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M€uller Glia as an Important Source
of Cytokines and Inflammatory Factors

Present in the Gliotic Retina During
Proliferative Vitreoretinopathy

K. Eastlake,1 P. J. Banerjee,1 A. Angbohang,1 D. G. Charteris,2

P. T. Khaw,2 and G. A. Limb2

Retinal gliosis is characterized by biochemical and physiological changes that often lead to M€uller glia proliferation and hyper-
trophy and is a feature of many neuro-degenerative and inflammatory diseases such as proliferative vitreoretinopathy (PVR).
Although M€uller glia are known to release inflammatory factors and cytokines, it is not clear whether cytokine production by
these cells mirrors the pattern of factors present in the gliotic retina. Lysates from normal cadaveric retina and gliotic retinal
specimens from patients undergoing retinectomy for treatment of PVR, the M€uller cell line MIO-M1 and four human M€uller
glial cell preparations isolated from normal retina were examined for their expression of cytokines and inflammatory factors
using semi-quantitative dot blot antibody arrays and quantitative arrays. Comparative analysis of the expression of inflamma-
tory factors showed that in comparison with normal retina, gliotic retina exhibited greater than twofold increase in 24/102 fac-
tors examined by semiquantitative arrays, and a significant increase in 19 out of 27 factors assessed by quantitative methods
(P< 0.05 to P<0.001). It was observed that with the exception of some chemotactic factors, the majority of cytokines and
inflammatory factors were produced by M€uller glia in vitro and included G-CSF, MCP-1, PDGF-bb, RANTES, VEGF, and
TGFb2. These results showed that a large number of inflammatory factors expressed by M€uller glia in vitro are upregulated in
the gliotic retina, suggesting that targeting the production of inflammatory factors by M€uller glia may constitute a valid
approach to prevent neural damage during retinal gliosis and this merits further investigations.
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Introduction

Events leading to the development of PVR, a common

complication of retinal detachment, have been associated

to those of the inflammatory and wound healing responses

(Garweg et al., 2013; Oberstein et al., 2011). Cellular proc-

esses leading to the development of PVR involve migration

and proliferation of a variety of cells including retinal pig-

ment epithelium (RPE) (Hiscott et al., 1999), mononuclear

leucocytes (Hiscott et al., 1989; Limb et al., 1993), microglia

(Weller et al., 1991a,b), and M€uller glia (Bringmann et al.,

2009), all of which are known to contribute to inflammation

by releasing proinflammatory factors and cytokines. Although

retinal pigment epithelial (RPE) cell proliferation was thought

for a long time to be the major player in the development of

PVR (Kirchhof and Sorgente, 1989; Palma-Nicolas et al.,

2010; Parrales et al., 2013), in recent years it has been

accepted that M€uller glia also play a very important role in

the pathogenesis of this condition (Bringmann et al., 2009;

Charteris et al., 2007; Guidry, 2005; Lewis et al., 2010; Mor-

escalchi et al., 2013; Velez et al., 2012).

M€uller glia span across the whole width of the retina

and provide structural and metabolic support to retinal neu-

rons (Bringmann and Wiedemann, 2012). Whilst there is evi-

dence that M€uller glia become progenitor cells in fish and
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amphibians in response to retinal damage (Lenkowski et al.,

2013), in the adult mammalian retina this feature appears to

have been lost (Loffler et al., 2015). In contrast, reactive M€uller

cell gliosis characterized by morphological, biochemical, and

physiological changes, often occurs in the mammalian retina in

response to injury (Bringmann et al., 2006). This process is

thought to develop as a protective mechanism to prevent fur-

ther damage to the retina and to promote tissue repair. Yet, it

does not appear to be beneficial in the adult mammalian retina

and it has been thought that the release of proinflammatory

cytokines and growth factors from M€uller glia, can lead to fur-

ther degeneration (Bringmann and Wiedemann, 2012).

Several growth factors, cytokines, and matrix degrading

enzymes are observed in vitreous, subretinal fluid, and retinal tis-

sue from eyes affected by PVR (Lei et al., 2010; Limb et al.,

1991, 1994; Symeonidis et al., 2014). Infiltrating macrophages

and local microglia are thought to secrete growth factors, which

in turn promote further cytokine production and cellular migra-

tion and differentiation (Weller et al., 1990), whilst RPE cells

have been thought to be responsible for the production of extrac-

ellular matrix (Hiscott et al., 1999), as well as various proinflam-

matory cytokines, including transforming growth factor b2

(Hirsch et al., 2015). M€uller glia have been shown to release sev-

eral inflammatory factors and cytokines (Bringmann et al., 2009)

and some cytokines in turn have been shown to stimulate pro-

duction of other cytokines by M€uller glia (Yoshida et al., 2001).

In addition, M€uller glia express toll-like receptors (TLRs) (Kumar

et al., 2013) and receptors for advanced glycation end products

(RAGE) (Zong et al., 2010) that upon binding to their ligands

induce production of proinflammatory cytokines, chemokines

and neuroprotective growth factors by these cells.

Although various cytokines and growth factors have

been identified in vitreous and retinal tissues from many reti-

nal conditions associated with gliosis (Chua et al., 2012;

Franks et al., 1992; Limb et al., 1991, 1994; Muether et al.,

2013; Suzuki et al., 2011), it is not clear to what extent

M€uller glia may contribute to the release of factors present in

the gliotic retina, and whether the pattern of cytokine expres-

sion in the gliotic retina may mimic that of isolated M€uller

cells. It was therefore the aim of this study to investigate the

expression of a range of proinflammatory factors in M€uller

glia in vitro and to examine whether this expression parallels

that seen in the gliotic retina from patients with proliferative

vitreoretinopathy (PVR).

Materials and Methods

Tissue and Cell Culture
Four retinal specimens isolated from normal cadaveric donors were

obtained from Moorfields eye Bank, with prior consent for research.

All eyes were obtained within 24-h post mortem and the age range of

the donors was 34–88 years. The eyes were kept in sterile saline and

retinas carefully removed and washed in PBS. Specimens for protein

analysis were obtained by excising sections of peripheral retina between

1–3 mm 3 1–5 mm (3–5 mm2) to match the size of the retinectomy

specimens obtained. Samples were then frozen at 2808C until use. Six

peripheral retinectomy specimens (3–5 mm2) from eyes undergoing

retinal surgery for treatment of proliferative vitreo-retinopathy (PVR)

were obtained from Moorfields eye Hospital, upon written consent

from the patients. The age of the patients ranged between 58 and 71

years, with a duration of PVR of 2–10 weeks. All tissues used in this

study were obtained and treated according to guidelines from the Local

Ethics Committee at Moorfields and the Institute of Ophthalmology

and followed the tenets of the Declaration of Helsinki. Isolated retinas

were washed in PBS and frozen at 2808C until use.

