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Introduction 

 

Randomized controlled trials (RCT) are considered the gold standard experimental study design for 

establishing the causal effect of an intervention on an outcome of interest.  RCTs are usually 

designed to have high internal validity in addressing specific hypotheses but may have less external 

validity as their inclusion and exclusion criteria may be very restrictive.  Often there are many similar 

trials addressing the same type of research hypotheses, but with different target populations, settings 

or outcome measures. Such trials may not evaluate exactly the same intervention, especially in trials 

of interventions that include combinations of multiple behavioral, social, pharmacological and/or 

environmental components.  

 

A question to consider is whether there are benefits from combining data from several studies. The 

combining of data from various randomized controlled trials (RCTs) can be useful in applications 

beyond estimation of the overall intervention effect. For example, it may be informative to combine 

the data for increasing sample sizes of subgroups in which to examine the intervention effect, or to 

increase the number of events for secondary outcomes, or to reduce variances and obtain more 

precise confidence intervals for outcomes and adverse events.  An alternative to combining the 

results from various small trials would be to undertake a large definitive trial, i.e., one that establishes 

conclusively the safety and efficacy of a proposed intervention. However, such trials are not always 

feasible due to requiring very large sample sizes, long duration, large costs, or by the nature of the 

intervention (e.g. policy interventions).   

 

In many situations, RCTs are of multi-component interventions aimed at preventing conditions such 

as diabetes and obesity, or for subjects having a high cardiovascular risk profile. Combining and 

analyzing the data from heterogeneous randomized controlled trials of complex multiple-component 

intervention studies, or discussing them in a systematic review, is not straightforward.  The first 

important question is whether it is appropriate at all to combine data from a set of heterogeneous 

randomized controlled trials. Once the decision to combine the data or results of the various trials is 

made, the issue of how to combine the trials needs to be considered. A review of possible 

procedures concluded that the most serious methodological limitation is the question of what 

studies should be combined rather than how to combine them (DeMets, 1987).   
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The objective of this manuscript is to describe certain statistical issues to be considered when 

combining data across studies, especially studies that share many commonalities, as in consortia 

studies.  The present article describes certain aspects to be considered when combining data across 

studies, that were discussed in an NIH sponsored workshop on ‘pooling issues across studies in 

consortia’ (see Belle et al in this issue).  Several statistical methodologies are described and their 

advantages and limitations are explored.  In addition, illustrations of combing data are given with 

reference to examples from the Childhood Obesity Prevention and Treatment Research (COPTR) 

consortium. 

 

 

Methodological issues in combining similar but different intervention studies 

 

To be combined, trials should address the same, or similar, research question(s) in similar 

populations and settings using similar intervention components and implementation approaches, 

and having the same or similar outcome variables. However, strict inclusion criteria that attempt to 

define trials that are ‘very similar’ may lead to an overly conservative decision that trials should not 

be combined unless all components are identical in all studies (Spinks et al 2009).  The more aspects 

they share in common, such as conceptual or theoretical framework, inclusion and exclusion criteria, 

recruitment methods, measures, timing of assessments, intervention approaches, procedures of 

study implementation (e.g. training, quality assurance, and data management), the less heterogeneity 

and the more convincing the argument for combining will be.  For example, tight definitions of 

behavioral therapies, or classifying the components using a common taxonomy, may better define 

exposure variables and strengthen the argument for combining across behavioral interventions.  

