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Abstract 

Several preclinical and some clinical studies have revealed that the mammalian target of rapamycin 

(mTOR) signaling pathway is involved in both genetic and acquired epilepsy syndromes.  

Excessive activation of mTOR signaling, as a consequence of loss-of-function of genes encoding 

for tuberous sclerosis complex (TSC) 1 and 2, is linked to the development of cortical 

malformations and epilepsy. This mTOR hyperactivation is associated with different epileptogenic 

conditions under the term of 'mTORopathies' such as tuberous sclerosis, focal cortical dysplasia, 

hemimegalencephaly and ganglioglioma. mTOR overactivation produces brain abnormalities that 

include dysplastic neurons, abnormal cortical organization and astrogliosis. mTOR inhibitors (e.g. 

rapamycin) have consistent protective effects in various genetic (e.g. TSC models and WAG/Rij 

rats) and acquired (e.g. kainate or pilocarpine post-status epilepticus) epilepsy animal models. 

Furthermore, clinical studies in patients with TSC and cortical dysplasia (CD) have confirmed the 

effectiveness of mTOR inhibitors also in epileptic patients. Therefore, mTOR is currently a very 

good candidate as a target for epilepsy and epileptogenesis. This review describes the relevance of 

the mTOR pathway to epileptogenesis and its potential as a therapeutic target in epilepsy treatment 

by presenting the most recent findings on mTOR inhibitors. 

 

Keywords: mTOR; mTOR inhibitors; Epilepsy; Epileptogenesis; Tuberous Sclerosis Complex; 

Animal Epilepsy Models;  
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1. Introduction 

Epilepsy is a chronic neurological disorder characterized by recurrent seizures and caused by a 

large variety of genetic and acquired etiologies. Although many epilepsy patients are seizure-free 

when treated with drugs, about a third of patients remain still drug-resistant [1-3]. In addition, even 

when seizures are well controlled with antiepileptic drugs (AEDs), currently available drugs are 

only a symptomatic therapy in suppressing seizures (antiseizure or anticonvulsant) but do not have 

disease-modifying properties for preventing or reducing the development of epilepsy 

(antiepileptogenic) [4-6]. Therefore, novel treatments need to be searched to address both the 

problem of drugs-resistant epilepsy and the lack of disease modifying therapies. 

The mammalian target of rapamycin (mTOR) pathway regulates a number of important 

physiological functions and in the brain it is clearly involved in cell proliferation, growth and 

survival, protein synthesis, neuronal morphology and cortical development [7,8]; more recently, it 

has also been involved in the pathophysiology of several neurological diseases with particular 

attention to the epileptogenic process being indicated as a potential novel target for epilepsy 

treatments [9-12]. Dysregulation of the mTOR pathway has been involved in the development of 

different brain disorders that include focal cortical dysplasia (FCD), tuberous sclerosis complex 

(TSC), ganglioglioma and hemimegalencephaly, all potentially or certainly leading to epilepsy 

[9,13].  

Hyperactived mTOR seem to play a pivotal role in the pathogenesis of different animal models of 

acquired epilepsy, such as infantile spasms (IS), temporal lobe epilepsy (TLE), status epilepticus 

(SE), absence epilepsy, traumatic brain injury (TBI) and neonatal hypoxia–ischemia [11,14]. 

Accordingly, different studies have demonstrated that mTOR inhibitors, such as rapamycin and its 

analogues, decrease the development of seizures preventing epileptogenesis related mechanisms in 

many animal models and in some cases also some anticonvulsant activity has been evidenced 

[11,15,16]. From a clinical point of view, small trials have already indicated some kind of activity 

while larger controlled studies are ongoing using mTOR inhibitors (e.g. everolimus) in patients with 
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tuberous sclerosis complex and intractable epilepsy [17,18]. The importance of the mTOR pathway 

in epileptogenesis associated with tuberous sclerosis has been well demonstrated [19], while its role 

in epileptogenesis occurring in other forms of epilepsy remains to be better clarified and its 

potential as a target to be confirmed [20-22] 

Here, we review the most recent advances concerning the possible role of the mTOR signaling 

pathway in epilepsy and epileptogenesis, the preclinical studies of mTOR inhibitors treatment in 

different models of epilepsy, and the available clinical studies in patients with epilepsy. 

 

2. mTOR Pathways in Neurological Diseases 

The physiological regulation of the mTOR pathway is essential for normal cellular function; while, 

its dysregulation may promote the development/progression of disease under pathological 

conditions such as type 2 diabetes, inflammation, cancer, and cardiovascular disease [8,23,24]. 

Furthermore, abnormal mTOR signaling has been implicated in a variety of neurological disease 

[12,25].  

In the brain, mTOR mediates several processes involved in CNS development including 

neurogenesis, cell survival and migration, but it is involved in some other specific processes such as 

axonal sprouting, axonal regeneration and myelination, dendritic development and microtubule 

dynamics.  A direct role of mTOR in the modulation of glial functions has also been demonstrated 

[12,26,27]. The mTOR pathway is a key regulator during brain development, in fact, it participates 

in the control of protein expression and other cellular mechanisms including neuronal and glial 

differentiation, axon growth, navigation and synaptogenesis, all playing a role in neuronal 

excitability [28-30]. The mTOR pathway can influence neuronal excitability indirectly through 

mechanisms controlling synaptic structure and plasticity. In fact, Ras-PI3K-Akt-mTOR and Ras-

MAPK signaling pathways play an important role in the regulation of dendrite arborisation and 

spine formation, which are critical for the functioning of neurons and neuronal networks [28,29,31]. 
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Accordingly, mTOR pathway also affects neuronal excitability by modulating the expression of ion 

channels and receptors [32-35]. 

Considering the relevant role of this pathway in the brain, its dysregulation, such as loss-of-function 

gene mutations encoding for mTOR inhibitor proteins (e.g. TSC1, TSC2, PTEN), has been involved 

in neurological diseases such as epilepsy, Parkinson’s disease (PD), Alzheimer’s disease (AD), 

Huntington’s disease (HD) and brain traumatisms [11,12,36] but also psychiatric diseases such as 

depression, mental retardation, schizophrenia and cognitive impairment [37]. 

Recently, particular attention has been given to the role of mTORC1 in major depressive disorder 

(MDD) [38]. A post-mortem analysis of the prefrontal cortex (PFC) of subjects with MDD revealed 

deficits in mTOR signaling [39]. Furthermore, Chandran, et al. [40] showed that a chronic 

unpredictable stress (CUS) exposure produces deficits in mTOR signaling pathway in the 

amygdala. In agreement, chronic stress associated with depression induced by long-term 

corticosterone treatment causes an inhibition of the PI3K-Akt-TORC1 pathway [41]. These studies 

show an association between deficits in synaptic proteins and dysregulation of mTOR signaling in 

MDD and annulment of these abnormalities may underlie antidepressant activity. For example fast 

antidepressant response to ketamine, a NMDA receptor antagonist, seems be to mediate by 

activation of the mTOR pathway in the PFC of rats [42] and depressed patients [43]. 

Interestingly, abnormal mTOR signaling has also been implicated in diseases as fragile X syndrome 

[44], Down syndrome, [45] and Rett syndrome [46]. The potential involvement of dysregulated 

mTOR signaling in these neurological disorders characterized by cognitive deficits is likely linked 

to its role in physiological mechanisms of learning and memory [47]. In particular, mTOR plays an 

important role in the consolidation of memory through long-term potentiation (LTP) [33,48]. 

Furthermore, changes in dendritic morphology may represent a structural substrate for memory 

persistence and can be regulated by the mTOR pathway [28,29] whereas abnormalities in dendritic 

morphology have been demonstrated in many neurogenetic syndromes, including TSC, fragile X, 

Down and Rett [44,49]. 
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In contrast, other studies reported a relationship between enhanced mTORC1 activity and memory 

improvement; rapamycin seems to disrupt this process in several behavioral models including 

auditory fear conditioning and Morris water maze task [50,51]. Moreover, rapamycin 

administration decreased both spatial hippocampus memory and consolidation memory in many 

brain regions such as amygdala and hippocampus [50,52-54]. However, mTORC1 hyperactivity has 

been associated with memory deficits in human patients and experimental models of TSC [55]. In a 

mouse model of TSC, rapamycin rescued memory performance, which could be, at least in part, 

related to an abnormal mTOR activity [56].  The importance of mTOR signaling in CNS 

physiology is underscored by the several disorders in which mTOR pathway disruption is 

implicated, such as tumors, autism, mood disorders, neurodegenerative diseases as well as epilepsy 

[36,57,58].  

Finally, another link between mTOR and neurodegenerative diseases could be autophagy, which 

represents a catabolic process. It has been demonstrated how mTOR is a crucial regulator of 

autophagy [59]. A typical hallmark of neurodegenerative diseases, such as Alzheimer’s, 

Parkinson’s and Huntington’s diseases, is the aberrant accumulation of protein aggregates in the 

brain [60,61] and associated neuronal death. The clearance of these proteins would seem to be 

increased by mTOR inhibition [62,63]. Pharmacological manipulation of mTOR signaling is thus 

proving to be a promising therapeutic branch for the treatment of several neurological disorders 

[57].  

