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Abstract

Placental mammals comprise three principal clades: Afrotheria (e.g., elephants and tenrecs), Xenarthra (e.g., armadillos and sloths),

and Boreoeutheria (all other placental mammals), the relationships among which are the subject of controversy and a touchstone for

debate on the limits of phylogenetic inference. Previous analyses have found support for all three hypotheses, leading some to

conclude that this phylogeneticproblemmightbe impossible to resolve due to the compounded effectsof incomplete lineage sorting

(ILS) anda rapid radiation.Hereweshow,usingagenomescalenucleotidedata set,microRNAs,and the reanalysisof the three largest

previously published amino acid data sets, that the root of Placentalia lies between Atlantogenata and Boreoeutheria. Although we

foundevidence for ILS inearly placental evolution,weare able to reject previous conclusions that theplacental root is ahardpolytomy

that cannot be resolved. Reanalyses of previous data sets recover Atlantogenata + Boreoeutheria and show that contradictory results

are a consequence of poorly fitting evolutionary models; instead, when the evolutionary process is better-modeled, all data sets

converge on Atlantogenata. Our Bayesian molecular clock analysis estimates that marsupials diverged from placentals 157–170 Ma,

crown Placentalia diverged 86–100 Ma, and crown Atlantogenata diverged 84–97 Ma. Our results are compatible with placental

diversification being driven by dispersal rather than vicariance mechanisms, postdating early phases in the protracted opening of the

Atlantic Ocean.

Key words: placental, phylogeny, mammalian, genome, microRNA, palaeontology.

Introduction

The quest for the root of placental mammal phylogeny has

achieved the status of an iconic controversy (Teeling and

Hedges 2013), with three principal competing hypotheses

that resolve either 1) Xenarthra (e.g., armadillos and sloths;

Kriegs et al. 2006; Churakov et al. 2009; O’Leary et al. 2013),

2) Afrotheria (e.g., elephants and tenrecs; Murphy et al. 2001;

Asher 2007; Nishihara et al. 2007; Hallstrom and Janke 2010;

McCormack et al. 2012; Romiguier et al. 2013), or 3)

Atlantogenata (i.e., Xenarthra plus Afrotheria; Murphy et al.

GBE
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2007; Wildman et al. 2007; Prasad et al. 2008; Meredith et al.

2011; Song et al. 2012; Morgan et al. 2013) as the sister to all

other placentals (fig. 1). Previous analyses have found support

for all three hypotheses, leading some to conclude that this

phylogenetic problem is impossible to resolve (Churakov et al.

2009; Nishihara et al. 2009; Hallstrom and Janke 2010). This

has been considered a consequence of incomplete lineage

sorting (ILS; Churakov et al. 2009; Nishihara et al. 2009;

Hallstrom and Janke 2010; Guo et al. 2012), reflected in

large scale gene tree heterogeneity, a result of the apparent

rapidity of successive vicariance-driven divergence events as-

sociated with the fragmentation of the Pangaean and

Gondwanan supercontinents (Murphy et al. 2001; Wildman

et al. 2007; Nishihara et al. 2009). Thus, if placental mammals

evolved extremely rapidly, then the root of the placental radi-

ation may be theoretically unresolvable, as it was not strictly

bifurcating (Nishihara et al. 2009; Hallstrom and Janke 2010)

in the first instance. However, it is possible that phylogenetic

resolution has been precluded by practical constraints, which

include the availability of adequate models of molecular evo-

lution (Morgan et al. 2013), compositional biases, and/or long

branch attraction (Romiguier et al. 2013), and computational

limitations on the scale of molecular sequence data sets with

limited gene and/or taxon sampling (Morgan et al. 2013).

Resolution among these three competing hypotheses is essen-

tial to understand the evolutionary origin and diversification of

placentals, the most phenotypically diverse group of verte-

brates, occupying terrestrial, aerial, and aquatic ecological

niches, with body sizes spanning several orders of magnitude

(Wilson and Reeder 2005) and which were accompanied by

both large scale genomic (e.g., transposable elements, Lynch

et al. 2015; conserved noncoding RNAs, Mikkelsen et al.

2007) and morphological (e.g., the placenta; Carter and

Mess 2007) innovation.

In an attempt to resolve this phylogenetic controversy, we

undertook analyses of two genome-scale data sets represent-

ing both coding and noncoding regions of the genome: a 21.4

million nucleotide superalignment of 14,631 genes from 36

taxa, and a 16,050 nucleotide superalignment of 239 pre-

miRNAs from 39 taxa. In addition, we reanalyzed the data

from three recent analyses that obtained results incongruent

with those from our protein coding and nonprotein coding

data sets (Hallstrom and Janke 2010; O’Leary et al. 2013;

Romiguier et al. 2013), and tested the extent to which mor-

phological data can inform mammal phylogenetics using the

4,541 character data set of (O’Leary et al. 2013).

Materials and Methods

Phylogenetic Analyses

Model Testing

We performed phylogenetic analyses of two nucleotide data

sets and three amino acid data sets. The nucleotide data sets

were a superalignment of 14,631 protein-coding genes and

36 taxa (totaling 32,116,455), and a superalignment of pre-

miRNA sequences comprising 16,050 sites and 42 taxa. The

three amino acid data sets were the 11,365 amino acid data

set of O’Leary et al. (2013), the AT-rich amino acid data set of

Romiguier et al. (2013), and the amino acid data set of

Hallstrom and Janke (2010). For all considered data sets

Posterior Predictive Analysis (PPA) of biochemical specificity

was performed to investigate whether standard, composition-

ally site-homogeneous, models (e.g., general time reversible

[GTR] and Whelan and Goldman [WAG]) provided an ade-

quate fit to the data or whether a more complex (composi-

tionally site–heterogeneous) model (e.g., CAT–GTR; Lartillot

and Philippe 2004; Lartillot et al. 2007) was necessary to ad-

equately fit the data. For the nucleotide and microRNA

(miRNA) data sets two models were tested, the GTR+G

model and CAT–GTR+G. For the amino acid data sets PPA

was used to compare the model used in the original studies

(Jones, Taylor, and Thorton [JTT]+G [O’Leary et al. 2013];

LG+G [Romiguier et al. 2013]; and WAG+G [Hallstrom and

Janke 2010]), against the CAT–GTR+G model. PPA was per-

formed using the serial version of Phylobayes 3.3f (following

suggestions from Nicolas Lartillot) using data sets that were

XenarthraAfrotheria Atlantogenata

(a) (c)(b)

Fig. 1. The three principal competing hypotheses for the higher-level relationships among placental mammals, with either (a) Afrotheria, (b) Xenarthra,

or (c) Atlantogenata being the sister taxon to all other placentals.
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subsampled to include a set of approximately 5,000 randomly

selected characters. The final number of characters is variable

(but comparable) across the different data sets, because of the

subsampling strategy we used. However, this is not important

as models are compared on the same data sets and not across

data sets.

