.3. Timing Variations

We performed transit model-fits with a free phase-shift, in
addition to p, a0, and i, in order to investigate the effect of
possible timing variations. Figure 10 reports the time-shifts
obtained. No evidence of timing variation has been detected,
with upper limits <30 s. Both Atlas and Phoenix stellar models
lead to the same shifts. Other parameter estimates are not
affected.

4. DISCUSSION

4.1. Comparing Observations

Figures 11 and 12 report the superpositions of 3.6 and 4.5
μm light curves, respectively, and the residuals. In both cases
the mean value of the in-transit residuals is small (5 × 10−5),
but transit 1b is clearly longer than transit 1a, as measured by
transit duration (T) parameters. As T is function of the orbital
parameters and stellar model, this is the reason why
simultaneous fits with common orbital parameters and stellar
models do not behave very well. We also note that the
ingresses of transits 2a and 2b have different slopes.

The difference between p2 values at the two wavelengths is
(on average) ∼5 × 10−5, and there is no evidence of differences
in planetary atmosphere’s absorption at the two wavelengths.
The orbital parameters at the two wavelengths are also

comparable, as detailed in Sections 3.2 and 3.2.1. Simultaneous
fits over the four observations with common orbital parameters
do not add any information.

4.2. Comparison with Previous Analyses
of the Same Observations

Figure 7 reports the parameter values obtained in this paper
for the individual observations with the analogs reported by
Beaulieu et al. (2011) and Knutson et al. (2011). Our results
suggest a constant value of the transit depth (largely within
1σ) both between the 3.6 and 4.5 μm observations, and for
the two wavelengths. Knutson et al. (2011) report variations
of the transit depth with a 3.4σ significance between the two
epochs at 3.6 μm, and 2.1σ at 4.5 μm, which they attributed
to stellar activity. Beaulieu et al. (2011) also obtained
significant differences between different epochs at the same
wavelength, but they attributed such discrepancies to an
unfavorable transit-systematic phasing, then they discarded
those epochs from the analysis. Our error bars are generally
comparable to the ones reported in both previous papers, but
in some cases they are larger by up to a factor ∼2. This is not
surprising, because we are not making any prior assumptions

Table 4
Transit Parameter Estimates for the Four Observations, by Fitting p, a0, and i as Free Parameters, with PHOENIX Quadratic Limb Darkening Coefficients (Table 2)

Obs. Number Parameters Best Values 1σ Errors 1σ Errors 1σ Errors
(Residual Scatter Only) (ICA) (ICA Worst Case)

p 0.0828 3 × 10−4 6 × 10−4 8 × 10−4

a0 14.02 0.19 0.44 0.59
i 86.54 0.07 0.15 0.21

1a p2 0.00686 4 × 10−5 1.0 × 10−4 1.4 × 10−4

b 0.845 0.005 0.011 0.015
T(s) 2805 10 24 33
σ0 2.01 × 10−4 0.10 × 10−4 L L

p 0.0831 2 × 10−4 5 × 10−4 6 × 10−4

a0 13.70 0.16 0.32 0.41
i 86.47 0.06 0.12 0.15

1b p2 0.00690 4 × 10−5 8 × 10−5 1.0 × 10−4

b 0.844 0.004 0.008 0.010
T(s) 2884 10 20 25
σ0 1.92 × 10−4 0.10 × 10−4 L L

p 0.0830 3 × 10−4 5 × 10−4 5 × 10−4

a0 13.99 0.24 0.35 0.37
i 86.55 0.08 0.12 0.13

2a p2 0.00688 5 × 10−5 8 × 10−5 8 × 10−5

b 0.841 0.006 0.009 0.010
T(s) 2850 13 19 20
σ0 2.58 × 10−4 0.13 × 10−4 L L

p 0.0836 4 × 10−4 6 × 10−4 9 × 10−4

a0 13.24 0.22 0.37 0.54
i 86.27 0.08 0.14 0.20

2b p2 0.00699 6 × 10−5 1.0 × 10−4 1.4 × 10−4

b 0.861 0.005 0.009 0.013
T(s) 2832 15 26 37
σ0 2.88 × 10−4 0.15 × 10−4 L L

Note. We report the partial error bars obtained by the residuals, the final error bars, and the worst-case error bars (Equation (1), Section 2.2, and Appendix A.3).
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about the signals to guarantee a high degree of objectivity
(Waldmann 2012; Waldmann et al. 2013; Morello et al.
2014). We conclude that our detrending method leads to
more robust results than the previous ones in the literature,
and they show no evidence of stellar activity variations at
∼10−4 photometric level. Recent results from Hubble/WFC3
observations at 1.2−1.6 μm (Knutson et al. 2014) also show

no significant transit depth variations over four observations
in about two months.

