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Upper- and mid-mantle interaction between the
Samoan plume and the Tonga–Kermadec slabs
Sung-Joon Chang1, Ana M.G. Ferreira2,3 & Manuele Faccenda4

Mantle plumes are thought to play a key role in transferring heat from the core–mantle

boundary to the lithosphere, where it can significantly influence plate tectonics. On impinging

on the lithosphere at spreading ridges or in intra-plate settings, mantle plumes may generate

hotspots, large igneous provinces and hence considerable dynamic topography. However, the

active role of mantle plumes on subducting slabs remains poorly understood. Here we show

that the stagnation at 660 km and fastest trench retreat of the Tonga slab in Southwestern

Pacific are consistent with an interaction with the Samoan plume and the Hikurangi plateau.

Our findings are based on comparisons between 3D anisotropic tomography images and 3D

petrological-thermo-mechanical models, which self-consistently explain several unique

features of the Fiji–Tonga region. We identify four possible slip systems of bridgmanite in the

lower mantle that reconcile the observed seismic anisotropy beneath the Tonga slab

(VSH4VSV) with thermo-mechanical calculations.
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T
he Fiji–Tonga area in the Southwest Pacific shows many
unique features. First, the Tonga slab is not only the fastest
subducting slab on Earth, at a speed of 24 cm per year, but

also accommodates the fastest back-arc opening within the Lau
Back-arc Basin at a rate of 17 cm per year (ref. 1) (Fig. 1). Second,
it shows intense seismicity, with the number of reported deep
earthquakes in the transition zone being 10-fold larger than in
any other subduction zone2. Third, anomalous Ocean Island
Basalt (OIB) signatures such as very high 3He/4He ratios and
latitudinal gradients in trace element and isotopic (Sr–Nd–Pb)
enrichment are found in the northwestern corner of the Lau
Basin and nearby regions (Fig. 1) (refs 3–10), which appear to
originate from the Samoan plume. A final distinctive feature is the
strong upward deflection of the 660 km mantle discontinuity
beneath the region11 that may indicate plume-related upwelling
of hot materials from the lower mantle. Other studies12,13 also
support high temperature in the upper mantle beneath the North
Fiji Basin and the Lau Basin from geological, geochemical and
geophysical evidence. Recent seismic tomographic models14,15

reveal a complex subduction slab morphology in the region,
with a stagnant slab above the 660-km discontinuity in the
northernmost Tonga region and a penetrating slab below the
660-km discontinuity further south, where the Hikurangi plateau
is entrained into the subduction zone (Fig. 1). However, the
spatial distribution, extent and direction of mantle flow from the
Samoan plume and its effect on the slabs still remain enigmatic.

Here we suggest a self-consistent hypothesis to explain all
the aforementioned phenomena by comparing results from
three-dimensional (3D) anisotropic tomography and 3D
geodynamic modelling. To constrain the region’s dynamical
processes, it is necessary to image not only the isotropic structure
(for example, Vs and Vp in three dimensions, which do not
give direct insight into mantle flow), but also the anisotropic
structure, since anisotropy can be a proxy for deformation
and the pattern of mantle flow. Because uncertainties in
corrections for crustal structure can have a dramatic effect on
the imaging of radial anisotropy16, we recently built a new global
anisotropic tomography model that is able to overcome this
problem by incorporating crustal thickness perturbations as
model parameters along with a massive seismic data set
(Methods)17,18.

Results
Seismic tomography. Our isotropic structure model (Figs 2a,c
and 3a; Supplementary Fig. 1a), shows the Kermadec and Tonga
slabs as high-velocity anomalies (blue colour), while a large
continuous low-velocity anomaly upwelling (red colour) from the
core–mantle boundary reaches the Tonga slab in the uppermost
lower mantle. This upwelling appears to originate from the
location of a reported mega-sized ultra-low-velocity zone
(ULVZ)19 in the large low shear-wave velocity province beneath
the Pacific. The Tonga slab, which is in contact with the mantle
plume upwelling, is stagnant in the mantle transition zone, while
further south the Kermadec slab penetrates into the lower mantle
(Supplementary Fig. 1a; Supplementary Movie 1), consistent with
other recent studies14,15.