General

Total data set size and percentage of missing data is record in

table 1. All Bayesian analyses were performed using the

CAT–GTR+G model and implemented with the MPI version

of the software Phylobayes (Phylobayes MPI 1.5a; Lartillot

et al. 2013). For all Phylobayes analyses two chains were

run. Burn-in varied and all chains were run until convergence

(which was tested using the BPCOMP software, which is part

of the Phylobayes suite). Following the Phylobayes manual,

chains were considered to have converged on the same so-

lution when the Maxdiff (maximal difference between ob-

served bipartitions) dropped below 0.2. Maximum Likelihood

analyses were performed using RAxML (Stamatakis 2006;

Stamatakis et al. 2008) under a GTR+G model, and the boot-

strap (100 replicates) was used to estimate support.

Nucleotide

The genome alignment of dos Reis et al. (2012), comprising

36 taxa and 14,631 protein-coding genes was used. Codon

sequences were aligned using PRANK with no guide tree to

minimize bias associated with any guide tree, although we

note that alternate alignment software will generate alternate

alignments and subsequent analyses should examine whether

such alignments affect our results. The first and second codon

positions of all genes were concatenated into a single partition

(21,410,970 nt). Because of computational limitations, the full

data set could only be analyzed using maximum likelihood.

We investigated whether the results of our maximum likeli-

hood GTR+G analyses were supported also under CAT–

GTR+G, but because a CAT–GTR+G analysis of the entire

superalignment is unfeasible, we removed all the constant

and parsimony uninformative sites prior to the analysis. We

recognize that this is not ideal, as it can introduce biases and

this analysis can consequently be considered to have only an

exploratory nature. Initial CAT–GTR+G analyses included all

the taxa but did not converge. Inspection of the two chains

showed that the horse and tree shrew were unstable within

Boreoeutheria. As these taxa are irrelevant to investigate the

relationships at the root of the placental tree (Boreoeutheria

was monophyletic in both chain and with a posterior proba-

bility of 1), we repeated analyses excluding these two taxa.

This analysis converged on the same topology within 150

generations (with a Maximal Difference between observed

bipartitions dropping to zero).

After having run our phylogenetic analyses we investigated

whether the data could significantly discriminate between

alternative hypotheses of placental relationships. As

CAT–GTR+G and GTR+G supported the same tree for the

nucleotide data set these analyses were only explicitly per-

formed under maximum likelihood using the GTR+G model.

To do so, the three competing hypotheses were fixed and

compared using the approximately unbiased (AU)-Test.

Sitewise likelihood values were obtained (under each consid-

ered hypothesis of placental relationships) using BASEML

(Yang 2007), and CONSEL (Shimodaira and Hasegawa

2001) was used to calculate the AU test. Because of compu-

tational limitations AU tests was only performed using the

superalignment, and not on the 14,631 individual gene align-

ments constituting our superalignment. For the gene-by-gene

analyses a reduced data set of 11,169 genes was used so that

every gene had at least one non-placental outgroup, a

Xenarthran, Atlantogenatan, and Boreoeutherian present in

the alignment so that the tree could not only be rooted but

was also informative as to the relationships between these key

clades. For each gene we then estimated the likelihood of

each considered tree and performed two different analyses.

First, we calculated how many genes supported each alterna-

tive hypothesis without considering whether the differences in

likelihood between compared trees have been significant. This

identified the number of genes for which each considered

topology is optimal. Subsequently the Akaike Information

Criterion (AIC) test was used to determine whether the

genes supporting each specific tree topology, supported

that topolgy significantly better than the other tree topologies.

Incomplete Lineage Sorting

The reduced data set of 11,169 genes from the gene-by-gene

analyses (see above) was used to define the set of unbinned

gene trees. We also used a statistical binning pipeline

(Mirarab, Bayzid, et al. 2014) with support threshold set to

50% to create 2,513 bins of genes (1,373 bins with four

genes, 1,139 bins with five genes, and one bin with six

genes) and estimated a supergene tree for each bin.

ASTRAL version 4.7.6 was run on both sets of inputs: the

11,169 unbinned gene trees, and the 2,513 supergene

trees, weighting each supergene tree by size of the corre-

sponding bin (weighted statistical binning; Mirarab, Reaz,

et al. 2014; Bayzid et al. 2015). To test for the number of

gene trees that supported each hypothesis with support

Table 1

Total Size of All Five Data Sets Analyzed and the Percentage of

Missing Data in Each

Data Set Total Sites % Missing

miRNAs 674,100 22

Nucleotide 770,794,920 39

Hallström and Janke (2010) 7,116,417 21

O’Leary et al. (2013) 522,790 8

Romiguier et al. (2013) 1,065,012 52
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above 50% or 75% threshold, we first restricted each gene

tree to branches that have support above the chosen thresh-

old. We then compared each collapsed gene tree against

three unresolved trees that represented the three hypotheses.

A gene tree can either reject all three hypotheses (i.e., when

Xenarthra, Afrotheria, Boreoeutheria, or the branch uniting

the three outgroups are rejected), or be indecisive (i.e., be

compatible with all three hypotheses; this happens when in

the collapsed gene tree, the relationship between Xenarthra,

Afrotheria, Boreoeutheria is unresolved), or can support one

of the three hypotheses. Thus, five outcomes are possible, and

we note the percentage of times each outcome is observed.