 

3. Role of mTOR pathway in epilepsy and epileptogenesis 

Considering mTOR involvement in cellular functions influencing neuronal excitability, it is not 

surprising that this signaling pathway can be responsible for or participate to the development of 

spontaneous seizures, and that this pathway could represent an important target for both 

epileptogenesis and seizure pharmacotherapy [11,20,64]. Since early 2000, many preclinical and 

some clinical data have underscored the importance of mTOR pathway in both genetic and acquired 
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epilepsy syndromes [65]. Excessive activation of mTOR signaling, as a consequence of loss-of-

function mutations of genes encoding for natural mTOR inhibitors such as TSC1 and TSC2 (coding 

for the proteins hamartin and tuberin, respectively), phosphatase and tensin homolog (PTEN) and 

STE20-related kinase adaptor alpha (STRADalpha), are linked both to the development of cortical 

malformations and epilepsy. These malformations or "mTORopathies"-related epilepsies include: 

hemimegalencephaly, ganglioglioma, focal cortical dysplasia (FCD), and tuberous sclerosis 

complex (TSC) [13,66].  

The term "mTORpathies" describes neurological disorders characterized by altered cortical 

architecture, abnormal neuronal morphology and intractable epilepsy as a consequence of excessive 

mTOR signaling, providing a likely histopathological substrate for epileptogenesis [14,67]. On the 

other hand, seizures themselves, in the absence of any other associated pathology, may directly 

cause activation of mTORC1 activity [20]. Many experimental models of genetic and acquired 

epilepsy, in which mTOR hyperactivation was present, are responsive to mTOR inhibitors [15,16]. 

Rapamycin and other mTOR inhibitors decrease seizures, delay seizure development, or prevent 

epileptogenesis in many experimental models [65]. This evidence supports the hypothesis that 

dysregulation of the mTOR pathway seems to be a key condition for the development of 

epileptogenesis and epilepsy. To date, the mechanisms by which mTOR inhibition gives rise to the 

inhibition of seizure activity in several experimental models is still unclear. Nevertheless, the use of 

selective mTOR inhibitors can represent an important new therapeutic strategy for managing or 

eventually preventing epilepsy due to these disorders [9].   

 

3.1 Preclinical Studies 

Dysfunction of mTOR signaling pathway is involved in the pathophysiology of Tuberous sclerosis 

complex (TSC) [68]. However, this dysfunction also plays an important role during the latent phase 

of epileptogenesis of some acquired forms of epilepsy, such as temporal lobe epilepsy (TLE), 

traumatic brain injury (TBI) [69], infantile spams (IS) [70] and neonatal hypoxia–ischemia [71].  
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3.1.1 Tuberous sclerosis complex models 

Among the genetic epilepsy syndromes, TSC has drawn particular attention, since it is strongly 

linked with the dysregulation of the mTOR pathway [10]. TSC is an inherited autosomal disorder 

resulting from a mutation of one of two tumor suppressor genes: TSC1 and TSC2 [72]. In TSC, 

benign tumors may develop in multiple organs such as skin, liver, heart, kidney, lung and the brain, 

in which it is often associated with the development of subependymal giant cell astrocytoma 

(SEGA) among other tumors [73]. Unfortunately, many TSC patients suffer of drug-resistant 

epilepsy [74-76]. mTOR dysregulation in TSC directly affects many downstream mechanisms, 

including alteration of neurotransmitter receptors and ion channel expression, and synaptic and 

neuronal organization, leading to epileptogenesis process [15,77]. In the context of TSC-associated 

epilepsy, aberrant mTOR signaling has been repeatedly demonstrated, and conditional knockout of 

TSC1 or TSC2 in various brain cell populations has been associated with elevated levels of mTOR 

signaling and seizures in several transgenic mouse models [78,79]. Animal models of TSC are 

crucial to study the link between mTOR, TSC and epilepsy [80,81]. Mice with TSC1 or TSC2 

deleted, in specific neural populations (astrocytes or neurons), show neuropathological phenotypes 

(i.e. astrogliosis, neuronal autophagy, macrocephaly, seizures and premature death) similar to those 

found in human TSC [78,82].  

Clinical and pre-clinical studies, using mTOR inhibitors (i.e. rapamycin and everolimus) 

demonstrated the role of mTOR in TSC-associated epilepsy [83,84]. Inhibition of mTOR signaling 

by rapamycin in a mouse model of TSC with conditional inactivation of the Tsc1 gene primarily in 

glia (Tsc1GFAPCKO mice) can prevent astrogliosis, neuronal disorganization and seizures early in 

the course of the disease, suggesting that the aberrant mTOR activation interferes with normal brain 

function and leads to epilepsy [85]. Similarly, using a knock-out mouse model of TSC in which 

Tsc1 was ablated in most neurons during cortical development, rapamycin treatment and its derivate 

everolimus were able to reverse the animal phenotype, rescuing the mutants from epilepsy [86]. 
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Early treatment with rapamycin in Tsc2GFAP1CKO mice, also rescued the mutants from epilepsy and 

increased their survival [87,88].  Rapamycin seems effective not only reducing seizures once they 

start but also in preventing seizures from ever developing as well as many of the pathological and 

molecular changes (as progressive astrogliosis, inflammatory mechanisms, hippocampal 

neurodegeneration, brain hypercellularity) in the brain that likely promote epileptogenesis in these 

mice; this indicates that mTOR may have an anti-epileptogenic effect in these genetic models 

[85,86,88]. However, following discontinuation of rapamycin therapy, these phenotypes at least 

partially return and are accompanied by progressive development of severe seizures and early 

death. Inflammatory signaling mechanisms, particularly the cytokine IL-1β and chemokine 

CXCL10, are abnormally activated in Tsc1GFAPCKO mice; these inflammatory mediators were 

reversed by rapamycin treatment, indicating that cytokine and chemokine signaling is downstream 

from mTORC1 and occurred in astrocyte culture in vitro and before epilepsy onset in vivo [89]. 

Recently, it has been reported a primary role for TORC1 signaling in epileptogenesis, using mice 

with biallelic Tsc1 deletion; this latter resulted in activation of TORC1, enhanced neuronal 

excitability and epilepsy development without any obvious histological changes. Increased TORC1 

activation appears sufficient for the development of epilepsy, even in the absence of changes in 

brain pathology. Rapamycin treatment reduced TORC1 activity, seizure frequency and increased 

survival indicating an important role of mTOR for managing seizures not only in the presence of 

major brain pathology but also in other type of epilepsies that result from increased mTOR 

hyperactivation [90]. Among current AEDs, vigabatrin (VGB) has been shown to have unique 

efficacy in partial seizures related to TSC and infantile spasms [91] and early treatment, even before 

seizure onset, can improve the long-term outcome of epilepsy in patients with TSC [92,93]. To date, 

the exact mechanism by which VGB is effective in TSC remains unclear. In addition to its already 

proven mechanism of action to increase brain γ-aminobutyric acid (GABA) levels by inhibition of 

γ-aminobutyrate transaminase (GABA-T) [94], VGB also seems to inhibit mTOR pathway in the 

neocortex and hippocampus of TSC1GFAPconditional knockout mice, providing a possible 
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explanation for the unique effectiveness of this drug in TSC [95]. Therefore, VGB seems to also 

directly act on the mTOR pathway; however, an indirect action cannot yet be excluded. 

Furthermore, it was reported that a prophylactic antiepileptic treatment of  TSC patients (and at 

high risk of epilepsy) with VGB, but also levetiracetam, valproic acid and topiramate, markedly 

improved their risk of developing mental retardation and reduced the incidence of drug-resistant 

seizures [92,93] (Table 1 and 2). 

3.1.2 Cortical dysplasia models 

Similar to TSC, several other, relatively rare genetic disorders entangle a dysregulation of the 

mTOR pathway and an increased risk for tumors and epilepsy. Brain-specific deletion of the mouse 

homolog PTEN, an upstream activator of the mTOR pathway [96], mimics several features of 

human cortical dysplasia (CD), including neuronal hypertrophy, cortical and hippocampal 

disorganization, aberrant mossy fiber sprouting and epilepsy [19]. CD (also known as malformation 

of cortical development) is another recognized type of "mTORpathies" characterized by intractable 

epilepsy in which mTOR dysregulation plays a key role in determining epilepsy phenotype [97]. 

Since CD has been linked to mutations of genes encoding for mTOR regulators [68], mTOR 

inhibitors through their antiepileptogenic mechanisms might be useful for the treatment of the CD-

related epilepsy [98,99]. Recently, a link in CD between the up-regulated miRNAs (i.e.hsa-miR-21 

and hsa-miR-155) and mTOR pathway has been evidenced [100]. Furthermore, PTEN deficiency is 

linked with the excessive growth, migration and proliferation of dysplastic cells in CD [101]. To 

better understand the role of mTOR in CD and epilepsy, Ljungberg, et al. [102] have characterized 

neuron subset-specific Pten knockout (NS-Pten KO) mice as an experimental model of CD. Pten 

knock-out mice exhibit neuronal hypertrophy, megalencephaly and seizures as a consequence of 

enhanced mTOR activity, and both early and later treatment with rapamycin decreases pathological 

abnormalities, suppresses the development of seizures and reduces established late-stage epilepsy 

[102]. Rapamycin treatment, at late stages of the pathology, decreased mTORC signaling, 

astrogliosis and microgliosis that were found in NS-Pten KO mice of CD [103]. Treatment with 



 11 

mTOR inhibitors also reverses the neuronal hypertrophy and megalencephaly in PTEN knock-out 

mice [104,105]. Similar to the TSC models, seizures return with the cessation of rapamycin 

treatment, although intermittent rapamycin treatment is able to maintain a long‑term antiseizure 

effect [104] (Table 2). 