As for the anisotropic structure (Figs 2b,d and 3b;
Supplementary Fig. 1b; Supplementary Movie 2), a faster SH
velocity anomaly of B2% (blue colour) is observed behind the
Tonga slab and reaches down to B1,400 km depth. Below this
depth the resolution of the anisotropic structure is limited and
hence the anomaly is not resolvable18. An anisotropy anomaly
(VSH4VSV) in this region has been previously suggested20, but
we have been able to better constrain its extent both vertically and
laterally with our global tomography approach. Unlike previous
interpretations of a thin anomaly (B100 km) (ref. 20), we find the
anomaly to be thick (B1,000 km). In the transition zone
(at B410–660-km depth) a region with faster SV velocity is
observed near the slabs. Extensive resolution tests show that these
observed features are robust (Supplementary Figs 2–4). We
observe anomalies of faster SH velocity beneath other stagnant
slabs as well18. For example, a faster SH anomaly reaches down to
around 1,200 km beneath the Japan trench where no plume
activity exists (Supplementary Fig. 5). Given the good resolution
beneath the Japan trench, this may indicate that the faster
SH velocity beneath the stagnant slab may be caused by
subduction-induced shear deformation21, which is reproduced
in the geodynamic modelling in Supplementary Fig. 6. However,
the anomaly beneath the Tonga slab is deeper and stronger than
in other regions (Supplementary Fig. 5), strongly suggesting a
contribution of the Samoan plume to this anomaly.

Geodynamic modelling. Geodynamic modelling offers a
unique tool to investigate mantle dynamics during plume–slab
interaction. Using the modelling strategy of ref. 21 (Methods),
we find that both the recent tectonic evolution and the
present-day seismological observations of the Tonga–Kermadec
subduction zone can be reproduced when an upwelling plume
hits the bottom of a subducting oceanic plate in the transition
zone (Fig. 4; Supplementary Movies 3 and 4). We chose a
relatively large plume, based on the extent (B1,000 km) of the
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Figure 1 | Bathymetry around the Tonga–Kermadec trench along with the

region’s seismicity. Seismicity with depth deeper than 60 km is obtained

from Engdahl et al.58 and indicated by coloured circles according to the

focal depth. Plate boundaries are depicted by solid lines: orange and cyan

lines represent ridges and trenches, respectively. Magenta lines indicate

transform faults. Regions where Ocean Island Basalts (OIB; high He3/He4

ratio) with a signature of the Samoan plume are found3–5 are indicated by

enclosed solid magenta lines. Other possible signatures of the Samoan

plume are found in the regions represented by yellow enclosed lines6–10.

Relative velocity of the Pacific plate to the Australian plate is depicted by

the thick white arrow based on MORVEL by DeMets et al.59 and velocities

from GPS stations in an Australia-fixed reference frame are indicated by

thin white arrows60.
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deflection of the 660-km discontinuity11 and the resolving power
of our model, which is confirmed in another recent waveform
tomography study22. On the one hand, the upwelling plume
favours stagnation in the transition zone of the overlying slab
segment (Fig. 4c,d) and increases trench retreat at the opposite
side of the subduction system23 (Supplementary Fig. 7c). It is
worth noting that slab stagnation is found also in models where
the plume is upwelling beneath the centre of the plate. On the

other hand, the entrainment of the Hikurangi plateau arrests
trench motion and decreases the rate of subduction on the
Kermadec slab23–25, while promoting fast (up to 49 cm per year)
trench retreat on the Tonga slab (Figs 4b,d and 5; Supplementary
Fig. 7 for the trench position with time). The fast trench rollback,
in turn, increases the subduction velocity and the tendency of the
slab to stagnate in the transition zone by decreasing the slab dip
angle26, and induces strong toroidal mantle flow patterns around
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Figure 2 | Cross sections of perturbations in Voigt average and anisotropic structure and corresponding geodynamic models. (a,c) Cross sections from

the Voigt average model (V2
Voigt ¼

2V2
SV
þV2

SH
3 ) in the direction of SW–NE and NW–SE, respectively. (b,d) Cross sections from the anisotropic model

(x ¼ V2
SH=V2

SVÞ in the direction of SW–NE and NW–SE, respectively, down to 1,400 km depth, from where the resolution of the anisotropic structure is

limited18. Focal depths from EHB data58 with an upper bound of 60 km are superimposed in the cross sections as grey circles. The mantle discontinuity at

