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Abstract 

We present a synthetic route for the realization of ultrathin freestanding nanoparticle 

membranes that are built of gold nanoparticles protected with trimethoxysilane-bearing 

ligands. The mechanism relies on interfacial assembly in an oil-water mixture. Upon shaking, 

nanoparticles are transported to the liquid-liquid interface of the oil droplets and form a 

network through the formation of Si-O-Si bridges. Reticulation of the nanoparticles during the 

dynamic process of droplet coalescence allows the formation of ultrathin membranes of only a 

few NP-layers in thickness and square centimeters in dimension. The membranes can be 

manipulated, such as locally perforated, without causing their collapse. Furthermore they cqn 

be transferred onto solid or holey substrates. The synthetic route is compatible with a co-

assembly of dopants. As an example, membranes were doped with single walled carbon 

nanotubes, which resulted in a sizable increase of their electric conductivity. 
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Introduction 

While nanoparticles (NPs) possess interesting properties, their assembly into organized 

suprastructures has been pursued to give access to novel physical and chemical behaviors.[1–5] 

For example, the realization of large-scale films (i.e. quasi bi-dimensional assemblies) is a 

promising field.[6,7] By removing the need of a support, realization of freestanding films can 

provides further advantages.[8,9] For catalytic[10–13] or sensing devices,[14–16] higher 

accessibility of the reagents to the NPs provides a functional advantage. In addition, the 

absence of substrate allows mass transport through the assembly, an essential aspect for 

filtration applications.[17,18] While lightweight and flexible, these systems possess very high 

robustness, and can reversibly withstand significant deformations,[19,20] which allows the 

realization of very accurate mechanical systems.[21,22] The mechanical properties necessary to 

achieve a freestanding material can be obtained through covalent bonds,[23–27] metal 

coordination[28] as well as non-covalent[17,19] reticulation or through the co-assembly of the 

NPs with polymers,[29] DNA[30] or peptides.[31] 

Besides the classical thin-film assembly on a solid substrate (drop casting,[32] spin-

coating,[27,33] layer-by-layer deposition[8]) followed by a detachment step, interfacial assembly, 

and especially liquid-liquid assembly, is a very efficient way to obtain well-defined films or 

membranes[34–37] (please note that we define in this context any freestanding thin layer as 

membrane, regardless of selective mass-transport properties). These approaches rely on the 

possibility of NPs to adsorb and pack into a dense network at an interface. This can occur if 

the free enthalpy of the nanoparticles bounds at the interface is lower than that of the NPs in 

either of the two phases.[38–40] The surface of NPs should thus possess specific wetting 

properties to guarantee a stable adsorption at the interface. Such behavior can be obtained 

using nanoparticles with a Janus-type anisotropic surface functionalization[41] or having 
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systems that will spontaneously break their symmetry and form Janus systems in-situ.[42] This 

can also be obtained by carefully modifying locally the properties of one of the solvents to 

create a layer of intermediate characteristics, for instance by injecting locally a 

compatibilizing reagent such as ethanol[43] or by applying an electric field.[44] 

Hereby, we propose an innovative approach to achieve the formation of ultrathin free-

standing and mechanically resilient membranes. The membranes are constituted of gold 

nanoparticles (AuNPs) that are reticulated by bridging mercaptopropyltrimethoxysilane 

(MPTMS) ligands which can cross-link through the formation of Si-O-Si bonds. Our 

approach relies on the formation of an unstable oil-in-water emulsion, in which AuNPs 

assemble at the surface of the oil droplets. Upon coalescence of the droplets, the decreasing 

available surface causes the AuNPs to close-pack and cross-link via the MPTMS ligands, 

forming an ultrathin membrane that remains freestanding in the water-phase. This dynamic 

interfacial assembly guarantees the presence of only a few NP-layers, with monolayer-thin 

domains easily obtained over several square-millimeters. Furthermore, the membranes can 

then be transferred onto solid or holey support substrates. This synthetic route is compatible 

with the presence of functional dopants that are physically immobilized in the AuNPs 

network, making this a promising way to form functional membranes by combining targeted 

properties through co-assembly. Since the preparation procedure involves the intimate contact 

of the water and oil phases before cross-linking, this could be used to associate components 

dispersed in water with AuNPs dispersed in the organic phase, a feature difficult to achieve 

with systems at equilibrium. We demonstrated this for percolating carbon nanotubes that 

resulted in an electrically conductive membrane.  