 

 

 

3.1.3 Temporal lobe epilepsy models 

PTEN inactivation, in human and animals hippocampal dentate granule cells, induces the 

development of abnormal granule cells and spontaneous seizures similar to temporal lobe epilepsy 

(TLE) [31]. During epileptogenesis, adult-generated dentate granule cells (DGCs) form aberrant 

neuronal connections with neighboring DGCs increase neuronal excitability in the hippocampus. 

Sutula and Dudek [106] demonstrated that PTEN deletion among hippocampal granule cells was 

sufficient to develop spontaneous seizures in a few weeks, and that mTOR signaling played a 

fundamental role in this process. Therefore, hyperactivation of the mTOR pathway as a result of 

PTEN deletion is a possible mechanism of epileptogenesis also in TLE. Moreover, rapamycin 

administration was effective in inhibiting epileptogenesis and presence of abnormal granule cells in 

this PTEN animal model [31]. mTOR inhibitors can decrease pathological abnormalities that are 

associated with epileptogenesis, in particular mossy fiber sprouting [20,107,108]. Accordingly, it 

was demonstrated that mTOR inhibitors rescued fiber sprouting by promoting the survival of the 

somatostatin/green fluorescent protein (GFP)-positive interneurons after pilocarpine-induced status 

epilepticus (SE) in mice [109]. Some studies report that rapamycin is also able to decrease both 

epileptiform activity and mossy fiber sprouting in mouse models of TLE such as pilocarpine and 

kainate-post SE spontaneous seizures [107]. Furthermore, rapamycin acts on axonal sprouting and 

is able to revert abnormal cell growth [19]. However, other studies have shown that rapamycin 

treatment induced reduction of mossy fiber sprouting but not the frequency of pilocarpine-induced 
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spontaneous seizures in mice [107,110]. In addition to mossy fiber sprouting, rapamycin treatment 

reversed neuronal death and neurogenesis that contribute to epileptogenesis, but these data are 

controversial [20]. Different studies demonstrated that the mTOR pathway is markedly enhanced, in 

a biphasic manner, after kainate-induced SE in both hippocampus and cortex. The exact mechanism 

by which kainate induces this mTOR enhancement is unclear. However, it was hypothesized that 

excessive release of glutamate could be involved in this process [111,112]. Administration of 

rapamycin, prior or after kainate-induced SE, blocked cell death, neurogenesis, mossy fiber 

sprouting, and the reduced spontaneous epilepsy in this mouse model of TLE [20,108]. Similar 

results were obtained in the pilocarpine-SE model [113]. Accordingly, the authors claimed that the 

mTOR pathway mediates mechanisms of epileptogenesis in kainate and pilocarpine rat models and 

rapamycin could have anti-epileptogenic effects in these models [20,106,114,115]. However, 

paradoxical effects of mTOR inhibition have also been reported. In fact, mTOR activation can have 

both pro-apoptotic and anti-apoptotic effects, depending on different phases of the cell cycle [116]. 

Rapamycin administration within 1 hour of kainate injection in rats, induced enhancement of the 

mTOR pathway, higher than with kainate alone, whereas when rapamycin was administered after 

this time period, the expected inhibition was observed [117]. Therefore, mTOR would seem to act 

as a master switch that regulates, under different situations, neuronal death and epileptogenesis. It 

was reported that post-treatment with rapamycin after amygdala electrical stimulation-induced SE, 

did not stop the epileptogenic process and did not decrease disease severity. These data suggest that 

the antiepileptogenic effects of mTOR inhibition are not universal within animal models and may 

depend on several variables [22,110].  In agreement, rapamycin treatment started after electrically 

induced SE, reduced the development of recurrent spontaneous seizures. Likewise, rapamycin 

reduced other potential features related to epilepsy and epileptogenesis, such SE-induced neuronal 

cell loss, mossy fiber sprouting, and blood–brain barrier (BBB) albumin leakage; however, it did 

not reduce hippocampal microglia or astrocyte activation indicating only partial effects [118].  
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Very recently, it has been reported that rapamycin treatment after kainic acid–induced SE 

influences BBB leakage. Moreover, rapamycin is not able to reduce the seizure onset through an 

improvement of the BBB during the early phase of epileptogenesis. At odds, it is able to reduce 

BBB leakage during the chronic phase decreasing: gliosis, brain inflammation and angiogenesis. 

These effects could be related to the inhibitory properties of rapamycin on the development of 

epilepsy [119,120] (Table 1 and 2). Finally, mTOR activation in astrocytes contributes to TLE and 

may be targeted to suppress astrogliosis and spontaneous seizure [121]. 

 

3.1.4 Other models of epileptogenesis 

Recently, mTOR overactivation has been also shown in an animal model of absence epilepsy (the 

WAG/Rij rat), suggesting that this mechanism might be a very common pathological component for 

epileptogenesis in different models of epilepsy [122]. It was also established that WAG/Rij rats, a 

well-validated genetic model of absence epilepsy, epileptogenesis and mild-depression comorbidity 

[123-125], have higher levels of total mTOR in several brain areas, including the cortex, 

hippocampus and thalamus in comparison to Wistar rats, [126]. Inhibition of mTOR by rapamycin 

(started before seizure onset; i.e. at postnatal day 45) permanently reduces the development of 

spontaneous absence seizures in this model. In addition, WAG/Rij rats in comparison to Wistar rats 

also showed an age-related decline in hippocampal neural progenitor cell proliferation rate, 

suggesting that mTORC1 overexpression might be one of the triggers of epileptogenesis [122,126]. 

Rapamycin effects in this model have been linked to a modulation of inflammatory 

responses/alterations following its administration; rapamycin would block the lipopolysaccharide 

dependent increase in pro-inflammatory cytokines in the brain [127]. 

The mTOR pathway is also activated by hypoxia or toxin-related insults that acutely induce 

neonatal seizures or infantile spasms [70,128]. In hypoxia-induced neonatal seizures in rodents, 

activation of mTORC1 pathway was associated with the induction of seizures in the immature rat 

brain; rapamycin treatment immediately before and after seizures reversed early increases in 
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glutamate neurotransmission and seizure susceptibility attenuating later life epilepsy and autistic-

like behavior [128]. Rapamycin treatment suppresses infantile spasms (IS) permanently and 

improve cognitive outcome; the suppression of spasms was correlated with the ability of rapamycin 

to normalize TORC1 activity in perilesional cortical neurons [70].  

In a rat model of cryptogenic infantile spasms, in which seizures were triggered by N-mehtyl-D-

aspartate (NMDA), pretreatment with VGB, but not rapamycin in low doses, suppressed IS [129]. 

While genetic epilepsies affecting the mTOR pathway are relatively rare, there is increasing interest 

as to whether the mTOR pathway may be involved in other, more common types of epilepsy, such 

as following acquired brain injury. Traumatic brain injury (TBI) is a major cause of death, mental 

diseases and disability. Among the consequences, TBI post-traumatic epilepsy is very common and 

is a cause of significant morbidity and mortality in TBI patients [130]. Akt and mTORC1 activation 

have been highlighted in a number of traumatic brain injury (TBI) models [131,132]. Studies have 

reported that mTOR inhibitors might have antiepileptogenic effects in the development of post-

traumatic epilepsy in an animal model of TBI [69]. Rapamycin injection 4h following closed head 

injury significantly improved functional recovery. In rodent models of TBI, mTOR inhibition 

reduced neuronal death and mossy fibers sprouting and, as a result, improved cognitive outcome 

[133]. Rapamycin was tested in an experimental model of controlled cortical impact (CCI) injury, a 

well-validated model of TBI, in which has also been proven that an aberrant activation of mTORC1 

occurs. Rapamycin administration, started after CCI, had no effect on acute symptomatic seizures, 

but significantly prevented the development of chronic post-traumatic epilepsy [134]. mTOR 

involvement in TBI has also been demonstrated in a rat hippocampal organotypic culture model of 

post-traumatic epilepsy. Ictal activity was measured both by lactate production and by multiple 

electrode array (MEA) recordings (Table 1 and 2).  

 

Table 1.  Preclinical evidence on the role of mTOR inhibitors in preventing epileptogenesis 

Epilepsy Type/ 
AnimalModel 

mTOR 
inhibitor and 

Protocol of 
Administration 

Effect of mTOR 
inhibitor  on epilepsy 

Hypothesized 
Mechanism(s) of 

References 
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dose development Action 
Genetic epilepsy 
(Tuberous sclerosis)  
Tsc1GFAPCKO mice 
 

Rapamycin 
3 mg/Kg i.p. 

Postnatal day 14 
(~2 weeks 
presymptomatic) 

 

Late treatment 
started at 6 weeks 
of age  (P42) after 
onset of 
neurological 
abnormalities  

Inhibition of epilepsy 
development; prolonged 
survival during 
treatment 
 
 
Delay in 
onset, decrease in 
frequency and duration 
of seizure. 

