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Abstract

This thesis investigates the properties of entanglement in strongly correlated
quantum systems, more specifically that between regions of a many-body system
which may be separated spatially giving rise to a part of the system which is
disregarded.

The focus of the first part of this thesis is the response of a collection of spins,
arranged on a one dimensional lattice, to a global quench, i.e. a rapid change
in the interaction characteristics. Such a quench is seen to produce a significant
amount of entanglement between distant spins. The robustness of the scheme
towards random disorder is detailed and it is shown that the entanglement is
sufficiently high to be distilled into almost pure Bell pairs.

In a similar model system, it is explored how a von Neumann measurement
with post-selection (i.e., discarding certain measurements based on the outcome)
performed locally on two possibly well separated regions of spins, may give rise to
a pure and entangled state of these regions, assuming the system is in its ground
state.

Later chapters are concerned with entanglement between noncomplementary
groups of spins at quantum critical points, a situation where at zero temperature
quantum fluctuations become pronounced. For spin chain models it is observed
that this entanglement (as measured by negativity) assumes a finite value de-
pending only on the ratio of the size of the regions to their separation and is
further seen to be universal, i.e. independent of the microscopic details of the
interaction.

Universality of this form of entanglement is finally explored in a collective
spin model. By casting the problem into the language of a few bosonic modes
a closed form expression for the negativity in the thermodynamic limit for the
entire phase diagram of the model is derived. At the quantum critical point this
measure is explicitly universal in the aforementioned sense.
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1. Introduction

Ground states and out-of-equilibrium states of many-body systems usually carry
a large amount of correlations among the degrees of freedom of their constituents.
Without correlations such a collection of particles would simply behave as the
sum of its parts, but emergent phenomena such as the different phases of matter
could not be explained under this premise. While classical correlations have
been a long standing topic in the characterisation of phases of matter, the role
of entanglement – the purely quantum part of correlations – in these phenomena
has attracted the attention of theorists and experimentalists during the past
decade[1].

On the one hand, entanglement in quantum states renders simulation of many-
body systems a hard task[2]. On the other hand, its study reveals new aspects of
the theory of strongly correlated systems, for instance it may serve as a diagnostic
of quantum phase transitions [3]. The study of entanglement in many-body states
is also fuelled by recent experiments on cold atoms trapped in optical lattices [4],
which allow the time resolved observation of coherent quantum dynamics [5].

The motivation of the work in this thesis is partly based on the idea that the
quantum mechanical state of a many-body system (MBS) may become useful for
novel protocols that can be loosely grouped under the term quantum commu-
nication. Two suitable degrees of freedom of a single subunit of the MBS, like
the |↑〉 and |↓〉 states of an atom with effective spin-1/2, as well as two of its
electronic states, can form a qubit – the elementary unit of quantum information
which can be parameterised by two complex amplitudes

|φ〉 = α|↑〉+ β|↓〉 . (1.1)

For the purpose of carrying out quantum communication tasks, of which we will
briefly outline a prominent example below, spatially separated qubits are usually
required to become maximally entangled. The Bell states

|ψ±〉 =
1√
2

(|↑↓〉 ± |↓↑〉) (1.2)

|φ±〉 =
1√
2

(|↑↑〉 ± |↓↓〉) (1.3)

constitute a basis of such maximally entangled states of two qubits. The state
|ψ−〉 is also called singlet while the remaining three are grouped under the name
triplet. A consequence of entanglement is that the individual state of each mem-
ber of a Bell pair is maximally uncertain, in that there is a fifty per cent chance of
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Figure 1.1.: Schematic of a rectangular lattice of interacting particles. Typical quantum
mechanical states of this type of many-body system, including its one and three dimensional
analogues, contain entanglement[1], a form of correlation by which measurable quantities of
spatially distinct regions A and B, say, become intertwined with each other in a profound way
[6, 7]. At the interface of many-particle physics[8] and quantum information science[9] entan-
glement acts as a sort of probe of non-local correlations in the many-body wave-function and
its behaviour may signal fundamental changes in the physical behaviour of strongly correlated
systems. For instance, entanglement is regarded to be playing a mayor role in physical phenom-
ena such as exotic states of matter (fractional quantum Hall states, frustrated magnets) and
also in phase transitions at zero temperature, realising a class of markedly non-classical states
of matter.

measuring |↑〉 or |↓〉 on an individual qubit of a Bell pair (pair of qubit particles
in one of the Bell states).