 

Results and interpretation 

 

Nanoparticles synthesis 
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Nanoparticles were prepared following a methodology adapted from Zheng et al.,[45] using 

MPTMS as ligand. In that synthetic route, the use of a gold (I) complex and of a mild 

reducing agent allows a good control over the size distribution of the sample. Furthermore, 

this reaction can be performed in a wide variety of solvents systems, and allows the 

preparation of a broad range of ligand-protected nanoparticles, including mixed-ligands.[46,47] 

In the present study, the mean diameter of the obtained AuNPs was 5.2 (±0.9) nm, as 

measured by TEM (Supplementary Materials S1). We chose to use a solvent mixture 

(toluene/ethanol 4:1 v/v) in order to allow a good solubility of all reagents and products 

during the synthesis. Anhydrous solvents were used in order to limit the hydrolysis (and 

subsequent condensation) reaction of the MPTMS ligands.  After synthesis, the solvent was 

exchanged to dichloromethane (DCM), in which the methoxy-protected nanoparticles were 

readily soluble. DCM is also ideal for the interfacial assembly process, as it has a density 

above 1, and possesses a slight miscibility with water (16 g/L)[48] that leads to a more efficient 

phase transfer of the nanoparticles. 

 

Membrane preparation 

 

Membranes were prepared by the addition of a mildly acidic (pH = 2) or basic (pH = 14) 

water solution to a dilute AuNPs suspension in DCM and subsequent manual shaking. The 

formation of the membrane is shown in Figure 1A-D. Given its dynamic nature, we highly 

recommend the reader to see videos of these processes and refer to S2 and S3 in the 

Supporting Information. The system was initially constituted of nanoparticles dispersed in the 

DCM phase with a AuNPs-free aqueous phase situated above (Figure 1A). After vigorous 

shaking, an unstable oil-in-water emulsion was formed and coalesced within seconds (Figures 

1B and 1C). During the coalescence, the AuNPs assembled around the droplets of DCM and 

formed a membrane. After full coalescence and sedimentation of the DCM to the bottom of 
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the vial, the membrane remained free-standing in the water phase, and is attached to both the 

air/water and water/DCM interfaces. This resulted in the formation of a continuous 2D 

membrane that spanned vertically across the full heights of the water phase, as shown on 

Figure 1D. Once the membrane was formed and its surface stabilized, unbound AuNPs were 

released in the DCM phase, as evidenced by the presence of a tenuous flow of ruby-red color 

in the DCM phase on Figure 1D. This phenomenon may contribute to the control of the 

membrane thickness, as excess AuNPs tended to be released instead of building a 

supplementary monolayer. Interestingly, while unperturbed membranes were stable for 

several hours, vigorous shaking of the system led momentarily to a dispersion of the 

nanoparticles that retrieved a ruby-red color for a few seconds. The movie S2 in the 

Supporting Information shows how a new and intact membrane was then formed as the DCM 

coalesced again. The cross-linking of the AuNPs can be followed by the change in color of 

the AuNPs (Figure 1E). Before shaking as well as in the early stages of the coalescence, the 

solution had a bright ruby red color that is attributable to the plasmon absorption band of 

dispersed AuNPs. Upon coalescence, the nanoparticles reached a critical surface 

concentration that forced them into close-packing. This resulted in an abrupt color change 

towards the violet. Accordingly the characteristic absorbance spectra broadened and the 

position of the maximum shifted from 517nm to 560 nm, corresponding to the plasmon 

coupling of vicinal nanoparticles.[49] 
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Figure 1: A-D: Photographs of an AuNPs in DCM-water system before shaking (A) and at 

different stages of the coalescence of DCM (B-D), The arrow in D indicates a release of some 

AuNPs that were not integrated in the membrane. E: Normalized absorbance spectra of 

AuNPs in suspension (plain) and as a membrane suspended in water (dashed). 