660 km is indicated by black-dashed lines in cross sections. Hot spots are represented as triangles in the in-maps. (e,f) Isotropic dVs and radial anisotropy

from the geodynamic modelling shown in Fig. 4d. The vertical cross-section is taken at Z¼ 1,300 km. In e the anomalies are due to (1) variations of

temperature and (2) topography of major mantle phase transitions occurring approximately at 410, 520 and 660 km depth. In f radial anisotropy in the

lower mantle results from the strain-induced fabric of bridgmanite calculated with easy [100](001) system five times weaker than all other slip systems

(Supplementary Fig. 8).
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the edge of the Tonga slab, which bring hot plume materials into
the mantle wedge. Near the edge of the subduction zone, the
upper mantle and upper transition zone are characterized by
mostly positive and negative radial anisotropy, respectively, due
to toroidal flow-related deformation (Fig. 2f). In the uppermost
lower mantle, a broad and thick radial anisotropy anomaly is
associated with the hot plume due to plume–plate interaction.
This anomaly is juxtaposed with a ribbon-like radial anisotropy
anomaly located beneath the flat slab segment and which is due to
subduction-induced deformation (for example, refs 21,27). By
systematically investigating several potential bridgmanite fabrics

(Methods), a positive radial anisotropy (VSH4VSV) anomaly is
associated with the plume when the dominant slip system is
either [100](010), [100](001), o�1104 001ð Þ or o1104 �110f g
(Fig. 2f; Supplementary Fig. 8). These slip systems are consistent
with those identified in high-pressure deformational experiments
on bridgmanite28,29. Consequently, the results from geodynamic
modelling support our view that the unusually large and strong
upwelling seen in the seismological model may account for
the intense deformation beneath the Tonga slab, hampering the
penetration of the Tonga slab into the lower mantle, unlike the
Kermadec slab.
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Discussion
After colliding with the Tonga slab, the Samoan plume seems to
change its upward direction to parallel to the slab (Figs 2a,c
and 4d). In the upper mantle, plume materials migrate into the
mantle wedge around the northern tip of the Tonga slab30

(white arrow in Supplementary Fig. 1c), consistent with our 3D
thermal–mechanical simulations and with results from laboratory
experiments31. Corresponding anisotropy shows faster SH than
SV velocity (Supplementary Fig. 1d), which may indicate the
horizontal flow in the upper mantle assuming the presence of
A-type fabric in olivine. The plume material’s migration is
responsible for OIB signatures in the Rochambeau Rift in the
northwestern corner of the Lau Basin and nearby regions3–10,
being pervasive throughout the Lau and North Fiji Basins.

In Fig. 6, we summarize our interpretation of the main features
of the mantle flow around the Tonga–Kermadec slabs and their
interaction with the Samoan plume. A mega ULVZ at the core–
mantle boundary seems to generate an unusually large mantle
plume, which ascends through the transition zone (Fig. 6a). The
plume collided with the Tonga slab at the bottom of the mantle
transition zone at B10 Myr, since the likely location of the Tonga
slab at that time15 coincides with that of the Samoan plume in our
model. This collision caused intense deformation and buoyancy
(Fig. 6b), contributing to slab stagnation and probably leading to
the significant observed seismicity. During the past 10 Myr, the
length of the stagnant slab is thought to have increased to about
700–800 km (refs 14,15), which is consistent with a probable
subduction rate of 7.2–14.2 cm per year (ref. 15), considering slab
buckling and compression (Fig. 6c). The plume–slab collision
time of 10 Myr is consistent with the beginning of the fast slab
retreat32, which has caused the migration of plume materials into
the mantle wedge, around the edge of the Tonga slab (Fig. 6d).

However, the fast retreat of the northern Tonga–Kermadec trench
margin is mostly ascribable to the entrainment at depth of the
Hikurangi plateau, which, together with the adjacent Chatham
Rise–plate boundary interaction, provides a regional impediment
to subduction of the Pacific plate.