 

An example of addressing this question comes from consortia funded by the National Institutes of 

Health to test the efficacy of a diverse set of obesity-related interventions at multiple sites across the 

country. The consortia include the Childhood Obesity Prevention and Treatment Research 

(COPTR; 4 studies) (Pratt et al 2013), the Early Adult Reduction of weight through LifestYle 

intervention (EARLY; 7 studies) (Lytle et al 2014), the Obesity Related Behavioral Intervention 

Trials (ORBIT; 7 studies) (Czajkowski et al 2015), and the Lifestyle Interventions For Expectant 

Moms (LIFE-Moms, 7 studies). COPTR is testing multi-level intervention approaches to prevent 

excess weight gain in youth, and to reduce weight among overweight and obese youth. Targeted age 
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groups are preschoolers (2-5 year olds), pre-adolescents and adolescents (7-14 year olds) of diverse 

racial and ethnic groups in four different locations in the U.S.  EARLY is testing innovative 

behavioral approaches for weight control in young adults, 18-35 years of age, at high risk for weight 

gain.  ORBIT is testing methods to translate findings from basic research on human behavior into 

more effective clinical, community, and population interventions to reduce obesity in a diverse 

group of subjects.  LIFE-Moms is testing behavioral/lifestyle interventions in overweight and obese 

pregnant women designed to improve weight and metabolic outcomes among women and their 

children. 

 

Within each of these consortia, the individual trials are each designed to be stand-alone studies with 

adequate power to address their respective primary hypotheses. There is interest to combine study 

data for several reasons: the potential to explore certain important secondary hypotheses that are not 

testable in any one study (i.e., new research questions, such as testing for geographical and other 

contextual effects that are typically constant within a single study), and more can potentially be 

learned from information across trials than the information available from each individual study. For 

example, it may allow the investigation of effect modification by type of study approach or by 

population or contextual characteristics.  Because the studies within consortia have different study 

populations and intervention approaches, there are analytic challenges in exploring relationships 

when combining studies, even though they may all have a common outcome measure.  

 

There are both potential advantages and disadvantages of combining data across studies. Potential 

advantages are larger sample sizes to provide more power to explore relationships and secondary 

hypotheses, and the increased potential for improving the external validity of results by taking 

advantage of the heterogeneity among the studies in generalizing results to a wider context. Potential 

disadvantages are that combining different studies increases the overall variability, may produce 

spurious results, and could affect how the overall results are received by the scientific community. 

The heterogeneity among the studies can be such that it may actually reduce overall statistical power. 

In addition, conflicting results may make the overall result inconclusive, despite the analytic 

methodology, with wider confidence intervals due to the increased heterogeneity. 

 

Thus, in deciding whether to combine data or not, the primary issues that must be considered 

include not only that they can address an important research question, but that the studies are 
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“sufficiently” comparable with respect to their conceptual framework and overall objectives as well 

as design and implementation features. The latter include participant eligibility criteria and 

characteristics; intervention settings, approach, components, timing and actual implementation; 

outcome(s) of interest (e.g. how and when measured); and study conduct procedures (e.g. staff 

training, quality assurance, data management). Some studies are implemented in a more ‘pragmatic 

style’ (flexibility in design characteristics), whereas others in a more ‘explanatory style.’ It is 

important to devise statistical tests that can inform the decisions for combining the data from RCTs. 

 

 

Methods to summarize studies without producing a summary estimate 

 

Systematic reviews are commonly conducted as a method for summarizing information from 

multiple studies that address the same or similar scientific questions.  Combining the results from 

multiple similar randomized controlled trials to synthesize the empirical evidence related to a 

particular intervention is a well-established methodology in systematic reviews. Studies are required 

to meet strict pre-specified criteria to be included in such a review. The methods and results of each 

study are considered separately, but results are not necessarily combined quantitatively to produce a 

summary result in a systematic review.  Often the commonalities and differences among studies are 

summarized in text or in table format.  A systematic review conducted over studies within a 

consortium would highlight the common aspects of design, approach, data management and 

measurement that might be unique to that group of studies. 

 

A comparative, as opposed to a summarizing, approach involves comparing the effect from one 

index study that was of particular interest to the effects found in other studies, one by one.  This 

would provide a test of whether other studies corroborate (validate) the result of the index study.  

Although this does not provide an overall estimate of the intervention effect, it does provide insights 

into the underlying heterogeneity.  It also prompts the investigator to search for reasons why some 

studies may be in agreement, while others are not. 