We also note the percentage of gene trees that support each

of the three hypotheses out of those that support just one

hypothesis. This produces three estimated probabilities, one

for each hypothesis, and we can convert these probabilities to

coalescent unit branch lengths by calculating�ln (3/2* (1�p))

where p is the probability of a hypothesis (Degnan and

Rosenberg 2009). For example, for unbinned gene trees,

out of 3,495 genes that exclusively supported one the three

hypotheses with at least 50% BS, 48.4% of them supported

Atlantogenata, which puts the branch length in coalescent

units at �ln (3/2* (1–0.484)) = 0.257. Using 75% threshold

with unbinned gene trees results in a length of 0.415, and

using supergene trees with 50% and 75% threshold result in

lengths of 0.135 and 0.192, respectively.

microRNA

Small RNA libraries were generated from whole juvenile speci-

mens of Armadillo (Dasypus novemcinctus), Rabbit

(Oryctolagus cuniculus), and Guniea Pig (Cavia porcellus)

using the Illumina Tru-seq small RNA prep kits. In brief, this

process involves taking 1 mg of total RNA and adding 50- and

30-adapters, which were then reverse transcribed, barcoded,

and amplified using polymerase chain reaction. The sample

was run out on a Novex 6% TBE Page gel using electropho-

resis allowing size fractionation of the sample. The relevant

size fraction will be excised and eluted overnight to increase

total product. The eluate will be precipitated using EtOH, gly-

cogen, and sodium acetate for 24 h before being resuspended

and submitted for sequencing on a GAIIx sequencer at the

University if Bristol Transcriptomics Facility. Total read counts

were approximately 22M for Armadillo, approximately 13.5M

for Guinea Pig, and approximately 21M for Rabbit, and the

data processed using in-house algorithms. These read data

were used to verify the mature and star reads and hence

the end of the pre sequence, which was used for the pre-

mir alignments and have been deposited in miRBase. In addi-

tion, BLAST searches were conducted for an additional 42 taxa

to identify additional miRNA loci. Orthology for each individual

miRNA was checked using both distance and, when possible,

syntenic analysis. Each individual pre-miRNA from the 42 taxa

analyzed was concatenated into the tetrapod superalignment

of Field et al. (2014) and analyzed as a standard superalign-

ment (Tarver et al. 2013; Field et al. 2014; Kenny et al. 2015)

comprising 15,590 sites and 42 taxa, using the GTR+G model.

Reanalyses

Several recent studies addressed the relationships among the

placental mammals finding contradictory results (Hallstrom

and Janke 2010; O’Leary et al. 2013; Romiguier et al.

2013). A feature characterizing these studies is the heteroge-

neity in the choice of the model used for phylogenetic analy-

ses, and the fact that in all cases the substitution model used

to analyzed the data was selected in either a subjective way or

from a subset of models that did not include well-performing

(parameter rich) site-heterogeneous models. Following the re-

sults of our PPA (see above), which showed that the models

used in the original studies did not fit the data adequately, the

three data sets associated with these studies (the 11,365

amino acid data set of O’Leary et al. [2013], the AT-rich

amino acid data set of Romiguier et al. [2013], and the

amino acid data set of Hallstrom and Janke (2010)) were

reanalyzed under the site-heterogeneous CAT–GTR+G model.

Morphological Data Analysis

O’Leary et al. (2013) recently presented a 4,541 character

morphological data set. We tested whether this morphologi-

cal data set could distinguish between the three alternative

hypotheses of placental relationships. As in the case of the

nucleotide data set the AU-Test was used (implemented in

CONSEL), with character-wise likelihood values estimated in

RaXML under the MKv model.

Molecular Clock Analysis

The 21m nucletotide alignment was used for the molecular

clock analysis. This alignment has previously been used (dos

Reis et al. 2012), however, the discovery of new fossil material,

as well as revised stratigraphy and phylogenetic placement of

taxa means that 20 of the 23 calibration points shared be-

tween studies had to be revised (table 2). The previously

unpublished calibration on node 37 is justified below follow-

ing best practice guidelines (Parham et al. 2012).

Calibration on Node 37—Mammalia

Fossil Taxon and Specimen: Haramiyavia clemmenseni

(Museum of Comparative Zoology MCZ 7/G95) from the

Tait Bjerg Beds, Ørsted Dal Member of the Fleming Fjord

Formation with an age corresponding to the Late Triassic

(?Norian-Rhaetic) (Jenkins et al. 1997).

Phylogenetic Justification: Prior to the discovery of

Haramiyavia clemmenseni, haramiyids were known from

two genera. However, the taxonomic status of these genera

was uncertain, and while H. clemmenseni exhibited highly

specialized dentition it also retained features of the jaw and

Interrelationships of Placental Mammals GBE
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post-dentary apparatus that indicated a position among stem

mammals, cladistically more basal than crown Mammalia, i.e.,

the clade encompassing monotremes and therians (Jenkins

et al. 1997; Zhou et al. 2013). Some recent phylogenetic

studies (Zheng et al. 2013; Bi et al. 2014; Krause et al.

2014) have placed Haramiyavia as sister taxon to multituber-

culates, which are closer to therians than to monotremes and

thereby within crown Mammalia. In contrast, other studies

argue that the anatomical similarities between haramiyids

and multituberculates are convergent (Jenkins et al. 1997;

Zhou et al. 2013). We tentatively use Triassic haramiyids as a

minimum calibration for Mammalia but are keen to see

future, more thorough phylogenetic tests of haramiyid

affinities.

Minimum Age: 201.1 Ma

Soft Maximum Age: 252.23 Ma
Age Justification: At present Haramiyavia clemmenseni is

the oldest known haramiyid from the Tait Bjerg Beds, Ørsted

Dal Member of the Fleming Fjord Formation with an age cor-

responding to the Late Triassic (?Norian-Rhaetic). This stage

(Rhaetic) has a minimum bound of 201.3 Ma ± 0.2 Myr

(Gradstein et al. 2012) and so the soft minima is set at

201.1 Ma.

Broader Justification: Hadrocodium and Docodonta

(Luo et al. 2002; Meng et al. 2011) are the closest relatives

to crown mammals. Hadrocodium is from the early Jurassic

of Yunnan Province, China (Sinemurian; Luo et al. 2001),

and the oldest docodonts are from the Bathonian of

Europe, both of which are younger than Haramiyavia.

More distantly related taxa such as Morganucodontidae,

Sinoconodon, and Adelobasileus, are known from the late

Triassic and early Jurassic and are contemporaneous with

Haramiyavia, implying substantial ghost lineages in many

of these taxa, as such a broad prior is used, setting the

soft maxima at the PT extinction, dated at the base of the

Induan, 252.17 Ma ± 0.06 Myr (Gradstein et al. 2012) and so

the soft maxima is set at 252.23 Ma.

