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Abstract—Computation-as-a-Service (CaaS) offerings have
gained traction in the last few years due to their effectiveness
in balancing between the scalability of Software-as-a-Service and
the customisation possibilities of Infrastructure-as-a-Service plat-
forms. To function effectively, a CaaS platform must have three
key properties: (i) reactive assignment of individual processing
tasks to available cloud instances (compute units) according to
availability and predetermined time-to-completion (TTC) con-
straints; (ii) accurate resource prediction; (iii) efficient control of
the number of cloud instances servicing workloads, in order to
optimize between completing workloads in a timely fashion and
reducing resource utilization costs. In this paper, we propose
three approaches that satisfy these properties (respectively): (i) a
service rate allocation mechanism based on proportional fairness
and TTC constraints; (ii) Kalman-filter estimates for resource
prediction; and (iii) the use of additive increase multiplicative
decrease (AIMD) algorithms (famous for being the resource
management in the transport control protocol) for the control
of the number of compute units servicing workloads. The
integration of our three proposals into a single CaaS platform is
shown to provide for more than 27% reduction in Amazon EC2
spot instance cost against methods based on reactive resource
prediction and 38% to 60% reduction of the billing cost against
the current state-of-the-art in CaaS platforms (Amazon Lambda
and Autoscale).

Index Terms—computation-as-a-service, big data, multimedia
computing, Amazon EC2, spot instances.

I. INTRODUCTION

CLOUD Infrastructure-as-a-Service (IaaS) providers, such
as Amazon Elastic Compute Cloud (EC2), Google Com-

pute Engine (GCE), VMware and Rackspace, now pro-
vide cloud instances, a.k.a. compute units (CUs), i.e., pre-
established sets of processor cores, memory, storage and
operating systems, with yearly, daily, hourly or even minute-
by-minute billing [1], [2]. This has resulted in a variety of
new Platform-as-a-Service (PaaS) and Software-as-a-Service
(SaaS) offerings [3], [4]. In a PaaS systems, a distributed com-
puting environment (e.g., Apache Hadoop or mesos, Google
App Engine, Microsoft Azure, etc.) is used to execute tasks on
IaaS providers, albeit at the cost of porting the processing soft-
ware to code that can be scaled-up by the PaaS infrastructure
(for example converting the operations to a series of Map()
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and Reduce() steps in Hadoop). In SaaS, a specific set of
applications are licensed to customers (e.g., pre-established
word processing software, a fixed set of video transcoding or
video streaming toolboxes, etc.) either as a service on demand,
through a subscription, or in a pay-as-you-go model [5].

A. From Platform and Software-as-a-Service to Computation-
as-a-Service

This evolution of IaaS, PaaS and SaaS is now beginning to
lead to Computation-as-a-Service (CaaS) [6], where users can
upload data (e.g., image, audio or video) files and scripts or
binary files, which can be executed by the CUs in the cloud
directly, i.e., without the users having to set up and manage any
infrastructure or convert their software to a format amenable
to distributed computing environments. CaaS provides a useful
compromise between the generality of IaaS and PaaS offerings
and the ease-of-use of SaaS: the end user can deploy and scale-
up any desktop data processing application of their choosing
without adapting its codebase. This differs from the case of
SaaS, in that the user can simply execute any Matlab, C/C++,
Java, OpenCV, Javascript/Python based code and scripts of
their local platform on the CaaS platform without any modifi-
cation by following a simple set of rules. The CaaS platform
can then handle the scheduling and parallelization of multiple
workloads without any user intervention via the appropriate
reservation (or bidding) of resources from IaaS providers, e.g.,
Amazon EC2 spot instance bidding or GCE CU reservation.

B. Related Work

In order to provide for a viable service, a CaaS provider
must be able to minimize the monetary cost incurred by the
use of cloud CUs and schedule workloads to be executed
in the most effective manner. To this end, there have been
numerous recent proposals for cloud resource management.
Gandhi et. al. propose their own version of Autoscale, which
terminates servers that have been idle for more than a specified
time, while consolidating jobs on less CUs to lower cost
[7]. Paya et. al. propose a system which expands on this
by using multiple sleep states to improve performance [8].
Song et. al. propose optimal allocation of CUs according to
pricing and demand distributions [1]. Ranjan et. al. investi-
gate architectural elements of content-delivery networks with
cloud-computing support [9]. Finally, Jung et. al. propose
using genetic algorithms for multi-user workload scheduling
on various CUs [10].

Beyond resource allocation and scheduling, a major chal-
lenge in CaaS frameworks is the varying delay in the com-
pletion of various data processing workloads [11], [12], [4],
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[13]. The processing delay primarily depends on: the specifics
of the workload, the CU reservation mechanism employed,
and the transport-layer jitter (if data is continuously trans-
ported to/from users and cloud providers) [5]. This is the
primary reason why all real-world CaaS platforms only pro-
vide “best effort" service level agreements (SLAs) for large
workload execution without considering a predetermined time-
to-completion (TTC) estimate. Recent research work on this
front proposes the derivation of viable schedules using particle
swarm optimisation [14] and the utilisation of the earliest-
deadline first algorithm [15]. While all such proposals are
effective in their resource provisioning for TTC-abiding exe-
cution, they assume that the computation required to complete
each workload can be accurately predicted by the system.
However, this is unlikely to be the case in practice, particularly
at the start of a workload’s execution. Therefore, our proposal
considers the realistic scenario where no estimates for the
computational requirements are available at the beginning of
each workload’s execution; i.e., in conjunction with resource
management, our framework performs an adaptive resource
prediction during the execution of each workload.