 

A descriptive graphical approach that is useful for the comparison of studies is the ‘forest plot’. In 

these plots, the estimate of the intervention effect and its corresponding 95% confidence interval are 

presented for each study as a line segment alongside each other. Studies may be arranged in 
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alphabetical order, chronologically, or by size of effect.  Forest plots facilitate visual assessment of 

results from multiple studies, and can be used with or without the addition of a summary estimate of 

effect over the multiple studies. 

 

 

Pooling methodologies to produce a combined estimate 

 

Having made the decision to combine study estimates from multiple RCT’s to produce a single 

estimate, several methods can be considered.  Combining by collapsing all observations into a single 

data set and ignoring study differences is often referred to as ‘lumping’ the data.  As illustrated by 

DeMets (1987), this approach may produce misleading results.  For example, different interventions 

in different studies could produce strong results, but in opposite directions, resulting in the analysis 

of collapsed data showing a null effect.  Combining by ‘pooling’ rather than lumping is preferable, 

with the term pooling meant to convey a method that statistically adjusts for the study differences. 

There are several alternatives for pooling, described below. 

 

A specific methodology that may be employed if there are two interventions and the outcome 

variable is binomial is the Mantel-Haenszel (1959) method for combining data over several 2x2 

contingency tables. For continuous variables, Mantel and Haenszel (1959) suggested ANOVA-based 

approaches for summarizing intervention effects across studies.  Instead of ANOVA, one can 

choose the flexibility of regression models to incorporate study and intervention interaction effects 

by including appropriate indicator variables. These models can also include study-level and subject-

level covariates if information is available on these levels (see Models #1a-c in the Appendix). 

 

Meta-analysis is a well-known approach for obtaining a common intervention effect from several 

similar trials. The heterogeneity among the individual studies’ estimates of effects, the within-study 

variance of the outcome measure(s), and a quality assessment of the studies, are determined. 

Combining widely disparate measures into a single summary measure masks conceivably important 

differences and is often discouraged. If the studies meet a pre-specified criterion of effect size 

homogeneity and other criteria for meaningful cross-study analyses, their individual results may be 

combined to produce an estimate of the intervention effect.  A weighted pooled estimate is 

obtained, considering the inverse of each study’s variance, under the assumption that the larger the 
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variance of a study, the lower the ‘quality’ of its evidence and therefore the less weight it should have 

upon the overall effect estimate.  This variance may be calculated using either a fixed effects or a 

random effects approach. The random effects approach attenuates the variance estimates and thus 

the weights by considering within-study and among-study information (see further below). 

 

However, these approaches, which assume the same or similar interventions for all active arm 

participants and all control arm participants, do not work for multi-component interventions that 

vary across sites, when in actuality the active and/or control arm subjects at one site may be 

receiving a different intervention than the active and/or control arm subjects at another site.  

 

Another possible meta-analytic methodology is multiple intervention meta-analyses, e.g. network 

meta-analysis. It is used when there are not enough head-to-head comparisons of multiple 

interventions, and considers each randomized arm in calculating intervention effect estimates. It may 

be considered in situations where the same randomized arms are not included in all studies.  In our 

situation, a given arm of a randomized study consists of an intervention with multiple components 

occurring simultaneously. Thus, the use of network meta-analysis, like the use of ‘standard’ meta-

analysis, is not appropriate for multi-component interventions. 

 

Table 1 presents a summary of the advantages and disadvantages of four common methods that can 

be used to address multi-component interventions:  random effects meta analysis, meta-regression, 

multilevel meta-regression, a technique that includes individual participant-level and study-level data, 

and modeling of structural relationships. 

 

*** Insert Table 1 about here*** 

 

Random-effects meta analysis 

In meta-analysis, one is modeling the intervention effect, which is the same as modeling the 

expected value of the outcome in two-arm studies. In standard fixed-effects meta-analysis, the 

assumption is that there is a common intervention effect and that each observed study outcome 

effect differs from the true effect by an amount defined as the ‘error term,’ which is assumed to be 

normally distributed. If one is willing to assume that the studies are a random sample from a 

potential pool of all other similar studies, one can assume that each study’s effect varies around its 
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own true study effect, thereby decomposing the total variance for the estimate of the intervention 

effect into a within-study variance and a between-study variance. 