Inhibited abnormal 
activation of mTOR, 
astrogliosis, neuronal 
disorganization and 
increased brain size.  

[85] 

 

Genetic epilepsy 
(Tuberous sclerosis) 
Tsc2GFAP1 CKO mice 

Rapamycin 
3 mg/kg i.p. 

Treatment started 
at P14, 5 
days/week, up to 
the end of 
experiments 

 

Rescued the animals 
from epilepsy and 
increased their survival 

Inhibited astrogliosis, 
neuronal 
disorganization and 
increased brain size. 
Reduced  levels of 
phospho-S6 

[88] 

 

Genetic epilepsy 
(Tuberous sclerosis) 
Tsc1GFAP1CKO mice 

Rapamycin 
1 mg/kg for 3 d 
each week 

Treatment started 
at P8 

No seizures developed; 
prolonged 
survival during 
treatment 

Reversed Neuronal 
Dendritic 
abnormalities, ER 
Stress 

[87] 
 

Genetic epilepsy 
(Tuberous sclerosis) 
Tsc1null-neuron mice 
 

Rapamycin and  
Everolimus 
6 mg/kg i.p. 

Treatment started 
at P7-P9, every 
other day, up to 
92 days (P100) 

 

Prolonged survival, 
prevention of  
spontaneous seizures 
during treatment 

 

Improved 
neurofilament 
abnormalities, 
myelination, and cell 
enlargement. Reduced  
levels of phospho-S6 

[86] 
 

Genetic epilepsy 
(cortical dysplasia) 
 Pten GFAP KO 
 

Rapamycin 
10 mg/kg i.p. 

Treatment (2 
weeks) started at 
the 4th and 5th  
weeks; 
postsymptoms 

Reduced the severity 
and the duration of the 
seizure activity, 
persisted following 
discontinuation of 
treatment  

Hypothesized changes 
in subcellular 
structures and, 
possibly, in processes 
that are involved in 
synaptic plasticity and 
membrane excitability 

[135] 
 
 

Genetic epilepsy 
(Cortical dysplasia) 
NSE-Pten CKO mice 

Rapamycin 
10 mg/kg i.p. 

Treatment started 
in mice of 5–6 
weeks old 
(presymptomatic 
phase) 

 

Decreased seizure 
duration and frequency 

Inhibition of 
anatomical, cellular 
and behavioural 
abnormalities related 
with mTOR pathway 
hyperactivation 

[105] 
 

Genetic epilepsy 
Pten KO mice 
 

Rapamycin 
6mg/kg/day i.p. 

Treatment started 
2-5 days post 
tamoxifen 
injection 

Reduced seizures Inhibited mossy fibre 
sprouting 

[31] 
 

Acquired epilepsy 
(TLE) 
Kainic-acid induced 
SE  

Rapamycin 
6mg/kg/day i.p. 

Treatment started  
3 days before SE 
or 24 h after 
SE, up to 7 
weeks. 

Suppressed the 
development of seizures 
 

Blocked cell death, 
neurogenesis, mossy 
fibre sprouting 

[20] 
 

Acquired epilepsy 
(TLE)  
Pilocarpine-induced 
SE 
 

Rapamycin 
3mg/kg/day i.p. 

Treatment started 
24 h after SE for 
2 months 

Blocked mossy fibre 
sprouting. No effects on 
seizure frequency 

Inhibition of mossy 
fiber sprouting 

[107,109,110] 

Acquired epilepsy 
(TLE) 
Amygdala 
stimulation-induced 

Rapamycin 
6 mg/kg daily 

Treatment started 
24 h after SE for 
2 weeks 

Did not stop the 
epileptogenic process 
and no decrease in 
disease severity 

No effect on mossy 
fiber sprouting 

[22] 
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SE 

Acquired epilepsy 
(TLE) 
Pilocarpine induced 
SE in mice 

Rapamycin  
6 mg/kg daily 

Treatment started 
24 h after the 
onset of SE for 6 
consecutive days 

Suppressed epileptiform 
activity 

inhibited mTOR 
pathway and 
repressing mossy fiber 
sprouting 

[114] 
 
 

Acquired epilepsy 
(TLE)  
Electrical stimulation 
of the angular bundle 
(SE) 
 

Rapamycin 
6 mg/kg/day i.p. 

Treatment for 7 
days, started 4 
hours after the 
induction of SE, 
and continued 
until rats were 
sacrificed, 6 
weeks after SE. 
 

Reduced the 
development of epilepsy 
 
 

Inhibition of mossy 
fiber sprouting, 
reduction in neuronal 
death, decreased 
BBB leakage; 
no reduction of 
inflammatory 
response after SE 
induction 

[118] 
 

Acquired epilepsy 
(TLE)  
kainic acid–induced 
SE 

Rapamycin 
6 mg/kg/day 

Treatment  started 
4 h after SE, once 
daily for 7 days, 
and continued 
until rats were 
killed 7 weeks 
post-SE. 

reduction or prevention 
of recurrent seizures 
at a later stage. 

Reduced BBB leakage 
during the chronic 
phase, via reduction 
of gliosis, brain 
inflammation and 
angiogenesis. 

[119,120] 
 
 

Acquired epilepsy  
TBI 
 

Rapamycin 
6 mg/kg/day i.p. 

Treatment started 
1 hour after injury 
and continued for 
1 month 

Prevented the 
development of post-
traumatic epilepsy 

Decreased neuronal 
degeneration and 
mossy fibre sprouting, 
although this effect 
did not directly 
correlate with 
inhibition of 
epileptogenesis 

[134,136] 
 
 

Acquired epilepsy 
Hypoxia-induced 
seizures in rats 

Rapamycin  
3 mg/kg i.p. 

Treatment started 
24 h before and 1 
h 
after exposure to 
hypoxia 

No effect on acute 
seizures; decreased 
chronic seizures 

inhibited mTORC1 
pathway, and 
subsequent increased 
glutamatergic 
neurotransmission. 

[128] 

Absence epilepsy 
model WAG/Rij rats  
 

Rapamycin 
1 mg/kg os 

Treatment started 
at P45 and 
continued for 17 
weeks 

Decreased the 
development of absence 
seizures 

inhibition of the 
release of 
inflammatory 
cytokines 

[122,126] 

SE = Status Epilepticus; TLE = Temporal Lobe Epilepsy; BBB = Blood Brain Barrier; CKO = Conditional Knockout; GFAP = 
Glial Fibrillary Acid Protein; i.p. = intraperitoneally; KO = Knockout; NS-Pten KO = Neurone Subset-Specific Pten knockout; NSE 
= Neuron-Specific Enolase; P = Postnatal day; PTEN = Phosphatase and Tensin homolog; TBI = Traumatic Brain Injury; TSC 1 = 
Tuberous Sclerosis Complex 1; TSC 2 = Tuberous Sclerosis Complex 2; WAG/Rij rat  = Wistar Albino Glaxo/Rij-rat. 
 

 

Table 2.  Preclinical evidence on the role of mTOR inhibitors in preventing seizures 

Epilepsy 
Type/Model 

mTOR 
inhibitor and 
dose 

Protocol of 
Administration 

Effect of mTOR 
inhibitor on 
Seizures 

Hypothesized 
Mechanism(s) of Action 

References 

Genetic epilepsy 
NS-Pten KO 
(cortical dysplasia) 
 

Rapamycin 
10 mg/kg i.p. 

Intermittent 
treatments (over a 
period of 5 months) 
 

Decreased seizures 
and improved 
survival after 
additional 
intermittent 
treatments 

Changes in subcellular 
structures and, possibly, in 
processes involved in 
synaptic plasticity and 
membrane excitability  

[102,104] 
 
 

Genetic epilepsy  
NS-Pten KO mice 
(cortical dysplasia)
  

Rapamycin 
10 mg/kg/day 
i.p. 

Treatment started 
at P9 

Attenuated 
epileptiform activity  

Suppressed  mTOR 
hyperactivation; 
Reduced astrogliosis and 
microgliosis 

[103] 
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Genetic epilepsy 
Pten GFAP KO 

Temsirolimus 
7.5 mg/kg 

Treatment started 
from 6 to 16 weeks, 
when mutant mice 
were symptomatic 

Decreased seizures 
and mortality  

Decreased megalencephaly, 
cell size 

[101] 
 

Genetic epilepsy 
Acute biallelic 
deletion of Tsc1 in 
adult mice 

Rapamycin 
5 and 10 
mg/kg/day 
i.p. 

Treatment started 
2–4 months post-
natal 

Prolonged survival; 
No seizures 
developed during 
treatment 

Effectively reduced pS6 
levels 

[90] 
 

Epileptic 
encephalopathy 
Multiple-hit rat 
model of infantile 
spasms 

Rapamycin 
different 
doses 

After the onset of 
spasms. 

 

Reduction of  
acutely-induced 
spasms in a dose-
related way 

Unclear 

 

[70]  

TLE following 
Pilocarpine- 
induced 
SE in adult rats 

Rapamycin 
5mg/kg/day 
i.p. 