One example for a typical objective of quantum communication is that of
transferring a general qubit state |φ〉 (Eq.(1.1)) from a sender (Alice) to a receiver
(Bob) as accurately as possible. To accomplish this, Alice can simply encode |φ〉
on a carrier, e.g. an atom or a photon, and send it down a channel. Alternatively,
Alice and Bob can use teleportation [10] which is a means to transfer state
|φ〉 from one point in space to another by only classical communication and a
quantum resource. We will briefly review this protocol hereafter, along the lines
of the original work[10]. Prior to teleportation, the two parties need to share
a pair of particles in a maximally entangled state, for example the Bell singlet
state |ψ−〉 of Eq. (1.2). So initially the state of the three involved particles, that
is Alice’s particle 1 which is initially the carrier of quantum state |φ〉 and the
entangled pair of particles labeled 2 and 3, is given by

|ϕ〉123 = |φ〉1 ⊗ |ψ
−〉23 =

α√
2

(|↑1↑2↓3〉 − |↑1↓2↑3〉)−
β√
2

(|↓1↑2↓3〉 − |↓1↓2↑3〉)

9



EPR singlet 2&3original 1

teleported replica 3

time

disrupted particles 1&2

classical communication

Figure 1.2.: Quantum teleportation. A pair of particles (2 and 3) is prepared in a Bell singlet
state |ψ−〉 of Eq. (1.2). One member of this pair, labelled 2 is given to Alice (left) and the
other – labelled 3 – is given to Bob (right). Alice possesses a second particle, designated 1,
the qubit state |φ〉 of which she aims to transfer to Bob. To this end, she performs a Bell-type
measurement on the two particles 1 and 2 so as to prepare them in one of the four Bell states
|ψ±〉, |φ±〉. This disentangles particle 3 from 2. Alice’s measurement outcome is reported to
Bob by way of classical communication, enabling him to reconstruct the state |φ〉 by means of
single qubit rotations on the post-measurement state of particle 3 (for details, see [10]). Figure
reproduced from [11].

where the subscript indices label the considered particle. In terms of |ψ±〉12 and
|φ±〉12 the three particle state reads as

|ϕ〉123 =
1

2

[
|ψ−〉12|φ

(a)〉3 + |ψ+〉12|φ
(b)〉3 + |φ−〉12|φ

(c)〉3 + |φ+〉12|φ
(d)〉3

]

where

|φ(a)〉3 = −α|↑〉3 − β|↓〉3
|φ(b)〉3 = −α|↑〉3 + β|↓〉3
|φ(c)〉3 = α|↑〉3 + β|↓〉3
|φ(d)〉3 = α|↑〉3 − β|↓〉3.

If Alice were to perform a Bell-type measurement on particles 1 and 2, thereby
preparing them in one of the states {|ψ±〉12, |φ±〉12}, the state of particle 3 would
be determined by her measurement outcome (x = a, b, c, or d) by virtue of the
von Neumann measurement postulate [12].

The measurement outcome could be encoded in two classical bits, and would
enable Bob to produce a replica of |φ〉 from the post-measurement state |φ(x)〉3 of
particle 3. Each |φ(x)〉3 is related to the original state by specific qubit rotations.
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Hence, |ψ−〉 enables the noiseless transmission of a state |φ〉 from Alice to Bob
(Figure 1.2). The capacity of the quantum resource, that is |ψ−〉, is underlined
by realising that from knowing only two classical bits (which suffice to encode
the measurement outcome, see Fig. 1.2) the receiver can reconstruct a state that
is described by two real parameters1.

A pressing question is whether the entanglement appearing naturally in sys-
tems of interacting particles can be exploited for genuinely nonclassical commu-
nication protocols such as quantum teleportation. Firstly, this goal is hampered
by the fact that the state of each pair of particles will be a mixture, and statis-
tical uncertainty regarding the particular microscopic state of the pair degrades
the hypothetically achievable entanglement of pure Bell states of Equations (1.2)
and (1.3). It is therefore important to be provided with a criterion of whether
a mixed quantum state still contains sufficient entanglement in the sense that it
may be useful in a quantum communication context. One such criterion is that
of identifying a state as being purifiable: Given a number of copies of a state of
two qubits this state is said to be purifiable if one can extract from them a lesser
number of almost pure Bell states. For this to be possible, certain conditions
must be met as will be discussed briefly in section 2.5.