Our high-resolution isotropic and radially anisotropic models
interpreted together with 3D petrological-thermo-mechanical
numerical simulations provide the clearest picture so far of how
mantle plumes can interact with subducting slabs from the mid
mantle to the Earth’s surface. Our detection of the large and very
active Samoan plume ties together many different previous
observations1–15,27,30–32 providing observational evidence that
mantle plumes can be big and strong, able to contribute to slab
stagnation and possibly to intense deep seismicity, and the
coupled plume-fast slab retreat effect can further enhance
slab stagnation and deformation. Since retreating slabs seem to
dominate the Earth’s subduction system1, significant interactions
between fast retreating slabs and upwellings may be more
common on Earth than previously thought23. Up to now, such
interactions may have remained largely undetected due to limited
seismic resolution and to the lack of fully concerted seismic and
geodynamical interpretations. Our models open the way to hunt
for possible hidden plumes beneath other slabs stagnating in
the mid-mantle, to predict their geochemical and subduction
kinematics signature in the geological record and to unravel their
role on slab deformation, with potential strong implications in
terms of the nature of material exchange between the Earth’s
upper and lower mantle. Our unique approach combining for
the first time constraints from seismic tomography and the
dynamical modelling of anisotropy in a systematic way also
promises to reveal unprecedented details about the evolution of
other regional settings.
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Methods
Radially anisotropic mantle model. The novelty of our strategy is to use a
massive and diverse data set, and to incorporate Moho perturbations to the
inversions to address crustal effects consistently17,18 . We use the same inversion
scheme as in ref. 16, with body-wave travel times added to the modelling using the
theoretical developments of Woodhouse and his colleagues33,34. The models are
parameterized horizontally using spherical harmonic basis functions expanded up
to degree 35 (nominal lateral resolution of B600 km), and 21 spline functions are
used for variations in the radial direction (see, for example, Fig. 4 in ref. 35).
Horizontal norm damping is applied for regularization, and we adopt PREM36

as the reference model. We applied 1.3 times more damping to the anisotropic
parameters than to the isotropic parameters to avoid over-interpretation, because
of weaker sensitivity of the data to the anisotropic structure and consequently
poorer resolution. Since we do not invert for seismic velocity in the crust, before
the inversions we correct all the data using crustal corrections from the model
CRUST2.0 (ref. 37). Therefore, our strategy to deal with the crust is a hybrid one;
first, we carry out crustal corrections using CRUST2.0 taking into account crustal
velocity and crustal thickness. Then, in our inversions, we estimate crustal
thickness perturbations from CRUST2.0 using our data sets, which include group
velocity data. The crustal thickness perturbations are estimated simultaneously to
variations in 3D shear-wave velocity and radial anisotropy in the whole mantle.

Isotropic and anisotropic parameters are represented respectively as follows:

v2
S ¼

1
2

V2
SV þV2

SH

� �
and zS ¼

V2
SH �V2

SV

2v2
S

ð1Þ

To keep the problem tractable, we scale perturbations of VP and density to
perturbations of VS using the scaling relations dVP

VP
¼ 0:5 dVS

VS
and dr

r ¼ 0:4 dVS
VS

,
respectively38,39.

Since the model parameters in this study consist of perturbations of isotropic
S velocity, S radial anisotropy and crustal thickness, the inverse problem can be

written as follows:

de¼
Z a

0
fKvSdvS þKzS

dzS þKdddgdr; ð2Þ

where de is a measure of misfit between the data and theoretical calculations for a
given reference model, r is the Earth’s radius parameter, a is the total radius at the
Earth’s surface, and dnS, dzS and dd indicate perturbations of isotropic S velocity,
S radial anisotropy and discontinuities with respect to the reference model. KnS , KxS

and Kd are depth sensitivity kernels with respect to isotropic S velocity, S
anisotropy and discontinuities, respectively. For comparison with other models,

we convert the parameters to the Voigt average isotropy (V2
Voigt ¼

2V2
SV þV2

SH
3 ) and

radial anisotropy (x ¼ N
L ¼

V2
SH

V2
SV

) in the main paper.

Depth sensitivity kernels with respect to phase velocities are calculated using the
approach of ref. 40, while the formulation of ref. 41 is used to compute group
velocity kernels. Sensitivity kernels with respect to crustal thickness are calculated
by following ref. 42 for phase velocity data and numerical differentiation for group
velocity data. The great circle approximation is used to linearly relate the various
datasets to Earth’s structure43.