The M€uller cell line (MIO-M1) established in our laboratory

and derived from normal retinae (Limb et al., 2002), and other four

M€uller cell preparations isolated as previously described (Limb et al.,

2002) were used in the study. These were named 6387, 6391, 6390,

and 6426. Although they were used between passages 9 and 14,

these cells have the characteristics of the MIO-M1 cell line, and

upon further passages they have been shown to be spontaneously

immortalized. Each cell preparation was grown to a confluent mono-

layer on plastic flasks in DMEM containing 10% FCS. Monolayers

were washed in PBS and detached from tissue culture flasks using a

cell scraper. Cells were resuspended in PBS and centrifuged to obtain

a cell pellet. This was then frozen at 2808C until use.

Preparation of Retina and Cell Lysates
Cell lysis was carried out in retinal specimens and M€uller cell pellets

using a BioPlex cell lysis kit (171-304011, BioRad, UK) according

to the manufacturer’s instructions. Briefly, samples were rinsed with

cell wash buffer, and homogenized in 500 lL cell lysis solution (con-

taining 500 mM PMSF). Samples were then frozen at 2708C,

thawed and sonicated on ice followed by centrifugation at 4,500g for

4min (cell lysates) or 20 min (retina samples). Supernatants contain-

ing proteins were collected and protein concentrations were deter-

mined using a BCA assay kit (Thermo Fischer, UK).

Proteome Profiler Antibody Array
The R&D Systems Human XL cytokine array kit (ARY022, R&D

Systems, UK) was used to perform a general semi quantitative analy-

sis of various cytokines expressed in normal and gliotic human reti-

nal lysates as well as cultured M€uller glia lysates. Protocols were

followed as per manufacturer’s instructions. Because of the small size

of the gliotic and normal retinal specimens investigated (3–5 mm2),

it was necessary to pool the protein lysates of gliotic or normal retina

to yield the protein concentrations of 150 lg mL21 required for the

assay. A pool of M€uller cell lysates was also made in order to under-

take a comparative analysis between samples.

Protein extracts of cell and retinal samples were incubated

with the antibody array membranes overnight at 48C. After washing,

membranes were incubated with detection antibodies and chemilu-

minescent reagents provided in the kit. Membranes were protected

in plastic sheeting before imaging using an autoradiography cassette

and X-ray film. Spot intensity analysis was carried out using ImageJ

and Microsoft Excel.
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Quantitative Analysis of Cytokines and
Growth Factors
The BioPlex-pro 27 plex immunoassay (BioRad, UK), which pro-

vides quantitative values, was used in this study to confirm results

from the proteome profiler array. Experiments were carried out fol-

lowing the manufacturer’s instructions. Using the protein standards

provided, six gliotic retinal samples, four normal cadaveric retinae,

and five different M€uller cell preparations including the MIO-M1

cell line, were each prepared to contain between 200 and 900

lg mL21 protein and individually examined in the immunoassay. In

addition, each individual sample was assessed in duplicate. The mag-

netic bead stock was diluted 1:20 with assay buffer and 50 lL of

this solution was loaded into each well of a 96-well plate. Beads

were washed twice in wash buffer using a Bio-PlexVR Handheld Mag-

netic Washer (#171-020100, BioRad). The standards and samples

were then loaded in duplicate into the wells and the plate was sealed

and incubated at room temperature for 2 h. After the incubation,

the plate was rinsed with wash buffer three times using the magnetic

plate, before addition of 25 lL of detection antibodies. After 1-h

incubation on the shaker, the plate was washed three times, and 50

lL of streptavidin added to each well. The plate was then incubated

for 30 min on the shaker and washed three times. About 125 lL of

assay buffer was added to each well and the plate incubated for 30 s

before reading on the BioPlex MagpixTM(BioRad,UK) system. Cyto-

kines detected in this array included FGFb, Eotaxin, G-CSF, GM-

CSF, IFN-g, IL-1b, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9,

IL-10, IL-12 (p70), IL-13, IL-15, IL-17, IP-10, MCP-1, MIP-1a,

MIP-1b, PDGF-BB, RANTES, TNF-a, and VEGF. Tests were also

performed to analyse the three isoforms of TGF beta, using the

BioPlex-pro TGFbeta 3-plex immunoassay (BioRad,UK). Because

TGFb is normally produced as a high molecular weight protein

complex consisting of a mature TGFb dimer, the latency-associated

peptide (LAP) and the latent TGFb binding protein (LTBP), tran-

sient acidification followed by neutralization is needed to release the

immunoreactive form for quantification. Because this treatment

affects the quantification of most cytokines, it is necessary to under-

take specific assays for TGFb (Kropf et al., 1997). Therefore, for the

TGFb analysis, lysates of six gliotic retina, four normal retina, or

M€uller cells were activated with 1N HCl, followed by neutralization

with 1.2N NaOH/0.5 M HEPES buffer prior to performing the

assay described above. The same procedure was followed to assess

the cell culture supernatants of MIO-M1 cells, which were examined

as single specimens. Mean cytokine values of individual samples

were obtained using the BioPlex manager 6.1 (BioRad,UK) and

Microsoft Excel programmes. Statistical comparison between differ-

ent groups was determined by two tailed, unpaired t tests, using the

GraphPad Prism5 programme.

Results

Expression of Cytokines and Growth Factors by
M€uller Glial Cell Preparations
Semiquantitative analysis of a pool of lysates from the five dif-

ferent M€uller cell preparations used in the study detected the

presence of 76 factors out of the 102 examined. The cytokines

and growth factors predominantly observed were those associ-

ated with retinal differentiation (EGF), axon regeneration

(osteopontin) proliferation (DPPIV, MIF, EGF, PDGF-aa,

FGF-19) matrix organization (Serpin E1, EMMPRIN, uPAR,

DPPIV), inflammation (Pentraxin-3, GM-CSF, MIF, IL-1RA,

IL-17a), and apoptosis (GM-CSF, myeloperoxidase, MIF, Ser-

pinE1). Basal levels of other proinflammatory cytokines and

chemokines including IL-6, M-CSF, MIP-3a, IL-15, MCP-3,

TNFa, MIP-1a/b, and matrix components such as thrombo-

spondin were also detected at very low levels (Fig. 1).