In the literature, several ways of creating entanglement between particles at
distances larger than a few lattice spacings were proposed. An example for a
low control2 means of entangling remote sites in a spin chain is to distribute
entanglement dynamically, e.g. in terms of elementary excitations (magnons,
which travel wave-like across the lattice). This was first proposed in the context
of a quantum state transfer protocol [13]. In a similar way, we rely on an out-of-
equilibrium situation in chapter 2 of the present work by investigating the effects
of a so-called quantum quench (i.e. a rapid change in interaction parameters,
thereby usually crossing a border which separates different magnetic phases).

Another prominent approach of entangling two particular distant spins in a col-
lection of interacting spins is based on the concept of localisable entanglement[14,
15]. This entanglement is achieved by way of local measurements on all but the
two designated spins, though the task of addressing individual sites of a bulk
system can be challenging. One can also ask whether a measurement can be in-
strumental if it is performed on regions A and B themselves, comprising several
spins each. In this work, we study this latter question in a particular model and
we see that measurement can lead to a pure form of entanglement despite the
initial (unperturbed) state of the regions is mixed.

Entanglement between the individual constituent particles of a MBS at its zero
temperature equilibrium state is usually very short ranged, often extending no
further than over a distance of a few inter-particle spacings[16, 17]. There are

1these are e.g. azimuth and polar angle in the Bloch sphere representation of the qubit state.
Clearly, in order for the receiver to learn about these values, repeated teleportation experi-
ments would have to be carried out.

2referring to scenarios where access and control of single subunits inside the bulk of the many-
body system is not strictly required, an exception being, for instance, the terminal sites
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exceptions to this rule, though: Long-range entanglement can be induced between
the spins at the terminal sites of an open ended chain of spin-1/2 particles by
engineering rather artificial, i.e. strongly non-uniform, couplings[18].

Alternatively, one can study the entanglement shared between large groups of
particles rather than individual pairs. Here, we look at large regions of spins
of uniformly coupled spin chains and show that, even though no pair of single
spins between the regions is entangled in the ground state, as a collection they
do share entanglement, especially when the system undergoes a quantum phase
transition. The entanglement of macroscopic groups of spins at quantum phase
transitions displays interesting properties which we study in a highly simplified,
but analytically tractable model of strongly correlated spins.

Summary of results. The study on quantum quench presented in chapter 2
shows, that under idealised conditions purifyable entanglement can be dynami-
cally established between the remotest pair of spins in XX spin chains of up to
N = 241 spins. For shorter chains of up to ∼ 13 spins displays a fully entangled
fraction of f & 0.7 and the edge spins assume a state which is well approxi-
mated by ρ1N = f |ψ+〉〈ψ+| + (1 − f)/2 (|φ+〉〈φ+| + |φ−〉〈φ−|). We evidence
that the underlying mechanisms are commensurate with a picture of entangled
quasi-particles travelling with constant velocity and opposite orientation across
the lattice, giving rise to the observed high amount of entanglement between the
terminal sites of the spin chain at an optimal time Tmax which scales linearly
with N . It is shown that this entanglement is very robust towards detrimen-
tal effects like random disorder and could be evidenced in various experimental
setups, including cold atoms, trapped ions or superconducting circuits.

The extraction of pure state entanglement from distinguished regions of many-
body systems by way of ideal quantum measurements is the subject of chapter 3.
We show that for supersinglet states of three qutrits as well as the ground state
of the transverse XY spin ring model this extraction scheme is probabilistically
feasible. Hence, local measurements in typical many-body states can lead to pure
state entanglement between the degrees of freedom of possibly well separated re-
gions of many-body systems, given that prior to the measurement the quantum
state of the regions carries some form of (noisy) entanglement. This latter re-
quirement constitutes a major difference to localisable entanglement which can
potentially established entanglement between regions which were in a separable
state before the protocol.

