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Abstract—Canonical correlation analysis (CCA) is an effective
way to find two appropriate subspaces in which Pearson’s corre-
lation coefficients are maximized between projected random vec-
tors. Due to its well-established theoretical support and relatively
efficient computation, CCA is widely used as a joint dimension
reduction tool and has been successfully applied to many image
processing and computer vision tasks. However, as reported,
the traditional CCA suffers from overfitting in many practical
cases. In this paper, we propose sufficient CCA (S-CCA) to
relieve CCA’s overfitting problem, which is inspired by the theory
of sufficient dimension reduction. The effectiveness of S-CCA
is verified both theoretically and experimentally. Experimental
results also demonstrate that our S-CCA outperforms some of
CCA’s popular extensions during the prediction phase, especially
when severe overfitting occurs.

Index Terms—Canonical correlation analysis, multi-class clas-
sification, multi-view learning, generalization ability, overfitting,
sufficient dimension reduction.

I. INTRODUCTION

IN multivariate statistics, canonical correlation analysis
(CCA) [1] is a classical and popular technique of analyzing

the linear relationship between a pair of multidimensional
random vectors. It seeks two orthogonal matrices to project
the original pair of random vectors into their subspaces 1 of
maximal Pearson correlation coefficients and can be applied
to many image processing and computer vision tasks [2]–
[5]. Being able to efficiently explore connections between
random vectors, CCA has been proven a very useful tool
of dimension reduction in various learning tasks, such as
multi-label classification [6], in which the two random vectors
represent features and class labels respectively, and multi-
view learning [7]–[9], in which both random vectors represent
features.

Given N pairs of samples {(x1,y1), ..., (xN ,yN )} of two
different zero-mean random vectors x ∈ Rp and y ∈ Rq , we
can form two sample matrices X ∈ RN×p and Y ∈ RN×q .
Aiming at seeking two projection matrices to project X and
Y into subspaces with common dimension r, CCA obtains
the first pair of projection directions by solving the following
optimization problem:

max
v1,v2

vT1 Ĉov(x,y)v2√
vT1 V̂ar(x)v1

√
vT2 V̂ar(y)v2

, (1)
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in which Ĉov(x,y) = XTY , V̂ar(x) = XTX and V̂ar(y) =
Y TY are sample cross-covariance and covariance matrices,
respectively. The second and following pairs of projection
vectors are derived from maximizing the same objective
function as (1) with additional constraints of orthogonality to
the previous directions. To solve these sequential optimization
problems, a classical SVD algorithm can be applied [10]. With
less than (max{p, q})2N times of multiplication to calculate
projection directions, CCA can be very efficient for many
practical tasks. Moreover, it has been proven in [11] that
the CCA directions can be interpreted as multipliers of the
maximum likelihood estimators under some linear and Gaus-
sian assumptions. The corresponding latent variable model is
illustrated in Figure 1a, where z is the latent vector.

(a) (b)

Fig. 1. The graphical models for (a) CCA and (b) sufficient CCA.

Despite the above merits, the original CCA has been re-
ported to suffer from overfitting [12]–[14]. That is, generally,
because the number of parameters to be learned, (p + q)r,
are relatively large when compared with the number of ob-
servations, N , the cross-correlation coefficients of projected
samples dramatically decrease when a trained CCA model is
applied to new test data.

With the development of computer vision, overfitting caused
by the curse of dimensionality has become a significant
issue in practical learning problems. A number of methods
have been developed to cope with the combination of large
dimensionality and relatively small data size. Existing methods
for CCA are mainly divided into three categories: generative
methods based on Bayesian models, ensemble methods and
dimension reduction methods. Hence, we shall describe the
related methods of different categories separately.

In 2005, Bach and Jordan [11] interpreted CCA from a
probabilistic perspective. Following their work up, Klami et
al. [15] and Wang [16] proposed Bayesian extensions of
CCA. Several other variants of Bayesian CCA [17]–[20] have
been successively proposed in the following years. Despite
the popularity in the machine learning community, Bayesian
methods usually suffer from their model and computational
complexity, which makes it not a preferred option in some
computer vision applications.

Alternatively, ensemble methods are considered to enhance
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the generalization ability of CCA by some researchers [21],
[22]. Similarly with Bayesian methods, a major concern is also
with its computational complexity. Since quite a few pairs of
CCA projection matrices need to be learned, it may not be
suitable to the practical applications with high data dimension.
Besides, it requires plenty of time to do matrix multiplication
even in the test phase.

Another category of approaches to enhancing CCA is
through dimension reduction. Due to their effectiveness and
expansibility, dimension reduction techniques are popularly
used in practical learning cases as a building block. To our
knowledge, it is very common to apply principal component
analysis (PCA) to each random vector before using CCA,
especially when the original data dimension is high. However,
few other dimension reduction methods are specifically studied
or proposed to tackle the overfitting problem of CCA.

In this paper, we follow the line of dimension reduction
and propose a novel enhancement to the original CCA, termed
sufficient CCA (S-CCA), in order to mitigate the overfitting
problem. Under certain assumptions, we theoretically prove
that our method generalizes better on new test data without
degrading the optimal value of the canonical correlation.
Statistically speaking, we first extract some statistical moments
essential to the optimal solutions of CCA and then restrict
the hypothesis space further through sufficiently reducing the
variable dimensions. The seminal work of using sufficient
statistics for dimension reduction was proposed in [23] and
called sufficient dimension reduction (SDR) afterwards [24].