 

While the fixed-effects meta-analysis approach is widely used, it assumes that there is little 

heterogeneity in study effects across the various trials. The random effects approach differs from the 

fixed effects approach in that it considers heterogeneity information across the trials in calculating a 

trial’s variance, while the fixed effects approach utilizes only within-study information for calculating 

a study’s variance.  Using a random effect approach in a meta-analysis does statistically adjust for 

some of the heterogeneity across studies. However, there may still be residual heterogeneity among 

the studies and meta-analytic techniques cannot account for multiple-component interventions. 

 

 

Study-level meta regression 

The technique of modeling the study level outcome by incorporating study-level covariate 

information is called meta-regression. To account for the additional or residual heterogeneity among 

the studies because of different intervention approaches or participant characteristics, one can model 

the outcome using study-level covariates and thus adjust for the effects of each study upon the 

outcome as well as upon the effect of the intervention (Bangdiwala et. al. 2012). A generalized linear 

mixed effects regression model on the primary study outcome is constructed, with an indicator 

variable for intervention arm, and study-level covariates that may be potential effect modifiers 

(moderators) of the intervention effect or potential confounders of the intervention effect.   The 

introduction of study-level covariates in a meta-regression may explain some of the heterogeneity 

due to study differences (Morton et al 2004). 

 

The issue of whether to include each study’s effects as a random or fixed effect is not 

straightforward.  DeMets (1987) cautioned against including random effects for the studies since this 

can imply that they are a random sample of a specified universe of studies. Moreover, one would 

require a large number of studies for estimating variances of the random effects for studies.  It 

would thus seem appropriate to include study effects as fixed effects in the pooled estimation.  On 

the other hand, including study effects as random variables accounts for the heterogeneity among 

the study effects due to the unobserved sources.  Including study effects as random effects can be 

justified by the interest in adjusting for the studies’ source of variability rather than in interpreting 
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those effects. Modeling random effects can lead to narrower confidence intervals around the 

estimates of intervention effectiveness (Bangdiwala et. al. 2012). 

 

In order to understand the intervention effect when there are multiple components to the 

intervention, Bangdiwala et al (2012) proposed to include indicator variables for each component 

across the different studies. To avoid component effects being confounded with the study effect, it 

is important that a study use more than one component and that a particular component be used in 

more than one study.   However, since it is likely that components are not exactly the same across 

studies, in order to consider components as ‘similar’, a common taxonomy could be utilized 

(O'Connor 2015 ) (see Tate et al in this issue). Note that the control or ‘standard care’ arm may 

include some ‘active’ components and they would also need to be accounted for in the analysis. 

Having fit a meta regression, one can then look at the coefficients of each of the component 

indicator variables to assess their relative contribution to the overall outcome. See Appendix Model 

#2 for an illustration using the COPTR consortium.  

 

 

Multilevel meta-regression  

Within consortia, investigators have the possibility of obtaining participant-level information in 

addition to study-level information. The latter might include various aspects of the interventions 

such as delivery characteristics, implementation strategies, and mechanisms of action (Schulz et al 

2010).  The meta-regression model can be expanded to include such information, and is then called 

multilevel meta-regression (see Model #3 in Appendix).   Moderately large heterogeneity among the 

studies’ target populations, intervention content and modalities and other aspects may be addressed 

using study-level along with participant-level covariates (Morton et al 2004). 

 

In the Resources for Enhancing Alzheimer’s Caregiver Health (REACH) consortium, this analytic 

approach was used to allow investigators to include in a single model both participant-level 

information and individual elements of multicomponent interventions at the study-level to examine 

the relationships between those elements and outcomes (Czaja et al 2003, Belle et al 2003).   The 

REACH interventions were complex multi-faceted behavioral interventions, with various 

components.  A natural question is which components are more effective, but since not all studies 

had the same components in their interventions, REACH investigators decomposed the complex 
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interventions into 12 components (e.g., caregiver affect, care-recipient behavior, knowledge about 

the social environment) and relationships between the components and outcome were examined.  