Pre-treatment for 3 
days before the 
induction of 
seizures with 
pilocarpine 

Reduction seizure 
activity during 
treatment, gradually 
returning after 
discontinuing 
treatment 

Suppressed mossy fiber 
sprouting 

[108] 
 

Acquired epilepsy 
Acute seizure 
models in 
Sprague-Dawley 
rats 

Rapamycin 
5 mg/kg i.p. 

Treatment started, 
in immature and 
mature rats, prior to 
induction of 
seizures by PTZ, 
pilocarpine or 
kainate 

Increased severity of 
seizures; decreased 
seizure threshold 
after 3 daily doses of 
rapamycin in 3–4 
weeks old, but not 
adult, rats 

Treatment down-regulates  
KCC2 expression in CNS, 
which could increase 
susceptibility to pilocarpine-
induce seizures in immature 
rats 
 
 

[32] 

Epileptic 
encephalopathy 
Infantile spasms in 
rats prenatally 
treated with 
betamethasone, 
triggered with 
NMDA 

Rapamycin 
3 mg/kg i.p. 

Pre-treatment 
24h prior to 
induction of 
spasms 

No effects in this 
model 

 [129] 
 
 

Acquired epilepsy 
Acute seizure 
models in 
Sprague-Dawley 
rats acute seizure 
tests  
 

Rapamycin  
3 or 6 mg/kg 
i.p. 

Used different 
treatment paradigm 
in  rat pups (P15) 
and juvenile (P55–
60) rats 

Variable efficacy on 
acute seizures which 
are age, time, 
treatment paradigm 
and model 
dependent. 
 

The lack of effects, above all 
in immature rats, has been 
correlated with decreased 
NPY expression in the 
cortex and hippocampus 

[115] 

Acquired epilepsy  
Multiple Acute 
seizure (6Hz, PTZ 
or kainate) tests in 
NIH Swiss mice
  
 

Rapamycin  
4.5 mg/kg i.p. 

Short-term 
treatment (single 
dose) 3h before 
seizure onset and 
long-term treatment 
(3 daily doses) 
before seizure 
onset 

Variable efficacy on 
acute seizures, which 
are age, time, 
treatment paradigm 
and model- 
dependent 

Reduction in neuronal 
excitability and/or 
neurotransmitter release may 
occur with rapamycin 

[137] 
 

CNS = Central Nervous System; GFAP = Glial Fibrillary Acid Protein; i.p. = intraperitoneally; KCC2 = Potassium Chloride 
Cotransporter 2; KO = Knockout; mTOR = mammalian Target Of Rapamycin; NPY = Neuropeptide Y; NS-Pten KO = Neurone 
Subset-Specific Pten knockout; P = Postnatal day; pS6 = Phospho-S6; PTEN = Phosphatase and Tensin homolog; PTZ = 
Pentylenetetrazole; TSC 1 = Tuberous Sclerosis Complex 1; TSC 2 = Tuberous Sclerosis Complex 2;  

 

3.2 Clinical studies 

Despite the current pharmacological and non-pharmacological treatment options, about a third of 

the epileptic patients remain drug-resistant [138,139]. Indeed, TSC is also characterized by 
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pharmacologically uncontrolled seizures. The United States Food and Drug Administration (FDA) 

approved everolimus, a rapamycin analogue, for the treatment of patients with TSC associated with 

inoperable SEGAs [17,140].  Beneficial effects of mTOR inhibition with everolimus have been 

reported previously in patients with TSC and epilepsy [74,141-143]. Therefore mTOR inhibitors 

provide a potential therapy based on the pathophysiology of TSC [77].  

In 2009, it has been described for the first time that rapamycin treatment (10 months) induced a 

reduction in seizure frequency and severity in a 10-year-old girl with difficult-to-treat seizures in 

TSC, although pre- and post-treatment magnetic resonance imaging did not reveal any change in the 

cortical tubers [144]. In another study, a child treated with everolimus for a regrowing SEGA, a 

complete cessation of previously intractable seizures was reported at 12 months follow-up [18].  

Everolimus treatment improved seizure control in prospective phase I/II studies in patients with 

TSC [141] and in patients with TSC and associated SEGA [74]. In one of these studies (prospective 

open label phase I/II study), Krueger, et al. [74] showed that everolimus used in TSC to limit SEGA 

(associated with TSC) (primary end point), decreases seizure frequency in approximately 60% of 

patients studied (secondary end point), but 1 patient experienced increased seizure frequency with 

the drug [74,145]. In particular, 9 out of 16 patients with TSC showed a decrease in seizure 

frequency, 6 did not show significant reduction, whereas in 1 an increased seizure frequency was 

noted. The effect of everolimus, after 12 weeks of treatment in the management of 

pharmacoresistant epilepsy in patients > 2 years affected by SEGAs, was also investigated in a 

prospective, multicentre, open-label, phase I/II clinical trial [141]. The study compared seizure data 

during the last 4 weeks of everolimus treatment (weeks 13–16) with the 4-weeks period before 

everolimus initiation (baseline, weeks 1–4). 

Everolimus treatment (12 weeks) in pediatric patients with TSC and refractory epilepsy reduced 

seizure frequency by a median reduction of 73% in 17 of 20 patients examined and a median 70% 

decrease in cumulative seizure duration. Four of these patients were seizure-free at 12 weeks, and 

seven had a 90% reduction in seizure frequency [141]. Everolimus was well tolerated; all adverse 
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events were mostly grade 1 or 2 in severity and usually transient, never requiring everolimus 

withdrawal. Upper respiratory infections, stomatitis and mucositis were the most common adverse 

events [141]. Therefore, these findings strongly suggest that everolimus might be an effective 

treatment for SEGA-related epilepsy. The different animal studies and limited clinical data have led 

to further current clinical trials for inhibition of mTOR in genetic epilepsies. A compassionate use 

trial for seven TSC patients with drug resistant epilepsy has demonstrated the efficacy of 

everolimus; one patient discontinued treatment because of rash, four of six patients exhibited a 

reduction of seizure frequency of 25-100%, two of six 6 patients, did not show alteration of seizure 

frequency. Everolimus treatment seemed to be well-tolerated with adverse effects similar to those 

reported in previous studies [143]. 

Recently, an open-label case series in seven patients (median age 6 years), with TSC and refractory 

epilepsy, described the efficacy mTOR inhibitors (six with rapamycin and one with everolimus), in 

seizures improvement, which were reported to have only minimal adverse effects. Of the intractable 

seizure group (7 patients), 1 patient had >90% reduction, 4 had 50%-90% reduction, and 2 had 

<50% reduction. Moreover, this treatment was reported to improve other characteristics of TSC, 

such as facial angiofibromas and cognition; three reported subjective improvements in learning 

[146]. Recently, another single case of seizures aggravation after everolimus treatment for SEGA 

has been reported [147]. Cessation of seizures or a reduction in seizure frequency was also reported 

in a small number of pediatric patients with TSC who were treated with long-term everolimus.  In 6 

out of 8 children, at least a 50% reduction in SEGA volume was observed; everolimus resulted in 

permanent seizure cessation in one child with severe drug-resistant epilepsy and in at least a 50% 

reduction in the number of seizures in two other [142].  

Moreover, in a prospective study of 5 neonatal patients with TSC, it was demonstrated that EEG 

changes occurring in TSC patients before clinical seizures reflect the process of epileptogenesis in 

these patients. Therefore, EEG recording could have predictive value during infancy in patients 

with TSC [148].  
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More recently, the case of a 13-year-old girl with TSC-associated with refractory generalized 

seizures who initiated treatment with everolimus experiencing subsequent improvement in several 

TSC manifestations, including a reduction in seizure frequency from clusters of two or three daily 

to one every 2 to 4 weeks after 1.5 years of treatment was described [149]. All these clinical studies 

confirm the potential benefits of mTOR inhibitors on epilepsy associated with TSC, but the open-

label design of the studies as well as the heterogeneity of enrolled patients and the small number of 

cases still does not allow making definite conclusions. 

A randomized, blinded, placebo controlled, phase III trial is currently in progress to determine the 

efficacy of everolimus on seizures in patients with TSC; patients between the ages of 2 and 65 

years, with a clinically definite diagnosis of TSC and uncontrolled partial-onset seizures, are 

currently being enrolled for this study and results are expected during the next year 

(clinicaltrials.gov identifier NCT01713946) (Table 3). 

Recently, a genomics study of infantile spasms and Lennox-Gastaut Syndrome has found a de novo 

mutation in mTOR gene without associated brain malformations suggesting a possible role of 

mTOR in these disorders and mTOR inhibitors could be a possible treatment [150]. Furthermore, de 

novo somatic mutations of PI3K, AKT3 or mTOR genes in patients with hemimegalencephaly 

(HME) a condition associated with resistant epilepsy have been described [31,151].  