 

Based on our observations, we can speculate the following mechanism, represented on Figure 

2. After vigorous shaking, we form an unstable DCM-in-Water emulsion that exhibits a high 

interfacial area. Under acidic or basic conditions, a fraction of the methoxy groups of 

MPTMS ligands are cleaved, providing reactive Si-OH moeities. Partially unprotected 

nanoparticles have intermediate solubility properties and are transported to the DCM/water 

interface to form a local 2D assembly.[50] On this interface, condensation of Si-OH groups 
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occurrs between adjacent AuNPs to form Si-O-Si bridges.[51] As the DCM droplets coalesce 

and sediment towards the bottom of the vial by gravity, the interfacial area decreases. AuNP 

rafts on this interface are therefore brought in contact and bind with one another to form a 2D-

network. This results in the formation of a continuous membrane that is spanning over several 

square centimeters. 
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Figure 2: Scheme of the anticipated mechanism for the formation of AuNP membranes. (A) 

AuNPs are initially in the oil phase, with non-hydrolyzed MPTMS. (B) Upon shaking, small 

DCM droplets in water are formed, and partially hydrolyzed AuNPs assemble at the oil-water 

interface. (C) As the droplets coalesce, the interfacial surface decreases, and induces close-

packing of the AuNPs. (D) This results in a membrane that remains in the water phase, as the 

DCM retracts by gravity. (E) Mechanical stability of the membrane is assured by 

condensation of the MPTMS ligands around the nanoparticles while they are at the interface. 

 

The success of the nanoparticles assembly was dependent on several parameters, that were 

of chemical as well as geometrical nature. The role of crucial parameters for the formation of 

membranes is summarized in Table 1. We refer to a video showing membrane formation 

under non-optimized conditions in the Supporting Information (S4). 

 

Conditions Altered experimental parameter Observations 

Optimized acidic conditions N.A. Freestanding membrane spread 

vertically in the aqueous phase. 

Alkaline route followed by 

neutralization (optimized 

alkaline conditions) 

Alkaline route followed by 

neutralization with HCl (7 mol/l) 

and shaking.  

Stable freestanding membrane was 

formed. 

Non-reticulating 

nanoparticles 

Octanethiol-protected AuNPs No phase transfer. 

Absence of shaking No shaking. Reaction is carried out 

overnight. 

Partial transport of the AuNPs at 

the liquid-liquid interface. 

Aggregation of the nanoparticles 

in the DCM. 

Higher volume of the 

aqueous phase 

15 ml HCl (0.1 mol/l)  Membrane did not spread in the 

aqueous phase. 

Air bubbles trapped under the 

membrane could lift the membrane 

locally, forming “veils”. 

Higher NP concentration 0.5 mg/ml AuNPs Foam stabilized by AuNPs formed 

in the water phase. 

Higher acid concentration 1 mol/l HCl Membrane was formed but 

presented inhomogeneities. 

Lower acid concentration 0.001 mol/l HCl No membrane formation over 
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short time. 

Mild alkaline conditions 0.001 mol/l NaOH No membrane formation. 

Alkaline conditions 1 mol/l NaOH + 50 mmol/l 

Na2CO3 
Membrane formed then collapsed 

instantly. Identical behavior in 

absence of Na2CO3. 

 

Table 1: Influence of crucial experimental parameters on the formation of AuNP membranes. 

Optimized conditions are: 6 ml of MPTMS-protected AuNPs suspension (0.05 mg/ml Au) in 

dichloromethane, in contact with 7.5 ml of an aqueous HCl solution (0.2 mol/l). The 

membrane is obtained by shaking. The various processing tests were performed following the 

alteration stated above under otherwise identical experimental conditions. 