By so doing, main effects and interactions, both within levels (participant, study) and across those 

levels, were examined. 

 

 

Modeling structural relationships  

Multilevel meta regression models may account for the heterogeneity among studies and for the 

effects of the various components across studies, but fall short of considering the causal pathways, 

whether testing those mechanisms is an explicit objective or not. The paths are present in the overall 

framework for the study, which is why having a common ‘framework’ is crucial when pooling data. 

Whether those paths are measured and tested or not, they exist and affect the intervention impact. 

To the extent they can be modeled, they provide richer explanations for the variation in response. 

 

Population-based interventions initially induce behavioral changes among the subjects that, in turn, 

affect the outcomes of interest (Bhargava, 2008). For example, making parents aware of the 

importance of healthy diets and greater physical activity for children, as is common in childhood 

obesity interventions, may lead to changes in parental behavior that in turn reduce childhood 

obesity. Similarly, highly motivated women in the Women’s Health Trial: Feasibility Study in 

Minority Populations were seen to make healthful dietary changes especially in the intervention 

group (Bhargava and Hays, 2004). It is important to analyze the data from RCTs in a broad 

framework and investigate the pathways underlying the intervention effects. Moreover, exploratory 

analyses of pooled data from multi-center and/or similar trials can provide insights for the future 

design of effective interventions.           

 

Multigroup structural equation modeling with means structures (MG-SEM) (Jöreskog 1971; Sörbom 

1974) is an alternative to the regression approach that accommodates multiple components and 

pathways. The structural model is specified in each study population separately and common 

parameters are constrained to be equal across study groups. Lagrange multipliers are used to 

determine if constraints significantly worsen the model fit. When a constraint does not hold, 

parameters are estimated separately in each group. The study variables can be defined at the latent 

variable level by different combinations of observed variables and the differences in construct 
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reliability can be taken into account. The validity of latent constructs can be tested under certain 

identifying assumptions on variances of the variables. This methodology has been used in social 

sciences but is not common in the evaluation of clinical trials (Rabe-Hesketh, Skrondal & Pickles 

2004; Duncan, Duncan, & Strycker, 2006). As discussed next, rigorous testing of the constancy of 

model parameters can also proceed in the regression framework by applying likelihood ratio tests 

and taking into account the unobserved between-subject differences via random effects.  

 

 

Statistical tests for justifying pooling 

 

The interpretations of treatment or intervention effects in randomized controlled trials can be 

complex (Fisher 1935, Cox, 1958). Pooling data from various studies may be useful for obtaining 

information that could not be gleaned from individual studies and can improve precision of 

estimates of intervention, or intervention component effects.  However, it is important to apply 

likelihood ratio and other statistical tests for assessing the validity of the pooled estimates for 

avoiding potentially misleading inferences.       

 

From the standpoint of rigorous justifications for pooling data from similarly designed RCT’s, 

likelihood ratio statistics can be applied to test for the constancy of model parameters across sites 

(Bhargava and Guthrie, 2002). This is especially appealing in true multi-site trials and in situations 

where similar study designs are used for different population groups and relevant explanatory 

variables are available. For example, in the Women’s Health Trial: Feasibility Study in Minority 

Populations, the effects of subjects’ “unhealthy eating habits” and dietary intakes on body weight 

were likely to differ for Control and Intervention groups. By including separate intercept terms for 

Control and Intervention groups, the empirical models enabled testing of the null hypothesis that 

model parameters are the same for the two groups. In this case, the value of the likelihood ratio 

statistic was significant. (Bhargava and Guthrie, 2002). Of course, if the null hypothesis had not been 

rejected, it would have provided some justification for pooling the data for the two groups.  