 

 
Table 3.  Clinical Studies with mTOR Inhibitors in TSC-Associated Epilepsy 

Type of Study  Disease Drug 
and Dose 

Number and 
Age of 
Patient(s)  

Duration of 
Treatment 

Clinical Result  References 

Case report TSC and 
refractory 
epilepsy 

Rapamycin 
0.15 mg/kg/day 

1 patient; 
9-year-old girl 

10 months Reduction in seizure 
frequency. 1 to 5 brief 
seizures (< 2 minutes) 
continued daily 

[144] 

Case report TSC and 
refractory 
epilepsy 

Everolimus 
4.5 mg/m2/day 

1 patient; 
10- year-old boy 

12 months Complete cessation of 
epileptic seizures 

[18] 
 

Prospective, 
open-label, 
phase I–II study 

TSC and 
related 
epilepsy 

Everolimus  
4.7–5.6 
mg/m2/day 
 
 

16 patients; 
3 year-old or 
older 

 
 

Median 
duration  
21.5 months 
(range: 4.7-
34.4 months)  
 

Reduction in seizure 
frequency in 9/16 
patients, did not change 
in 6, and increased in 1 

[74] 
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Prospective, 
multicenter, 
open-label, 
phase I/II 
clinical trial 

TSC and 
refractory 
epilepsy 

Everolimus  
5 mg/m2/day,  
then titrated to a 
serum trough 
level of 5–15 
ng/ml 

20 patients; 
median age:8 
years 
(age range:2–
21) 

12 weeks Reduction in seizure 
frequency in 17/20 
patients (median 
reduction of 73%).  
4 of these patients were 
seizure-free at 12 
weeks, and 7 had a 90%  
reduction in seizure 
frequency 

[17,141] 
 

Case study 
series 

TSC and 
refractory 
epilepsy 

Everolimus 
5-7 mg/day 

6 patients; 
median age:5 
years  
(age range: 2-
12). 

36 weeks Reduction in seizure 
frequency in 4/6 
patients (of 25% -
100%). The percentage 
of seizure-free days 
increased in 3/4 of these 
patients. In 2/6 patients, 
no lteration of seizure 
frequency 

[143] 
 

Open-label, 
single-center 
case series 

TSC and 
refractory 
epilepsy 

Sirolimus 
1 mg/m2/d.  
then adjusted  
to trough blood  
levels of 
4-10 ng/mL  

7 patients; 
median age: 6 
years (age 
range: 3-17). 

median 
duration:  
18 months  
(range: 6-36 
months) 

1 patient had >90% 
reduction, 4 had 50%-
90% reduction, and 2 
had <50% reduction 

[146] 
 

Case study SEGAs 
associated 
with TSC 

Everolimus 
5 mg/m2/day 

1 patient; 
13.5-year-old 
girl 
 

12 days Seizure aggravation [147] 

Prospective, 
double-blind, 
parallel-group, 
placebo-
controlled, 
multicenter 
phase 3 
(EXIST-1) 

SEGAs 
associated 
with TSC 

Everolimus 
4.5 mg/m2/day 
then adjusted to 
attain a blood 
concentration of 
5-15 ng/mL. 

8 patients; 
children under 
the age of 3 

35 months  
(range:33-38 
months) 
 

Cessation of seizures in  
1 patient, 
significant (at least a 
50% ) reduction in the 
number of seizures in  2 
patient 

[142] 

Case report TSC-
associated 
epilepsy 
with 
refractory 
generalized 
seizures 

Everolimus 
5 mg/day  

1 patient; 
13-year-old girl 

1.5 year  
 

Reduction in seizure 
frequency from clusters 
of two or three daily to 
one every 2 to 
4 weeks 

[149] 
 

Randomized, 
blinded, lacebo 
controlled, 
phase III trial 

TSC 
associated 
refractory 
seizures 

Everolimus 
titrated from 3 
to 7 ng/mL and 
also from 9 to 
15 ng/mL and 
placebo 

Male or female 
between the 
ages of 2 and 65 
years 

 This study is currently 
recruiting participants 

Novartis 
Pharmaceutic
als 

EXIST-1 = EXamining everolimus In a Study of TSC; SEGA = Subependymal Giant cell Astrocytoma; TSC = Tuberous Sclerosis 
Complex 
 

 

4. Conclusions 

Epilepsy represents one of the oldest and most prevalent neurological disorders. Currently available 

treatments are effective but provide only symptomatic management of the disease, and an unmet 

need exists for a rational therapy that targets the etiology of epilepsy [2,139]. Understanding 

epileptogenesis, the process by which a normal brain becomes epileptic, may help identify 
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molecular targets for drugs that could prevent epilepsy. To date, the mTOR pathway represents 

perhaps, the most promising molecular target for producing a better understanding and treatment of 

this disease. The first favorable point in this regard, is the availability of a number of already 

marketed drugs acting on this target; such drugs (i.e. rapamycin, everolimus etc) are already used 

clinically for other conditions (e.g. as immunosuppressants in kidney transplantation, in treatment 

of advanced renal carcinoma and breast cancer). 

Different preclinical data confirm that mTOR dysregulation may play a pathogenetic role in the 

epileptogenesis of different forms of epilepsy, and that mTOR inhibition may prevent epilepsy 

development, especially in genetic mTORopathies. mTOR inhibitors show efficacy in treating some 

genetic forms of epilepsy (e.g. TSC and WAG/Rij rats) but also possess antiepileptogenic effects in 

preclinical models. The potential inhibition of mTOR as a therapeutic strategy for preventing 

epileptogenesis is therefore promising and may be applicable not only to TSC, but also to other 

forms of epilepsy. These findings are starting to be translated into the clinical arena; successful 

anticonvulsant effects of both rapamycin and everolimus have been reported in individuals with 

focal-onset seizures in the context of TSC. While several studies with TSC mouse models suggest 

that mTOR inhibitors have antiepileptogenic properties for preventing epilepsy, clinical 

antiepileptogenic drug trials are difficult to conduct and have not yet been attempted with mTOR 

inhibitors. Some controversial results with mTOR inhibitors also exist and while it is clear that the 

mTOR pathway might be a good target candidate, some drawbacks of ‘general’ mTOR inhibition 

must still be considered and more studies are warranted (ideally with more selective drugs), before 

full clinical translation of mTOR targeting can result. In particular, the time-window, duration and 

dosages to be used in prevention of epileptogenesis are still far from being clearly identified. On the 

other hand, mTOR inhibitors possess only a very low efficacy in preclinical animal models of 

seizures/epilepsy and therefore, their effectiveness in stopping seizures is probably very limited 

and/or in any case, it might require time before some kind of effectiveness can be observed; 

generally, a few days of treatment are necessary to observe an antiseizure effect if any. As most of 
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the beneficial effects of mTOR inhibition might cease after drug discontinuation, a life-long 

treatment might be necessary. The effect of long-term mTOR inhibition on developing brain 

structures and functions is still not fully understood. Despite several drugs acting on mTOR that are 

already currently available (both considering marketed and experimental drugs), none of these 

agents has selectivity for the CNS, which obviously underlies the appearance of peripheral side 

effects that might limit dosages and therefore efficacy. The search for more selective agonists 

targeting specific effectors of the mTOR pathway can lead to the discovery of better drugs to treat 

epilepsy. As mentioned above, clinical trials are currently undergoing for both everolimus and 

rapamycin in epilepsy. The results of these trials will indeed shed light on the possibility to use such 

molecules in TSC patients; however, this will only be an initial step, which will need further 

clinical trials to understand the possible use of mTOR inhibitors in other clinical situations with 

patients at risk of epilepsy development (e.g. traumatic brain injury). 

Interactions between mTOR inhibitors and available antiepileptic drugs are not fully known and 

will have to be analyzed. The role of mTOR inhibitors in epilepsy treatment still needs further 

research and an extension of clinical trials to non-TSC epilepsy syndromes. Further clinical studies 

could help to clarify the clinical efficacy, dosage and safety profile of mTOR inhibitors in epilepsy 

and epileptogenesis. Despite these limitations, recent developments in mTOR pathway modulation 

open up new perspectives for future therapy of epilepsy and mTOR inhibitors represent a promising 

therapeutic option for the treatment of epilepsy.  

In conclusion, as in the case of many other diseases, we feel that the mTOR pathway represents a 

great opportunity for future novel drug development in epilepsy therapeutics; the actual available 

data with mTOR inhibitors, both clinical and pre-clinical are intriguing and highly support future 

experiments. Finally, a very important task will be that of developing new mTOR inhibitors with a 

higher selectivity for the central nervous system (CNS) and a better safety profile. 
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The mTOR Complexes and Signaling Pathways 

The mammalian target of rapamycin (mTOR) is a protein serine-threonine kinase that belongs to 

the phosphoinositide 3-kinase (PI3K)-related kinase family [1,2]. Rapamycin (also known as 

sirolimus) is a macrolide antibiotic molecule extracted from the mycelium of the Easter Island 

(Rapa-Nui) soil-dwelling bacterium Streptomyces hygroscopicus. This macrolide, through its 

specific ability to inhibit mTOR, is mainly used as an antifungal, immunosuppressant, and 

anticancer agent [3]. mTOR is activated by phosphorylation in response to several modulators  such 

as growth factors, mitogens and hormones. The molecular factors and downstream target signaling 

molecules associated with the mTOR pathway are numerous and complex. The signal transduction 

mechanisms linked to mTOR have been studied extensively and have been related to a huge 

spectrum of fundamental biochemical and physiological processes, such as metabolism, cell 

growth, proliferation, differentiation, longevity, apoptosis, and autophagy [4]. In mammalian cells, 

the functions of mTOR are mediated through two mTOR heteromeric and functionally distinct 

protein complexes: mTORC1 and mTORC2. These complexes are formed by mTOR and several 

proteins, two of which are in common to both mTORC1 and 2: one is the mammalian lethal with 

Sec13 protein 8 (mLST8, also known as GβL), a positive regulator and the other named DEPTOR 

(DEP-domain containing mTOR-interacting protein) is a physiological negative regulator. 

mTORC1 has two other associated proteins, the positive regulator named RAPTOR (regulatory-

associated protein of mTOR) and PRAS40 (proline-rich AKT substrate of 40 kDa) or AKTS1 

(AKT1 substrate), which shows a suppressive action. mTORC2 shows three components in 

common with mTORC1 and three specific proteins: RICTOR (rapamycin-insensitive companion of 

mTOR), which plays an important role also for the interaction between mTORC2 and tuberous 

sclerosis complex 2 (TSC2), a direct activator of this complex [5]; mSIN-1 (mammalian stress-

activated protein kinase interacting protein) fundamental for its ability to phosphorylate AKT [6], 
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and PROTOR-1 (protein observed with RICTOR-1), which is required for efficient mTORC2-

mediated activation of SGK-1. Moreover, PROTOR-1 is able to bind RICTOR [7].  