 

While partial miscibility of the organic solvent with water seemed crucial to ensure 

hydrolysis, the relative density did not play a role. Membranes could also be formed when 

using toluene, which has a lower density than water. The use of DCM was, however, 

preferred, as the AuNPs membrane was then formed in the top phase and thus more 

accessible. Importantly, geometric factors had to be considered. Assuming dense packing, the 

maximum coverable area is proportional to the quantity of AuNPs. This area has to be 

compared to the dimensions of the water phase (height and vial diameter). Accordingly, 

membrane were not formed when the quantity of AuNPs was insufficient (or, equivalently, if 

the volume of the aqueous phase was to high). On the opposite case, high quantities of AuNPs 

led to the formation of a reticulated foam with several small-sized cells to accommodate the 

large coverage surface. A geometrical calculation, considering hexagonal 2D close-packed 

nanoparticles with a packing density of 0.907, indicates that 1 mg of 5.2 nm-sized AuNPs can 

cover 165 cm2 (see SI). The volume of the aqueous phase was chosen accordingly so that the 

selected amount of AuNPs could form a monolayer in the vials that were used. 
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The pH of the water phase is another important factor, as it was found to influence the 

kinetics of hydrolysis and thus the reticulation of the ligands. The pH-dependent reactivity of 

silicon alkoxides is well-known, being the staple of silica sol-gel chemistry.[51] Two related 

parameters were crucial for the preparation of membranes. The first one was the speed of 

reaction compared to the one of coalescence of the oil droplets, the second one the stability of 

the bridging Si-O-Si bonds in the medium. To fulfill the first condition, the water phase had to 

be either acidic enough (pH ≤ 2) or basic enough (pH ≥ 12) in order to obtain a hydrolysis rate 

of the methoxy groups that was sufficient to create a network during the few seconds of 

coalescence. Furthermore, very acidic solutions ([H3O
+] > 1 mol/L) led to the formation of 

aggregates instead of a homogeneous membrane. One reason could be that high acid 

concentrations led to a significant hydrolysis in the (hydrated) DCM phase before the 

interfacial assembly, and thus to a reticulation of the AuNPs in solution to form 3D-

aggregates. In addition, the reaction conditions had to be chosen so that hydrolysis of Si-O-Si 

bridges remained slow enough to allow the AuNPs to assemble into a continuous 2D 

membrane. This forbade extremely low, or high pH (pH < 0 and pH > 10).[51] Once again, the 

conditions described in the experimental section were optimized to obtain reproducible and 

homogeneous AuNP membranes. In the acidic range, these two regimes were compatible. We 

developed one route for the preparation of membranes using mildly acidic (pH = 2) conditions 

as it catalyzed hydrolysis in the course of DCM coalescence, while avoiding the formation of 

aggregates. In the alkaline range, domain of stability of the Si-O-Si bridges and domains of 

sufficient hydrolysis rate did not overlap, so that stable AuNPs membranes could not be 

formed in basic conditions. It was however possible to form the membranes through alkaline 

hydrolysis in two step process.  The first step consisted of hydrolyzing MPTMS under highly 

basic conditions (1 mol/L NaOH) in the presence of a buffering salt (0.05 mol/L NaHCO3). In 

this case, the high lability of the Si-O-Si bond in alkaline media led to a lower mechanical 

stability and thus to a collapse and redispersion of the membrane shortly after its formation. In 
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a second step, the base was neutralized after partial hydrolysis by addition of a precise volume 

of concentrated acid (7 mol/L HCl), in order to significantly slow down the hydrolysis of the 

reticulating Si-O-Si network. The presence of the buffering salt facilitated the control of the 

resulting neutral pH by making it less sensitive to small variations of the acid volume. A 

movie of a membrane formation following this route can be seen in the Supporting 

Information (S3). 

 

Membrane deposition 

 

Once formed, membranes spread vertically over the height of the water phase. While their 

mechanical resistance was sufficient to support their own weight, their surface could be easily 

manipulated and perforated with a sharp object, such as a needle (movie in Supporting 

Information S2). Such action caused localized holes, but did not lead to the collapse of the full 

membrane, indicating that the assembly was not stabilized by surface tension. 