The proposed framework is straightforward and effective
to enhance the generalization ability of the original CCA.
Moreover, because of the recent advancement of SDR, our
S-CCA can be efficiently solved in limited time. Hence, by
utilizing S-CCA, we can gain even more excellent prediction
performance than those of the original CCA and several other
extensions of CCA.

The rest of this paper are structured as follows. We present
in Section II our S-CCA method and highlight our intuition
of S-CCA. In Section III and Section IV, we theoretically
and experimentally analyze S-CCA. Section V draws some
conclusions.

II. SUFFICIENT CANONICAL CORRELATION ANALYSIS

Our ultimate goal is to find explicit linear functions to map
the original data into certain spaces with lower dimension and,
simultaneously, to maximize Pearson’s population correlation
coefficients between projected random variables as much as
possible. That is to say, we hope to optimize

max
v1,v2

vT1 Cov(x,y)v2√
vT1 Var(x)v1

√
vT2 Var(y)v2

(2)

instead of (1) if possible, in which Cov(·, ·) and Var(·) are the
population moments which are usually unknown in practice.
However, the error due to the estimation of the population
moments by the sample statistics leads to overfitting. With
a fixed amount of data, the variance of each element of
estimators V̂ar(x), V̂ar(y) and Ĉov(x,y) is only relevant to
the probability distribution p(x,y) [25]. In particular, the total

estimation error increases with the number of the elements.
Therefore, it would be reasonable to improve the generaliza-
tion ability of CCA if we can propose a proper protocol to
reduce the number of the elements of population moments, i.e.,
to reduce the original data dimension, beforehand. Following
this intuition, we come up with S-CCA, a proper sufficient
dimension reduction (SDR) approach for CCA.

S-CCA can be represented as a latent variable model
illustrated in Figure 1b. Compared with the original CCA in
Figure 1a, S-CCA assumes that there exist rectangular matrices
B1 and B2 that fulfill

Ey|x(y|x) = Ey|BT
1 x(y|BT

1 x) , (3)

Ex|y(BT
1 x|y) = Ex|BT

2 y(BT
1 x|BT

2 y) , (4)

in which the linear projection matrices B1 ∈ Rp×d1 , (r ≤
d1 < p), and B2 ∈ Rq×d2 , (r ≤ d2 < q), satisfy BT

1 B1 = Id1

and BT
2 B2 = Id2

. Equations (3) and (4) are chosen be-
cause they are considered “sufficient” for the optimization
problem (2), which means that the optimal correlation value
will not decrease in the new CCA problem for the projected
data BT

1 x and BT
2 y. A theorem with more details about

this is provided in section III. See Figure 2 for a schematic
illustration.

Number of training samples

ρxy 

1 

Training result

Expected test result

Training result (projected)

Expected test result (projected)

Fig. 2. Let ρxy denote the optimal value of the objective function of (2).
Suppose training and test canonical correlation results change with the number
of training samples in a trend as the solid curves, then the corresponding
results for the projected samples pairs {(BT

1 xi, B
T
2 yi)} should be like the

dashed curves.

The existence of B1 and B2 is easy to be verified when we
consider the similar linear and Gaussian case as with [11]. That
is to say, assume the joint distribution of x and y is a zero-
mean multivariate Gaussian distribution, (x,y) ∼ N (0,Σ),
where

Σ =

[
W1W

T
1 + Ip W1W

T
2

W2W
T
1 W2W

T
2 + Iq

]
(5)

in which W1 and W2 are two mapping matrices from latent
vectors to observations with unit orthogonal columns, and Ip
and Iq are the covariance matrices of the white noises, which
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are assumed to be identity matrices. As we all know from the
joint and conditional Gaussian probabilities,

Ey|x(y|x) = Cov(y,x)Var−1(x)x

= W2W
T
1 (W1W

T
1 + Ip)−1x .

(6)

Similarly, we have

Ey|BT
1 x(y|BT

1 x) = W2W
T
1 B1(BT

1 (W1W
T
1 +Ip)B1)−1BT

1 x.

It is easy to find out that Ey|BT
1 x(y|BT

1 x) = Ey|x(y|x) is
satisfied if we define matrix B1 as W1

2. The existence of
B2 can be similarly verified. For nonlinear cases, we cannot
ensure the existence of B1 and B2. However, sometimes it
is reasonable to assume that a low-dimensional manifold is
embedded in the original data space and the mapping function
can be approximately represented by a linear projection [27],
which also implies the existence of B1 and B2.

In our S-CCA, the original optimization problem (2) be-
comes

max
v1,v2

vT1 B
T
1 Cov(x,y)B2v2√

vT1 B
T
1 Var(x)B1v1

√
vT2 B

T
2 Var(y)B2v2

s.t. Ey|x(y|x) = Ey|BT
1 x(y|BT

1 x),

Ex|y(BT
1 x|y) = Ex|BT

2 y(BT
1 x|BT

2 y).

(7)

To solve the above problem, we shall take advantage of the
recent SDR algorithms such as [28] and [29] to get B1 and B2

first. Then, problem (7) will degenerate to the original CCA
problem with lower data dimension.