The molecular clock analysis was conducted with

MCMCTREE v. 4 .8 a (Yang 2007), using the approximate

likelihood method (dos Reis and Yang 2011; Thorne et al.

1998) by calculating the maximum-likelihood estimates of the

branch lengths, the gradient vector and Hessian matrix, using

BASEML, under the HKY+G4 model (Hasegawa et al. 1985;

Yang 1994). We then used the Markov chain Monte Carlo

algorithm to estimate divergence times on the constrained

tree topology with two separate runs being performed. The

Table 2

All 23 Fossil Calibrations Used in This Study

Node Minimum Soft Bound Maximum Soft Bound References

37 Mammalia—Root 201.1a 252.23 Herein—see below

38 Theria 156.3b 169.6c Benton et al. (2015)

39 Marsupialia 47.6d 131.3c Benton et al. (2015)

40 Placentalia — 164.6b Benton et al. (2015)

42 Xenarthra 47.6c — Benton et al. (2015)

43 Afrotheria 56.0b — Benton et al. (2015)

47 Eulipotyphla 61.6a — Benton et al. (2015)

49 Chiroptera 45.0a 58.9 Phillips (2015)

51 Carnivora 37.3c 66.0c Benton et al. (2015)

52 Euungulata 62.5 — dos Reis et al. (2012)

53 Artiodactyla — 66.0c Benton et al. (2015)

55 Dolphin/Cow 52.4 — dos Reis et al. (2012)

56 Euarchontoglires 61.6a,c — Benton et al. (2015)

59 Lagomorpha 47.6c 66.0c Benton et al. (2015)

60 Rodentia 56.0c 66.0c Benton et al. (2015)

61 Guinea Pig/Rat 47.6c 59.2c Benton et al. (2015)

63 Muridae 10.4 14.0 dos Reis et al. (2012)

64 Primates 56.0c — Benton et al. (2015)

65 Strepsirrhini 33.9c 56.0c Benton et al. (2015)

67 Anthropoidea 33.9c — Benton et al. (2015)

68 Catarrhini 24.44a 33.9c Benton et al. (2015)

69 Hominidae 11.6c — Benton et al. (2015)

71 Hominini 6.5c 10.0 Benton et al. (2015)

Note.—There are 12 joint (maximum and minimum), two maximum and nine minimum bounds with all maximum and minimum bounds being ‘soft’. Although many of
the same nodes are calibrated as in dos Reis et al. (2012), only three of the calibrations are retained with all of the others being revised due to:

aChange to a different but existing fossil.
bDiscovery of a new fossil.
cRevision of timescale.
dRevision of phylogeny.
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auto-correlated rates model (Thorne et al. 1998; Rannala and

Yang 2007) was used to specify the prior of rates, and we

followed (dos Reis et al. 2012) for other parameters, that is;

the time unit was 100 Myr; a diffuse gamma prior G(1, 1) was

used for the overall substitution rate; a rate drift parameter �2

was assigned G(1, 1); and the parameters of the birth–death

process with species sampling were fixed at l = � = 1 and � =

0. The alignment was analyzed as a single partition and we

conducted 2,000,000 iterations, sampling every 200 a burn-in

of 25%, and with both runs being concatenated post burn-in,

after thinning down to 10,000 samples per run, to provide the

final posterior values.

Results

Concatenated 21m Nucleotide Phylogenomic Alignment

A fully resolved phylogeny with 100% support for both a

sister group relationship between Afrotheria and Xenarthra

(Atlantogenata) and between Atlantogenata and

Boreoeutheria (fig. 2, left; supplementary fig. S1,

Supplementary Material online) was recovered in the analysis

of the 21.4 million nucleotide alignment (first and second

nucleotide positions) using a single GTR+G model. Of the 35

internal nodes, 32 were recovered with 100% support.

Further analyses were performed using the compositionally

site–heterogeneous CAT–GTR+G model, which accommo-

dates among-site amino acid (and nucleotide) compositional

heterogeneity. This analysis recovered the same topology

with all nodes exhibiting 100% support (fig. 2, left; supple-

mentary fig. S2, Supplementary Material online).

Unambiguous statistical support for Atlantogenata was con-

firmed using the AU test, which assesses the level of support

for each topology through a site-by-site analysis of the entire

data set. The results of this analysis rejected basal positions

for both Afrotheria and Xenarthra (P � 0.01) in favor of

Atlantogenata (P � 0.99) (table 3).

Despite strong support for Atlantogenata, we decided to

investigate the level of support for each of the three topolo-

gies from the individual genes. We therefore removed all of

those genes that were unique to individual lineages, that is,

Euarchontoglires, Laurasiatheria, Primates etc., or that were

not represented by at least one member of Xenarthra,

Atlantogenata, Boreoeutheria, and a nonplacental outgroup.

This was done so that each individual gene had the potential

as to be informative to the placental root, resulting in a re-

duced data set of 11,169 genes. The number of individual

gene trees recovering alternative topologies (albeit not neces-

sarily with high support) is comparable: Atlantogenata

(~33.88%), Afrotheria (~33.84%), Xenarthra (~29.9%),

and indecisive (~2.3%) (see table 3). These results could be

interpreted to support the prevailing view that the early phy-

logenetic history of placental mammals was such a rapid ra-

diation that it was not strictly bifurcating. However, 99.4% of

the genes fail to discriminate among the competing hypoth-

eses with statistical significance as measured by the AIC test,

leaving only 0.2% of genes supporting Atlantogenata, 0.12%

supporting Afrotheria, and 0.22% supporting Xenarthra

(table 3). Thus, the distribution of support for competing to-

pologies largely reflects the weak phylogenetic signal present

in any single gene alignment, rather than suggesting a hard

polytomy or very high levels of ILS.

Coalescent-Based Species Tree Estimation

It is known that concatenation analyses, such as those per-

formed here, can be statistically inconsistent or even positively

misleading in the presence of sufficient levels of ILS (Roch and

Steel 2015). Thus, we further tested the robustness of our phy-

logeny through the use of ASTRAL-2 (Mirarab and Warnow

2015), a coalescent-based species tree estimation method

that is robust to the presence of ILS (Mirarab, Reaz, et al.