In particular, mTORC1 rapamycin-sensitive complex, the better characterized of the two 

complexes, is fundamental in controlling a wide variety of cellular processes including protein 

synthesis, autophagy, cell cycle and microtubule dynamics. Conversely, mTORC2, a rapamycin-

insensitive complex, regulates both the development of cytoskeleton and cell survival.  

Recent findings demonstrated that mTORC2 plays a role in genome stability maintenance under 

oxidative and replicative stress [8] showing a different sensitivity to rapamycin, which inhibits 

mTOR through the binding to FKBP12 (FK 506-binding protein of 12 KDa). In particular, it has 

been demonstrated that although mTORC2 is insensitive to acute rapamycin exposure, it can be 

modulated by prolonged rapamycin treatment [9]. 

 

Upstream of mTOR Signaling 

mTOR pathway is activated by mitogens, brain-derived neurotrophic factor (like BDNF) or 

hormones (such as insulin and insulin-like growth factor 1 (IGF1), vascular endothelial growth 

factor (VEGF) and ciliary neurotrophic factor (CNTF), glutamate, and guidance molecules [10-12]. 

All these input signals that positively or negatively control mTORC1 activity are mediated by the 

activation of receptor tyrosine kinase (RTKs) and converge on tuberous sclerosis complex, 

comprised of TSC1 (harmatin) and TSC2 (tuberin). TSC1/2 is a GTPase activating protein (GAP) 

for the small G protein Rheb (Ras homolog enriched in brain) and Rhes (a form of Rheb mainly 

expressed in the brain) [13,14]. The phosphorylation of TSC1/2 occurs through activation of 

mTORC1 by channel receptors, GPCRs, RTKs and cytokine receptors via protein kinases (e.g. Akt 

and ribosomal S6 kinase (RSK) [15]. As a result, TSC1/2 complex results inactivated and induces 

an increase of Rheb-GTP, that is an important activator of mTORC1 [16]. Rheb-GTP activates 

mTORC1 through interacting with mTOR [17]. One of the most important upstream modulators of 

mTOR activity is the heterodimer TSC1/2, whose activity can inhibit mTOR. Only TSC2 has 



GTPase-activating properties; however, both TSC1 and TSC2 are required for the function of this 

heterodimer. A small G protein Rheb (Ras homolog enriched in brain) is a direct downstream target 

of TSC1/2 and a positive regulator of mTOR function, which induces a conformational change of 

mTOR that results in activation and phosphorylation of protein effectors [18]. More recently, a third 

component (TBC1D7) collaborating with TSC1/2 in the activation of Rheb has been identified 

[19,20]. Rheb-GTP activates the mTORC1 complex interacting with Raptor. In addition, Rheb 

regulates 4EBP1 binding to mTORC1 reducing mTOR activity through the control of mTOR 

association with mTORC1 by FKBP38. The latter is structurally linked to an endogenous inhibitor 

of mTOR named FKBP12. 

The TSC1/2 complex receives inputs from different signal-transduction pathways [21], predictably, 

many of the molecules that bind or regulate the TSC1/2 complex can also regulate mTOR, among 

them there is the serine/threonine kinase Akt. This kinase is activated by growth factors such as 

insulin or epidermal growth factor (EGF), through both phosphorylation and the lipid products of 

phosphatidylinositol 3-kinase (PI3K). Once activated, Akt then directly phosphorylates and reduces 

the activity of TSC2 and, therefore, increases signaling through Rheb and mTOR [22-24]. 

Mutations (including nonsense, missense, insertion, and deletion) of TSC1 or TSC2, causing loss of 

TSCs function produce an overactivation of mTORC1 and brain diseases. TSC2, and its 

phosphorylation, induces both activation and inactivation of mTORC1 depending on the phospho-

acceptor amino acid residues. Phosphorylation of TSC2 (in particular at Thr1462) by Akt and by 

MAPK (at Ser664) (akaErk) inhibits TSC1/2 activity thus activating mTORC1, whereas 

phosphorylation of TSC2 (at Ser1345 and Thr1227) by AMP-activated protein kinase (AMPK) 

enhances TSC1/2 activity leading to the suppression of mTORC1 activity [23,25]. Hence, AMPK 

and Akt exert opposite regulations of TSC2 activity. AMPK is able to inhibit mTORC1 through the 

phosphorylation of Raptor [26]. 

In neurons, mTOR activity is also modulated by some neurotransmitters such as glutamate and 

dopamine receptors [27,28]. In particular, G-protein coupled receptors (GPCRs) such as, 



metabotropic glutamate, μ-opioid and cannabinoid receptors, activate mTORC1 in neurons [29-31]. 

Because GPCRs are known to transduce signals to Akt and/or MAPK, mTORC1activation triggered 

by these ligands seems to inhibit TSC2. In particular, group I mGluRs are coupled to mTOR-

p70S6K and ERK1/2-p70S6K pathways in striatal and hippocampal synaptoneurosomes [30] and 

hippocampal CB1 cannabinoid receptor (CB1R) activation modulated the mammalian target of 

rapamycin (mTOR)/p70S6K pathway inducing amnesic effects [31]  

 

Downstream of mTOR Signaling 

Many substrates have been identified as mTOR downstream effectors mediating several cellular 

responses. p70 ribosomal S6 protein kinases 1 and 2 (p70S6K1/2) and eukaryotic initiation factor 

4E (eIF4E)-binding proteins  (4E-BPs) are the best-characterized substrates for mTORC1 regulating 

translation [16,32]. 

The binding of 4E-BPs to elongation factor 4E binding protein 1 (eIF4E) inhibits the formation of 

the eIF4F complex, required for the initiation of translation [33]. mTOR phosphorylates and 

activates S6K and 4EBPs, suppressing this inhibition and promoting ribosomal biogenesis and 

protein translation [34,35]. Consequently, the protein synthesis is induced by the inhibition of the 

elongation factor 4E binding protein 1 (4EBP1) [32].  

mTORC1 pathway also controls autophagy as a consequence of the inhibition of ULK1 complex 

(Unc51-like kinase 1)/Atg13 (autophagy-related genes 13)/FIP200 (focal adhesion kinase family-

interacting protein of 200 kDa) [36]. mTOR controls the cellular response to hypoxia regulating the 

transcription/translation of hypoxia inducible factor 1α (HIF1α) [37]. HIF1α-mediated mechanisms 

are important for angiogenesis following hypoxia and have been involved in different 

neurodegenerative disease but also in stroke and neonatal hypoxic-ischemic injury [38]. Among the 

transcription factors regulated by mTORC1 are the sterol-response binding proteins (SREBPs), 

which regulate lipogenesis [39,40]. 