III. THEORETICAL ANALYSIS OF S-CCA

In this section, we theoretically justify the intuitive use
of (3) and (4) for CCA, which is accomplished in two steps.
Firstly, we will demonstrate in Theorem 1 that the optimal
correlation value learned by CCA remains unchanged with
data pre-projection by matrices B1 and B2 satisfying (3)
and (4). Consequently, Theorem 1 also indicates that S-CCA
seeks the same projection directions with the original CCA in
the ideal case. Then we try to verify the intuition that applying
dimension reduction before performing CCA will help to
relieve the overfitting problem of CCA, which corresponds
to Theorem 2.

Suppose that the unit optimal solutions to problem (2) are ṽ1
and ṽ2. Without loss of generality, we still assume E(x) = 0
and E(y) = 0. Let us find out the connection between the
CCA optimal solutions and the conditional expectations in (3)
and (4).

Theorem 1. S-CCA achieves the same optimal correlation
value with CCA and seeks the same projection directions B1v1
and B2v2 in (7) as v1 and v2 in (2), if

1) there exist matrices B1 and B2 fulfilling equations (3)
and (4), and

2) Ey|x(y|x) and Ex|y(x|y) are linear functions of x and
y, respectively.

2In the linear and Gaussian case, we have Ey|BT
1 x(y|BT

1 x) = W2(Ir +

WT
1 W1)−1WT

1 x with B1 = W1. According to Lemma 2 in [26], we can
further get (Ir +WT

1 W1)−1WT
1 = WT

1 (Ip +W1WT
1 )−1. These lead to

Ey|BT
1 x(y|BT

1 x) = Ey|x(y|x).

Proof. By applying the Cauchy-Schwarz inequality to (2), we
know that the optimal value ρxy of its objective function
satisfies

ρxy = max
v2

√
vT2 Cov(y,x)Var−1(x)Cov(x,y)v2√

vT2 Var(y)v2
, (8)

and the relationship between ṽ1 and ṽ2 is

λṽT1 x = ṽT2 Cov(y,x)Var−1(x)x , (9)

in which λ is a scale factor to make sure ‖ṽ1‖ = ‖ṽ2‖ = 1.
For the linear case above, we can easily get

Cov(y,x)Var−1(x)Cov(x,y) = Ex(Ey|x(y|x)Ey|x(yT |x)),
(10)

by multiplying (6) with p(x,y)yT and integrating with respect
to (x,y), and

Ex(Ey|x(y|x)Ey|x(yT |x))

=Ex

(
Ey|BT

1 x(y|BT
1 x)Ey|BT

1 x(yT |BT
1 x)

) (11)

by plugging (3) in. Equations (10) and (11) imply

Cov(y,x)Var−1(x)Cov(x,y)

=Cov(y, BT
1 x)Var−1(BT

1 x)Cov(BT
1 x,y) ,

which means that we can still reach the optimal value ρxy
and the solution of problem (8) holds to be ṽ2 after simply
projecting x1 by B1.

From (9) we can get λṽT1 x = ṽT2 Ey|x(y|x) and from (3)
we can further obtain λṽT1 x = ṽT2 Ey|BT

1 x(y|BT
1 x). Therefore,

equation (3) implies that the optimal projection λṽT1 x can also
be achieved by using a function of BT

1 x, which in such a linear
case can be expressed as

λṽT1 x = γ ˜̃vT1 B
T
1 x , (12)

in which ˜̃v1 represents a unit optimal solution to (7).
Similarly, we can also explain the effectiveness of equa-

tion (4) as ˜̃vT1 B
T
1 holds optimal and

λ′ṽT2 y = γ′ ˜̃vT2 B
T
2 y , (13)

in which ˜̃v2 represents the other unit optimal solution to (7).

Theorem 1 means that once (3) and (4) are fulfilled, we can
turn to an optimization problem equivalent to problem (2) but
with fewer parameters (i.e., (d1 + d2)r rather than (p + q)r
parameters) to estimate.

Since S-CCA is able to reach the optimal correlation co-
efficients in the end and it does not matter whether we first
project x or y, we can get the following corollary.

Corollary 1. Reciprocally, the S-CCA method based on equa-
tions (3) and (4) is equivalent to the S-CCA method based on

Ex|y(x|y) = Ex|BT
2 y(x|BT

2 y) , (14)

Ey|x(BT
2 y|x) = Ey|BT

1 x(BT
2 y|BT

1 x) . (15)

However, as approximation always occurs during both the
sufficient dimension reduction (SDR) and CCA phases, we
would usually obtain different results in practical cases when
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we apply (3)-(4) or (14)-(15). Thus, it might be wise to
compare and choose between (3)-(4) and (14)-(15) in practice.

Although it is well known that appropriate dimension
reduction can relieve the overfitting problem in regression
and classification, we would like to specifically verify it for
CCA. Moreover, we are particularly interested in how the data
dimension will affect the generalization ability of the original
CCA.

Let us define the estimation error of (1) as

∆ =

∣∣∣Ĉov
(
v̂T1 x, v̂

T
2 y
)
− Cov

(
v̂T1 x, v̂

T
2 y
)∣∣∣√

Var
(
v̂T1 x

)√
Var
(
v̂T2 y

) , (16)

in which v̂1 and v̂2 are the solutions to (1) 3 . That is, the error
∆ is a function of both the test data x and y and the training
data X and Y . A decrease in ∆ implies the better ability of
generalization.