Samples for TEM observation were prepared by immersing a grid into the solution and 

bringing it in contact with the membrane. We used either carbon-coated or bare copper grids 

having both a span of 42 µm. As depicted in Figure 3B and C, the membranes are constituted 

of a dense-packed assembly of AuNPs. The network presents relatively few packing faults, a 

remarkable feature for a system assembled through a dynamic process within seconds. Images 

obtained at a lower magnification (Figure 3A) indicate that the membrane spread evenly over 

full squares of the TEM grids, with relatively few folding defects or ruptures. Membranes 

were also deposited onto bare copper TEM grids. In absence of a support for the membrane, 

we were unable to observe an intact membrane spread over the full hole of the grid 

(42x42 µm). However, we were able to observe domains where the membrane was pinned to 

corners of the squares. In such areas, freestanding membranes spread without a support, over 

distance of several tens of micrometers (Figure 3D,E,F). In this case, the membrane was 
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constituted of more than one monolayer, as indicated by the overlapping of nanoparticles 

(Figure 3F). Please note that this may be an observational bias, as a thicker membranes are 

more robust and thus more likely to be observable by TEM. 

 

 

Figure 3: TEM micrographs of an AuNP membrane supported on a carbon film (A-C), and 

freestanding (D-F). The scale bars represent A: 20 µm; B: 50 nm; C: 20 nm; D: 20 µm; E: 10 

µm, F: 20 nm.  

 

It was also possible to coat centimeter-sized substrates using the same deposition technique, 

exemplarily shown for cellulose-ester in Figure 4A. This substrate exhibits a sponge-like 

structure with walls having a thickness of around 300 nm (Figure 4B). SEM-imaging of the 

substrate indicated a conformal deposition on the surface of the substrate (Figure 4C). To 

some extend, a coarsening of the morphological features was observed after coating. This can 
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be explained by the spreading over several edges of the sponge texture, resulting in a 

smoother surface. 

   

 

Figure 4: A: Photograph of a cellulose ester substrate coated with an AuNP membrane. B,C: 

SEM micrographs of the cellulose ester substrate before (B) and after (C) coating. The scale 

bars represent 2 µm. 

 

Long-distance homogeneity of the membrane was observed by optical microscopy and 

integrated micro-spectroscopy. Our setup allowed spectroscopy of the membrane supported 

on carbon with a collection spot size of 7 µm. This spatial resolution allowed to probe 

different meshes on the TEM grid as well as several points on the same mesh. Typically, the 

interior of the mesh was found to be homogeneous in color, and absorbance spectra were 

similar in shape and intensity (Figure S6). The spectra exhibited a broad absorption band. 

This band can be attributed to a broadened and red-shifted plasmon band resulting from the 

close-packing of nanoparticles. The homogeneity in spectral shape and intensity is consistent 

with the presence of a homogeneous membrane of nanoparticles on top of the TEM grid. 

Furthermore, the film had the same thickness in the different points of the grid, probably 

constituted of a dense monolayer, as indicated by TEM (Figure 3). 
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We were able to observe a domain were the nanoparticle membranes formed buckles. In 

this domain, the presence of homogeneous darker zone was attributed to extra nanoparticles 

layers on top of the base membrane. The respective collection spots are indicated as dotted 

white circles in Figure 5A, and the associated spectra are represented in Figure 5B. Intensity 

of the absorbance varied depending on the point of collection. Absorbance values were 

normalized to the one of the base membrane by dividing the value by 0.085. For each 

measurement point, the maximal normalized absorbance was close to an integer value. As 

observed in the case of graphene,[52] this is in agreement with the stacking of several layers of 

the Au NP membrane, each one contributing equally to the material absorbance. 

 

 

Figure 5: Optical microscope views (A) of an AuNP membrane supported on a carbon film. 

The dashed circles correspond to the zone where micro-spectroscopic measurements were 

performed. (B) Plot of corresponding spectra between 450 and 700 nm. The number indicates 
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the anticipated number of monolayers, while the letter identify the spectrum. The scale bar 

represents 20 µm.  