4.3. Comparison with Other Observations

Figure 13 compares our estimated transit depth values at 3.6
and 4.5 μm (averaged over the observations at the same

Figure 8. Comparisons of the parameters p and p2, obtained in this paper, with common orbital parameters for observations at the same wavelength, and Atlas or
Phoenix stellar models.

Figure 7. From top to bottom: comparisons of the parameters p, a0, and i (left side), and p
2, b, and T (right side), obtained in this paper with Atlas stellar model (cyan,

empty circles), Phoenix stellar model (blue, full circles), in Knutson et al. (2011; red triangles), and in Beaulieu et al. (2011; yellow squares).
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wavelength) with the most recent results at 1.2–1.6
μm (Knutson et al. 2014). The resulting spectrum is featureless
within the error bars. However, when comparing transit depth
measurements at different wavelengths, we should ensure that
the GJ 436 system is uniformly modeled, i.e., the same stellar
model and orbital parameters. A uniform multiwavelength
reanalysis is required to confirm this result, and investigate
potential small features.

Our non-detection of TTVs higher than ∼30 s (see
Section 3.3) is consistent with previous analyses in the infrared
(Alonso et al. 2008; Cáceres et al. 2009; Pont et al. 2009;
Ballard et al. 2010; Knutson et al. 2011, 2014). We measured a
significant transit duration variation (TDV; ∼80 s) between
Obs 1a and 1b. We did not find any study of TDVs for GJ 436b
in the literature, but injecting parameters from Knutson et al.
(2011) into our Equation (3) we obtain a similar trend for the

same observations. More observations are required to investi-
gate the cause of the apparent TDV between Obs 1a and 1b,
whether it is due to a perturber (as currently required to explain
the high orbital eccentricity), a stellar phenomenon, or
something else.

5. CONCLUSIONS

We have applied a blind signal-source separation method,
first proposed by Morello et al. (2014), to analyze other
photometric data of primary transits of an exoplanet, and
extending its validity to the Spitzer/IRAC 4.5 μm band. These
data sets were more challenging to analyze because of the
lower transit depth, comparable with the amplitude of the
instrumental pixel-phase signal; the transit duration, very
similar to the period of said signal; and possible stellar
variability.

Figure 9. Comparisons of the parameters b and T, obtained in this paper, with common orbital parameters for observations at the same wavelength, and Atlas or
Phoenix stellar models.

Table 5
Transit Parameter Estimates for the Four Observations, by Fitting p as a Free Parameter, a0 and i Identical for the Observations at the Same Wavelength, with ATLAS

Quadratic Limb Darkening Coefficients (Table 2)

Obs. Number Parameters Best Values 1σ Errors 1σ Errors 1σ Errors
(residual scatter only) (ICA) (ICA worst case)

p1a 0.0831 2.5 × 10−4 5 × 10−4 7 × 10−4

p1b 0.0840 2.5 × 10−4 5 × 10−4 7 × 10−4

a0 14.04 0.13 0.28 0.37
i 86.58 0.05 0.10 0.13

1a + 1b p a1
2 0.00690 4 × 10−5 9 × 10−5 1.1 × 10−4

p b1
2 0.00706 4 × 10−5 9 × 10−5 1.2 × 10−4

b 0.836 0.004 0.007 0.010
T(s) 2876 8 16 21
σ0 2.05 × 10−4 0.07 × 10−4 L L

p2a 0.0838 3 × 10−4 5 × 10−4 6 × 10−4

p2b 0.0838 3 × 10−4 5 × 10−4 6 × 10−4

a0 13.74 0.17 0.26 0.33
i 86.47 0.06 0.10 0.12

2a + 2b p a2
2 0.00702 5 × 10−5 8 × 10−5 1.1 × 10−4

p b2
2 0.00702 5 × 10−5 8 × 10−5 1.1 × 10−4

b 0.845 0.004 0.007 0.009
T(s) 2868 10 16 20
σ0 2.73 × 10−4 0.10 × 10−4 L L

Note. We report the partial error bars obtained by the residuals, the final error bars, and the worst-case error bars (Equation (1), Section 2.2, and Appendix A.3).
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We obtain consistent results between transits at different
epochs, ruling out stellar activity variations within ∼10−4
photometric level. We do not detect any significant difference
for the transit depth at 3.6 and 4.5 μm, or with the recent
measurements at 1.2−1.6 μm (Knutson et al. 2014), supporting
the hypothesis of a flat transmission spectrum. We measure a

TDV of 80 s between transits separated by seven orbits (2 σ
significance level), but no significant TTVs. More measure-
ments are required to investigate the possible presence of a
perturber, and its nature. Also, more uniform analyses at other
wavelengths are required to get a more reliable transmission
spectrum.