Finally, the first commercial CaaS offerings are now begin-
ning to emerge. The key representatives are: (i) the recently-
announced AWS Lambda service, where users can submit indi-
vidual Javascript items and be billed at a fixed rate per 100ms
of Lambda service usage under a best-effort SLA; (ii) PiCloud,
a service for flexible scheduling of batch processing tasks
via a terminal command line interface; (iii) Parse, a software
development environment for Javascript execution on cloud-
computing infrastructures; and (iv) Amazon EC2 Autoscale, a
service that automatically scales application deployment over
Amazon EC2 according to processor and network utilization
constraints. In all these deployments, the comparative metric
for workload analysis is the required processing time in terms
of the number of seconds a single core was occupied until
the workload is successfully completed. We therefore quantify
the resource reservation in the IaaS via compute-unit seconds
(CUSs), i.e., the product of the total cores used with the time
they were reserved for, since charges will be applied for them
from the infrastructure provider regardless of whether the CaaS
system actually used them to their full capacity or not.

C. Contribution

While the current research and commercial efforts in CaaS
frameworks are a promising start, they do not consider ap-
proaches for reactive prediction of the required CUSs to
process submitted workloads, or assume that the CUS metric
per workload is known [4], [14], [15]. In addition, current
CaaS frameworks do not consider on-demand CU provisioning
(e.g., EC2 spot instances or GCE CUs with minute-level
increments) under TTC constraints, where it is important to
control both the allocation and termination of new instances
in order to reduce the infrastructure cost while providing for
TTC-abiding execution.

In this light, we present a CaaS platform that scales small
and medium-level execution of data processing workloads
to big data under TTC constraints. For example, algorithms

for video transcoding, image classification, object recognition,
etc., that run on small amounts of input images/videos on a
desktop computing system can be directly scaled-up via the
proposed platform (i.e., without any code modifications) to
operate on big datasets comprising millions of input images
and videos, with a-priori established completion times. Our
CaaS platform meets the requirements for such large-scale data
processing by combining the following novel aspects:

1) Each submitted workload is separated into individually-
executable tasks, which are then allocated to available
CUs with proportionally-fair scheduling in order to: (i)
maximize the available CU utilization and (ii) abide by
the confirmed TTC value for the workload. The fine-
grain partitioning of each workload into tasks allows
for each user to check that the output results are being
produced correctly by the platform during execution and
cancel the workload execution if otherwise.

2) The required CUSs until the completion of each task
type in each workload are predicted based on Kalman-
filter estimators, which are shown to significantly out-
perform other ad-hoc estimators.

3) Based on the proposed CUS prediction, we propose the
use of the Additive Increase Multiplicative Decrease
(AIMD) algorithm [16] for the allocation or termination
of CUs according to the expected workload. While
AIMD is a well-known control mechanism for network
resource utilization, e.g., within the transport control
protocol (TCP), to the best of our knowledge, this is
the first time it is proposed for CaaS provisioning.

Finally, beyond describing our platform, we also provide
free access to it1 at www.dithen.com.

The remainder of this paper is organized as follows. Sec-
tion II presents an overview of our platform, with Table I
summarizing the utilized nomenclature. Sections III and IV
present the key elements of the proposed CUS prediction
and AIMD framework, while Section V presents experimental
results and comparisons of different CU allocation strategies
for Amazon EC2 spot instances. Finally, Section VI presents
some concluding remarks.

II. CAAS PLATFORM OVERVIEW

Consider a CaaS platform where, for every monitoring
instant t, W [t] workloads have been submitted by its users
and remain to be processed, with each workload w (1 ≤
w ≤ W [t]) comprising M [t] data types (e.g., images, videos,
feature vectors, log files, etc.). In order to function in an
efficient manner, per workload w and data type k within
the workload, the CaaS platform keeps track of: the number
of remaining elements to be processed, mw,k[t], as well as
the prediction estimates for the required CUSs to complete
the processing, b̂w,k[t]. Typically, the SLA for each workload
includes execution within a predetermined TTC value, dw[t],
which is confirmed after an initial CUS prediction is available
for the workload. To this end, the platform continuously keeps

1free usage with limits on the data volume and number of workload
executions per user
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TABLE I
NOMENCLATURE AND NOTATIONAL CONVENTIONS.

Key Concept Definition

t monitoring time instant in the CaaS platform

W [t] total workloads in Dithen at time instant t

M [t] total data types at time t

mw,k[t] remaining data items of type k to be processed
within workload w at time t (1 ≤ k ≤ M [t] ,
1 ≤ w ≤ W [t]

I total types of instances in the cloud infrastructure

pi compute units (CUs), i.e., processor cores, available
within instance type i, 1 ≤ i ≤ I

ni[t], Ntot number of instances of type i (1 ≤ i ≤ I) reserved
at time t, total number of CUs in Dithen

ai,j [t] remaining time for the jth instance of type i before
additional billing is incurred by the cloud provider

ctot[t], cmin, cmax total compute-unit-seconds (CUSs) available in
Dithen, and lower/upper limits for CUSs in Dithen

dw[t] time-to-completion (TTC) for workload w at time t

b̂w,k[t] prediction for the required CUSs to process a data
item of type k of workload w

rw[t] required CUSs for the completion of workload w

sw[t] service rate, i.e., CUs allocated for workload w

zw,k[t], vw,k[t] CUS process and measurement noise instantiations of
data type k of workload w

α, β additive increase and multiplicative decrease
parameters of AIMD

Notation Explanation

uppercase
Roman letters

random variables

lowercase
Greek letters

moments of probability distributions, stochastic
parameters of Kalman filters, or AIMD and ARMA
parameters

b̃ measurement of quantity b

b̂ prediction estimate of quantity b

track of the required CUSs to complete each workload w,
rw[t], which can be estimated by:

rw[t] =
M [t]∑

k=1

mw,k[t]b̂w,k[t]. (1)

Finally, the CaaS platform also keeps track of the total number
of active CUs by:

Ntot[t] =
I∑

i=1

pini[t], (2)

as well as the total compute-unit seconds billed (i.e., already
paid to the IaaS provider and available to use) within the CaaS
architecture at any given instant t:

ctot[t] =
I∑

i=1

ni[t]∑

n=1

piai,n[t]. (3)

Effectively, ctot[t] and Ntot[t] represent a “snapshot” of the
compute resources at the tth time instant, as they comprise the
available CUSs and CUs which have already been reserved.