 

 

 

CNT-doped AuNP membranes 

 

Having proven the possibility to form thin membranes at the transient water/DCM 

assembly, we studied the incorporation of dopants with complementary function. This 

approach relies on the phenomena that most types of nanomaterial are transported, at least 

temporarily, to the interface and may therefore co-assemble in the membrane formation 

process.[53,54] In order to provide electronic conduction properties to the membrane, we 

incorporated single-walled carbon nanotubes SWCNTs, following the acidic route to form the 

membrane. Provided the loading rate was sufficiently low (below 20 w%), the addition of 

SWCNTs did not perturb the formation of the membrane. Incorporation of the SWCNTs can 

be confirmed by the darker color of the membrane along with their depletion from the water 

phase. TEM-imaging indicated that the membranes formed in presence of SWCNTs were 

typically also constituted of a single AuNPs monolayer, in which the SWCNTs were 

integrated (Figure 5A, B). Considering that we used non-functionalized nanotubes dispersed 

in water with a surfactant (Triton X-100), chemical bonding between SWCNTs and MPTMS 

is unlikely, and thus we anticipate that the immobilization was obtained through physical 

bonding or encapsulation of the SWCNTs by the AuNPs. Resistivity of the SWCNTs was 

measured at 12 kΩ/sq (2-points set-up) for a doping-rate of 11.7 w%. while undoped 

exhibited no measurable conductivity (R > 20 MΩ/sq), as expected for monolayers of weakly 

coupled AuNPs.[55] Taking into account the very low thickness of the membranes (>10 nm), 
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this corresponds to a conductivity of 83 S/cm. While not as high as for pure CNTs films, this 

value is comparable with other ultrathin films of CNT-doped composites.[56] 

 

 

 Figure 6: A,B: TEM micrographs of a SWCNT doped (11.7 w%) AuNP membrane. At this 

doping rate, SWCNTs are well integrated in the membrane. C: TEM micrographs at a higher 

doping rate (28 w%). The AuNPs formed low dimension rafts but did not span to a continuous 

membrane, thus preventing the fusion of SWCNTs.  

 

In the case of higher doping-rate (25 w% and above) membranes were much less stable and 

collapsed quickly. This was attributed to the fact that the SWCNTs could themselves cover a 

very high surface, forming a non-reticulated network. Furthermore, the presence of several 

long objects at the surface of the DCM limited the migration of the nanoparticles during the 

coalescence of the droplets, preventing the formation of a densely reticulated AuNPs network 

(Figure 5C). However, even in the case of excessive doping-rate, the process still allowed the 

preparation of membranes that could be deposited on substrates. While less suitable for 

filtration application, such materials may find applications in catalysis or sensing, given the 

very high accessibility of the NPs in intimate contact with the SWCNTs, along with their high 

conductivity. 

 

Conclusion 
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We hereby described a facile procedure for the realization of freestanding membranes that 

are constituted of monolayers of AuNPs. The process is based on the self-assembly of the 

AuNPs at an instable DCM-water interface, followed by the reticulation of the AuNPs and 

immobilization of the network by the formation of Si-O-Si bridges that arise from the ligand 

shell of the AuNPs. The phenomenon is dynamic and occurs upon coalescence of the DCM 

droplets, as AuNPs are brought to higher proximity. Since the formation arises at the 

boundary between two phases, the process leads to well-defined monolayers, with a thickness 

below 5 nm. AuNP membranes can easily be transferred onto substrates, or spread over holes 

up to several dozen of micrometer. Furthermore, the AuNPs co-assemble with other type of 

nanomaterials, and immobilize them in the membrane, as demonstrated here with SWCNTs. 

This approach may be extended to other types of nanoparticles, either as the base of the 

membrane or as the functional charge and other reticulation reactions may also be used, to 

accommodate more fragile systems. This approach represents a versatile route for the 

realization of ultrathin functional membranes and has the potential to be applied for the 

realization of a wide range of applications. 