Lemma 1. Let ξxy = Ĉov(x,y)−Cov(x,y), Q1 = Var−1(x)
and Q2 = Var−1(y). Then the estimation error ∆ can be
upper-bounded as

sup
v̂1,v̂2

∆ ≤
[
tr
(
Q

1/2
2 ξTxyQ1ξxyQ

1/2
2

)]1/2
. (17)

Proof. As we know, given vectors u and v and a positive def-
inite matrix Q, |uT v| ≤ (uTQu)1/2(vTQ−1v)1/2. It follows
that

∆ =

∣∣tr [ξxyv̂2v̂T1 ]∣∣(
v̂T1 Q

−1
1 v̂1

)1/2 (
v̂T2 Q

−1
2 v̂2

)1/2
≤

(
v̂T2 Q

−1/2
2 Q

1/2
2 ξTxyQ1ξxyQ

1/2
2 Q

−1/2
2 v̂2

)1/2
(
v̂T2 Q

−1
2 v̂2

)1/2
=

[
tr
(
Q

1/2
2 ξTxyQ1ξxyQ

1/2
2 Q

−1/2
2 v̂2v̂

T
2 Q
−1/2
2

)]1/2
(
v̂T2 Q

−1
2 v̂2

)1/2
≤
[
tr
(
Q

1/2
2 ξTxyQ1ξxyQ

1/2
2

)]1/2
.

Define ‖ξxy‖Q1Q2
= [tr(Q

1/2
2 ξTxyQ1ξxyQ

1/2
2 )]1/2. Since

‖ξxy‖Q1Q2
= ‖Q1/2

2 ξTxyQ
1/2
1 ‖F , it is not difficult to verify

that ‖ · ‖Q1Q2 is a norm operator, which means

sup
v̂1,v̂2

∆ ≤
∥∥∥Ĉov(x,y)− Cov(x,y)

∥∥∥
Q1Q2

. (18)

Furthermore, we shall follow [30] to use the following
Lemma 2 to bound

∥∥∥Ĉov(x,y)− Cov(x,y)
∥∥∥
Q1Q2

and pro-

pose an inequality for the learning bound in Theorem 2.

Lemma 2. Let εi be zero-mean independent random vec-
tors in a Hilbert space. If there exist B, M > 0 such
that for all natural numbers l ≥ 2 the moment condition
1
n

∑n
i=1E‖εi‖lH ≤

B2

2 l!M
l−2 is satisfied, then for all δ > 0:

P (‖ 1n
∑

i εi‖H ≥ δ) ≤ 2 exp(−n
2 δ

2/(B2 + δM)) [31] [30].

3In fact, a better option of estimation error should be the absolute difference
between the estimated optimal canonical correlation and ρxy . Here the
definition of ∆ is given on account of the deduction simplicity.

Theorem 2. In order to simplify the formulation, define
αxy = ‖Var−1/2(y)Cov(y,x)Var−1/2(x)‖F and βxy =
supx0,y0

‖Var−1/2(y)y0x
T
0 Var−1/2(x)‖F . Then the upper

bound of the CCA estimation error ∆, the generalization
bound, is as follows: with probability of at least 1−2 exp(−t),

sup
v̂1,v̂2

∆ ≤
(

2tβxyαxy

N

)1/2

+
2tβxy
N

. (19)

Proof. In order to make use of Lemma 2, we first construct
proper B and M to satisfy the moment condition. Let εi =
xiy

T
i − E(xyT ), then

E(‖εi‖2Q1Q2
) = E

(∥∥xiy
T
i

∥∥2
Q1Q2

)
−
∥∥E(xyT )

∥∥
Q1Q2

≤ E
(∥∥∥Q1/2

2 yix
T
i Q

1/2
1

∥∥∥2
F

)
≤ βxyαxy

and

‖εi‖Q1Q2
≤
∥∥xiy

T
i

∥∥
Q1Q2

+
∥∥E(xyT )

∥∥
Q1Q2

≤ 2βxy .

In our case, ‖εi‖Q1Q2
can be also treated as the Euclidean

norm of vec(Q
1/2
2 εiQ

1/2
1 ), in which vec(·) represents the

operator to unfold matrices into vectors. Therefore, Lemma 2
can be properly applied.

Let B =
√
βxyαxy and M = βxy, then the moment

condition in Lemma 2 will be fulfilled. That is to say,

P

∥∥∥∥∥ 1

N

∑
i

εi

∥∥∥∥∥
Q1Q2

≥ δ

 ≤ 2exp
(
− Nδ2

2B2 + 2δM

)
.

Equivalently,

P

∥∥∥∥∥ 1

N

∑
i

εi

∥∥∥∥∥
Q1Q2

≥
√

2t

N
B +

2tM

N

 ≤ 2 exp (−t) .

In consequence,∥∥∥Ĉov(x,y)− Cov(x,y)
∥∥∥
Q1Q2

≤
√

2tβxyαxy

N
+

2tβxy
N

with probability of at least 1− 2 exp(−t).