The main goals of the proposed CaaS platform at every
monitoring time instant t are: (i) to ensure that each workload
w is executed within its specified TTC, dw[t], and (ii) to
match ctot[t] to

∑W [t]
w=1 rw[t]. To this end, the most critical

aspects are: (i) defining reliable CUS predictions, b̂w,k[t], for
each data type k within each workload w, (ii) confirming the
feasibility of each workload’s TTC value and selecting the
appropriate service rate (i.e., selecting how many CUSs should
be allocated to each workload’s tasks), and (iii) devising and
executing an algorithm to initialize or terminate CUs according
to the demand volume.

A. Reliable CUS Predictions for Data Types via a Kalman-
filter Estimator

The platform measures the average CUSs, b̃w,k, required for
each data type k of each workload w running on its instance
types, by measuring the time to complete tasks between the
previous and the current monitoring instance (t − 1 and t)
and refining the measurement. We model this measurement
operation mathematically by:

∀w, k, t : b̃w,k[t] = b̂w,k[t] + vw,k[t], (4)

where vw,k[t] is the measurement noise that deviates b̃w,k[t]
from the ideal CUS prediction, b̂w,k[t], at time instant t. We
assume that vw,k[t] can be modeled by independent, identically
distributed (i.i.d.), zero-mean Gaussian random variables, i.e.,
∀w, k : Vw,k ∼ N

(
0, σ2

v

)
.

We express the prediction of the required CUSs for each
workload and task type at time t by:

∀w, k, t : b̂w,k[t] = b̂w,k[t − 1] + zw,k[t], (5)

with zw,k[t] the process noise [17], expressing variability in
the execution time of each task type in each workload across
time. We assume that ∀w, k : zw,k[t] can be modelled by i.i.d.,
zero-mean Gaussian random variables, i.e., ∀w, k : Zw,k ∼
N (0, σ2

z). Given (4) and (5) and the fact that all noise terms are
i.i.d., the noise variances are: E{V2

w,k} = σ2
v , E{Z2

w,k} = σ2
z

and the noise covariance is E{Vw,kZw,k} = 0.
For the measurement and prediction model of (4) and (5),

the optimal predictor for b̂w,k[t] is known to be the Kalman
filter [17], which provides for the following two time-update
equations for our case (∀w, k, t):

π−
w,k[t] = πw,k[t − 1] + σ2

z , (6)

κw,k[t] =
π−

w,k[t]

π−
w,k[t] + σ2

v

, (7)

where π− represents the initial update of the process covari-
ance noise π, and κw,k[t] is the Kalman gain of the kth task
type of the wth workload at time instant t. Based on (6) and
(7), the prediction of b̂w,k[t] and the noise covariance update
can be written as (∀w, k, t):

b̂w,k[t] = b̂w,k[t − 1] + κw,k[t]
(
b̃w,k[t − 1] − b̂w,k[t − 1]

)
,

(8)
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πw,k[t] = (1 − κw,k[t]) π−
w,k[t]. (9)

Initialization of proposed CUS predictor per workload and
task type: For t = 0 and ∀w, k, the platform initializes each
Kalman-filter estimator with b̃w,k[0], established via the initial
measurement per workload and input type, and sets: b̂w,k[0] =
π[0] = 0, and σ2

z = σ2
v = 0.5.

B. TTC Confirmation and Service Rate per Workload

Let us assume that a reliable CUS prediction becomes
available for workload w, 1 ≤ w ≤ W [tinit], at monitoring
time instant2 tinit. We can then confirm that dw[tinit] (the
requested TTC for workload w at tinit) is achievable under the
appropriate adjustment of the workload service rate, sw[t],
for each monitoring time t, t ≥ tinit. The service rate sw[t]
corresponds to the number of CUs allocated to workload w
for the time interval between monitoring instants t and t + 1.
Fractional values (e.g., sw[t] = 0.7) indicate that one CU is
allocated to workload w for sw[t]×100% of the time between
t and t + 1. If the combination of dw[tinit] with the workload
CUS prediction leads to sw[tinit] > Nw,max, with Nw,max a
predetermined CU upper limit (∀w: Nw,max = 10 in our
experiments), dw[tinit] is extended such that sw[tinit] = Nw,max.
This process confirms dw[tinit] (or its extension) as the TTC
for workload w.

The algorithm to determine sw[t] for each workload w and
each t ≥ tinit is presented in Section III and is carried out by
the platform based on the predicted CUS per workload. The
CaaS platform selects and executes individual tasks from each
workload w according to sw[t].