Table 6
Transit Parameter Estimates for the Four Observations, by Fitting p as a Free Parameter, a0 and i Identical for the Observations at the Same Wavelength, with

PHOENIX Quadratic Limb Darkening Coefficients (Table 2)

Obs. number Parameters Best Values 1σ Errors 1σ Errors 1σ Errors

(Residual Scatter Only) (ICA) (ICA Worst Case)

p1a 0.0825 2 × 10−4 5 × 10−4 6 × 10−4

p1b 0.0834 2 × 10−4 5 × 10−4 6 × 10−4

a0 13.82 0.12 0.26 0.34
i 86.49 0.04 0.09 0.12

1a + 1b p a1
2 0.00681 4 × 10−5 8 × 10−5 1.0 × 10−4

p b1
2 0.00696 4 × 10−5 8 × 10−5 1.0 × 10−4

b 0.845 0.003 0.007 0.008
T(s) 2845 7 16 21
σ0 2.04 × 10−4 0.07 × 10−4 L L

p2a 0.0833 3 × 10−4 5 × 10−4 6 × 10−4

p2b 0.0833 3 × 10−4 5 × 10−4 6 × 10−4

a0 13.57 0.16 0.25 0.31
i 86.40 0.06 0.09 0.11

2a + 2b p a2
2 0.00694 5 × 10−5 8 × 10−5 1.0 × 10−4

p b2
2 0.00694 5 × 10−5 8 × 10−5 1.0 × 10−4

b 0.852 0.004 0.006 0.008
T(s) 2840 10 16 20
σ0 2.74 × 10−4 0.10 × 10−4 L L

Note. We report the partial error bars obtained by the residuals, the final error bars, and the worst-case error bars (Equation (1), Section 2.2, and Appendix A.3).

Figure 10. Best fitted time-shifts of the mid-transit with respect to the periodically predicted mid-transit times, assuming Atlas or Phoenix stellar models. Note that
results are model-independent, because mid-transit time will not correlate with limb darkening parameters, or any other physical parameters.

Figure 11. Top panel: detrended light curves for Obs 1a (blue) and Obs 1b (green). Bottom panel: residuals between the two observations. Black dotted lines delimit
the out-of-transit and red dotted lines delimit the in-transit (as defined in Section 3.1).
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APPENDIX A
ICA

A.1 Rationale

ICA is a special case of “blind source separation” technique:
it aims to separate original source signals from observations
with minimal assumptions. The assumptions for standard
ICA6 are:

1. the source signals are statistically independent;
2. observations are linear mixtures of the source signals;
3. the number of distinguishable observations is not smaller

than the number of sources.

The first condition is easily verified if the signals have
different origins, i.e., the astronomical target, other background
objects, and the instruments. Additionally, some studies found
that ICA algorithms can also separate signals that are not
exactly independent (Hyvärinen & Oja 2000; Hyvärinen
et al. 2001).

The second condition is more questionable, given that some
instrumental systematics might be multiplicative rather than
additive. Alternative ICA algorithms consider nonlinear mixing
of the source signals, but some additional information is

required to perform the separation, and, in general, there is not
a unique solution (Hyvärinen et al. 2001). Based on the
following evidence, we found that, for Spitzer/IRAC light
curves, the classic assumption of linear mixing leads to reliable
and robust results:

1. detrended light curves present a low level of residual
scatter, compared to the literature (Beaulieu et al. 2011;
Knutson et al. 2011);

2. planetary and stellar parameters measured at different
epochs are consistent (this is not a necessary condition);

3. non-transit components have the same characteristics,
e.g., periodicity and amplitude, of known instrumental
systematics.

This seems to be in contrast with the standard (empirical)
pixel-phase effect method used to detrend Spitzer data (Fazio
et al. 2004): flux measurements are correlated with the position
of the centroid on a pixel, the cause of this is assumed to be an
intra-pixel sensitivity variation, hence the systematics model is
multiplied by the astrophysical signal. We are now investigat-
ing this question through simulated observations (Morello
2015); we report here our preliminary results:

1. either inter- and intra-pixel effects (or both) can originate
systematics similar to the ones observed in Spitzer;

2. inter-pixel effects are additive, as in our ICA model;
3. intra-pixel effects are not additive, but the ICA algorithm

is still able to significantly reduce their presence in the
light curves (our simulations currently indicate a
reduction by a factor of seven for the amplitudes of
systematic components from an original 3.5 × 10−3

photometric level, outperforming the pixel-phase method
by a factor of 2.3–3.3).