Chapters 4 and 5 are dealing with universal scaling properties of the negativity,
a measure which we invoke in order to quantify the degree of mixed state entan-
glement of disjoint (or noncomplementary) regions of models of spin-1

2 particles
undergoing a quantum phase transition. Based on numerical evidence provided in
chapter 4 we conjecture that negativity between large noncomplementary regions
of transverse XY spin chains depends only on the relative sizes of the involved
regions and is, hence, manifestly independent of the overall system size if these
ratios are fixed. We make an ansatz for the decay of negativity as a function of
the separation of the entangled regions and their respective extent, which can
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be accurately fitted to the numerical data. Strikingly, even at criticality this
form of correlation decays exponentially with distance, a rather disturbing find-
ing considering that classical correlation functions decay as a power law at the
transition. Also, at the quantum critical points negativity is found to be largely
independent of the microscopic details of the model which is a signature of uni-
versality. In chapter 5 this universality is verified in a collective spin model,
the Lipkin-Meshkov-Glick model, which bears strong similarities to the XY spin
chain except for the long range interactions. Here, the thermodynamic limit can
be taken conveniently and an analytic solution of negativity is obtained across
the entire phase diagram. It is further remarkable that negativity of noncomple-
mentary regions is manifestly finite at the quantum phase transitions and in the
thermodynamic limit, substantiating our conjecture that in spin chain model of
chap. 4 negativity remains finite as well.

Outline. After a brief introduction on quantification of entanglement (Sec. 1.1)
we present our results on long-range entanglement established dynamically after
quantum quench (chapter 2). We then discuss entanglement of noncomplemen-
tary parts of a spin chain in the context of distant von Neumann measurements
(chapter 3), and finally study its role at continuous quantum phase transitions
both in a spin chain model with nearest neighbour interactions (chapter 4) and
the corresponding model with infinite range interactions (chapter 5).

The work in this thesis has been done under supervision and in collabora-
tion with Prof. Sougato Bose. Contributions from other collaborators will be
indicated in the individual chapters where appropriate.

1.1. Quantifying entanglement in many-body systems

The subject of quantifying entanglement in generic states of many-body systems
is an extremely demanding task. In this section, we introduce the entanglement
measures that will be extensively used throughout this work. We will discuss
their properties and relate them to other measures that can be found in the
literature.

1.1.1. Separability

A generic state will be a statistical mixture represented by a density operator3

ρ̂ ≥ 0, ρ̂ = ρ̂† (1.4)

which obeys

Tr
[
ρ̂2
]
≤ Tr [ρ̂] = 1 . (1.5)

3Here and in the following “≥ 0 ” for operators (and scalars) means non-negative or positive
semidefinite.
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Equality in Eq.(1.5) holds if and only if the state is pure [19]. Let us define what
an entangled state is. This is conventionally done by defining what it is not,
namely separable. So [20],

Definition 1.1.1. (Separability) A state ρ̂ ∈ HA ⊗ HB is called separable if
and only if it can be written as

ρ̂ =
∑

k

pk ρ̂
(k)
A ⊗ ρ̂

(k)
B , (1.6)

ρ̂
(k)
A ∈ HA, ρ̂

(k)
B ∈ HB

with probabilities pk ∈ [0, 1],
∑

k pk = 1 and pure density matrices ρ̂
(k)
A and ρ̂

(k)
B .

Two distant observers could prepare a separable state by following instructions
from a third party on how to prepare –locally– their respective subsystem. If the
state is not separable the state is called entangled.

1.1.2. Entropy of entanglement

Pure states of composite quantum systems constitute an exception regarding
the relative ease with which we can quantify entanglement between constituents
(say, that between a distinguished region, the system S, and its complement, the
environment E): The more these two parties are entangled, the more mixed are
the states of the subsystems S and E when considered individually.

A pure state on a bipartite Hilbert space

|ψ〉 ∈ HS ⊗HE

of dimension dimH = d = dSdE can be decomposed as

|ψ〉 =
∑

k,l

ψk,l|k〉 ⊗ |l〉 (1.7)

where |k〉 and |l〉 denote basis vectors ofHS andHE respectively. This expression
can be simplified by invoking the singular value decomposition (SVD) [21] of the
matrix of coefficients

ψk,l = (U DV †)k,l

where D = diag(
√
w1,
√
w2, · · · ,

√
wχ) is a positive, diagonal matrix of dimension

χ × χ, χ ≤ min(dS , dE) and U and V are unitary matrices.4 Forming linear
combinations of the |k〉 in Eq. (1.7) with the columns of U and similarly the |l〉