 

Materials and method 

Synthesis of MPTMS-protected AuNPs 

AuClP(Ph)3 (0.2 mmol) and MPTMS (0.2 mmol) were dissolved in a mixture of anhydrous 

toluene (80 ml) and anhydrous ethanol (20 ml). The solution was subsequently heated to 

reflux under a circulation of argon. Once the temperature stabilized, 1.3 mmol of borane tert-

butylamine complex was dissolved in 15 ml anhydrous ethanol and then rapidly added to the 

solution. The solution, initially colorless, turned progressively brown then red as AuNPs 

formed. The reaction was maintained under reflux and argon circulation for 1 h and then let to 

cool down. The solvent was subsequently evaporated under reduced pressure, until the 

volume reached 20 ml, and the nanoparticles were then precipitated by adding 80 ml of 
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anhydrous hexane. The NPs were washed three times by centrifugation in hexane and then 

dispersed in 40 ml anhydrous dichloromethane (DCM). Finally, the suspension was 

centrifuged once, and the supernatant containing dispersed nanoparticles was stored under 

argon. Nanoparticles suspensions stored under anhydrous conditions were stable over several 

weeks. 

 

Formation of the gold nanoparticle membranes 

Au-MPTMS stock suspension was diluted in DCM to reach an absorbance of 0.6 at 517 nm 

(this corresponds to a concentration of 0.05 mg/ml). Two routes were designed to obtain 

membranes, one in acidic and the other one in alkaline conditions. 7.5 ml of Au-MPTMS 

suspension and 6 ml of an aqueous solution containing either HCl (0.01 mol/L) or NaOH (1 

mol/L) and NaHCO3 (0.05 mol/L) were introduced in a narrow cylindrical vial (2.8 cm inner 

diameter). The system was vigorously shaken manually until obtaining a (temporary) 

homogeneous dispersion. As the DCM phase, depleted of its AuNPs, coalesces and moves to 

the bottom of the vial, the AuNP membrane forms and remains freestanding in solution. In the 

alkaline route, the solution was neutralized after shaking with a precise volume of 

concentrated HCl solution (7 mol/L). A new membrane could be formed subsequently by 

repeated shaking. The exact volume of acid needed to reach pH = 7 was determined within a 

1 µL range with test solutions prior to the addition. 

 

SWCNT-doped membranes 

SWCNT (Sigma-Aldrich, aqueous ink (1.00 mg/ml)) were diluted in HCl (0.01 mol/L) to a 

concentration of 50 µg/ml and dispersed using ultrasonication (10 min, 200 W, 20 kHz, 

solution maintained at 0ºC). Membranes were prepared following the acidic route described 

earlier, by replacing a fraction of the HCl solution with SWCNT-HCl. For electrical 

measurements, membranes were deposited onto cellulose ester filters, then cut as 1 cm bands. 
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Resistances were measured using a Hewlett Packard HP 4145B semiconductor analyzer, 

between two electrodes separated by 1 cm. 

 

Transmission Electron Microscopy 

Samples were prepared by passing TEM grids (400 mesh, bare or carbon-coated, Electron 

Microscopy Sciences) through the AuNP membrane. The observations were performed on a 

Philips CM-12 microscope. Electron source was a LaB6 crystal, operating under an 

accelerating tension of 100 kV. 

 

Scanning Electron Microscopy 

Observations were performed on a FEI XLF30-FEG, under an acceleration tension of 27 

kV. Samples were attached on aluminum holders using carbon double-face tape, and carbon 

was evaporated on their surface prior to observation. 

 

Micro-spectroscopic measurements. 

Spectroscopic absorption measurements were carried out on an Olympus BX61 microscope 

with 50 × magnifying objective (LMPlanFl, NA 0.5) and detected through a micro-

spectroscopy port with a 50 m fibre and an Ocean Optics QE 65000 spectrometer. This 

resulted in a collection spot size of around 7 m. 

 

 

 

Supporting Information 

Movies of the membrane formation, TEM view of the nanoparticles an UV-Vis absorption of 

amembrane on several points is available as SI. Supporting Information is available from the 

Wiley Online Library or from the author. 
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Table 

 

Conditions Altered experimental parameter Observations 

Optimized acidic conditions N.A. Freestanding membrane spread 

vertically in the aqueous phase. 