The third condition is case dependent, since the number of
components is not known a priori, and the number of pixels is
limited by the width of the point-spread function. Also, if all
the pixels contain the same systematic signals with the same
weights relative to the astrophysical signal, the pixel light
curves would not be distinguishable, and separation would be
impossibile. Given the results we obtained, we infer that we
have a sufficient number of distinguishable pixel light curves to
detrend our signals up to a 2 × 10−4 photometric precision.

A.2 Performances of MULTICOMBI Algorithm

In this section, we discuss the ability of ICA to separate
different kinds of signals. It depends on the particular algorithm
used, in our case MULTICOMBI (Tichavský et al. 2008).

Figure 12. Top panel: detrended light curves for Obs 2a (blue) and Obs 2b (green). Bottom panel: Residuals between the two observations. Black dotted lines delimit
the out-of-transit and red dotted lines delimit the in-transit (as defined in Section 3.1).

Figure 13. Transit depth values obtained in this paper at 3.6 and 4.5 μm (blue
circles), and values at 1.2–1.6 μm reported by Knutson et al. (2014; red
triangles).

6 There are some variants of ICA that do include prior information, e.g.,
Barriga et al. (2011), Igual et al. (2002), Stone et al. (2002).
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MULTICOMBI is a powerful tool that optimally mixes two
complementary algorithms: EFICA (Koldovský et al. 2006),
designed to separate non-Gaussian signals, and WASOBI
(Yeredor 2000), specialized to separate Gaussian auto-
regressive and time-correlated components.

We tested MULTICOMBI performance with simulated
observations of planetary transits affected by a large variety
of systematic signals, including non-stationary signals with
changing frequencies and amplitudes, sudden change points,
transient behaviors, and long-term monotonic drifts. In all
cases, the algorithm successfully dentrended the systematic

Figure 14. Left panels: simulations of normalized raw ligh-curves with different systematic effects, due to pointing jitter and different pixel responses. Jitter time
series are, from top to bottom: sinusoidal, periodic sawtooth (smoothed), successive smooth sawtooths with increasing frequency, and sudden shift. Right panels:
correspondent detrended light curves with pixel-ICA method. Retrieved parameters are consistent with the values adopted to generate the raw light curves.
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components, except monotonic drifts (see Figures 14 and 15
for some examples). Spitzer/IRAC light curves typically start
with a drift before stabilization, which would explain the
improved performance if rejecting part of the earlier data
points.

A more detailed analysis of the performances of the ICA
detrending method adopted in this paper for different
instrument cases, i.e., inter- or intra-pixel effects, amplitude,
frequency, temporal structure, and non-stationarity of the
systematics, individual pixel peculiarities, is ongoing (Morello
2015).

The calculation time for a MULTICOMBI session is, in our
cases, less than 3 s. We are considering a number of signals
d = 25, and N∼ 103 data points. For non-binned data sets, i.e.,
N ∼ 10 5 data points, the calculation time varies in the range
45–105 s, then it is, in general, case dependent. We measured
the computation time for different values of d and N, and found
that the algorithm complexity scales as  d N( )2 , as predicted
for EFICA in Koldovský et al. (2006).

A.3 ICA Errors

If ICA was able to separate the original source signals
perfectly, the parameter error bars would be fully determined
by the residual scatter on the detrended light-curve. In general,
we do not expect this to be the case, since any detrending
method would introduce some bias in the parameter estimates.
We model such unknown bias as an additive uncertainty, σICA,
in the time series, leading to Equation (1). Morello et al.
(2014) report the following formula for σICA:

ås s=
æ

è

çççç
+

ö

ø

÷÷÷÷÷
-f o ISR (A1)

j
j j ntc fitICA

2 2 2 2

where ISR is the so-called Interference-to-signal-ratio matrix,
oj are the coefficients of the non-transit-components, m is their
number, σntc − fit is the standard deviation of residuals from the
referent raw light-curve, out of the transit, and f is the
normalizing factor for the detrended light-curve. The sum on
the left takes into account the precision of the components
extracted by the algorithm; σntc −fit indicates how well the linear
combination of components approximates the out-of-transit.
Note that, while the first term increases with the number of
components considered (see Section 2.2), the second term
decreases. The optimal strategy is to remove all the extracted
non-transit components from the raw light-curve, though many
results obtained by removing the most significant components
(to be determined) are almost identical (see Morello et al.
2014, Section 2.5.2).
MULTICOMBI code produces two Interference-to-Signal-

Ratio matrices, ISREF, associated with the algorithm EFICA,
and ISRWA, associated with the algorithm WASOBI. In
Morello et al. (2014) we estimated the global ISR as the

Figure 15. Left panels: simulations of normalized raw ligh-curves with different systematic effects, due to pointing jitter and strong intra-pixel variations. Jitter time
series are: (top) sinusoidal and (bottom) successive smooth sawtooths with increasing frequency. Right panels: Correspondent detrended light curves with (blue)
pixel-ICA method and (red, dashed) traditional pixel-phase method. Note that ICA method outperforms the pixel-phase method, with lower residual systematics and
retrieved parameters closer to the true values.