 

Further, the null hypothesis of constancy of model parameters may be rejected in certain 

applications via the use of likelihood ratio tests because the populations differ in important respects 

such as behavioral and socioeconomic aspects. In such circumstances, it would seem prudent not to 
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pool the data for increasing the sample sizes since that might entail increasing biases in the estimated 

parameters. However, as noted above, some a priori information can be incorporated in pooled 

analyses. For example, suppose that in a RCT the effect of an intervention is significant and the 

estimated model parameters indicate that an explanatory variable such as subjects’ ‘participation 

motivation’ was associated with the changes. Then it may be useful to test if the coefficient of 

participation motivation does not differ statistically for other population groups for which smaller 

numbers of observations might be available. This null hypothesis can be tested using Lagrange 

Multiplier type tests (Rao, 1948) that require model estimation only under the null hypothesis. 

Moreover, Wald statistics can be applied to test the null hypothesis by estimating the model under 

the more general alternative hypothesis. In addition, likelihood ratio statistics are insightful since 

investigators can assess robustness of the estimated parameters under the null and alternative 

hypotheses (Sargan, 1980, Bhargava, 1987). Such statistical tests can be extended to situations where 

the errors may not be normally distributed though possess finite fourth order moments (Bhargava, 

1987).        

 

 

Conclusion  

 

The question of whether to combine data across studies, such as may be seen in a consortium, does 

not have a simple answer. Difficult issues to consider are how to approach the problems and how to 

decide whether it will be useful to combine the data. Combining data from heterogeneous studies 

can lead to spurious results and conclusions. The argument of combining to achieve higher statistical 

power for the primary research hypotheses within a consortium of studies might be a weak one 

since each trial within a consortium is typically adequately powered to address those hypotheses. The 

potential for addressing the intervention effects within subgroups by pooling, for improving external 

validity, for asking research questions that are not possible to test in the individual studies such as 

examining intervention components, and for addressing secondary outcomes with increased power, 

may be quite attractive. If one decides to pool the data, heterogeneity among the studies’ procedures 

and uniqueness of subject selection criteria and other important characteristics make it necessary to 

apply analytical and statistical tools that attempt to address these issues.  
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There are many potential methodologies for pooling data across studies (Weiner et al 2012). 

Whether weighting the different studies data differently, or via employing random effects, one must 

recognize that different pooling methodologies may yield different results. It is important to spell 

out the conceptual framework employed as well as the specific research questions for the pooled 

data a priori and apply appropriate statistical techniques. 

 

As stated earlier, the objective of this manuscript is to describe certain issues to be considered when 

combining data across studies, especially studies that share many commonalities, as in consortia 

studies. In such situations, the number of studies is pre-determined and out of the control of 

investigators. In actual implementation of the methods described, the number of studies needed 

would be based on the desired precision for the actual estimation of effects and will depend on the 

variability of the outcome variable. The more studies the better the precision will be. 

 

This manuscript is not proposing 'new' methods - but bringing them together in one place, to 

provide researchers with the advantages and the limitations of the currently available methodologies. 

The approaches presented here, whether modeling by random effects meta regression, or using 

multilevel structural equation models, involve adjusting for the increased heterogeneity in the data 

due to aggregating information across multiple studies. As for all data syntheses, the number of 

studies available for pooling is a consideration when using any of these techniques. In the modeling, 

it is possible to test for interaction and constancy of model parameters across studies in the pooled 

models via likelihood ratio and other tests. One can also set up sequential tests in certain cases 

where the hypotheses are nested (Wald 1947, Bhargava 1987). 

 

In summary, pooling can be used for comprehensive  exploratory analyses of data from RCT’s and  

should not be viewed as replacing the standard analysis plan for each study. As noted above in the 

context of dietary interventions, pooling may help to identify new hypotheses about intervention 

components that may be more effective especially for subsets of participants with certain behavioral 

characteristics.  Pooling, when supported by statistical tests, can allow exploratory investigation of 

interesting potential hypotheses and for the design of future interventions. 
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