Since the elements of Var−1/2(y)Cov(y,x)Var−1/2(x) are
in the range [−1,+1], αxy ≤

√
pq. Besides, αxy is a lower

bound of βxy. Thus, reducing the data dimension can be
beneficial to tighten the generalization bound of ∆, which is
consistent with our intuition.

IV. EXPERIMENTS

We apply our S-CCA to both synthetic and real multi-view
data to illustrate and verify the effectiveness of S-CCA. First
of all, we introduce the methods to be evaluated and compared
in the experiments:

P-CCA: As a popular data analysis and processing tech-
nique, principal component analysis (PCA) can be used for
dimension reduction as well. As we know, PCA has the
ability to minimize the squared reconstruction error while
reducing the data dimension. Besides, it has a probabilistic
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interpretation as the maximum likelihood estimator of the
Gaussian latent variable model and it is closely connected
to CCA. Thus, it is straightforward to combine PCA with
CCA and we call it P-CCA in this paper. More specifically,
P-CCA applies PCA to X and Y seperately before the CCA
calculation. That is to say, it seeks canonical directions from
the linear combinations of the first kPCA principal components
of X and Y , respectively.

B-CCA: Despite the fact that PCA is popular in practical
learning systems, it ignores the relationship between the two
random vectors studied in CCA. B-CCA is the combination of
the bilinear model (BLM) [32] and CCA. It applies CCA after
projecting the original data with the first kBLM eigenvectors
of symmetric matrix [X Y ]T [X Y ], which can be treated as
the PCA decomposition of the stacked data matrix [X Y ].
Taking advantage of the mutual information of different ran-
dom vectors, BLM is also a popular method for dimension
reduction for multi-view data. Since the calculation of BLM
only involves the eigendecomposition of covariance matrices,
BLM would inherit the merit of PCA and be considered as
an appropriate choice for pre-projecting high-dimensional data
before applying CCA.

S-CCA: As described and analyzed in Section II and Sec-
tion III respectively, our S-CCA tries to maintain the optimal
correlation coefficients while reducing the data dimension. In
order to efficiently solve equations (3) and (4), we make use
of Fukumizu and Leng’s gradient-based sufficient dimension
reduction method [28]. Since it is a kernel-based method
to learn B1 and B2, the bandwidth of Gram matrices Gx

and Gy should be set in advance. We complete this by
using the average of scaled pairwise distances cx

∑
i6=j ‖xi−

xj‖2/N/(N − 1) and cy
∑

i6=j ‖yi − yj‖2/N/(N − 1), in
which cx ∈ [0.01, 100] and cy ∈ [0.01, 100] are the scale
factors for Gx and Gx, respectively. Note that in normal
cases when the data dimensions dx and dy are similar, we
can simply set cx = cy to simplify the tuning process. The
regularization factors of the Gram matrix inversions are chosen
from {10−3, 10−5, 10−7}.

A. Synthetic data

We have theoretically shown in Theorem 2 that a prepro-
cessing of dimension reduction or feature selection can be
beneficial to tighten the upper bound of ∆. However, it is
still unclear in practice how much P-CCA, B-CCA and S-
CCA will prevail over CCA. On the basis of Theorem 1, S-
CCA should be superior, but this also need to be confirmed by
experiments. In this subsection we compare the performance
of these methods by using simulated samples and analyze S-
CCA’s advantages over CCA, P-CCA and B-CCA.

Here we conduct experiments on two types of synthetic
data corresponding to two cases unable to be handled well
by analyzing principal data component. First we consider
random vectors comprising both multivariate Gaussian and
non-Gaussian elements:

Simulation 1) : x =
[
zTWT

1 exp(ηx)T
]T

,

y =
[
zTWT

2 (ηy � ηy)T
]T

,
(20)

in which z ∼ N (0, I100), W1 and W2 are two different
200 × 100 mapping matrices, ηx, ηy ∼ N (0, 2 × I200) are
random noise vectors which are independent of z, and �
indicates the Hadamard product. That is to say, each of the
views consists of 400 features. A hundred repetitions of 500
samples were generated for the experiments, in which 300 of
them were used as the training samples and the rest 200 as the
test samples. Due to the impact of noise elements, x and y are
highly uncorrelated. Besides, there are non-Gaussian elements.
Hence we anticipate that P-CCA and B-CCA may not perform
well in this case.

Then we consider the linear case with additive Gaussian
noise:

Simulation 2) : x = Wz + ηx ,

y = V TWz + ηy ,
(21)

in which z ∼ N (0, I300), W is a 300× 300 mapping matrix,
ηx ∼ N (0, 10−4×I300) and ηy ∼ N (0, I150) are two random
noise vectors which are independent of z, and V is a 300×150
orthogonal matrix whose rows correspond to the eigenvectors
of WWT with relatively small eigenvalues. That is to say, one
view consists of 300 features and the other view consists of
150 features. The same number of samples are generated as
in Simulation 1).

(a) (b)

(c) (d)

Fig. 3. For Simulation 1), the sum of the top-10 or top-50 canonical
correlations in the training or test phase versus the pre-projection dimension:
(a) top-10, training; (b) top-10, test; (c) top-50, training; (d) top-50, test.
S-CCA performs the best on the test set, indicating its superior ability of
generalization.