Alkaline route followed by 

neutralization (optimized 

alkaline conditions) 

Alkaline route followed by 

neutralization with HCl (7 mol/l) 

and shaking.  

Stable freestanding membrane was 

formed. 
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Non-reticulating 

nanoparticles 

Octanethiol-protected AuNPs No phase transfer. 

Absence of shaking No shaking. Reaction is carried out 

overnight. 

Partial transport of the AuNPs at 

the liquid-liquid interface. 

Aggregation of the nanoparticles 

in the DCM. 

Higher volume of the 

aqueous phase 

15 ml HCl (0.1 mol/l)  Membrane did not spread in the 

aqueous phase. 

Air bubbles trapped under the 

membrane could lift the membrane 

locally, forming “veils”. 

Higher NP concentration 0.5 mg/ml AuNPs Foam stabilized by AuNPs formed 

in the water phase. 

Higher acid concentration 1 mol/l HCl Membrane was formed but 

presented inhomogeneities. 

Lower acid concentration 0.001 mol/l HCl No membrane formation over 

short time. 

Mild alkaline conditions 0.001 mol/l NaOH No membrane formation. 

Alkaline conditions 1 mol/l NaOH + 50 mmol/l 

Na2CO3 
Membrane formed then collapsed 

instantly. Identical behavior in 

absence of Na2CO3. 

 

Table 1: Influence of crucial experimental parameters on the formation of AuNP membranes. 

Optimized conditions are: 6 ml of MPTMS-protected AuNPs suspension (0.05 mg/ml Au) in 

dichloromethane, in contact with 7.5 ml of an aqueous HCl solution (0.2 mol/l). The 

membrane is obtained by shaking. The various processing tests were performed following the 

alteration stated above under otherwise identical experimental conditions. 

 

 

 

Table of content 

 

 

 

Membrane of cross-linked Au Nanoparticles are assembled at an oil-water interfaces 

during the coalescence phase. Owing to the decreasing surface available, Au NPs are driven 

to pack and form a membrane constituted of one or a few monolayers, that span over square 

centimeters. Process is compatible with the co-assembly of other nano-sized objects, as 

demonstrated with Carbon Nanotubes. 
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S1: TEM view of unbound AuNPs directly from NP synthesis. 

 

 
 

S2:  a) Movie of a membrane formation from initially unbound AuNPs in suspension. 

 b) Movie of a membrane re-formation from a collapsed membrane. 

 c) Movie of a membrane perforation with a needle. 

 

 

S3: Movie of a membrane formation in in alkaline conditions. 

 

S4: Movie showing attempted formations of membranes in non-optimized conditions. 

 

 

S5: Calculation of the surface covered by AuNPs. 
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- The number of nanoparticles 𝑁𝑁𝑃 per unit of mass 𝑚𝐴𝑢 is given by 

 

𝑁𝑁𝑃 =
𝑚𝐴𝑢

𝑚𝑁𝑃
=

𝑚𝐴𝑢

4
3𝜋𝑅𝑁𝑃

3𝜌𝐴𝑢

 

 

Assuming monodisperse nanoparticles and the same density for Au as NP and as a bulk 

material, 1 mg of AuNPs  (diameter = 5.2 nm) is constituted of 7 1014 nanoparticles. 

 

- The surface SNP that can be covered is the projected surface of all nanoparticles, divided by 

the density of the 2D-hexagonal packing: 𝑑𝐻𝑒𝑥 = 0.907 

 

𝑆𝑁𝑃 = 𝑁𝑁𝑃 ∙
𝜋𝑅𝑁𝑃

2

𝑑𝐻𝑒𝑥
=

3𝑚𝐴𝑢

4𝑅𝑁𝑃𝜌𝐴𝑢𝑑𝐻𝑒𝑥
 

 

Hence, 1 mg of AuNPs can cover around 165 cm2. 

 

 

 

S6: Absorbance spectra at several points of a AuNP membrane supported on a TEM grid. 

Measurements were realized in several squares of the grid, several tenth of micrometers away 

from each other. 

 

 
 

 

 