2014). We also explored the use of weighted statistical binning

(Mirarab, Bayzid, et al. 2014; Bayzid et al. 2015), a technique

designed to improve species tree estimation when gene trees

have poor resolution. Thus, we used ASTRAL with and without

weighted statistical binning, applied to the same 11,169 genes

used in the gene-by-gene analysis described earlier.

In both cases a fully resolved tree with 100% support for

Atlantogenata (fig. 2, left; supplementary fig. S3,

Supplementary Material online) was returned, supporting

the concatenation analysis. After restricting analyses to the

set of gene trees with high bootstrap support (50% or

75%) for one of the considered hypotheses, support for

Atlantogenata was strengthened (supplementary fig. S4,

Supplementary Material online). For example, 48% of the

unbinned genes and 42% of the binned supergenes that

met the 50% bootstrap support threshold supported

Atlantogenata, with almost equal numbers of genes support-

ing an Afrotheran (26% or 30%) or Xenarthran outgroup

(26% or 28%). When the level of bootstrap support necessary

for the gene trees to be included in the analyses was increased

to 75%, the preference for Atlantogenata further increased to

56% of the unbinned genes, and 45% of the binned super-

genes, with corresponding decreases in the levels of support

for Afrotheria or Xenarthra (fig. 3). This suggests that some

(and perhaps much) of the incongruence observed across the

gene trees is the result of stochastic errors in gene tree esti-

mation, not ILS. When restricted to gene tree branches that

have bootstrap support above 50% or 75%, the branch

length for the Atlantogenata group is between 0.14 and

0.42 coalescent units (depending on the threshold and/or

the type of gene trees used; see table 4 and Materials and

Methods). Critically, the highest levels of support and longest

branch lengths in terms of coalescent units for Atlantogenata

are returned when we analyze the data using unbinned gene

trees. Our estimated coalescent unit branch lengths point to a

short branch, but not an extremely short branch that would
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Fig. 2. Results from four of the phylogenetic analyses with each one providing support for Atlantogenata as the sister taxon to all other eutherians. (a)

The 21.4 million whole-genome nucleotide alignment analyzed using Phylobayes (CAT–GTR+G), RAxML and ASTRAL with support values for almost all

nodes being either 1 or 100. (b) The single concatenated nucleotide alignment for the pre-mir sequences analyzed under GTR+G in Phylobayes.

Laurasiatheria is shown collapsed as the interrelationships among the constituent taxa vary between data sets.
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violate the hypotheses of a strictly bifurcating tree. These re-

sults are largely congruent with concatenation analyses, and

suggest that the amount of discordance due to ILS is not

sufficient to mislead the concatenation analysis. Thus,

although the two analyses are based on data sets of differ-

ent sizes (11k and 14k genes, respectively), both types of

analysis—coalescent-based and concatenation—are highly

congruent, and both provide high support for Atlantogenata.

Pre-miRNA Superalignment

In addition to protein-coding genes, we also assembled a

concatenated superalignment of 239 noncoding RNA

miRNAs consisting of 16,050 nt, which was analyzed under

the GTR+G model (see table 5). This miRNA data set provides

a second independent molecular data set, that of noncoding

RNA genes, to complement protein-coding gene analyses,

Table 3

Results from the Likelihood Tests of the 21.4m Nucleotide Data Set

Topology GTR+G4, 1st+2nd Sites, 1 Partition GTR+G4, 1st +2nd+3rd Sites, 1 Gene Per Partition AIC Test of Significance

lnL Delta lnL AU test lnL Delta lnL % %

Atlantogenata �115121891 0 P � 0.99 �196918173 0 33.9 0.2

Afrotheria �115123016 1125 P � 0.01 �196918837 664 33.84 0.12

Xenarthra �115123409 1518 P � 0.01 �196919286 1113 29.90 0.22

Indecisive 2.30 99.46

Note.—The total log likelihoods for the single partition (1st and 2nd sites) were calculated using BASEML under a GTR+G4 model, with the AU test being conducted on
these log likelihoods, and showing unequivocal statistical support for Atlantogenata. Additional log likelihoods were then calculated for each individual gene from a reduced
dataset of 11,169 genes (see methods) using a GTR+G4 model with all sites included; given the size of this dataset it is computationally impossible to conduct the AU test (as
above) although it is clear that Atlantogenata is the most highly supported topology based on the Delta lnL values. Intriguingly, this topology was not supported by a
majority of the genes with approximately 30–33% of genes supporting each alternate topology. However, results of the the AIC test of significance show that 99.46% of
genes were unable to distinguish between the three competing hypotheses, while the distribution of support for competing topologies reflects the weak phylogenetic signal
present in single gene alignments.

56%

21%
23%

48%

26%

26%

Branches with support >75% BSBranches with support >50% BS

Fig. 3 Results from the discordance analysis of the unbinned gene trees with a threshold bootstrap support value of 50% (“left”) and 75% (“right”).

These results clearly show that Atlantogenata is the preferred topology, and that much of the incongruence observed across gene trees is due to stochastic

errors and not ILS.

Table 4

Shows the Number of Genes, Either Binned or Unbinned Which Support One of Five Outcomes

Binned (50%) Unbinned (50%) Binned (75%) Unbinned (75%)

Reject all three hypotheses 2994 2418 1673 763

Indecisive 1788 5256 5293 9079

Xenarthra 1751 876 1113 281

Afrotheria 1969 926 1199 303

Atlantogenata 2667 1693 1891 743

Sum of three hypotheses 6387 3495 4203 1327

% Supporting Atlantogenata 0.417566933 0.484406295 0.449916726 0.55990957

Length in coalescent units 0.135075898 0.256971108 0.192220497 0.415309943

Note.—A gene tree can either reject all three hypotheses (i.e., when Xenarthra, Afrotheria, Boreoeutheria, or the branch uniting the three outgroups are rejected), or
be indecisive (i.e., be compatible with all three hypotheses; this happens when in the collapsed gene tree, the relationship between Xenarthra, Afrotheria, Boreoeutheria is
unresolved), or can support one the three hypotheses. The number of genes that support Atlantogenata is divided by the total number of gene trees that support one of
the three hypotheses giving a percentage which can then be used to calculate branch lengths in coalescent units following Degnan and Rosenberg (2009), see Materials and
Methods.
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and these data can be analyzed using the same model based

approaches. Such an approach has been shown previously to

be suitable in resolving interspecies relationships among rep-

tiles (Field et al. 2014), primates (Kenny et al. 2015), nema-

todes (Kenny et al. 2015), and drosophilids (Kenny et al.