Table A1
Estimated σICA Values for the Four Observations (Equations (A1) and (A2)),
and Worst-case Values According to a More Conservative Estimate of ISR

(Arithmetic mean of ISREF and ISRWA)

Obs. Number σICA σICA (max)

1a 4.24 × 10−4 5.97 × 10−4

1b 3.41 × 10−4 4.52 × 10−4

2a 2.79 × 10−4 3.07 × 10−4

2b 3.97 × 10−4 6.42 × 10−4
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arithmetic mean of ISREF and ISRWA. This a very conservative
estimate that does not take into account the outperforming
separation capabilities of MULTICOMBI compared to EFICA
and WASOBI. Here we suggest a more appropriate definition:

= ( )ISR min ISR , ISR . (A2)i j i j i j, ,
EF

,
WA

In the cases analyzed in Morello et al. (2014), the
contributions of the ISR terms were ∼10% of the total error

bars, thus adopting the new definition of ISR would not modify
the results significantly. Here, we find that the ISR contribu-
tions to the error bars are comparable with the other terms,
probably because some instrumental systematics and the transit
signals have similar timescales and amplitudes, making the
separation more uncertain. Table A1 reports the values of σICA
obtained for each observation, with ISR calculated according to
Equation (A2), and according to the arithmetic mean definition.

Figure 16. Left panels: (blue) detrended light curves for the four observations without data rejection and (red) best transit models overplotted, binned over seven
points. Best transit models are calculated with p, a0, and i as free parameters, and Phoenix quadratic limb darkening coefficients (see Section 2.3.1). Right panels:
residuals between detrended light curves and best transit models. Black horizontal dashed lines indicate the standard deviations of residuals.
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The error bars obtained in this paper with the definition in
Equation (A2) are consistent with results from the same tests of
robustness reported in Morello et al. (2014), i.e., different
number of components, pixel arrays, and partial time series.
For completeness, the tables in Appendix D report the error
bars obtained from residual scatter only, including σICA with
ISR defined as in Equation (A2), and with the previous
definition of ISR. The relative difference between error bars
obtained with the two definitions of ISR is 0−30%, which, in
general, may be important for atmospheric characterization, but
does not affect the conclusions obtained in this paper.

APPENDIX B
FULL DATASETS ANALYSIS

Figure 16 reports the detrended light curves obtained using
the whole data sets. As stated in Section 2.3, the systematics
originally present in the raw light curves are greatly reduced
(see Figure 1), but there are still visible trends at all phases of
the transits. Quantitative measurements of these trends, based
on the correlations with the pixel-phase, have been discussed in
Section 3.1, together with the trends obtained by rejecting the
first 450 data points before processing. Also, the standard
deviations of residuals between the light curves and the transit
models are larger for the cases with no preliminary data
rejection (but for Obs 1b the difference is not significant).
Removing the first 450 data points after ICA processing may
reduce the scatter, but it does not improve the reliability of the
light curves, because trends are present at all times.

Results extracted from these worse-quality light curves are
less robust, but they are consistent with accepted results within
1σ. Also, error bars are largely underestimated if the
uncertainties due to the detrending process are neglected. It
may lead us to erroneously detect inter-epoch transit depth
variations.

APPENDIX C
ALTERNATIVE TRANSIT MODEL-FITS

C.1 Free Limb Darkening

We performed transit model-fits with one free limb
darkening parameter (linear or quadratic) in addition to the
other free parameters (p, a0, and i). The standard deviations of
residuals between the detrended light curves and the transit
models do not change, among the models obtained with Atlas,
Phoenix, free linear, and free quadratic limb darkening
coefficients. The parameter error bars are larger by factors in
the range of 1–3 for the free quadratic case, and much larger for
the free linear case. Best parameter estimates may be more
affected by intercorrelations. The pure quadratic limb

darkening is a better approximation of the real case, because
in both Atlas and Phoenix models the quadratic coefficients are
greater than the linear ones. Figure 17 reports the estimates for
the quadratic limb darkening coefficients, γ2.
Note that:

1. they are comparable (within 1σ) with the theoretical
values;

2. error bars are larger than the differences between Atlas
and Phoenix values;

3. error bars do not allow us to distinguish the values at 3.6
and 4.5 μm.