C. Spot Instance Initiation and Termination

A direct way to implement the scaling of the required in-
stances is to constantly match the already-billed CUs [ctot[t] of
(3)] to the total CUs required by all workloads (

∑W [t]
w=1 rw[t]) at

each time instant t by initializing or terminating spot instances
(a.k.a. “reactive” control [17]). However, such an approach is
not optimal for the following reasons: (i)

∑W [t]
w=1 rw[t] depends

on the predicted CUSs to complete the processing of each
data type k within each workload w; these predictions will
not be accurate for all time instants and data types, and this
will lead to unnecessary expenditure to initiate and pay for
instances that may never be used due to prediction mismatch;
(ii) due to the CU billing for large time intervals (e.g., Amazon
EC2 spot instances are billed for one hour and GCE instances
are billed in 10-minute slots), as well as the associated delay
in initialization or termination of instances (in the order of
minutes), rapid fluctuations in

∑W [t]
w=1 rw[t] (e.g., due to new

workloads or workload cancellations by users) will cause
bursts of initiation or termination requests and significantly
reduce the utilisation rate of the servers, which will result in
excessive bills from the IaaS; (iii) without a control mechanism
in place to absorb rapid fluctuations in demand, a flurry of spot
instance requests may inadvertently cause unwanted spikes

2The practical method to determine tinit is described in Section V.

in spot instance pricing [1]. In the next two sections, we
present our proposal for best-effort TTC-abiding execution that
ensures proportional fairness amongst all submitted workloads.

III. WORKLOAD EXECUTION WITH CONFIRMED TTC

We ensure that each workload is executed within its remain-
ing TTC by an allocation mechanism based on proportional
fairness. The proportional fairness goal can then be stated
as: at each monitoring instance t and for each workload
w (1 ≤ w ≤ W [t]), our platform maximizes an objective func-
tion of the service rate, sw[t], that ensures all workloads are
served proportionally to their CUS requirement, rw[t] [given
by (1)], and inversely-proportionally to their TTC, dw[t]. The
latter is defined via an appropriate SLA mechanism once a
workload is submitted for execution and an initial workload
CUS prediction becomes available. In this work, we adopt the
objective function:

f(sw[t]) = rw[t] ln(sw[t]) − dw[t]sw[t]. (10)

The subtraction in (10) contrasts between the workload’s
CUS requirement, rw[t], and the TTC requirement, dw[t]. In
addition, following proportional fairness problems in other
resource allocation work (notably in cellular network schedul-
ing algorithms [18]), we opted for the use of the natural
logarithm in the demand side of the objective function and
pursue the maximization of f(sw[t]). Specifically, when the
condition

∑W [t]
w=1 rw[t] ≤ ctot[t] is satisfied, it is straightforward

to show that the optimal solution to the maximization of (10)
is (∀sw[t] > 0)

s∗w[t] = arg max {f (sw[t])} =
rw[t]
dw[t]

. (11)

This corresponds to the case where enough CUs are available
to accommodate the demand and, therefore, allocation of
service rates is carried out according to the required CUSs
and TTC per workload at each monitoring time instant t. We
can then calculate the total required CUs for optimal operation
as:

N∗
tot[t] =

W [t]∑

w=1

s∗w[t] =
W [t]∑

w=1

rw[t]
dw[t]

. (12)

However, due to volatility in both workload submission and
CU availability in the CaaS platform, it is likely that, for
most monitoring instances t, N∗

tot[t] differs from Ntot[t] [the
actual number of CUs, calculated by (2)]. In such cases, we
can adjust the optimal service rates of (11) proportionally to
the relative distance between N∗

tot[t] and Ntot[t]. Specifically,
if N∗

tot[t] > Ntot[t] + α, with α the AIMD additive constant
defined in the next section (α > 0), we downscale the optimal
service rate of each workload to:

∀w : s−w [t] =
rw[t]
dw[t]

(

1 −
N∗

tot[t] − Ntot[t] − α

N∗
tot[t]

)

=
Ntot[t] + α

N∗
tot[t]

s∗w[t]. (13)
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1 % algorithm iterations for any monitoring time instant t
2 if Ntot[t] ≤ N∗

tot[t]
3 incr = TRUE
4 else
5 incr = FALSE
6 % application of AIMD to tune Ntot for the next instant
7 if incr == TRUE
8 Ntot[t + 1] = min{Ntot[t] + α,Nmax} % add more CUs
9 else
10 Ntot[t + 1] = max{βNtot[t], Nmin} % remove CUs

Fig. 1. Proposed AIMD algorithm; α is a positive constant, β is a constant
such that 0 < β ≤ 1, and Nmax and Nmin are the upper and lower bounds
for Ntot[t].

If N∗
tot[t] < βNtot[t], with β the AIMD scaling constant defined

in the next section (0 < β < 1), we upscale the optimal service
rate of each workload to:

∀w : s+
w [t] =

rw[t]
dw[t]

(

1 +
βNtot[t] − N∗

tot[t]
N∗

tot[t]

)

=
βNtot[t]
N∗

tot[t]
s∗w[t]. (14)

Finally, if βNtot[t] ≤ N∗
tot[t] ≤ Ntot[t] + α, the service rates of

(11) are used. The use of α and β in (13) and (14) ensures
the service rate adjustment is considering the possible additive
increase or multiplicative decrease that may occur via the
AIMD algorithm after the service rate allocation is established
for the interval between t and t + 1.

IV. SCALING WITH ADDITIVE INCREASE MULTIPLICATIVE

DECREASE

For any CaaS system, N∗
tot[t] of (12) and Ntot[t] of (2)

must be tightly coupled in order to ensure that the available
compute-unit time can meet the service demand and TTC
requirements at any instant. This is because, if N∗

tot[t] is
substantially higher than Ntot[t], the delay to complete pending
workloads can increase substantially and workload TTCs may
be violated. Conversely, when N∗

tot[t] is significantly smaller
than Ntot[t], unnecessary resource costs may occur. Therefore,
and in conjunction with the fact that billing comes in hourly
increments in Amazon EC2 spot-instances, sudden surges or
dips in demand will have a detrimental effect in the delay or
cost of the deployment of platform. Hence, the goal of the
platform is to maintain the resource reservation and workload
service rates at the correct level. To this end, we propose the
AIMD algorithm of Fig. 1. By controlling the additive and
scaling constants, α and β respectively, we can examine the
behavior of the platform under a wide variety of workload
submissions. It should be noted that the corresponding problem
of selecting which spot instances to terminate in the event
that Ntot[t] > N∗

tot[t] is trivial: per instance type, the prudent
action is always to terminate spot instances with the smallest
remaining time before renewal.