3D petrological-thermo-mechanical modelling. We used I3MG, a 3D
geodynamic framework based on a mixed Eulerian–Lagrangian finite difference
scheme44. The numerical domain (X–Y–Z: 5,000� 2,000� 4,000 km) is discretized
with 245� 197� 101 Eulerian nodes, while the material properties are defined
on and advected by B40 millions Lagrangian particles. The initial model
set-up is characterized by a 3,300� 80� 2,000 km oceanic plate connected to a
gently dipping, 335 km long slab, which drives subduction self-consistently
(Supplementary Fig. 9a; Supplementary Table 1). Depending on the type of model,
a relatively buoyant (2,950 kg m� 3) 1,000� 30� 500 km plateau is prescribed on
the left side of the plate, and a thermally buoyant plume is defined at the bottom
of the mantle through a two-dimensional Gaussian function centered at
(X¼ 1,600 km; Z¼ 1,500 km; that is, on the front right side of the plate) with
height and width of 500 km (plume volume is 7.854� 108 km3, B2% of the
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and beginning of the interaction slab–plume in the transition zone (which increases shortly, and then slows down the velocities where it impinges,

while accelerating the kinematics on the opposite side of the plate).
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domain volume). A 100-km thick, low viscosity, high-density layer at the bottom of
the computational domain simulates the liquid core. Free slip is imposed on all
boundaries.

The shallow thermal structure is calculated according to the half-space cooling
model45 down to 90 km, then a constant thermal gradient of 0.5 K km� 1 is
assigned. The 70-Myr-old oceanic plate is juxtaposed with a 20-Myr-old mantle
and a weak background crust, which produce moderate lateral friction on the plate.

The plume has an initial constant temperature of 2,055 K, which is also the
initial temperature at the simulated core–mantle boundary (Y¼ 1,900 km).
Consequently, the thermally induced buoyancy of the plume decreases towards
such boundary.

A composite visco-plastic rheology based on deformation invariants has
been used for the oceanic plate crust, as well as for the mantle and the overlying
30 km thick background crust surrounding the oceanic plate. The effective viscosity
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Zeff is the result of combined dislocation and diffusion creep mechanisms:

1
Zeff
¼ 1

Zpowl
þ 1

Znewt
ð3Þ

Power-law creep is given by:

Zpowl ¼
tII

2_eII
¼ 1

2
A1=n

D _eð1� nÞ=n
II exp

EþPV
nRT

� �
ð4Þ

where AD, E, V, n are experimentally determined flow-law parameters and tII is the
second invariant of the deviatoric stress tensor. For simplicity, the flow law of Dry
Olivine46 is used for the whole mantle (Supplementary Table 1).

At low deviatoric stresses, thermally activated diffusion becomes the dominant
creep mechanism. Following ref. 45, transition from dislocation to diffusion creep
is prescribed at a given deviatoric stress, tII_trans, implying that:

Znewt ¼
tII trans

2_eII
¼ 1

2
ADt1� n

II transexp
Eþ PV

RT

� �
Þn� 1 ð5Þ

Znewt

Zpowl
¼ tII

tII trans

� �n� 1

ð6Þ

A low-transition stress value favouring dislocation creep is used for the
upper mantle and transition zone, while for the lower mantle and the plume
tII_trans¼ 30 MPa. Such rheological change across the transition zone—lower
mantle boundary is implemented by varying tII_trans as the density of the mantle
Lagrangian particles cross the arbitrary value of 4,150 kg m� 3.

The strength of the material is limited by:

Zmax ¼
tyield

2_eII
ð7Þ

tyield is determined with a plastic Drucker–Prager criterion46:

tyield ¼ CDP þmP ð8Þ
where CDP¼Ccos f and m¼ sin f are the cohesion and coefficient of friction, f is
the friction angle.

The oceanic plate is made of a strong, 20-km-thick core with constant viscosity
(1024 Pa � s) embedded in between two weaker layers 30-km thick. The lower layer
has a constant viscosity of 3� 1022 Pa � s, while the crust is visco-plastic. In such
layer, brittle weakening is implemented as (Supplementary Table 1):

m ¼ m0 � e
e1

for eoe1

m ¼ m1 for e � e1

�
ð9Þ

where m0 and m1 are the coefficient of friction at zero deformation and at strain e1.
Brittle weakening is needed to prevent subduction on the side of the slab and to
ensure lubrication at the plates contact after bending-related deformation. Note
also that because of the relatively low resolution, very low values of m0, m1 and e1 are
needed to ensure an efficient lubrication on the top boundary of the subducting
slab. Although simplified, such layered rheological structure captures the essential
characteristic of the lithosphere yielding profile (for example, ref. 47) producing
realistic subduction patterns while preventing slab breakoff48–50.