2015). Our pre-miRNA superalignment recovered a fully re-

solved tree with an Atlantogenata outgroup exhibiting a pos-

terior probability of 0.97 (fig. 2 right; supplementary fig. S5,

Supplementary Material online), in agreement with the

protein-coding gene analyses. We again used an AU test to

investigate site-by-site support for the three topologies on

the entire data set with the results significantly rejecting

Afrotheria with P = 0.028 (Xenarthra P = 0.250;

Atlantogenata P = 0.795), once more providing support

against a hard polytomy.

Reanalysis of Three Previously Published Data Sets

Given the consistent support in our two data sets for

Atlantogenata, we explored why some previous data sets

did not find support for this rooting. Amino acid data sets

have yielded support for Afrotheria (Hallstrom and Janke

2010) and Xenarthra (O’Leary et al. 2013), and analysis of

an AT-rich amino acid data set supported Afrotheria

(Romiguier et al. 2013). We focused on model selection and

using PPA we showed that the models used in the original

studies (WAG2000+G, JTT+G, LG+G, respectively) did not ad-

equately fit the data (see table 5). In contrast, for each of these

three data sets, the compositionally site-heterogeneous

CAT–GTR+G model was found to be a satisfactory fit to the

data. Reanalysis of all three data sets using the CAT–GTR+G

model found variable support for Atlantogenata (supplemen-

tary figs. S6–S8, Supplementary Material online), and not for

the relationships reported in the original studies, undermining

their conclusions. Support values for an Atlantogenata root

vary considerably between the three reanalyses with values of

1 (Hallstrom and Janke 2010; supplementary fig. S6,

Supplementary Material online), 0.79 (O’Leary et al. 2013;

supplementary fig. S7, Supplementary Material online), and

0.5 (Romiguier et al. 2013; supplementary fig. S8,

Supplementary Material online). While a support value of

50% is uninformative the original paper had a bootstrap

support of 100% for Afrotheria. Thus, although this reanalysis

does not have high support the use of a better fitting model

fundamentally overturned the previous hypothesis, which was

itself very highly supported. Likewise, the results of O’Leary

et al. (2013), which previously supported Xenarthra, were

overturned to support Atlantogenata. Furthermore, these

two data sets with the lowest levels of support either con-

tained low numbers of loci (27 nuclear genes) as in O’Leary

et al. (2013) or sampled a nonrandom selection of genes,

focusing on AT-rich genes as in Romiguier et al. (2013),

such approaches are likely to exacerbate phylogenetic arte-

facts through both compositional and long branch attraction.

In addition to their amino acid data set, O’Leary et al.

(2013) also used a 4,541 character morphological datamatrix.

When this matrix was analyzed using the AU test in RAxML

(with a constraint tree to make Afrotheria, Xenarthra, and

Atlantogenata monophyletic) the morphological data set

was unable to distinguish between the three competing hy-

potheses (Afrotheria P = 0.288, Xenarthra P = 0.212, and

Atlantogenata P = 0.363). Thus, when analyzed in isolation,

the morphological data are indecisive concerning the earliest

diverging lineage of placental mammals.

Timing of Placental Radiation

We estimate the mean divergence times for crown Theria as

164 Ma (CI = 157–170 Ma), crown Placentalia as 93 Ma

(CI = 86–100 Ma), and crown Atlantogenata as 90 Ma

(CI = 84–97 Ma) (fig. 4 and table 6). These dates are consider-

ably younger than some studies (Springer et al. 2003; Bininda-

Emonds et al. 2007), older than others (O’Leary et al. 2013),

and congruent with others still (Hallstrom and Janke 2010;

Meredith et al. 2011; dos Reis et al. 2012, 2014). As

expected, our revised calibrations, older than those employed

by dos Reis et al. (2012, 2014), have the effect of making the

posterior ages slightly older (Placentalia and Atlantogenata

increase in mean age by 3.1 and 2.5 Myr, respectively),

while the 95% CI broadens from 88.3–91.6 to 86.5–99.9

Ma in placentals, and 85.9–89.1 to 83.7–96.5 Ma in

Atlantogenata. This broadening in the 95% CI reflects the

use of a single data partition, in comparison to dos Reis

et al. (2012) in which 20 partitions were used. We estimate

Table 5

Posterior Predictive Analyses Conducted to Assess the Fit of the Model to the Data

O’Leary et al. (2013) Hallström and Janke (2010) Romiguier et al. (2013) Nucleotide miRNAs

JTT+G CAT–GTR+G WAG2000–G+I CAT–GTR+G LG+G CAT–GTR+G GTR+G CAT–GTR+G GTR+G CAT–GTR+G

Observed Diversity 3.1336 3.1336 1.8485 1.8485 2.1998 2.1998 3.1998 3.1998 1.3715 1.3715

Posterior Predictive 3.5652 3.1694 2.0711 1.8597 2.3331 2.2086 3.2733 3.2038 1.3297 1.4800

PP Value 0 0.12 0 0.2381 0 0.4367 0 0.3333 0.9588 0.0557

Note.—For each of the three previously published data sets, the models used in the original studies, JTT+G, WAG2000+G and LG+G, did not adequately fit the data. In
comparison the CAT–GTR+G model, which we used in the reanalyses was an adequate fit to the data. For our nucleotide and miRNAs data sets the CAT–GTR+G model was
compared with a GTR+G model, for the nucleotide analysis CAT+GTR+G was found to be the best fitting model, while for the miRNAs data set it was the GTR+G model, in
both instances the better fitting model was used.
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diversification of placental orders overlapping the K-Pg mass

extinction event at 66 Ma, with all placental orders diversifying

between 76 and 51 Ma.