We refer to the work of Shorten et. al. [16] for details on the
the stability and convergence properties of AIMD algorithms.

A key aspect from their analysis is that fast convergence to
an equilibrium state is achieved if β is small and smoother
transitions are expected if β is close to unity [16]. After
extensive experimentation, we opted for the values of β = 0.9
and α = 5, which exhibit sufficiently-fast convergence while at
the same time ensuring that CUs are not released prematurely.

While the AIMD algorithm tunes the total CU value, Ntot[t],
it does not select which instance types to deploy out of the
I possible. As detailed in Appendix A, the recent status
of Amazon spot instance pricing provides for proportional
increase of pricing according to the number of compute units
per instance. Moreover, the single-CU instance type exhibits
the minimum price volatility, thereby making it the safest
instance type to use. Therefore, we opt to use only single-
CU instances in our experiments, i.e., I = 1 and p1 = 1,
which alleviates the problem of selecting amongst a variety
of instance types. However, depending on the evolution of
pricing data from the IaaS provider, future work will expand
our results into a variety of instance types.

V. EXPERIMENTS

In order to examine our proposals, we have deployed our
CaaS platform using single-CU m3.medium spot instances
of Amazon EC2 (see Appendix A for more details). Each in-
stance has a corresponding component that requests new tasks
to process once it detects that pending workloads are available
with non-zero service rates. In addition, one reserved EC2
instance, serving as the “estimator” component of the platform,
calculates the Kalman filter prediction estimates based on the
CUS measurements per task. Under predetermined TTC per
workload (which is confirmed by platform after an initial CUS
prediction becomes available for the workload), it then derives
the service rate per workload in fixed time periods (i.e., within
1–5 minute intervals), as described in Section III. This is
communicated to the other instances. The estimator component
also carries out the AIMD algorithm of Section IV in order to
control the increase or decrease of spot instances according to
the demand. The utilized AIMD parameters for all experiments
were set to: α = 5, β = 0.9, Nmin = 10, Nmax = 100 and ∀w:
Nw,max = 10 (maximum service rate per workload).

A. Utilized Workloads

Thirty different workloads, each with a random number of
tasks were used in our experiments. Eight of the workloads
were scripts running the Viola-Jones classifier [19] for face
detection in images. The range of possible values for the
number of inputs (i.e., images or videos) for these workloads
was between 1 and 1000. Eight of the workloads were scripts
using FFMPEG to transcode videos to different bitrates via a
variety of codecs [11], [12], [20]. Each workload had between
1 and 20 videos to transcode, and we also added two large
transcoding workloads with 200 and 300 videos. These were
used to examine the responsiveness of the platform under
sudden spikes of demand. Seven of the workloads were using
the OpenCV BRISK keypoint detector and descriptor extrac-
tor [21]. Finally, seven workloads used the Scale Invariant
Feature Transform (SIFT) salient point descriptor [22], which
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Fig. 2. Size of inputs for each of the thirty workloads used in our experiments.

was deployed as compiled Matlab code with the Mathworks
deploytool. These were selected as representative exam-
ples for image processing operations, amongst a larger pool
of image and video processing experiments using wavelet
transforms [23], [24], [25] and other codecs [26], [11], [12].
The total size of the inputs per workload is given in Fig. 2.
Workloads were introduced once every five minutes in the
order depicted in Figure 2.

B. Performance of Kalman-based CUS Prediction

The proposed Kalman-based CUS prediction process of
Section III is compared against the “ad-hoc” estimator that
carries out the CUS prediction of (8), albeit with the scaling
coefficient being set to the fixed value: κw,k[t] = 0.1, which
was shown to perform best amongst other settings. Moreover,
as an external comparison, we also utilize the well-known
second-order autoregressive moving average (ARMA) estima-
tor of Roy et. al. [27] that has been shown to perform well
for workload forecasting. ARMA predicts the CUS required
to complete a workload at time t + 1 via

b̂w,k[t + 1] = δ × bnorm,w,k[t]+ γ × bnorm,w,k[t − 1]

+ (1 − δ − γ) × bnorm,w,k[t − 2], (15)

where: bnorm,w,k[t, t − 1, t − 2] are calculated by summing
the total execution time of data type k of workload w at
times t, t − 1, t − 2 and dividing it by the percentage of the
workload that has been completed until then; and δ and γ
are scalars having the values recommended by Roy et. al.
[27]. ARMA was chosen as the most suitable benchmark as
other workload forecasting methods (like the ARIMA model
[28], [29]) require extensive past measurements from previous
executions of other workloads, as well as a long sequence
of measurements in order to produce reliable prediction esti-
mates, thereby making them unsuitable in our case.