 



References  
 
1 E. Russo, R. Citraro, A. Constanti, G. De Sarro, The mtor signaling pathway in the brain: Focus 
on epilepsy and epileptogenesis, Mol Neurobiol. 46 (2012) 662-681. 
2 L. Asnaghi, P. Bruno, M. Priulla, A. Nicolin, Mtor: A protein kinase switching between life and 
death, Pharmacol Res. 50 (2004) 545-549. 
3 S. Sofroniadou, D. Goldsmith, Mammalian target of rapamycin (mtor) inhibitors: Potential 
uses and a review of haematological adverse effects, Drug Saf. 34 (2011) 97-115. 
4 C.K. Tsang, H. Qi, L.F. Liu, X.F. Zheng, Targeting mammalian target of rapamycin (mtor) for 
health and diseases, Drug Discov Today. 12 (2007) 112-124. 
5 J. Huang, S. Wu, C.L. Wu, B.D. Manning, Signaling events downstream of mammalian target of 
rapamycin complex 2 are attenuated in cells and tumors deficient for the tuberous sclerosis 
complex tumor suppressors, Cancer Res. 69 (2009) 6107-6114. 
6 M.A. Frias, C.C. Thoreen, J.D. Jaffe, W. Schroder, T. Sculley, S.A. Carr, D.M. Sabatini, Msin1 is 
necessary for akt/pkb phosphorylation, and its isoforms define three distinct mtorc2s, Curr 
Biol. 16 (2006) 1865-1870. 
7 L.R. Pearce, X. Huang, J. Boudeau, R. Pawlowski, S. Wullschleger, M. Deak, A.F. Ibrahim, R. 
Gourlay, M.A. Magnuson, D.R. Alessi, Identification of protor as a novel rictor-binding 
component of mtor complex-2, Biochem J. 405 (2007) 513-522. 
8 K. Shimada, I. Filipuzzi, M. Stahl, S.B. Helliwell, C. Studer, D. Hoepfner, A. Seeber, R. Loewith, 
N.R. Movva, S.M. Gasser, Torc2 signaling pathway guarantees genome stability in the face of 
DNA strand breaks, Mol Cell. 51 (2013) 829-839. 
9 D.D. Sarbassov, S.M. Ali, S. Sengupta, J.H. Sheen, P.P. Hsu, A.F. Bagley, A.L. Markhard, D.M. 
Sabatini, Prolonged rapamycin treatment inhibits mtorc2 assembly and akt/pkb, Mol Cell. 22 
(2006) 159-168. 
10 G. Lenz, J. Avruch, Glutamatergic regulation of the p70s6 kinase in primary mouse neurons, 
J Biol Chem. 280 (2005) 38121-38124. 
11 N. Takei, N. Inamura, M. Kawamura, H. Namba, K. Hara, K. Yonezawa, H. Nawa, Brain-
derived neurotrophic factor induces mammalian target of rapamycin-dependent local 
activation of translation machinery and protein synthesis in neuronal dendrites, J Neurosci. 
24 (2004) 9760-9769. 
12 C. Quevedo, M. Salinas, A. Alcazar, Regulation of cap-dependent translation by insulin-like 
growth factor-1 in neuronal cells, Biochem Biophys Res Commun. 291 (2002) 560-566. 
13 K. Inoki, Y. Li, T. Xu, K.L. Guan, Rheb gtpase is a direct target of tsc2 gap activity and 
regulates mtor signaling, Genes Dev. 17 (2003) 1829-1834. 
14 T. Nobukini, G. Thomas, The mtor/s6k signalling pathway: The role of the tsc1/2 tumour 
suppressor complex and the proto-oncogene rheb, Novartis Found Symp. 262 (2004) 148-
154; discussion 154-149, 265-148. 
15 M. Wataya-Kaneda, Mammalian target of rapamycin and tuberous sclerosis complex, J 
Dermatol Sci. 79 (2015) 93-100. 
16 M. Laplante, D.M. Sabatini, Mtor signaling in growth control and disease, Cell. 149 (2012) 
274-293. 
17 X. Long, Y. Lin, S. Ortiz-Vega, K. Yonezawa, J. Avruch, Rheb binds and regulates the mtor 
kinase, Curr Biol. 15 (2005) 702-713. 
18 K. Inoki, M.N. Corradetti, K.L. Guan, Dysregulation of the tsc-mtor pathway in human 
disease, Nat Genet. 37 (2005) 19-24. 
19 A. Nakashima, K. Yoshino, T. Miyamoto, S. Eguchi, N. Oshiro, U. Kikkawa, K. Yonezawa, 
Identification of tbc7 having tbc domain as a novel binding protein to tsc1-tsc2 complex, 
Biochem Biophys Res Commun. 361 (2007) 218-223. 



20 C.C. Dibble, W. Elis, S. Menon, W. Qin, J. Klekota, J.M. Asara, P.M. Finan, D.J. Kwiatkowski, 
L.O. Murphy, B.D. Manning, Tbc1d7 is a third subunit of the tsc1-tsc2 complex upstream of 
mtorc1, Mol Cell. 47 (2012) 535-546. 
21 M. Rosner, A. Freilinger, M. Hengstschlager, Proteins interacting with the tuberous 
sclerosis gene products, Amino Acids. 27 (2004) 119-128. 
22 X. Gao, Y. Zhang, P. Arrazola, O. Hino, T. Kobayashi, R.S. Yeung, B. Ru, D. Pan, Tsc tumour 
suppressor proteins antagonize amino-acid-tor signalling, Nat Cell Biol. 4 (2002) 699-704. 
23 K. Inoki, Y. Li, T. Zhu, J. Wu, K.L. Guan, Tsc2 is phosphorylated and inhibited by akt and 
suppresses mtor signalling, Nat Cell Biol. 4 (2002) 648-657. 
24 C.J. Potter, L.G. Pedraza, T. Xu, Akt regulates growth by directly phosphorylating tsc2, Nat 
Cell Biol. 4 (2002) 658-665. 
25 K. Inoki, T. Zhu, K.L. Guan, Tsc2 mediates cellular energy response to control cell growth 
and survival, Cell. 115 (2003) 577-590. 
26 D.M. Gwinn, D.B. Shackelford, D.F. Egan, M.M. Mihaylova, A. Mery, D.S. Vasquez, B.E. Turk, 
R.J. Shaw, Ampk phosphorylation of raptor mediates a metabolic checkpoint, Mol Cell. 30 
(2008) 214-226. 
27 N. Takei, H. Nawa, Mtor signaling and its roles in normal and abnormal brain development, 
Front Mol Neurosci. 7 (2014) 28. 
28 J.L. Banko, L. Hou, F. Poulin, N. Sonenberg, E. Klann, Regulation of eukaryotic initiation 
factor 4e by converging signaling pathways during metabotropic glutamate receptor-
dependent long-term depression, J Neurosci. 26 (2006) 2167-2173. 
29 R.D. Polakiewicz, S.M. Schieferl, A.C. Gingras, N. Sonenberg, M.J. Comb, Mu-opioid receptor 
activates signaling pathways implicated in cell survival and translational control, J Biol Chem. 
273 (1998) 23534-23541. 
30 G. Page, F.A. Khidir, S. Pain, L. Barrier, B. Fauconneau, O. Guillard, A. Piriou, J. Hugon, Group 
i metabotropic glutamate receptors activate the p70s6 kinase via both mammalian target of 
rapamycin (mtor) and extracellular signal-regulated kinase (erk 1/2) signaling pathways in 
rat striatal and hippocampal synaptoneurosomes, Neurochem Int. 49 (2006) 413-421. 
31 E. Puighermanal, G. Marsicano, A. Busquets-Garcia, B. Lutz, R. Maldonado, A. Ozaita, 
Cannabinoid modulation of hippocampal long-term memory is mediated by mtor signaling, 
Nat Neurosci. 12 (2009) 1152-1158. 
32 D.C. Fingar, S. Salama, C. Tsou, E. Harlow, J. Blenis, Mammalian cell size is controlled by 
mtor and its downstream targets s6k1 and 4ebp1/eif4e, Genes Dev. 16 (2002) 1472-1487. 
33 X.M. Ma, J. Blenis, Molecular mechanisms of mtor-mediated translational control, Nat Rev 
Mol Cell Biol. 10 (2009) 307-318. 
34 C.C. Thoreen, L. Chantranupong, H.R. Keys, T. Wang, N.S. Gray, D.M. Sabatini, A unifying 
model for mtorc1-mediated regulation of mrna translation, Nature. 485 (2012) 109-113. 
35 J.D. Richter, N. Sonenberg, Regulation of cap-dependent translation by eif4e inhibitory 
proteins, Nature. 433 (2005) 477-480. 
36 E.A. Dunlop, A.R. Tee, Mtor and autophagy: A dynamic relationship governed by nutrients 
and energy, Semin Cell Dev Biol. 36 (2014) 121-129. 
37 C.C. Hudson, M. Liu, G.G. Chiang, D.M. Otterness, D.C. Loomis, F. Kaper, A.J. Giaccia, R.T. 
Abraham, Regulation of hypoxia-inducible factor 1alpha expression and function by the 
mammalian target of rapamycin, Mol Cell Biol. 22 (2002) 7004-7014. 
38 F.R. Sharp, M. Bernaudin, Hif1 and oxygen sensing in the brain, Nat Rev Neurosci. 5 (2004) 
437-448. 
39 T.R. Peterson, S.S. Sengupta, T.E. Harris, A.E. Carmack, S.A. Kang, E. Balderas, D.A. Guertin, 
K.L. Madden, A.E. Carpenter, B.N. Finck, D.M. Sabatini, Mtor complex 1 regulates lipin 1 
localization to control the srebp pathway, Cell. 146 (2011) 408-420. 



40 C.A. Lewis, B. Griffiths, C.R. Santos, M. Pende, A. Schulze, Regulation of the srebp 
transcription factors by mtorc1, Biochem Soc Trans. 39 (2011) 495-499. 
 
 



Rapamicyn 
Everolimus 

mTOR 
Complex 

mTORC1 mTORC2 

Hyperactivation of mTOR 

 
 

Abnormal cell proliferation and differentiation 
Change in expression of ion channels/neurotrasmitter receptors 

Abnormal dentrite morphology and axon outgrowth 
Abnormal autophagy 

Abnormal neuronal polarization and connectivity 
Hyperexcitability 

 
 

Epilepsy Epileptogenesis 

• Antiseizure Effects 
in Animal Models 
and Clinical Studies 
 

• Antiepileptogenic 
Effects in Animal 
Models 

*Graphical Abstract