We advocate the use of providing details of not only the

combined posterior, but also the marginal prior, which is an

analysis run without the sequence data so that the effect of all

calibrations can be assessed, as the marginal prior for any

node can differ from the original fossil calibration

(Warnock et al. 2015). Here we observe that the marginal

prior closely approximates (<2 Myr) the calibration points at

Fig. 4. Results from the molecular clock analysis showing the divergence times for placental lineages with all posterior probabilities shown in “green”

and overlaid on the joint prior shown in “red,” with both shaded to show values of highest likelihood (see table 6 for the 95% HPD values). Current

biogeographic reconstructions for the breakup of Pangea at 180, 120, and 90Ma, from “left to right,” respectively, with hotter colors (“red”) indicating

faster rates of sea floor formation than colder colors (“blue”) based on Seton et al. (2012) and downloadable from http://www.earthbyte.

org/Resources/global_plate_model_ESR12.html. Both the Northern and Southern hemisphere continents have separated by 90 Ma, highlighting the role

of dispersal, rather than vicariance, for the biogeographic distribution of crown placentals as the breakup of Pangaea predates current molecular clock

estimates for the divergence of crown placentals.

Interrelationships of Placental Mammals GBE

Genome Biol. Evol. 8(2):330–344. doi:10.1093/gbe/evv261 Advance Access publication January 8, 2016 339

 at U
niversity C

ollege L
ondon on A

pril 12, 2016
http://gbe.oxfordjournals.org/

D
ow

nloaded from
 

Deleted Text: -
Deleted Text: affect 
http://www.earthbyte.org/Resources/global_plate_model_ESR12.html
http://www.earthbyte.org/Resources/global_plate_model_ESR12.html
http://gbe.oxfordjournals.org/


the majority of nodes, with only four exceptions. The only

substantial deviation (>4 Myr) is with the soft minima on

node 56 (Euarchontoglires). Such results show that the

priors were performing as expected based upon the initial

fossil calibrations.

Discussion

Thus, far from an intractable phylogenetic problem, it is evi-

dent that conflicting placental phylogenies have been a con-

sequence of the use of poorly fitting evolutionary models.

Evidently, there was some gene tree heterogeneity caused

by ILS during placental diversification. However, we can

reject the view (Churakov et al. 2009; Hallstrom and Janke

2010) that this was so rampant as to obscure the fundamental

relationships among placental mammals. Instead, our results

demonstrate that the primary evidence on which such ideas

are based, that is, an equal number of genes supporting mu-

tually exclusive topologies, is the consequence of weak signal

in single gene alignments rather than the result of ILS alone.

As articulated elsewhere (e.g., Gatesy and Baker 2005;

Thompson et al. 2012; Pattinson et al. 2015), isolated, histor-

ical signal becomes stronger when individual partitions (such

as gene alignments) are combined. Thus, we reject the view

Table 6

Prior and Posterior Divergence Times for All Nodes in the Mammal Tree

Node Marginal Priora Posteriorb

Mean 95% HPD Mean 95% HPD

Lower Upper Lower Upper

37 Mammalia—Root 226.58 200.99 252.03 223.75 200.47 251.31

38 Theria 163.55 156.45 169.68 163.92 156.67 169.79

39 Marsupialia 95.24 49.77 132.30 78.28 49.11 104.26

40 Placentalia 144.55 115.18 166.80 92.96 86.43 99.91

41 Atlantogenata 119.81 78.70 160.81 90.32 83.73 96.54

42 Xenarthra 80.50 47.46 125.59 67.08 56.62 76.83

43 Afrotheria 90.58 55.92 134.03 72.54 64.85 79.20

44 Paenungulata 49.22 0.12 91.45 60.21 51.45 67.79

45 Boreotheria 135.49 104.09 163.06 85.07 79.93 90.42

46 Laurasiatheria 121.96 84.99 157.18 77.74 73.75 81.96

47 Eulipotyphla 92.65 61.31 132.29 64.35 61.49 67.63

48 Scrotifera 107.66 70.35 146.41 74.82 71.17 78.50

49 Chiroptera 52.07 44.98 58.88 58.23 55.71 60.28

50 Carnivora/Euungulata 95.27 64.18 131.20 73.65 70.18 77.18

51 Carnivora 52.25 37.43 66.15 52.61 45.22 59.70

52 Euungulata 81.43 62.35 110.69 71.35 68.16 74.58

53 Artiodactyla 63.37 55.61 69.78 61.40 59.38 63.40

54 Pig/Cow 59.83 53.00 66.50 58.62 56.92 60.23

55 Dolphin/Cow 56.60 52.21 63.53 52.98 52.10 54.26

56 Euarchontoglires 119.78 84.01 155.50 76.69 72.63 80.60

57 Tree Shrew/Glires 96.61 60.66 136.15 74.93 71.26 78.77

58 Glires 78.48 56.43 115.21 70.34 67.22 73.53

59 Lagomorpha 56.43 47.29 65.59 48.57 46.13 51.65

60 Rodentia 60.89 55.93 65.84 61.97 60.07 63.78

61 Guinea Pig/Rat 53.92 47.79 59.20 58.76 56.91 60.28

62 Kangarro Rat/Rat 36.64 11.75 56.26 51.91 49.14 54.13

63 Muridae 12.18 10.40 13.98 12.21 10.46 13.98

64 Primates 93.18 57.25 130.31 69.27 65.64 72.96

65 Strepsirrhini 44.92 34.04 55.71 52.77 47.91 56.69

66 Haplorrhini 68.64 39.642 108.87 64.96 61.18 68.72

67 Anthropoidea 50.22 33.85 77.91 38.35 33.95 42.77

68 Catarrhini 29.49 24.53 33.97 26.84 24.11 30.32

69 Hominidae 19.04 11.59 28.17 17.85 15.40 20.52

70 Homininae 13.06 6.85 21.03 10.12 8.53 11.45

71 Hominini 8.26 6.51 10.01 8.94 7.51 10.10

aThe marginal prior was constructed for each node using either the fossil calibrations or from a birth–death process if no calibration was available.
bPosterior time estimates for each node based upon the calibrations and the 14k gene data set.
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that the root of the placental mammal tree is an unresolvable

polytomy, concluding instead that it is correctly resolved as a

fundamental divergence between Atlantogenata and

Boreoeutheria.