A representative example of the convergence behaviors of
all methods under comparison is given in Fig. 3. As illustrated
in the figure, the Kalman and ad-hoc estimator exhibit an
underdamped behavior until convergence. We can therefore
use the slope of the CUS prediction across time to determine
the monitoring time instant tinit when the proposed Kalman and
the ad-hoc estimator can provide a reliable CUS prediction

per workload and task type. Specifically, when the slope of
the CUS prediction becomes negative for the first time, each
estimator establishes a CUS prediction for each workload with
acceptable accuracy. However, ARMA does not exhibit such
underdamped behavior, since it is a moving-average based
estimator. Therefore, we relied on a conventional convergence
detection criterion for ARMA: when the ARMA prediction
value deviation within the window of the last three mea-
surements is found not to exceed 20% from the mean value
derived from the values of the window (ten measurements are
used for the case of 1-min monitoring), we determine that
the prediction is reliable enough to be used. The setup for
the window size and variability threshold was selected after
testing with a variety of possible values. In the example of Fig.
3 and Fig. 4, the time instant when each method reaches its
reliable prediction under the described setup is marked with
the red dotted vertical line.

Table II presents the average time each estimator took to
reach its CUS prediction for each workload type, as well
as the CUS percentile mean absolute error (MAE). The
summary over all workloads (per monitoring interval) is given
at the bottom of the table. Evidently, the proposed Kalman-
based approach reduces the average time to reach a reliable
prediction by more than 20% in comparison to the other
estimators and is found to be the quickest estimator in all
but one case. At the same time, the proposed estimator attains
comparable accuracy to the ad-hoc estimator and is found to be
significantly superior to ARMA. This is especially pronounced
in the case of the 1-minute monitoring, where the use of
the proposed Kalman-based approach instead of an ARMA
approach provides for 38% reduction in prediction time and
decreases the average prediction error from 16.4% to 4.5%.
This indicates that, under the usage of the proposed CUS
estimator and 1-minute monitoring, the GCI is expected to
have reliable predictions per workload (and thereby confirm
that its requested TTC is achievable) within 6–11 minutes
from its launch. Finally, when we compare the performance
of one-minute monitoring to five-minute monitoring, Table II
shows that increase in the measurement granularity results in
significant improvement in both the accuracy and time required
to reach a reliable prediction. Specifically, for the proposed
Kalman estimator, increased monitoring frequency reduces the
the average prediction time by 44% and reduces the overall
MAE from 13.1% to 4.5%.

C. Results for Cumulative Cost of Workload Execution

We now investigate the management of spot instances so
that each workload is completed under a fixed TTC that is
sufficiently large to allow for fluctuation in the number of
utilized instances.

As external comparisons, our first choice is Amazon’s
Autoscale service (termed as “Amazon AS”), which is widely
deployed in practice [30]. Amazon AS does not carry out
CUS prediction or TTC-abiding execution, and one can only
control the number of instances based on CPU utilization and
bandwidth constraints. Therefore, under these conditions, we
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TABLE II
AVERAGE TIME TO REACH CUS PREDICTION PER TYPE OF WORKLOAD AND PERCENTILE MEAN ABSOLUTE ERROR (MAE) OF THE DERIVED

PREDICTION. THE LAST COLUMN PRESENTS THE PERCENTILE TIME REDUCTION WHEN SWITCHING FROM 5-MIN MONITORING TO 1-MIN MONITORING

INTERVALS. THE BEST RESULT PER CATEGORY IS INDICATED IN BOLDFACE FONT.

Control interval 5-min monitoring 1-min monitoring Time Reduction (%) by going
Face Detection Time MAE (%) Time MAE (%) from 5-min to 1-min monitoring

Kalman-based 13m 45s 5.6 10m 38s 4.6 22.7
Ad-hoc 28m 08s 4.5 17m 53s 5.3 36.4
ARMA 23m 08s 22.1 12m 08s 27.8 47.6

Transcoding Time MAE (%) Time MAE (%)

Kalman-based 16m 53s 14 07m 54s 7.8 53.2
Ad-hoc 26m 53s 8.9 10m 36s 1.5 60.6
ARMA 28m 08s 13.9 18m 45s 18.1 33.4

Feat. Extraction Time MAE (%) Time MAE (%)

Kalman-based 13m 34s 12.1 11m 54s 1.4 12.3
Ad-hoc 18m 34s 6.4 20m 24s 1.9 -9.9
ARMA 20m 43s 5.7 11m 09s 12.1 46.2

SIFT Time MAE (%) Time MAE (%)

Kalman-based 21m 26s 20.6 06m 18s 4.1 70.6
Ad-hoc 23m 54s 18.9 08m 06s 0.1 66.1
ARMA 20m 00s 20.1 15m 00s 7.6 25.0

Overall Average Time MAE (%) Time MAE (%)

Kalman-based 16m 25s 13.1 09m 11s 4.5 44.1
Ad-hoc 24m 22s 9.7 14m 15s 2.2 34.6
ARMA 23m 00s 15.5 14m 15s 16.4 38.0

Fig. 3. Example of the convergence of various CUS prediction methods for
the case of an FFMPEG workload under 1-min monitoring interval.

configured all workloads to execute within an Amazon AS
group that examines the average CPU usage at all utilized
CUs in five-minute intervals. If the group detected that the
average CPU utilization was more than 20%, new instances
were started3. Otherwise, Amazon AS terminated some of the
active instances. We then executed all workloads in Amazon
AS and measured the longest time to complete a workload
under two scaling policies. The first represented a conservative
approach where reducing the execution time is not of critical
importance. In this case, a single instance is added or removed

3After extensive experimentation, the value of 20% was found to provide for
the best results with Amazon AS. This is because average utilization values
between 18% and 22% represent the average CPU usage observed within
active time intervals when an instance alternates between downloading files
(2%–10% CPU utilization) and actually executing a compute-intensive task
(close to 100% CPU utilization).

when a monitoring interval occurs. The longest completion
time was found to be 2 hr 7min. The second scaling policy
started and stopped ten instances instead of one, to represent
a scenario where reduced execution time is of importance. In
this case, the longest time to complete a workload was found
to be 1 hr and 37 min. Both of these times were then used as
the two fixed TTC settings for all workloads in our platform.