Further examination of the expression of cytokines in

the MIO-M1 cell line and four different M€uller glial cell

lysates by quantitative methods (BioPlex Pro) showed that

these cells expressed all the 27 cytokines analyzed, although

some cytokines were found to be present in the cell lysates at

very low levels. FGFb consistently exhibited the highest

expression levels in all M€uller glial samples at 1–2 pg lg21

FIGURE 1: Expression of cytokines and growth factors by M€uller
glia in vitro. Images show the relative expression of cytokines
and growth factors detected in a pooled lysate from the five dif-
ferent M€uller glia cell lines investigated. (A) Dot blot membrane
array shows the intensity of expression of the various factors in
the cell lysate. Spots marked by black boxes indicate positive
controls, whilst spots marked by the white box indicate the neg-
ative controls. (B) Histograms show in descending order the rela-
tive levels of cytokines and growth factors expressed by M€uller
glia. Values were normalized to the positive controls. Relative
values below 0.1 were excluded from the analysis.
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protein (Fig. 2). Expression levels largely related to the semi-

quantitative analysis (Fig. 1) and showed high concentrations

of GM-CSF, MCP-1, and G-CSF. Many factors showing low

expression (below 0.4 pg lg21 protein) in the quantitative

array also showed low expression in the semiquantitative array

and included PDGF-bb, IL-12, IL-15, IL-6, IL-10, IL-13,

IL-2, IL-4, IL-17a, IL-1b, IL-1ra, TNF-a, MIP-1b, and

MIP-1a. Unlike most cytokines which were present in all the

cell lines examined, IL-15 was only observed in two out of

five cell preparations.

Quantitative analyses of five M€uller glial cell lysates

were performed to assess the expression of the three different

isoforms of TGFb. It was observed that all the five M€uller

glial cell preparations investigated expressed relatively higher

levels of TGFb1 (0.64 6 0.33 pg lg21 protein) than TGFb2

(0.23 6 0. 0.1 pg lg21 protein) (P 5 0.02) or TGFb3

(0.016 0.001 pg lg21 protein) (P< 0.001) (Fig. 3A).

TGFb3 was only observed above detectable levels in two out

of the five cell preparations analyzed (MIO-M1 and 6387).

Quantification of TGFb protein isoforms 1, 2, and 3 in a

culture supernatant of the MIO-M1 cell line showed that

TGFb1 was the predominant isoform released (1713

pg mL21), followed by TGFb2 (1093 pg mL21). In contrast,

very low levels of TGFb3 (15.25 pg mL21) were observed in

the supernatant of these cells (Fig. 3B). The levels of TGFb

isoforms observed in the supernatant of MIO-M1 cells were

related to the levels of these cytokines detected in the cell

lysates (Fig. 3A).

FIGURE 2: Expression of cytokines and growth factors by M€uller
glia in vitro as determined by quantitative analysis. Histogram
shows the quantitative analysis of the expression of cytokines in
the five different M€uller cell lysates examined. Levels are shown
in descending order according to the levels observed in the
majority of cells.

FIGURE 3: Expression of TGFb isoforms by M€uller glia in vitro.
(A) Histograms show the mean value of the levels of expression
of TGFb1, TGFb2, and TGFb3 in each of the individual M€uller
glial cell lysates investigated, as determined by a quantitative
immunoassay. All the cell lysates examined expressed higher lev-
els of TGFb1 as compared with TGFb2 (unpaired two-tailed t
test, P 5 0.02) and TGFb3 (unpaired two-tailed t test, P < 0.001).
Very low levels of TGFb3 were only detected in MIO-M1 and
6387 cells. (B) Quantitative analysis of the TGFb isoforms present
in individual cell culture supernatant of the M€uller cell line MIO-
M1 shows that TGFb1 and TGFb2 are released by these cells in
similar proportion to that seen in cell lysates. Minimally detecta-
ble levels of TGFb3 were released by these cells.
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Comparison of the Expression of Cytokines and
Growth Factors Between Gliotic Retina of
Proliferative Vitreoretinopathy and Normal Retina
Semiquantitative analysis of a pool of six PVR specimens and

four retinal fragments from normal cadaveric retina detected

the presence of 82 factors out of 102 examined (Fig. 4). All

the cytokines and growth factors identified in the normal ret-

ina were also present in the gliotic retina. However, 21 of

these factors were found >2-fold upregulated in the gliotic

retina as compared with normal retina, whilst five of these

factors were <0.6-fold downregulated in the gliotic retina as

compared with normal retina (Table 1). Factors including

TFF3, I-TAC, and IL-16 exhibited the highest fold increase

in the gliotic retina when compared with normal retina

(Table 1). As expected, inflammatory cytokines such as IL-1a,

VEGF, PF4, IL-16, PDGF-AA/BB, M-CSF, adiponectin,

MIP-3b, IL-18bpa, I-TAC, and IL-2 also exhibited a two-

fold increase in the gliotic retina compared with normal ret-

ina. Factors involved in metabolic regulation such as adipo-

nectin was also upregulated more than two-fold in the gliotic

retina as compared with normal retina. Factors found to be

two-fold downregulated in the gliotic retina compared with

normal retina included angiogenin, C-reactive protein, myelo-

peroxidase, MMP-9 and aggrecan (Table 1).

Further analysis by quantitative methods compared the

levels of 27 cytokines and growth factors between lysates

derived from normal cadaveric retina (n 5 4) and gliotic ret-

ina obtained from patients with PVR (n 5 6). FGF basic,

FIGURE 4: Semi-quantitative analysis of the expression of cytokines and growth factors in gliotic and normal human retina. Images show
the relative expression of cytokines and growth factors detected in pooled lysates from four normal cadaveric retina and six gliotic reti-
nectomy specimens. (A, B) Dot blot membrane arrays show the intensity of expression of various factors in the retinal lysates. Spots
marked by black boxes indicate positive controls, whilst spots marked by the white box indicate the negative controls. (C). Histograms
show in descending order the levels of expression of the various factors in the pooled specimens. Values were normalized to the posi-
tive controls. Relative values below 0.1 were excluded from the analysis.
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GM-CSF and IP-10 showed high expression in the retinal

lysates in comparison to other cytokines analyzed. No expres-

sion of IL-15 was detected in any of the retinal lysates ana-

lyzed. A significant increase, was observed in 19 out of the 27

cytokines investigated quantitatively in the gliotic retina as

compared with the normal retina and included GM-CSF,

G-CSF, VEGF, RANTES, MCP-1, PDGF-bb, IL-9, IL-17a,

IL-12, IL-1ra, IL-10, MIP-1b, IL-8, TNFa, IL-6, IL-13, IL-2,

IL-4, MIP-1a, and IL-1b (P< 0.05 to P< 0.001; two tailed

t test) (Fig. 5).