Following [22], we use the sum of canonical correlations to
evaluate the performance of different methods. From Figure 3
and Figure 4, we can observe clearly that P-CCA, B-CCA and
S-CCA all prevail over CCA, which is severely overfit to the
training data. This confirms our theoretical result in Section III
that a proper pre-projection of the original data can improve
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(a) (b)

(c) (d)

Fig. 4. For Simulation 2), the sum of the top-10 or top-50 canonical
correlations in the training or test phase versus the pre-projection dimension:
(a) top-10, training; (b) top-10, test; (c) top-50, training; (d) top-50, test.
Similarly to Simulation 1), S-CCA performs markedly the best on the test
set, which indicates its superior ability of generalization.

the generalization ability of CCA. It is also apparent that S-
CCA significantly outperforms P-CCA and B-CCA in the test
phase. The inferiority of P-CCA to S-CCA is due to its neglect
of cross-view relationship. Although both B-CCA and S-CCA
take the cross-view variance into consideration, the intra-view
variances may interfere with B-CCA. More specifically, BLM
searches for the vectors v1 and v2 that maximize vT1 V̂ar(x)v1+

vT2 V̂ar(y)v2 + 2vT1 Ĉov(x,y)v2, which means that v1 and v2
are with high possibility to be chosen if their projected intra-
view variances are relatively large. These drawbacks degrade
P-CCA and B-CCA in many practical cases, as we shall see
further in the next three subsections of experiments on real
data.

Furthermore, although we have theoretically proven in
Theorem 1 that the optimal value ρxy in (8) holds after
the pre-projection of S-CCA, we are also interested in how
much it will degrade in practical cases, because a high ρxy
implies the potential to get a better result on the test set.
In order to study this, we can exploit the advantage of data
simulation, by further generating a sufficiently large number
of training samples to investigate how well S-CCA, P-CCA
and B-CCA can approximate the ρxy of CCA. The top-10
canonical correlations are used as the evaluation criterion and
summarized in Table I, where we use as many training samples
as no further noticeable improvement in the result can be
obtained.

As shown in Table I, S-CCA approximates the best to
CCA in terms of ρxy. This demonstrate that the optimal
canonical correlation obtained by S-CCA degrades the least
when compared with those of P-CCA and B-CCA.

B. The Dexter dataset

‘Dexter’ is a public dataset for text classification and it
is one of the datasets for the NIPS 2003 feature selection
challenge [33]. In this dataset, there are 1300 samples that each
is represented by 20000 integer features, in which only 9947
features are effective. The remaining 10053 distractor features
are manually added to make the dataset more challenging.
Similarly to Lu and Foster [34], we split the features into two
parts as different views.

Since the features are extremely sparse, many features are
always zeros in the training samples. That is to say, the
corresponding words do not occur in any of the text and thus
have no contribution to the training procedure, so we ignore
these features. There are 7751 features left and considered to
be adequate, among which the first 500 features are assigned
to the first view and the rest are for the second view. According
to the competition, the Dexter dataset is divided into a training
set of 300 samples, a validation set of 300 samples and a test
set of 1000 samples. We follow this division. The sum of the
top-10 canonical correlations obtained by CCA, P-CCA, B-
CCA and S-CCA are summarized in Table II.

TABLE II
DEXTER: THE SUM OF THE TOP-10 CANONICAL CORRELATIONS ON THE

TEST AND TRAINING SETS, AND THE NUMBER OF PRE-PROJECTION BASES
OBTAINED BY CROSS-VALIDATION.

Method Test corr. Training corr. Pre-proj dim.
CCA 0.1473 10.0000 -

P-CCA 3.2783 8.4521 80
B-CCA 3.1689 8.6841 60
S-CCA 3.5575 9.7865 30

As with the simulated experiments, S-CCA prevails over P-
CCA and B-CCA and significantly over CCA on the test set.
Note that this time P-CCA shows superior performance when
compared with B-CCA, which suggests that a separate PCA
projection may mitigate the negative effect of the distractors.

C. PASCAL VOC 2012

The PASCAL Visual Object Classes Challenge 2012 (PAS-
CAL VOC 2012) [35] is an object recognition competition that
still draws great attention of the computer vision community.
The dataset consists of 17125 images for several different
tasks, in which 11540 images are annotated for training and
validation of image classification task. Each image can be
classified into one or several object classes including ‘person’,
‘bird’, ‘cat’, ‘aeroplane’, ‘bicycle’, ‘bottle’ and so on. Typical
samples from the dataset are illustrated in Figure 5. Since
multi-class classification is a popular application of CCA,
we propose to use CCA, P-CCA, B-CCA and S-CCA for
PASCAL VOC 2012 and compare their performance.

In the original configuration of the competition, 5717 im-
ages are used for training and 5823 images for validation while
the test is done by the evaluation server. We treat the validation
sample set as the test set and use two-fold cross-validation
within the training set to roughly tune the parameters, which
include the bandwidth scale factors of S-CCA and the numbers
of pre-projection bases. The 128-dimensional SIFT descriptors
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TABLE I
VALUES OF THE TOP-10 CANONICAL CORRELATIONS WHICH CAN BE REACHED AND THEIR SUMMATIONS.