Beyond Amazon AS, in order to benchmark our AIMD-
based scaling of Fig. 1 against other alternatives for CU
adjustment, we utilized the mean-weighted-average and linear-
regression methods of Gandhi, Krioukov et. al. [7], [31]
(termed “MWA” and “LR”, respectively) to set the number of
CUs for the next monitoring interval, Ntot[t + 1]. We selected
MWA and LR for our comparisons because previous work [7]
has shown them to be amongst the most accurate predictive
resource controllers. Both MWA and LR utilized the proposed
Kalman-based CUS prediction process and the service rate
allocation of (12) to determine when to increase or decrease
CUs. Specifically: (i) MWA sets the number of CUs via

Ntot[t + 1] =
1
6

t∑

i=t−5

N∗
tot[i], (16)

where N∗
tot is the optimal number of CUs derived via (12) for

each monitoring time instant; (ii) LR sets Ntot[t+1] to be the
result of extrapolating the line derived via linear regression
from {N∗

tot[t], . . . , N
∗
tot[t − 5]} (current plus five previous CU

settings). Finally, in order to see the performance of the direct-
compensation approach, we also utilized the case where no
filtering or other adjustment is being used and we simply set
Ntot[t + 1] = N∗

tot (termed as “Reactive”).
Figure 5 and Figure 6 show the cumulative cost of each

approach during the course of both experiments with the two
TTC values. Evidently, the cost of Amazon AS is significantly
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TABLE III
SUMMARY OF OVERALL COST OF DIFFERENT METHODS AS WELL AS COMPARISONS WITH THE PROPOSED METHOD AND THE LOWER BOUND

System AIMD (proposed) Reactive MWA LR AS LB
Overall cost ($) 0.41 0.51 0.52 0.53 1.02 0.22

Average cost reduction of proposed vs. other methods (%) – 20 21 23 60 –
Average cost increase above LB (%) 86 132 136 141 364 –

Max. # of instances at any time by each method 13 28 21 24 91 –

Fig. 4. Cumulative cost of processing all workloads of Fig. 2 under fixed
TTC of 2 hr 7min per workload.

higher than that of all other approaches. This is primarily
because the Amazon AS is the only approach that does not use
CUS predictions and instead bases its decisions solely on CPU
utilization. Therefore, it continues to scale up the number of
instances even when it is nearing completion of the workloads’
processing and only scales down after workloads have been
completed and CPU utilization decreases due to inactivity.

Amongst MWA, LR and Reactive, MWA is superior as it
incurs less cost for the majority of the experiment (and, as
expected, Reactive is the worst). However, all three methods
end up incurring very comparable cost for the completion of all
workloads. Interestingly, Reactive turns out to be (marginally)
the cheapest of the three for this experiment even though it
uses the largest number of instances of the three methods at
one point. The reason for this is that, while Reactive scales up
very quickly it also scales down rapidly and, for this particular
experiment, this behaviour worked in its favour. However, this
is not expected to be always the case, as Reactive does leave
many instances idle for a large portion of their billed time.

The proposed AIMD-based scaling initially scales up when
it detects the large workloads, then maintains this level, and
then begins to scale down as it nears the experiment com-
pletion. For the experiments of Figure 5, this leads to overall
savings of 30% against MWA, 29% against LR, 27% against
Reactive and 38% against Amazon AS. For the experiments
of Figure 6, the equivalent savings were: 14%, 15%, 12% and
69%. Overall, beyond the advantage of providing for scaled-
up execution under TTC constraints, the 38%–69% savings
demonstrated in Figure 5 and Figure 6 allow for significant
profit margin for cloud service providers that would deploy

Fig. 5. Cumulative cost of processing all workloads of Fig. 2 under fixed
TTC of 1 hr 37min per workload.

large-scale multimedia applications via the techniques used in
our platform, versus utilizing Amazon AS directly.

The overall savings for both experiments, as well as the
maximum number of instances used by the proposed algorithm
against all other benchmarks are summarized in Table III. It
should be emphasized that, beyond the cost savings, all the
workloads in the proposed AIMD approach finished before
their execution time exceeded the predetermined TTC of
each experiment. Such TTC-abiding execution is a significant
feature that Amazon AS cannot provide.

Finally, the bottom right of Figure 5 and Figure 6 includes
a red horizontal line indicating the estimated billing if all
workloads would be processed such that all billed instances
would be occupied 100% of the time. This constitutes the
lower bound for the billing cost (termed “LB”) as no op-
erational approach can achieve lower cost. Evidently, the
proposed approach incurs 68%–91% higher cost than LB, but
all other approaches incur 135%–510% higher cost than LB.
This demonstrates that the proposed AIMD-based scaling of
CUs is a simple and effective method towards approaching
the lowest possible cost in the cloud computing infrastructure
while at the same time satisfying the TTC constraint of each
workload.

D. Comparison Against Amazon Lambda

Recently, Amazon begun offering its own CaaS service
for the execution of Javascript code via its Lambda service.
Despite this being more limiting due to the inefficiency of
Javascript code, we compared the cost of running three large
Javascript-based workloads on our platform and Lambda.
In this experiment we ran “blur”, “rotate” and “convolve”
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TABLE IV
AVERAGE COST OF IMAGEMAGICK FUNCTIONS PER IMAGE OF THE

25,000 DATASET FOR PROPOSED PLATFORM AND AMAZON’S LAMBDA.