Quantitative expression of the three different TGFb iso-

forms was compared between six gliotic retinal specimens and

four normal retinae. TGFb2 was the predominant isoform

present in the lysates from both gliotic and normal human

retinae (Fig. 6). TGFb2 was the only isoform to be signifi-

cantly increased in the gliotic retina as compared with the

normal retina (P< 0.01). Although an increase in the levels

of TGFb1 was observed in the gliotic retina as compared

with normal retina these levels were not significantly differ-

ent. In addition, TGFb3 which was not observed in the

TABLE 1: Semi-quantitative Analysis of the Expression of Cytokines and Inflammatory Factors in PVR Retina as Com-
pared with Normal Retina

Factor Function Fold change
(gliotic/normal retina)

TFF3 Cell growth, metastasis, and angiogenesis 4.623920

I-TAC Chemokine 3.725999

IL-16 Cytokine/chemoattractant 3.209796

IL-18 Bpa Inhibits IL-18 2.975417

DPPIV Antigenic enzyme 2.748755

uPAR Glycoprotein/receptor 2.747772

IL-1a Pro-inflammatory cytokine 2.611321

PF4 Chemokine–blood coagulation 2.595450

MIP-3b Chemokine 2.530014

TfR Carrier protein; iron import 2.487686

VEGF Growth factor–vasculogenesis 2.460055

IL-23 Pro-inflammatory cytokine 2.435597

M-CSF Pro-inflammatory cytokine 2.371067

adiponectin Hormone; glucose regulation 2.357242

IL-2 Pro-inflammatory cytokine 2.259597

ENA-78 Chemokine 2.237109

PDGF-AB/BB Growth factor 2.211187

SDF-1a Chemokine 2.185202

pentraxin-3 Immune regulation 2.175439

Kallikrein Enzyme; proinflammatory 2.107335

Resistin Hormone; proinflammatory 2.049007

aggrecan Cartilage proteoglycan 0.575574

angiogenin Enzyme; angiogenesis 0.500763

C-reactive protein Proinflammatory 0.466765

MMP-9 Matrixin enzyme 0.408317

Myeloperoxidase Lysosomal enzyme 0.366569

Values obtained from semiquantitative analysis of dot blot arrays showing the fold change in the expression of cytokines and growth factors
in the gliotic retina as compared with the normal retina. Values below 0.1 were excluded from analysis.
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normal retina, was observed in two of the six gliotic speci-

mens analyzed (Fig. 6).

Comparison of the Expression of Cytokines
Between M€uller Glia and Gliotic or Normal Retina
Semiquantitative analysis revealed various similarities and dif-

ferences in the expression of cytokines and growth factors

between M€uller glia and retinal specimens. Of the 95 proteins

identified by the protein array, 76 (80%) were detected in

M€uller glia in vitro, whilst 83 (87%) were detected in the

normal and gliotic retina. Out of the 76 proteins expressed

by M€uller glia, only 12 (16%) were unique to these cells,

whilst 64 (84%) were also found in retinal specimens. Of the

83 proteins detected in retina, only 19 (22.9%) were unique

to gliotic or normal retina (Fig. 7). Factors including TFF3,

IL-16, DPPIV, uPAR, IL-1a, PF4, TfR, VEGF, M-CSF, adi-

ponectin, IL-2, PDGF-AB/BB, and SDF-1a, were observed

two-fold or more upregulated in the gliotic retina as com-

pared with normal retina, and shared their expression with

M€uller glia (Fig. 7). Other proteins found to be highly

expressed in the M€uller glia in vitro, including EMMRIN,

Chitinase 3 like 1, FGFb, MIF, resistin and osteopontin were

also found at high levels in both gliotic and normal retina,

although there were no differences in their expression between

these specimens (Figs. 1, 4 and 7). Aggrecan, MMP-9 and

myeloperoxidase which also shared expression between retina

and M€uller glia, were downregulated in the gliotic retina as

compared to normal retina. Of the 19 factors detected only

in retinal specimens, I-TAC, IL-18Bpa, MIP-3b, IL-23, and

ENA-78 were observed to be upregulated in the gliotic retina,

whilst angiogenin and c-reactive protein were observed down-

regulated in the gliotic retina Fig. 7).

Quantitative analysis showed that out of 27 factors ana-

lyzed, all were detected in M€uller glia in vitro. In addition, with

the exception of IL-15, which was only found in two M€uller cell

preparations, all factors were present in the retinal specimens. Of

the 26 cytokines identified in retina, 19 (70%) were significantly

upregulated (P< 0.05 to P< 0.001) in the gliotic retina as com-

pared with normal retina (Fig. 5, Table 2). Interestingly, FGFb

and GM-CSF, which were highly expressed in the gliotic retina,

were expressed at the highest levels in M€uller cell lysates.

Discussion

Inflammation has been implicated in the pathogenesis of reti-

nal gliosis from various aetiologies, including PVR, diabetic

retinopathy and prevalent diseases that lead to blindness, such

as AMD and glaucoma (Hollborn et al., 2008; Muether

FIGURE 5: Expression of inflammatory cytokines in the gliotic
and normal human retina. Histogram shows a quantitative analy-
sis of the expression of cytokines arranged in a descending order
according to the levels observed in the gliotic retina. Asterisks
denote a significant upregulation in the gliotic retina (red col-
umns) as compared with the normal retina (blue columns). Error
bars indicate the mean 6 SEM for each group. *P < 0.05;
**P < 0.01; ***P < 0.001. n 5 number of samples investigated.

FIGURE 6: Levels of TGFb isoforms in gliotic and normal human
retina. Scatter dot-plots show the levels of expression of the
three different isoforms of TGFb in four normal and six gliotic
human retinal specimens. Error bars indicate the mean 6 SEM for
each group. * Unpaired two-tailed t test, P < 0.05 vs. normal ret-
ina; ** unpaired two-tailed t test, P < 0.01 v. normal retina.
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et al., 2013; Suzuki et al., 2011; Tezel and Wax, 2004).

Inflammatory factors and cytokines are found in the vitreous

and retinal specimens of eyes affected by various retinal

degenerative conditions (Chua et al., 2012; Limb et al.,

1991, 1994), whilst M€uller glia in vitro have been shown to

produce various inflammatory factors associated with gliosis

(Bringmann et al., 2009). Different cell types have been

implicated in the development of gliosis but it is not clear

whether cytokines present in the gliotic retina predominantly

derive from a specific cell population. Furthermore, the pat-

tern of expression of inflammatory factors in both, the gliotic

retina of PVR and isolated M€uller glia alone have not been

previously examined. This study aimed to assess whether fac-

tors produced by M€uller glia in vitro could be associated to

the high levels of cytokines and inflammatory factors present

in retinal specimens of patients with PVR.