Method Pre-proj. dim. corr. 1 corr. 2 corr. 3 corr. 4 corr. 5 corr. 6 corr. 7 corr. 8 corr. 9 corr. 10 sum

P-CCA

10 0.7000 0.0351 0.0298 0.0249 0.0165 0.0132 0.0109 0.0094 0.0065 0.0017 0.8482
50 0.9834 0.0865 0.0755 0.0740 0.0714 0.0681 0.0672 0.0647 0.0619 0.0579 1.6106
100 0.9930 0.1130 0.1113 0.1074 0.1051 0.1012 0.1006 0.0998 0.0985 0.0952 1.9251
200 0.9989 0.5269 0.2434 0.1799 0.1679 0.1589 0.1577 0.1549 0.1547 0.1521 2.8952

B-CCA

10 0.9341 0.0686 0.0510 0.0375 0.0328 0.0291 0.0246 0.0121 0.0049 0.0018 1.1967
50 0.9854 0.0892 0.0776 0.0735 0.0731 0.0703 0.0700 0.0660 0.0653 0.0621 1.6325
100 0.9934 0.1128 0.1096 0.1081 0.1054 0.1020 0.1009 0.0982 0.0979 0.0968 1.9250
200 0.9990 0.5702 0.3903 0.3062 0.2609 0.2366 0.1751 0.1704 0.1610 0.1589 3.4286

S-CCA

10 0.9842 0.1439 0.1340 0.1033 0.0965 0.0837 0.0630 0.0439 0.0306 0.0118 1.6948
50 0.9979 0.4285 0.3654 0.3440 0.3291 0.2842 0.2805 0.2682 0.2386 0.2266 3.7631
100 0.9989 0.5954 0.5391 0.5312 0.5266 0.4893 0.4776 0.4749 0.4439 0.4356 5.5124
200 0.9995 0.9039 0.8803 0.8654 0.8643 0.8422 0.8383 0.8337 0.8178 0.7870 8.6324

CCA - 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 10.0000

(a) Results on Simulation 1).

Method Pre-proj. dim. corr. 1 corr. 2 corr. 3 corr. 4 corr. 5 corr. 6 corr. 7 corr. 8 corr. 9 corr. 10 sum

P-CCA

10 0.0848 0.0560 0.0463 0.0418 0.0385 0.0302 0.0208 0.0123 0.0026 0.0005 0.3337
50 0.2235 0.2056 0.1762 0.1709 0.1585 0.1567 0.1493 0.1388 0.1372 0.1312 1.6479

100 0.5051 0.4773 0.4309 0.4083 0.3720 0.3653 0.3491 0.3462 0.3055 0.3010 3.8609
150 0.9601 0.9566 0.9498 0.9393 0.9283 0.9087 0.8681 0.8530 0.8229 0.7798 8.9665

B-CCA

10 0.1192 0.0918 0.0827 0.0750 0.0683 0.0622 0.0531 0.0500 0.0288 0.0033 0.6343
50 0.3091 0.2894 0.2343 0.2165 0.2037 0.1912 0.1861 0.1699 0.1672 0.1603 2.1275

100 0.7476 0.6528 0.6402 0.6002 0.5533 0.5466 0.5159 0.4712 0.4302 0.4120 5.5702
150 0.9598 0.9595 0.9589 0.9507 0.9449 0.9404 0.9280 0.9070 0.8979 0.8811 9.3281

S-CCA

10 0.6343 0.5607 0.5437 0.5273 0.4916 0.4184 0.3955 0.3839 0.2978 0.2239 4.4770
50 0.8612 0.8554 0.8425 0.8168 0.8129 0.8069 0.8009 0.7852 0.7796 0.7589 8.1202

100 0.9346 0.9308 0.9272 0.9214 0.9199 0.9164 0.9121 0.9092 0.9018 0.8992 9.1727
150 0.9633 0.9606 0.9596 0.9591 0.9588 0.9574 0.9561 0.9548 0.9534 0.9524 9.5754

CCA - 0.9716 0.9712 0.9710 0.9701 0.9699 0.9694 0.9685 0.9681 0.9678 0.9675 9.6950

(b) Results on Simulation 2).

Fig. 5. Samples from the PASCAL VOC 2012 dataset. The label of these
images are ‘aeroplane’, ‘train’, ‘diningtable+chair’, ‘sofa+pottedplant+chair’,
‘person’, ‘person+chair+pottedplant’, ‘person+motorbike+pottedplant’,
‘car+person’, ‘boat’ and ’person’.

densely extracted from the grayscale image are adopted as
the original features and encoded by a Fisher coding [36]
procedure. The SIFT features are extracted with a step of
8 and the codebook size is chosen to be 20, making the
samples represented by 5120-dimensional vectors. There are
20 object classes, so the label view will be represented by 20-
dimensional vectors. Similarly, we first evaluate the sum of the
top-20 canonical correlations and the results are summarized
in Table III. We note that, since the pre-projection dimension
is set to be larger than 20, we only pre-project the 5120-
dimensional feature vectors.

Furthermore, to get rid of the classifier’s influence, we
simply use the Euclidean distance between the projected
feature vectors and label vectors as the output score, and
then calculate the average precision (AP) [35] and ‘area under

TABLE III
PASCAL VOC 2012: THE SUM OF THE TOP-20 CANONICAL

CORRELATIONS ON THE TEST AND TRAINING SETS, AND THE NUMBER OF
PRE-PROJECTION BASES.