We do not doubt that evidence of ILS reflects the fact that

the initial diversification of placentals was rapid as is observed

in our molecular clock analysis, the results of which are com-

parable to those reported elsewhere (dos Reis et al. 2012,

2014; Meredith et al. 2011). Although the discovery of several

recent fossils has led to the calibrations being revised substan-

tially with the minimum ages for the root (Mammalia) and

Theria being pushed back 38.2 and 32.3 Myr, respectively,

whereas the maxima age for Placentalia was pushed back

by 33.1 Myr. Yet, such revisions had only minor changes in

the estimated mean age of diversification for Placentalia (+3.1

Myr), Atlantogenata (+2.5 Myr), and Boreoeutheria (+2.6

Myr), however, larger changes were observed for the

Mammalia (+38.9 Myr), and Theria (�11.5 Myr) in compari-

son to the results of dos Reis et al. (2012). These dates support

dispersal, rather than vicariance, as the underlying mechanism

in placental mammal biogeography as they postdate not only

the fragmentation of Pangaea, but also the later splitting of

Gondwana due to the opening of the Atlantic Ocean (Seton

et al. 2012).

Previous studies (Hedges and Maxson 1996; Wildman et al.

2007; Nishihara et al. 2009) have suggested a clear pattern of

biogeographic diversification for placentals into four principle

lineages (Afrotheria, Xenarthra, Laurasiatheria, and

Euarchontoglires) caused by drift-vicariance, which followed

the continental breakup of Pangaea into the northern conti-

nent of Laurasia (Laurasiatheria + Euarchontoglires) and a

Southern Gondwanan continent (Afrotheria and Xenarthra)

in the Jurassic (201.3–145 Ma). This was followed by the

later breakup of Gondwana into South America (Xenarthra)

and Africa (Afrotheria) due to the opening of the Atlantic

during the Cretaceous approximately 110 Ma (Smith et al.

1994; Hay et al. 1999; Milani and Thomaz Filho 2000).

Recent analyses of global plate tectonics suggests these

dates for the complete breakup of Gondwana into

S. America and Africa are too old and that this separation

was fully complete by 100 Ma (Torsvik et al. 2009; Seton

et al. 2012). However, these dates not only predate our

mean divergence time for the divergence of Afrotheria from

Xenarthra by approximately 10 Myr, but they also lie outside

of the 95% HPD (83.73–96.54 Ma), suggesting dispersal by a

group of stem Xenarthrans across the Atlantic. While dispersal

across the proto Atlantic Ocean may seem unpalatable, the

scale of the Atlantic ocean barrier in the Late Cretaceous (fig.

4) was far less significant than that between Africa and

Madagascar which has, nevertheless, witnessed multiple

post-Mesozoic dispersal events of placentals, including ten-

recs, rodents, primates, and carnivores (Yoder and Nowak

2006). Oceanic dispersal of rodents and primates across the

South Atlantic during the Eocene (when the overwater

distance between Africa and S. America was wider compared

with the Cretaceous) is also uncontroversial (Bond et al. 2015).

With the resolution of the evolutionary relationships

among Afrotheria, Boreoutheria and Xenarthra, attention

must now turn to resolving the problematic relationships

within Laurasiatheria and to understanding of the role of

dispersal in effecting placental diversification. The results of

both our RAxML and ASTRAL analyses as well as the reana-

lyses of Hallstrom and Janke (2010) and O’Leary et al. (2013)

place the tree shrew as sister taxa to Glires, and the horse in

an Euungulata clade, and suggests that classical groupings

such as Euarchonta and Ferungulata are not supported.

Although such results have been presented before

(Meredith et al. 2011) this is an area of significant conflict

between previously published studies (Kriegs et al. 2006;

Murphy et al. 2007; Nishihara et al. 2009; Hallstrom and

Janke 2010; Meredith et al. 2011; McCormack et al.

2012; Nery et al. 2012; Song et al. 2012; Morgan et al.

2013; O’Leary et al. 2013; Romiguier et al. 2013). It is

these two rogue taxa (tree shrew and horse) which are

the cause of alternate tree topologies, and it is no surprise

that the same two taxa were the ones that needed to be

removed from our phylobayes analysis as they prevented the

runs from converging. In future increased taxonomic sam-

pling of additional perissodactyl lineages, that is, Equidae

(donkeys, and zebras), Rhinocerotidae (rhinos), and

Tapiridae (tapirs) as well as Scandentia lineages, that is,

Anathana (Madras treeshrew), Dendrogale (Bornean

smooth-tailed treeshrew), and Ptilocercus (Pen-tailed treesh-

rew), will lead to increased confidence in the phylogenetic

placement of these lineages. While a better understanding

for the role of dispersal through not only the late Mesozoic

but also the Paleogene (or early Cenozoic) can be achieved

through a more precise understanding of the geography in-

cluding sea-level changes, and not merely the tectonics and

biogeography through this interval. In addition the inclusion

of fossils within analyses of their living relatives needs to

become more widespread, allowing not only greater preci-

sion in divergence time estimation through the use of tip

dating in molecular clock analyses (Ronquist et al. 2012),

but also to better understand the pattern of character acqui-

sition (Patterson 1981), and changes in diversity, either to

identify diversification rate shifts (Tarver and Donoghue

2011; Wagner and Estabrook 2014) or broader patterns of

biological diversity (Wagner 2000; Tarver et al. 2011; Losos

et al. 2013).

The results of our study suggest that other seemingly in-

tractable phylogenetic debates, such as the position of cteno-

phores, chaetognaths, Acoelomorpha, and the relationships

among lophotrochozoans (Dunn et al. 2014), may be solvable

by combining genome-scale data sets with realistic models of

molecular evolution and rigorous coalescent-based species

tree estimation methods.
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Supplementary figures S1–S8 are available at Genome Biology

and Evolution online (http://www.gbe.oxfordjournals.org/).
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Note Added in Proof

Whilst this paper was in review following revision, Luo et al.

(2015) published a phylogeny which placed haramiyids as

stem mammals. In the molecular clock study here haramiyids

were considered crown mammals and were tentatively used

as a calibration point on the root (node 37). We therefore

reran the molecular clock analysis using the much younger

Mammalian calibration found in Benton et al. (2015) which

places a soft minima at 164.9 Ma and a soft maxima at

201.5 Ma. As expected the root age of Mammalia changes

by 40 Myr to become younger, whilst the age of Theria

changes by 550,000 years, Marsupialia by 140,000 years

and all other nodes by less than 100,000 years. The results

of this reanalysis had no material effect on the conclusions of

this study.
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