Because of the size of the gliotic specimens obtained

(3–5 mm2), it was necessary to pool the protein lysates of

gliotic and normal retina to yield the required protein concen-

trations to undertake the protein profile array. Since we pooled

the tissue samples, a pool of protein cell lysates was also made

in order to undertake a comparative analysis between samples.

As identified by semiquantitative analysis the protein

found to be the most highly upregulated in the gliotic PVR

retina, was trefoil factor 3 (TFF3), showing a 4.2-fold increase

TABLE 2: Comparison of Inflammatory Factors
Expressed by M€uller Glia, Normal, and Gliotic Retina

Average expression (pg/lg protein)

Protein M€uller glia Normal
retina

Gliotic
retina

IL-15 0.040668 0 0

IL-1b 0.001851 0.000607 0.001695*

MIP-1a 0.003732 0.001224 0.003418**

IL-5 0.002317 0.002111 0.003855

IL-4 0.00598 0.002 0.005974*

IL-2 0.017284 0 0.00788*

Eotaxin 0.040389 0.006458 0.01172

IL-13 0.022528 0.007916 0.020591*

IL-6 0.03749 0.007552 0.024154**

TNFa 0.035241 0.012741 0.022777

IL-8 0.026798 0.006391 0.029021***

MIP-1b 0.007141 0.002183 0.023561*

IL-10 0.031976 0.002435 0.023479*

IFNg 0.096418 0.006599 0.04368

IL-1ra 0.065974 0.022479 0.062883*

IL-12 0.139451 0.014386 0.077607*

IL-17A 0.078565 0.016709 0.077919*

IL-9 0.090557 0.033561 0.101902**

PDGF-bb 0.220385 0.041872 0.105347**

MCP-1 0.486812 0.028808 0.108224**

IL-7 0.105637 0.020808 0.125765

RANTES 0.30209 0.029894 0.160456*

VEGF 0.281052 0.013774 0.167558*

G-CSF 0.488854 0.11078 0.335609*

IP-10 0.402409 0.364124 0.316521

GM-CSF 1.056891 0.332087 1.418945*

bFGF 1.590391 1.200721 1.809477

Table shows the mean expression values of various factors in
lysates of M€uller glia (n 5 5), normal retina (n 5 4), and gliotic
retina (n 5 6). Asterisks represent the levels of significance
between normal and gliotic retina (*P< 0.05; **P< 0.01;
***P< 0.001).

FIGURE 7: Comparison of cytokine expression between M€uller
glia and gliotic or normal retina. Venn diagram shows the over-
lapped expression of cytokines between M€uller glia, gliotic, and
normal retina as detected by semi-quantitated analysis. Factors
listed in the yellow section indicate those expressed by M€uller
glia; factors listed in the green (overlapping) section indicate
those identified in M€uller glia and normal and gliotic retina,
whilst factors listed in the blue section indicate those only
detected in normal and gliotic retina. Factors highlighted in red
indicate those which were >2-fold upregulated in the gliotic ret-
ina as compared with normal retina, whilst factors highlighted in
green represent those found <0.5-fold downregulated in gliotic
retina as compared with normal retina.
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in comparison with the normal retina. This factor was also

found to be one of the predominant factors observed in cell

lysates of M€uller glia. TFF3 peptides are located to mucous

epithelia as well as nervous tissue and are involved in apoptosis,

cell migration and immune responses (Belovari et al., 2015).

In disease, TFF3 has been associated with cell growth, metasta-

sis and angiogenesis in cancer (Babyatsky et al., 2009; Kjellev,

2009) as well as with neurodegenerative disorders such as Alz-

heimer’s disease (Bernstein et al., 2015). This protein has never

been associated to retinal gliosis and its precise role in inflam-

matory processes affecting the retina is not known. It is possi-

ble that it may contribute to the abnormal proliferation and

immune modulation of M€uller glia within the affected retina

and merits further investigations. The second most upregulated

factor found ion the gliotic retina was the interferon-inducible

T Cell Alpha Chemoattractant (I-TAC), also known as Che-

mokine (C-X-C motif) ligand 11 (CXCL11) (Rani et al.,

1996) showing a 3.7-fold increase as compared with the nor-

mal retina. Because T lymphocyte infiltration is often observed

in retinal membranes of PVR (Limb et al., 1993), this factor

may therefore be responsible for this effect. Interestingly, this

factor was not expressed by M€uller glia in vitro, suggesting that

resident or inflammatory microglia or macrophages are respon-

sible for its production within the inflamed retina. Other cyto-

kines found >2-fold upregulated in the gliotic retina included

those that function as chemoattractants, such as IL-16, platelet

factor 4 (PF4) and MIP-3b, as well as proinflammatory

cytokines such as IL-1a, and VEGF. However, most chemoat-

tractants were expressed by M€uller glia at very low levels, sug-

gesting that although M€uller glia contributes to the production

of these factors in PVR, other cells in the retina, including

microglia may also constitute a source of these cytokines. Inter-

estingly, the antigenic enzyme DPPIV, a membrane anchored

ecto-protease identified as the leukocyte antigen CD26 (Augus-

tyns et al., 1999), uPAR, a glycoprotein bound to the cell

membrane and a component of the plasminogen activation sys-

tem (Kjaergaard et al., 2008), and the transferrin receptor

(TfR), which were all present at high levels in M€uller cell

lysates were also found to be >2-fold upregulated in the PVR

retina.

Quantitative analyses identified high expression of

FGFb, GM-CSF, IP-10, and G-CSF in the normal retina,

with GM-CSF and G-CSF showing significant upregulation

in the PVR specimens. Other cytokines found in the normal

retina at relatively low concentrations, such as VEGF,

RANTES, IL-7, MCP-1, and PDGF-bb were also signifi-

cantly increased in the gliotic retina as compared with the

normal retina. This is supported by several findings in the lit-

erature, which show high upregulation of these factors in

PVR, and diabetic retinopathy (Mitamura et al., 2001; Suzuki

et al., 2011). Although these factors were highly expressed by

the five different M€uller cell preparations investigated, it is

known that factors such as VEGF can be produced by micro-

glia and macrophages (Krause et al., 2014; Liu et al., 2015),

whilst the chemokines RANTES and MCP-1 can be pro-

duced by astrocytes, microglia, and damaged neurons within

the injured CNS (Gyoneva and Ransohoff, 2015). Neverthe-

less, these results suggest that M€uller glia, which we derived

from donors with no known retinal diseases, have the poten-

tial to contribute to the expression of these factors during ret-

inal gliosis.

Semiquantitative arrays showed that the proinflamma-

tory enzyme myeloperoxidase was highly downregulated in

the PVR retina as compared with the normal retina. This

enzyme is involved in catalysing the formation of reactive

oxygen species that contribute to inflammation. High levels

have been associated with cardiovascular disease (Nicholls and

Hazen, 2005) and multiple sclerosis (Gray et al., 2008), high-

lighting the contribution of this enzyme to retinal gliosis.