Method Test corr. Training corr. Pre-proj dim.
CCA 1.9509 18.5535 -

P-CCA 7.0071 9.1307 310
B-CCA 7.0088 9.1618 310
S-CCA 7.0753 9.0190 250

TABLE IV
PASCAL VOC 2012: AVERAGE AP ON THE TEST AND TRAINING SETS,

WITH THE STANDARD DEVIATION PRESENTED IN PARENTHESES.

Method Test AP Training AP
CCA 0.1863 (0.0787) 0.9990 (0.0020)

P-CCA 0.4039 (0.1410) 0.5595 (0.1089)
B-CCA 0.4040 (0.1409) 0.5619 (0.1089)
S-CCA 0.4105 (0.1397) 0.5551 (0.1085)

TABLE V
PASCAL VOC 2012: AVERAGE AUC ON THE TEST AND TRAINING SETS,

WITH THE STANDARD DEVIATION PRESENTED IN PARENTHESES.

Method Test AUC Training AUC
CCA 0.1114 (0.0898) 0.9999 (0.0004)

P-CCA 0.3759 (0.1626) 0.5554 (0.1228)
B-CCA 0.3764 (0.1629) 0.5579 (0.1231)
S-CCA 0.3825 (0.1607) 0.5498 (0.1239)
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the curve’ (AUC) to measure the classification performance.
The comparisons of the results are summarized in Table IV,
Table V and Figure 6.

It can be clearly observed from Tables III, IV and V that,
as with the previous experiments, P-CCA, B-CCA and S-
CCA all perform remarkably better than CCA, and S-CCA
keeps performing the best in terms of the sum of canonical
correlations, average AUC and average AP. Figure 6 also
demonstrates that S-CCA obtains better classification accuracy
than P-CCA and B-CCA in most of the object cases.

D. Sketch-to-photo face recognition

As one of the principal problems of heterogeneous face
recognition (or multi-view face recognition), sketch-to-photo
recognition has attracted great attention among face recog-
nition researchers. In order to evaluate and compare the
performance of CCA, P-CCA, B-CCA and S-CCA in tackling
this problem, we choose the CUHK Face Sketch database
(CUFS) [37] for experiments. The CUFS database consists
of 606 corresponding sketch-photo pairs, in which 188 faces
come from the Chinese University of Hong Kong (CUHK)
student database and the rest are collected from other public
databases. The sketch images form the probe set and the photo
images form the gallery set.

TABLE VI
CUFS: THE RANK-1 ACCURACY (%) AND THE CORRESPONDING SUM OF

CANONICAL CORRELATIONS.

Method Test set Accuracy Training corr. Test corr.
CCA 100 3.0 30 1.8454

Eigenface [38] 100 31 - -
Tang [38] 100 71 - -
Liu [39] 300 87.67 - -

FaceVACS [40] [41] 300 90.37 - -
B-CCA 100 92.2 29.2670 22.7274

PLS [42] 100 93.6 - -
P-CCA 100 94.2 28.1587 23.2108
S-CCA 100 95.6 29.3592 23.9529

Wang [37] 300 96.3 - -
Klare [41] 300 99.47 - -

We also compare S-CCA with some popular approaches
to sketch-to-photo recognition. As shown in Table VI, all
the results, except for CCA, P-CCA, B-CCA and S-CCA,
are directly cited from the original papers, in which the test
sets contain 100 or 300 faces. We follow the test protocol
of [42], which consists of five times of partition of the dataset
and utilizes the average rank-1 accuracy as the performance
measure. For P-CCA, B-CCA and SCCA, the first 30 canonical
correlations are chosen as output and a simple nearest neighbor
classifier is applied. Same as the previous experiments, the sum
of these canonical correlations are illustrated in Table VI. In
fact all the CCA-based methods achieve 100% accuracy on
the training set, and thus we only list in the table the accuracy
on the test set.

Apparently, CCA suffers from a severe overfitting problem.
Although it has the excellent performance on the training
set, it performs even worse than the classical Eigenface
method [38] on the test set. Keeping the training accuracy
unchanged, P-CCA, B-CCA and S-CCA all achieve better

test accuracy than CCA (see Table VI). As a specific so-
lution to overcoming overfitting, S-CCA shows significant
superiority for this problem when compared with P-CCA and
B-CCA. In addition, we can observe that S-CCA, with no
need for a complicated feature extraction procedure, can beat
many methods specially designed for sketch-to-photo face
recognition. We also note that, for this task, Wang [37] and
Klare [41] methods performed the best, as they either consist
of complicated classifier or utilize score fusion technique.
Sophisticated feature extraction like the one applied by [41]
also helps to reach a better performance, which indicates the
importance of image preprocessing and feature learning.

V. CONCLUSIONS

In this paper, we have presented sufficient CCA (S-CCA) to
mitigate to overfitting of CCA, inspired by sufficient dimen-
sion reduction. We have theoretically proven that S-CCA is
able to reach the optimal correlation coefficient even after pro-
jecting the original random vectors into subspaces. Besides, we
have also quantitatively investigated the effectiveness of such
pre-projection by deriving a generalization bound of CCA. S-
CCA can be solved by existing methods and has demonstrated
superior empirical performance to CCA or established pre-
projection methods based on other mechanisms.
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