Function Lambda Cost ($) Proposed Platform
Cost ($)

Ratio

Blur 4.74 × 10−5 1.42 × 10−5 3.34
Convolve 1.68 × 10−5 6.05 × 10−6 2.78

Rotate 5.5 × 10−6 6.8 × 10−6 0.81
Overall Average 2.32 × 10−5 9.20 × 10−6 2.52

operations from the Javascript version of the widely-used
ImageMagick image manipulation program [32]. We chose
these functions as they represent a cross section of compu-
tational requirements of the various ImageMagick functions.
Each function was executed on 25,000 images encompassing
a wide variety of sizes and pixel counts. We also opted for
the 1024MB-memory configuration for all Lambda functions
to avoid any memory bottlenecks during execution. Again,
our platform was tuned to match the execution time of each
workload in Lambda. This was done because the latter is
dependent on how quickly requests can be sent to call the
functions through the Amazon Web Service Command Line
interface (or any other such API), while the execution time
for workloads in our platform is completely tunable based on
their specified TTC. This flexibility of TTC-abiding execution
per workload is an advantage of our proposal against Lambda.

A comparison of the cost of executing the workloads is
given in Table IV. It is interesting to notice that, as the run
time of the function decreases, Lambda becomes a more viable
option. For example, the average cost of running the most
compute-intensive function (Blur function in Table IV) was
3.34 times higher on Lambda than it was on our platform.
In contrast the average cost of running the fastest and least
compute-intensive function (the rotate function) was found to
be slightly less on Lambda than on our platform. Overall,
we were able to run the workloads on our platform at more
than 2.5 times lower cost (60% reduction) in comparison to
Amazon Lambda. This provides for substantial profit margin
for a cloud service provider to deploy a large-scale multimedia
application via the proposed approach instead of Lambda.

VI. CONCLUSIONS

We propose and explore three novel aspects for re-
source management and prediction in Computation-as-a-
Service (CaaS) frameworks: (i) a resource allocation algo-
rithm based on proportional fairness; (ii) the allocation or
termination of compute units based on the Additive Increase
Multiplicative Decrease (AIMD) algorithm; (iii) the prediction
of compute-unit seconds for each type of task with each
executed workload via a Kalman-based estimator. Experiments
based on Amazon EC2 spot instances demonstrate that, unlike
all existing Platform-as-a-Service and Software-as-a-Service
frameworks, our platform provides for extreme scaling of
computing tasks (like large-scale transcoding, face detection
and feature extraction workloads), without requiring any mod-
ification in the users’ code base, and at substantially-reduced
cost against all other alternatives. In addition, our platform
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Fig. 6. Spot Price for various instance types from 11th of April to the 11th

July 2015

allows for execution under time-to-completion constraints,
unlike other platforms. The baseline form of the proposed
CaaS framework is available at www.dithen.com.

APPENDIX A

We briefly analyze the computation costs of Linux instances
on AWS EC2, as EC2 is considered to be the largest public
cloud service provider today [33] and our system is tested
and deployed on the EC2 infrastructure. A comparison of
the cost and EC2 compute units (ECUs) of various instance
types is given in4 Table V. An ECU is defined as “equivalent
CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon
processor”. The m3.medium instance (utilized in this paper)
is a single CU instance with clock speed of 3.0–3.6GHz. From
the table we can also see that the larger instances consist of
increasing numbers of CUs (i.e., virtual cores available for
computations) with similar clock speeds. We can also see
that the “On Demand” cost and spot prices are both linearly-
dependent on the number of CUs. Thus, we can conclude that
it is more efficient to use a large number of cheaper instances
than small number of more expensive instances, as it allows
for greater granularity when controlling the number of active
instances without any corresponding increase in cost.

From Table V we can also see the difference between
the “On Demand” cost and the Spot price5. Spot instances
are instances that will only function when a user’s bid is
greater than the current spot price. Essentially, the user gives
up certainty of having computational resources available, in
exchange for a significant reduction in the cost. We can
see from Table V that this reduction ranges from 78% to
89%. However, it is difficult to run a CaaS service without
guarantees of the availability of computational resources, so
an analysis of the fluctuation of the spot price is necessary to
determine if spot instances should be utilized.

4Table V does not include all instance types available on Amazon’s EC2.
However, all non-included instances are memory, computation or storage
variants of the instances depicted in Table V.

5The Spot prices depicted in Table V were taken on the 10th July 2015.

http://www.dithen.com
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TABLE V
COST OF VARIOUS LINUX INSTANCES ON THE AMAZON EC2 PLATFORM IN THE NORTH VIRGINIA REGION

Instance Type m3.medium m3.large m3.xlarge m3.2xlarge m4.4xlarge m4.10xlarge

EC2 compute units (ECUs) 3 6.5 13 26 53.5 124.5
CUs 1 2 4 8 16 40
On-demand cost ($) 0.067 0.133 0.266 0.532 1.008 2.52
Spot price ($) 0.0081 0.0173 0.0333 0.066 0.1097 0.5655
Cost reduction when using spot (%) 88 87 87 88 89 78

The spot instance price for various instance types in the
three-month period from the 11th of April to the 11th July
2015 is shown in6 Figure 7. Evidently, the volatility of
the spot price is proportional to number of CUs that an
instance possesses. Therefore, while it would be difficult to
rely on a m4.10xlarge spot instance, the spot price of the
m3.medium spot instance is remarkably stable. Specifically,
at no point in the three month period does the m3.medium
spot price exceed $0.01. Therefore, we can conclude that
a significant reduction in cost can be achieved by using
m3.medium spot instance with little effect on the reliability
of the service, and with more flexibility than when using larger
spot instances with more CUs.
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