Although this enzyme was observed in M€uller cell lysates, the

significance of its downregulation during retinal gliosis is yet

to be defined. It may be possible that the decrease observed

in the PVR retina was merely due to retinal cell death, or to

regulatory mechanisms triggered during retinal inflammation

that inhibit the production of this enzyme. Other factors

found to be downregulated in the gliotic retina as compared

with the normal retina include angiogenin, the matrixin

enzyme MMP-9, and proinflammatory C-reactive protein.

Angiogenin is a secreted ribonuclease that promotes RNA

transcription and cell growth. It was first identified as an

angiogenic factor produced by tumor cells and is thought to

promote cell and tissue adaptation (Lai et al., 2015). That

this protein is highly downregulated in the gliotic retina as

compared with the normal retina, may reflect the limited pro-

liferative and regenerative ability of the cells present in the

gliotic tissue. MMP-9 is involved in the degradation of the

extracellular matrix (ECM) that promotes tissue remodelling

(Vandooren et al., 2013), therefore the downregulation of

this enzyme in PVR retina may contribute to the progression

of gliosis by stabilising the ECM. C-reactive protein (CRP) is

an acute-phase protein of hepatic origin that increases follow-

ing interleukin-6 secretion from macrophages and T-cells

(Worthmann et al., 2015). This protein is rapidly produced

in response to inflammatory signals but quickly declines after

a short period (Povoa, 2002), for which it can be suggested

that its low levels in the gliotic retina may reflect the chronic-

ity of PVR. Because C-reactive protein was not shown to be

present in M€uller lysates, this may indicate that other retinal

inflammatory cells may be producing this protein during

gliosis.

The factor found to be the most abundant in the M€uller

cell lysates as judged by semiquantitative analysis, and has not
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been previously detected in M€uller glia, was the plasminogen

activator inhibitor 1 (serpin E1). Serpin E1, an inhibitor of

fibrinolysis and matrix metalloproteinases, has been implicated

in inflammatory diseases contributing to the progression of

fibrosis (Loskutoff and Quigley, 2000). However, it was not

found to be one of the predominant factors in the lysates of

normal and gliotic human retina. Another matrix-associated

protein, the extracellular matrix metalloproteinase inducer

(EMMPRIN), was also found to be abundant in M€uller glia

and although it was present at relatively high levels in the reti-

nal lysates, there was no difference in expression between the

gliotic and normal retina. That not all the factors examined

were detected in both, isolated M€uller glia and retinal speci-

mens may be due to the fact that M€uller cells in culture may

de-differentiate and lose many of their typical physiological

and functional features upon in vitro culture. Although in gli-

otic PVR retina there is severe loss of retinal neurons and pre-

dominance of reactive M€uller glia expressing GFAP and

CRALBP (Charteris et al., 2007; Ghosh and Johansson, 2012;

Wickham et al., 2007), it is possible that factors expressed by

M€uller glia may be under-represented in the retinal samples

due to the presence of other retinal cell types.

TGFb signalling is well known for its role in promoting

M€uller glia proliferation (Close et al., 2005), and is thought to

contribute to the gliotic response observed in retinal degenera-

tions (Guerin et al., 2001). Quantitative analysis of the three

TGFb isoforms identified TGFb1 as the predominant isoform

produced by M€uller glia in vitro, its values being on average

38% higher than those of TGFb2. In contrast, TGFb2 was the

predominant isoform detected in normal retina, being 2.7 times

the levels of TGFb1. In addition, TGFb2 was the only isoform

to be significantly upregulated in the PVR retina as compared

with the normal retina (P< 0.05). It has been documented that

M€uller glia in culture produce TGFb2 and that this cytokine

inhibits the proliferation of retinal endothelial cells (Yafai et al.,

2014). It is of interest that our results showed that M€uller glia

produces comparable levels of TGFb2 to those previously

reported (Yafai et al., 2014). However, a comparison between

the three different isoforms of TGFb production by M€uller glia

has not been previously shown. From the present observations it

is possible to suggest that some of the TGFb2 produced by

M€uller glia may account for the high levels present in the gliotic

retina, but it is also likely that cells other than M€uller glia may

constitute an additional source of this cytokine within the gliotic

retina. This imbalance might contribute to the progression of

the gliotic response and merits further investigations.

In conclusion, this study showed that the pattern of

expression of the majority of cytokines and proinflammatory

factors found to be significantly elevated in lysates of PVR

retina as compared with normal human retina parallels the

pattern of expression of these factors expressed by M€uller glia

in culture. That the majority of factors identified in cultured

M€uller glia by semi quantitative and quantitative analyses

were detected in retinal specimens (87 and 96%, respectively),

and that 70% of the quantitated factors were significantly

upregulated in the gliotic retina, as compared with normal

retina, strongly suggest that M€uller glia is an important

source of cytokines and growth factors associated with retinal

gliosis in PVR. Targeting the production of these factors by

M€uller glia may constitute a valid approach to prevent neural

damage during many retinal diseases and this merits further

investigations.

Acknowledgment

Grant sponsor: MRC—China–UK Initiative; Grant number:

MR/K008722/1; Grant sponsor: Fight for Sight (through a

donation of Mr T Bickford); the Special Trustees of Moor-

fields Eye Hospital; NIHR Biomedical Research Centre at

Moorfields Eye Hospital; UCL Institute of Ophthalmology,

London, UK.

The authors declare that they do not have any conflicts of

interest.

References
Augustyns K, Bal G, Thonus G, Belyaev A, Zhang XM, Bollaert W, Lambeir
AM, Durinx C, Goossens F, Haemers A. 1999. The unique properties of
dipeptidyl-peptidase IV (DPP IV/CD26) and the therapeutic potential of DPP
IV inhibitors. Curr Med Chem 6:311–327.

Babyatsky M, Lin J, Yio X, Chen A, Zhang JY, Zheng Y, Twyman C, Bao X,
Schwartz M, Thung S, Lawrence Werther J, Itzkowitz S. 2009. Trefoil factor-3
expression in human colon cancer liver metastasis. Clin Exp Metastasis 26:
143–151.

Belovari T, Bijelic N, Tolusic Levak M, Baus Loncar M. 2015. Trefoil factor
family peptides TFF1 and TFF3 in the nervous tissues of developing mouse
embryo. Bosn J Basic Med Sci 15:33–37.

Bernstein HG, Dobrowolny H, Trubner K, Steiner J, Bogerts B, Hoffmann W.
2015. Differential regional and cellular distribution of TFF3 peptide in the
human brain. Amino Acids 47:1053–1063.