Interestingly, the best estimate of γ2 for Obs 1b is the most
distant from the other values (but within 1σ), and the
correspondent transit duration is now equal for Obs 1a and
1b. Although the value γ2∼ 0 is not reliable, it is important to
note that the measured transit duration, as defined in Equation
(3), depends on the stellar intensity distribution and limb
darkening model adopted, then:

1. stellar variability is a possible cause for observed TDVs;
2. TDVs measured from observations at different wave-

lengths must be taken carefully.

C.2 Free Eccentricity

We performed transit model-fits with free eccentricity, e, in
addition to the other free parameters (p, a0, and i). Eccentricity
does not have a great impact on the transit models: best
estimates of the other parameters do not change significantly
with respect to previous ones (with e = 0.16), although best
estimates for the eccentricity for different observations varies
over a large range (0.08–0.22). Also, residuals between light
curves and models are not affected.

C.3 Free Argument of Periastron

We performed transit model-fits with free argument of
periastron, ω, in addition to the other free parameters (p, a0,
and i). They do not constrain ω very well (σω∼24−34): a0 and
i are strictly correlated with ω, and their error bars are ∼3 times
larger than ones obtained with ω fixed. Also, the distributions
of ω, a0, and i, are asymmetric, because best ω values are close
to the edge of the range of admissible values. It is interesting to
note that other parameters, such as p, b, and T, are not affected
by ω degeneracies: their posterior distributions are indistin-
guishable from the ones obtained with ω fixed.

Figure 17. Best fitted values of the quadratic limb darkening coefficient (γ2) for the four observations, assuming γ1 = 0.
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C.4 Free Phase-shift

We performed transit model-fits with a free phase-shift in
addition to other free parameters in order to investigate the
effect of possible timing variations. Results are very similar for
each fitting configuration, with no evidence of timing variation
below ∼30 s, as stated in Section 3.3. The free phase-shift does
not affect other parameter estimates, except in the cases with
free argument of periastron (ω): timing variations and orbit
precession are highly correlated.

C.5 Fitting p, a0, and i with Components’ Coefficients

We experimented with an alternative method to estimate the
transit parameters and the coefficients of the independent
components simultaneously, by modeling the raw light curves
as linear combinations of the components plus a transit model.
In this way, we can investigate possible correlations between
transit parameters and mixing coefficients, and test the stability
of an ICA model over the whole observation. If results were
significantly different than the ones obtained by estimating the
mixing coefficients on the out-of-transit only, it would indicate
that something different has happened during the transit, either
astrophysical or instrumental in nature. For the data sets
analyzed in this paper, results are consistent with accepted
values within 1σ. It is worth noting that partial error bars, σpar,0,
obtained from the MCMCs are similar to the ones obtained
with p, a0, and i only free parameters (in some cases even
smaller). This indicates that the main cause of uncertainty
attributed to the detrending method is not given by the mixing
coefficients, but by the intrinsic errors on the components
extracted.

REFERENCES

Allard, F., & Hauschildt, P. H. 1995, ApJ, 445, 433
Allard, F., Hauschildt, P. H., Alexander, D. R., Tamanai, A., & Schweitzer, A.

2001, ApJ, 556, 357
Alonso, R., Barbieri, M., Rabus, M., et al. 2008, A&A, 487, L5
Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, A&ARv,

47, 481
Ballard, S., Christiansen, J. L., Charbonneau, D., et al. 2010, ApJ, 716, 1047

Barriga, E. S., Pattichis, M., Ts’o, D., et al. 2011, Med. Image Anal., 15, 35
Beaulieu, J. P., Tinetti, G., Kipping, D. M., et al. 2011, ApJ, 731, 16
Butler, R. P., Vogt, S. S., Marcy, G. W., et al. 2004, ApJ, 617, 580
Cáceres, C., Ivanov, V. D., Minniti, D., et al. 2009, A&A, 507, 481
Coughlin, J. L., Stringfellow, G. S., Becker, A. C., et al. 2008, ApJL,

689, L149
Deming, D., Harrington, J., Laughlin, G., et al. 2009, ApJL, 667, L199
Demory, B.-O., Gillon, M., Barman, T., et al. 2007, A&A, 475, 1125
Fazio, G. G., Hora, J. L., Allen, L. E., et al. 2004, ApJS, 154, 10
Ford, E. B., Quinn, S. N., & Veras, D. 2008, ApJ, 678, 1407
Gillon, M., Pont, F., Demory, B. O., et al. 2007, A&A, 472, L13
Haario, H., Laine, M., Mira, A., & Saksman, E. 2006, Stat. Comput., 16, 339
Howarth, I. D. 2011a, MNRAS, 413, 1515
Howarth, I. D. 2011b, MNRAS, 418, 1165
Hyvärinen, A., & Oja, E. 2000, NN, 13, 411
Hyvärinen, A., Karhunen, J., & Oja, E. 2001, Independent Component