The dynamics of subduction through the mid mantle is affected by several
phase transitions that may favour or hinder the sinking of the slab/upwelling
of the plume via buoyancy forces. These phase transitions are included by using
P–T-dependent density and enthalpy maps generated with PERPLE_X51 for a
pyrolitic mantle composition (Supplementary Fig. 9b).

Mantle fabric modelling. The method for computing the lattice preferred
orientation (LPO) of mantle polycrystalline aggregates is accurately described in
refs 21,50. The Lagrangian aggregates are homogeneously distributed (initial
spacing is 50� 30� 50 km) within the computational domain and are passively
advected by means of the Eulerian velocity field obtained by the macro-flow
modelling. At each time-step, the fabric development of each aggregate is
calculated according to the Eulerian velocity gradient field using D-Rex52, modified
to account for non-steady-state deformation and deformation history50,53,
combined diffusion–dislocation creep mechanisms and strain-induced LPO of
mid-mantle aggregates21.

The modal abundances of the aggregates composed by 1,000 crystals reflect a
pyrolitic mantle composition (Wd:Grt¼ 60:40 for the upper transition zone,
410–520 km; Rw:Grt¼ 60:40 for the lower transition zone, 520–660 km;
Brd:MgO¼ 80:20 for the lower mantle, 660–1,900 km), with the exception of the
upper mantle where a more appropriate harzburgitic composition is chosen
(Ol:Ens¼ 70:30, 0–410 km) (ref. 54). Phase transition of the whole crystal aggregate is
set to occur at arbitrary density crossovers that are assumed to represent the (sharp)
boundary between two different rock types (Ol:Ens-Wd:Grt¼ 3,650 kg m� 3;
Wd:Grt-Rw:Grt¼ 3,870 kg m� 3; Rw:Grt-Brd:MgO¼ 4,150 kg m� 3). Although
part of the LPO can be inherited by aggregates during phase transformation55,
when a given density boundary is crossed, the composition of the crystal aggregate
is changed and its LPO is reset by randomizing the crystal orientation.

Fabric development is computed only for the fraction of viscous deformation
accommodated by dislocation creep and only for phases such as olivine, enstatite,
wadsleyite and bridgmanite, which display significant single-crystal visco-elastic

anisotropy. Conversely, because aggregates of cubic phases such as ringwoodite,
garnet and MgO-periclase are mostly isotropic in the mid mantle56, their crystal
orientation is maintained random through the model run. As a result, the lower
transition zone will appear as isotropic. The strain-induced LPOs of olivine,
enstatite and wadsleyite are obtained by comparison with available experimental
data (Supplementary Table 2). In contrast, very little is known about the
mechanical properties and deformation mechanisms of bridgmanite at lower
mantle P–T conditions. Nevertheless, several potential slip systems have been
identified through ab initio simulations57 and high-pressure, low-strain
deformational experiments28,29. Dominant slip systems in the uppermost lower
mantle appear to be [100](010), [100](001), [010](100), [010](001), [001](100),
[001](010), [001]{�110}, o�1104(001), o1104{110}. Consequently, we have tested
different lower mantle LPOs. To understand the pattern of radial anisotropy
associated with a given dominant slip system, most fabrics are characterized by an
easy slip system much weaker than the others (Supplementary Fig. 10). An
additional fabric has been obtained with normalized critical resolved shear stresses
from static (0 K) ab initio atomic scale modelling run at pressure typical of the
uppermost lower mantle56,57 (Supplementary Table 2). The different radial
anisotropy patterns in the lower mantle resulting from these fabrics are reported in
Supplementary Fig. 8.

The elastic properties of the aggregates are obtained by Voigt-averaging the
crystal elastic properties (scaled by the local P–T conditions through P–T
derivatives of the elastic moduli21) according to their volume and orientation.
Interpolating the elastic moduli from the Lagrangian aggregates throughout the
model domain allows us to calculate, for example, the radial anisotropy and isotropic
Vp and Vs anywhere in the model (Fig. 2e,f; Supplementary Figs 8 and 9c).
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