Bringmann A, Iandiev I, Pannicke T, Wurm A, Hollborn M, Wiedemann P,
Osborne NN, Reichenbach A. 2009. Cellular signaling and factors involved in
Muller cell gliosis: Neuroprotective and detrimental effects. Prog Retin Eye
Res 28:423–451.

Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov
SN, Osborne NN, Reichenbach A. 2006. Muller cells in the healthy and dis-
eased retina. Prog Retin Eye Res 25:397–424.

Bringmann A, Wiedemann P. 2012. Muller glial cells in retinal disease. Oph-
thalmologica 227:1–19.

Charteris DG, Downie J, Aylward GW, Sethi C, Luthert P. 2007. Intraretinal
and periretinal pathology in anterior proliferative vitreoretinopathy. Graefes
Arch Clin Exp Ophthalmol 245:93–100.

Chua J, Vania M, Cheung CM, Ang M, Chee SP, Yang H, Li J, Wong TT.
2012. Expression profile of inflammatory cytokines in aqueous from glauco-
matous eyes. Mol Vis 18:431–438.

Close JL, Gumuscu B, Reh TA. 2005. Retinal neurons regulate proliferation of
postnatal progenitors and Muller glia in the rat retina via TGF beta signaling.
Development 132:3015–3026.

504 Volume 64, No. 4



Franks WA, Limb GA, Stanford MR, Ogilvie J, Wolstencroft RA, Chignell AH,
Dumonde DC. 1992. Cytokines in human intraocular inflammation. Curr Eye
Res 11 (Suppl):187–191.

Garweg JG, Tappeiner C, Halberstadt M. 2013. Pathophysiology of prolifera-
tive vitreoretinopathy in retinal detachment. Surv Ophthalmol 58:321–329.

Ghosh F, Johansson K. 2012. Neuronal and glial alterations in complex long-
term rhegmatogenous retinal detachment. Curr Eye Res 37:704–711.

Gray E, Thomas TL, Betmouni S, Scolding N, Love S. 2008. Elevated myelo-
peroxidase activity in white matter in multiple sclerosis. Neurosci Lett 444:
195–198.

Guerin CJ, Hu L, Scicli G, Scicli AG. 2001. Transforming growth factor beta in
experimentally detached retina and periretinal membranes. Exp Eye Res 73:
753–764.

Guidry C. 2005. The role of Muller cells in fibrocontractive retinal disorders.
Prog Retin Eye Res 24:75–86.

Gyoneva S, Ransohoff RM. 2015. Inflammatory reaction after traumatic brain
injury: Therapeutic potential of targeting cell–cell communication by chemo-
kines. Trends Pharmacol Sci 36:471–480.

Hirsch L, Nazari H, Sreekumar PG, Kannan R, Dustin L, Zhu D, Barron E,
Hinton DR. 2015. TGF-beta2 secretion from RPE decreases with polarization
and becomes apically oriented. Cytokine 71:394–396.

Hiscott P, Morino I, Alexander R, Grierson I, Gregor Z. 1989. Cellular compo-
nents of subretinal membranes in proliferative vitreoretinopathy. Eye (Lond)
3:606–610.

Hiscott P, Sheridan C, Magee RM, Grierson I. 1999. Matrix and the retinal
pigment epithelium in proliferative retinal disease. Prog Retin Eye Res 18:
167–190.

Hollborn M, Francke M, Iandiev I, Buhner E, Foja C, Kohen L, Reichenbach A,
Wiedemann P, Bringmann A, Uhlmann S. 2008. Early activation of inflamma-
tion- and immune response-related genes after experimental detachment of
the porcine retina. Invest Ophthalmol Vis Sci 49:1262–1273.

Kirchhof B, Sorgente N. 1989. Pathogenesis of proliferative vitreoretinopathy.
Modulation of retinal pigment epithelial cell functions by vitreous and macro-
phages. Dev Ophthalmol 16:1–53.

Kjaergaard M, Hansen LV, Jacobsen B, Gardsvoll H, Ploug M. 2008. Structure
and ligand interactions of the urokinase receptor (uPAR). Front Biosci 13:
5441–5461.

Kjellev S. 2009. The trefoil factor family—Small peptides with multiple func-
tionalities. Cell Mol Life Sci 66:135021369.

Krause TA, Alex AF, Engel DR, Kurts C, Eter N. 2014. VEGF-production by
CCR2-dependent macrophages contributes to laser-induced choroidal neo-
vascularization. PLoS One 9:e94313.

Kropf J, Schurek JO, Wollner A, Gressner AM. 1997. Immunological measure-
ment of transforming growth factor-beta 1 (TGF-beta1) in blood: Assay devel-
opment and comparison. Clin Chem 43:1965–1974.

Kumar A, Pandey RK, Miller LJ, Singh PK, Kanwar M. 2013. Muller glia in reti-
nal innate immunity: A perspective on their roles in endophthalmitis. Crit Rev
Immunol 33:119–135.

Lai MY, Tsai MH, Lee CW, Chiang MC, Lien R, Fu RH, Huang HR, Chu SM,
Hsu JF. 2015. Characteristics of neonates with culture-proven bloodstream
infection who have low levels of C-reactive protein (<5=10 mg/L). BMC
Infect Dis 15:320.

Lei H, Rheaume MA, Kazlauskas A. 2010. Recent developments in our under-
standing of how platelet-derived growth factor (PDGF) and its receptors con-
tribute to proliferative vitreoretinopathy. Exp Eye Res 90:376–381.

Lenkowski JR, Qin Z, Sifuentes CJ, Thummel R, Soto CM, Moens CB,
Raymond PA. 2013. Retinal regeneration in adult zebrafish requires regulation
of TGFbeta signaling. Glia 61:1687–1697.

Lewis GP, Chapin EA, Luna G, Linberg KA, Fisher SK. 2010. The fate
of Muller’s glia following experimental retinal detachment: Nuclear
migration, cell division, and subretinal glial scar formation. Mol Vis 16:1361–
1372.

Limb GA, Alam A, Earley O, Green W, Chignell AH, Dumonde DC. 1994. Dis-
tribution of cytokine proteins within epiretinal membranes in proliferative vit-
reoretinopathy. Curr Eye Res 13:791–798.

Limb GA, Franks WA, Munasinghe KR, Chignell AH, Dumonde DC. 1993.
Proliferative vitreoretinopathy: An examination of the involvement of lympho-
cytes, adhesion molecules and HLA-DR antigens. Graefes Arch Clin Exp Oph-
thalmol 231:331–336.