Analysis (New York: John Wiley & Sons, Inc.)
Igual, J., Vergara, L., Camacho, A., & Miralles, R. 2002, Neurocomputing,

50, 419
Jordán, A., & Bakos, G. Á 2008, ApJ, 685, 543
Knutson, H. A., Madhusudhan, N., Cowan, N. B., et al. 2011, ApJ, 735, 27
Knutson, H. A., Benneke, B., Deming, D., & Homeier, D. 2014, Natur,

505, 66
Koldovský, Z., Tichavský, P., & Oja, E. 2006, ITNN, 17, 1265
Kurucz, R. L. 1970, Smithsonian Astrophysical Observatory Special

Report 309
Lagarias, J. C., Reeds, J. A., Wright, M. H., & Wright, P. E. 1998, SIAM

Journal of Optimization, 9, 112
Mandel, K., & Agol, E. 2002, ApJL, 580, L171
Maness, H. L., Marcy, G. W., Ford, E. B., et al. 2007, PASP, 119, 90
Morales-Caldéron, M., Stauffer, J. R., Davy Kirkpatrick, J., et al. 2006, ApJ,

653, 1454
Morello, G. 2015, ApJ, submitted
Morello, G., Waldmann, I. P., Tinetti, G., et al. 2014, ApJ, 786, 22
Pál, A., & Kocsis, B. 2008, MNRAS, 389, 191
Ribas, I., Font-Ribera, A., & Beaulieu, J. P. 2008, ApJL, 677, L59
Pont, F., Gilliland, R. L., Knutson, H., Holman, M., & Charbonneau, D. 2009,

MNRAS, 393, L6
Stevenson, K. B., Harrington, J., Nymeyer, S., et al. 2010, Natur, 464, 1161
Stevenson, K. B., Harrington, J., Lust, N. B., et al. 2012, ApJ, 755, 9
Stone, J. V., Porrill, J., Porter, N. R., & Wilkinson, I. D. 2002, NeuroImage,

15, 407
Tichavský, P., Koldovský, Z., Yeredor, A., Gómez-Herrero, G., & Doron, E.

2008, ITNN, 19, 421
Torres, G. 2009, ApJL, 671, L65
Waldmann, I. P. 2012, ApJ, 747, 12
Waldmann, I. P., Tinetti, G., Deroo, P., et al. 2013, ApJ, 766, 7
Yeredor, A. 2000, ISPL, 7, 197

17

The Astrophysical Journal, 802:117 (17pp), 2015 April 1 Morello et al.