Limb GA, Little BC, Meager A, Ogilvie JA, Wolstencroft RA, Franks WA,
Chignell AH, Dumonde DC. 1991. Cytokines in proliferative vitreoretinopathy.
Eye 5:686–693.

Limb GA, Salt TE, Munro PMG, Moss SE, Khaw PT. 2002. In vitro characteri-
zation of a spontaneously immortalized human M€uller cell line (MIO-M1).
Investig Ophthalmol Vis Sci 43:864–869.

Liu H, Wang J, Wang J, Wang P, Xue Y. 2015. Paeoniflorin attenuates
Abeta1-42-induced inflammation and chemotaxis of microglia in vitro and
inhibits NF-kappaB- and VEGF/Flt-1 signaling pathways. Brain Res 1618:149–
158.

Loffler K, Schafer P, Volkner M, Holdt T, Karl MO. 2015. Age-dependent Mul-
ler glia neurogenic competence in the mouse retina. Glia 63:1809–1824.

Loskutoff DJ, Quigley JP. 2000. PAI-1, fibrosis, and the elusive provisional
fibrin matrix. J Clin Invest 106:1441–1443.

Mitamura Y, Takeuchi S, Matsuda A, Tagawa Y, Mizue Y, Nishihira J. 2001.
Monocyte chemotactic protein-1 in the vitreous of patients with proliferative
diabetic retinopathy. Ophthalmologica 215:415–418.

Morescalchi F, Duse S, Gambicorti E, Romano MR, Costagliola C, Semeraro
F. 2013. Proliferative vitreoretinopathy after eye injuries: An overexpression
of growth factors and cytokines leading to a retinal keloid. Mediators Inflamm
2013:269787.

Muether PS, Neuhann I, Buhl C, Hermann MM, Kirchhof B, Fauser S. 2013.
Intraocular growth factors and cytokines in patients with dry and neovascular
age-related macular degeneration. Retina 33:1809–1814.

Nicholls SJ, Hazen SL. 2005. Myeloperoxidase and cardiovascular disease.
Arterioscler Thromb Vasc Biol 25:1102–1111.

Oberstein SY, Byun J, Herrera D, Chapin EA, Fisher SK, Lewis GP. 2011. Cell
proliferation in human epiretinal membranes: Characterization of cell types
and correlation with disease condition and duration. Mol Vis 17:1794–1805.

Palma-Nicolas JP, Lopez E, Lopez-Colome AM. 2010. Thrombin stimulates
RPE cell motility by PKC-zeta- and NF-kappaB-dependent gene expression of
MCP-1 and CINC-1/GRO chemokines. J Cell Biochem 110:948–967.

Parrales A, Lopez E, Lee-Rivera I, Lopez-Colome AM. 2013. ERK1/2-depend-
ent activation of mTOR/mTORC1/p70S6K regulates thrombin-induced RPE
cell proliferation. Cell Signal 25:829–838.

Povoa P. 2002. C-reactive protein: A valuable marker of sepsis. Intensive
Care Med 28:235–243.

Rani MR, Foster GR, Leung S, Leaman D, Stark GR, Ransohoff RM. 1996.
Characterization of beta-R1, a gene that is selectively induced by interferon
beta (IFN-beta) compared with IFN-alpha. J Biol Chem 271:22878–22884.

Suzuki Y, Nakazawa M, Suzuki K, Yamazaki H, Miyagawa Y. 2011. Expression
profiles of cytokines and chemokines in vitreous fluid in diabetic retinopathy
and central retinal vein occlusion. Jpn J Ophthalmol 55:256–263.

Symeonidis C, Papakonstantinou E, Androudi S, Georgalas I, Rotsos T,
Karakiulakis G, Diza E, Dimitrakos SA. 2014. Comparison of interleukin-6 and
matrix metalloproteinase expression in the subretinal fluid and the vitreous
during proliferative vitreoretinopathy: Correlations with extent, duration of
RRD and PVR grade. Cytokine 67:71–76.

Tezel G, Wax MB. 2004. The immune system and glaucoma. Curr Opin Oph-
thalmol 15:80–84.

Vandooren J, Van den Steen PE, Opdenakker G. 2013. Biochemistry and
molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9):
The next decade. Crit Rev Biochem Mol Biol 48:222–272.

Velez G, Weingarden AR, Tucker BA, Lei H, Kazlauskas A, Young MJ. 2012.
Retinal pigment epithelium and muller progenitor cell interaction increase

Eastlake et al.: M€uller Glia and Retinal Gliosis

April 2016 505



Muller progenitor cell expression of PDGFRalpha and ability to induce prolif-
erative vitreoretinopathy in a rabbit model. Stem Cells Int 2012:106486.

Weller M, Esser P, Heimann K, Wiedemann P. 1991a. Mononuclear phago-
cytes in proliferative vitreoretinopathy (PVR). A specific role of microglial cells
in non-traumatic disease? Eur J Ophthalmol 1:161–166.

Weller M, Esser P, Heimann K, Wiedemann P. 1991b. Retinal microglia: A new
cell in idiopathic proliferative vitreoretinopathy? Exp Eye Res 53:275–281.

Weller M, Heimann K, Wiedemann P. 1990. The pathogenesis of vitreoretinal
proliferation and traction: A working hypothesis. Med Hypotheses 31:157–
159.

Wickham LJ, Asaria RH, Alexander R, Luthert P, Charteris DG. 2007. Immuno-
pathology of intraocular silicone oil: Retina and epiretinal membranes. Br J
Ophthalmol 91:258–262.

Worthmann H, Tryc AB, Dirks M, Schuppner R, Brand K, Klawonn F,
Lichtinghagen R, Weissenborn K. 2015. Lipopolysaccharide binding protein,
interleukin-10, interleukin-6 and C-reactive protein blood levels in acute
ischemic stroke patients with post-stroke infection. J Neuroinflammation 12:
13.

Yafai Y, Iandiev I, Lange J, Unterlauft JD, Wiedemann P, Bringmann A,
Reichenbach A, Eichler W. 2014. Muller glial cells inhibit proliferation of reti-
nal endothelial cells via TGF-beta2 and Smad signaling. Glia 62:1476–1485.

Yoshida S, Sotozono C, Ikeda T, Kinoshita S. 2001. Interleukin-6 (IL-6) produc-
tion by cytokine-stimulated human Muller cells. Curr Eye Res 22:341–347.

Zong H, Ward M, Madden A, Yong PH, Limb GA, Curtis TM, Stitt AW. 2010.
Hyperglycaemia-induced pro-inflammatory responses by retinal Muller glia
are regulated by the receptor for advanced glycation end-products (RAGE).
Diabetologia 53:2656–2666.

506 Volume 64, No. 4