http://dx.doi.org/10.1086/175708
http://adsabs.harvard.edu/abs/1995ApJ...445..433A
http://dx.doi.org/10.1086/321547
http://adsabs.harvard.edu/abs/2001ApJ...556..357A
http://dx.doi.org/10.1051/0004-6361:200810007
http://adsabs.harvard.edu/abs/2008A&amp;A...487L...5A
http://dx.doi.org/10.1146/annurev.astro.46.060407.145222
http://adsabs.harvard.edu/abs/2009ARA&amp;A..47..481A
http://adsabs.harvard.edu/abs/2009ARA&amp;A..47..481A
http://dx.doi.org/10.1088/0004-637X/716/2/1047
http://adsabs.harvard.edu/abs/2010ApJ...716.1047B
http://dx.doi.org/10.1016/j.media.2010.06.009
http://adsabs.harvard.edu/abs/2011siq..rept...35B
http://dx.doi.org/10.1088/0004-637X/731/1/16
http://adsabs.harvard.edu/abs/2011ApJ...731...16B
http://dx.doi.org/10.1086/425173
http://adsabs.harvard.edu/abs/2004ApJ...617..580B
http://dx.doi.org/10.1051/0004-6361/200810908
http://adsabs.harvard.edu/abs/2009A&amp;A...507..481C
http://dx.doi.org/10.1086/595822
http://adsabs.harvard.edu/abs/2008ApJ...689L.149C
http://adsabs.harvard.edu/abs/2008ApJ...689L.149C
http://dx.doi.org/10.1086/522496
http://adsabs.harvard.edu/abs/2007ApJ...667L.199D
http://dx.doi.org/10.1051/0004-6361:20078354
http://adsabs.harvard.edu/abs/2007A&amp;A...475.1125D
http://dx.doi.org/10.1086/422843
http://adsabs.harvard.edu/abs/2004ApJS..154...10F
http://dx.doi.org/10.1086/587046
http://adsabs.harvard.edu/abs/2008ApJ...678.1407F
http://dx.doi.org/10.1051/0004-6361:20077799
http://adsabs.harvard.edu/abs/2007A&amp;A...472L..13G
http://dx.doi.org/10.1007/s11222-006-9438-0
http://adsabs.harvard.edu/abs/2006StCom..16..339H
http://dx.doi.org/10.1111/j.1365-2966.2011.18122.x
http://adsabs.harvard.edu/abs/2011MNRAS.413.1515H
http://dx.doi.org/10.1111/j.1365-2966.2011.19568.x
http://adsabs.harvard.edu/abs/2011MNRAS.418.1165H
http://dx.doi.org/10.1016/S0893-6080(00)00026-5
http://adsabs.harvard.edu/abs/2000NN.....13..411H
http://dx.doi.org/10.1016/S0925-2312(02)00575-1
http://adsabs.harvard.edu/abs/2002naco.book..419I
http://adsabs.harvard.edu/abs/2002naco.book..419I
http://dx.doi.org/10.1086/590549
http://adsabs.harvard.edu/abs/2008ApJ...685..543J
http://dx.doi.org/10.1088/0004-637X/735/1/27
http://adsabs.harvard.edu/abs/2011ApJ...735...27K
http://dx.doi.org/10.1038/nature12887
http://adsabs.harvard.edu/abs/2014Natur.505...66K
http://adsabs.harvard.edu/abs/2014Natur.505...66K
http://dx.doi.org/10.1137/S1052623496303470
http://dx.doi.org/10.1137/S1052623496303470
http://adsabs.harvard.edu/abs/1998SJCO....9..112L
http://dx.doi.org/10.1086/345520
http://adsabs.harvard.edu/abs/2002ApJ...580L.171M
http://dx.doi.org/10.1086/510689
http://adsabs.harvard.edu/abs/2007PASP..119...90M
http://dx.doi.org/10.1086/507866
http://adsabs.harvard.edu/abs/2006ApJ...653.1454M
http://adsabs.harvard.edu/abs/2006ApJ...653.1454M
http://dx.doi.org/10.1088/0004-637X/786/1/22
http://adsabs.harvard.edu/abs/2014ApJ...786...22M
http://dx.doi.org/10.1111/j.1365-2966.2008.13512.x
http://adsabs.harvard.edu/abs/2008MNRAS.389..191P
http://dx.doi.org/10.1086/587961
http://adsabs.harvard.edu/abs/2008ApJ...677L..59R
http://dx.doi.org/10.1111/j.1745-3933.2008.00582.x
http://adsabs.harvard.edu/abs/2009MNRAS.393L...6P
http://dx.doi.org/10.1038/nature09013
http://adsabs.harvard.edu/abs/2010Natur.464.1161S
http://dx.doi.org/10.1088/0004-637X/755/1/9
http://adsabs.harvard.edu/abs/2012ApJ...755....9S
http://dx.doi.org/10.1006/nimg.2001.0986
http://adsabs.harvard.edu/abs/2002Neuro..15..407S
http://adsabs.harvard.edu/abs/2002Neuro..15..407S
http://dx.doi.org/10.1086/524886
http://adsabs.harvard.edu/abs/2007ApJ...671L..65T
http://dx.doi.org/10.1088/0004-637X/747/1/12
http://adsabs.harvard.edu/abs/2012ApJ...747...12W
http://dx.doi.org/10.1088/0004-637X/766/1/7
http://adsabs.harvard.edu/abs/2013ApJ...766....7W
http://dx.doi.org/10.1109/97.847367
http://adsabs.harvard.edu/abs/2000ISPL....7..197Y

	1. INTRODUCTION
	2. DATA ANALYSIS
	2.1. Observations
	2.2. Detrending Method, Light Curve Fitting, and Error Bars
	2.3. Application to Observations
	2.3.1. Limb Darkening Coefficients


	3. RESULTS
	3.1. Tests of Pixel-phase Correlations
	3.2. Fitting p, a0, and i
	3.2.1. Combining Observations

	3.3. Timing Variations

	4. DISCUSSION
	4.1. Comparing Observations
	4.2. Comparison with Previous Analyses of the Same Observations
	4.3. Comparison with Other Observations

	5. CONCLUSIONS
	APPENDIX AICA
	A.1Rationale
	A.2Performances of MULTICOMBI Algorithm
	A.3ICA Errors

	APPENDIX BFULL DATASETS ANALYSIS
	APPENDIX CALTERNATIVE TRANSIT MODEL-FITS
	C.1Free Limb Darkening
	C.2Free Eccentricity
	C.3Free Argument of Periastron
	C.4Free Phase-shift
	C.5Fitting p, a0, and i with Components&#x02019; Coefficients

	REFERENCES