4this variant of the SVD is sometimes called compact or economic SVD
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with the rows of V † leads to the Schmidt decomposition (SD)

|ψ〉 =

χ∑

α=1

√
wα |wSα〉 ⊗ |wEα 〉 (1.8)

|wSα〉 =
∑

k

Uk,α|k〉 (1.9)

|wEα 〉 =
∑

l

V ∗l,α|l〉. (1.10)

We will call the
√
wα the Schmidt values, χ the Schmidt rank, and |wSα〉, |wEα 〉

the Schmidt vectors. It follows from the separability criterion 1.1.1 that |ψ〉 is
separable if and only if the Schmidt rank is one [20].

Entropy of entanglement quantifies the entanglement between S and E in such
a bipartite pure state ρ̂ = |ψ〉〈ψ| [20]

E(ρ̂) = −Tr [ρ̂S ln ρ̂S] , ρ̂S = TrE [ρ̂] =

χ∑

α=1

wα|wSα〉〈wSα | . (1.11)

The operator ρ̂S designates the reduced density operator describing the state of
the system S and the operation TrE [· · · ] is called partial trace and amounts to a
trace with respect to the the environmental degrees of freedom only. Eq.(1.11)
highlights two important properties of the Schmidt decomposition

• the reduced density operator ρ̂S is diagonal in the basis of Schmidt vectors
|wS
α〉

• the eigenvalues of ρ̂S are given by the squares of the Schmidt values
√
wα .

The same conclusions follow for the reduced density operator of the environment.
Hence, in terms of the eigenvalues wα of ρ̂S (and ρ̂E) entropy of entanglement
assumes

E(ρ̂) = −
∑

α

wα lnwα . (1.12)

Alternatively, it suffices to know Tr [ρ̂nS ] so that entropy of entanglement follows
from

E(ρ̂) = −∂nTr [ρ̂nS ] |n=1 , (1.13)

(replica trick, see [3]).

1.1.3. Entanglement of formation and entanglement cost

It is now important to realise that if the state ρ̂ of the global system (S+E) is a
statistical mixture, then E is no longer a meaningful measure of the entanglement
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between S and E. For example, let S and E be a two-level system (or qubit) each,
whose basis states are |↑〉 and |↓〉 respectively. An equal mixture of |↑↑〉 and |↓↓〉
leads to maximally mixed states of either party. Yet their state is fully separable.

Entanglement of formation (EOF), designated by the symbol EF , is a funda-
mental measure of entanglement in mixed quantum states ρ̂ and is defined as the
least expected entanglement within all possible ensembles of pure states which
realise ρ̂

EF (ρ̂) = min

{∑

i

pi E (|ψi〉〈ψi|)
∣∣∣ ρ̂ =

∑

i

pi |ψi〉〈ψi|

}
. (1.14)

Explicit evaluation of EF has been successful only in very few cases, for instance
for systems of two qubits[22]. An important operational interpretation of EOF
was achieved in [23] by proving the following identity of entanglement cost

EC(ρ̂) = limn→∞
EF (ρ̂⊗

n
)

n
, (1.15)

where X̂⊗
n

denotes the n-fold tensor product of X̂ with itself. In simple terms,
EC quantifies the least number of initial qubits that need to be communicated
to prepare a state ρ̂. By virtue of teleportation, the number of communicated
qubits is equivalent to the number of initial Bell pairs that need to be shared
between the parties. For a detailed discussion on entanglement cost, we refer to
[24, 20].

1.1.4. Separability and positive maps

A powerful result to decide the separability of general states on bipartite Hilbert
spaces is the following [25]

Theorem 1.1.2. (Horodecki) A state ρ̂ acting on a Hilbert space H = HA⊗HB
is separable if and only if

(Φ⊗ 1B) ρ̂ ≥ 0

for all positive maps Φ acting on operators on HA . 1B is the identity map on
HB .

We say a map is positive if it maps positive operators into positive operators,
i.e. Φ(X̂) ≥ 0 ∀ X̂ ≥ 0. Sampling all positive maps is rarely viable, but if
for a particular positive map Φ the operator (Φ⊗ 1B)ρ̂ has negative eigenvalues
(under these circumstances Φ is positive but not completely positive), one has
shown that ρ̂ is surely entangled. One such example for a positive map is the
transposition map T , and we will use the following notation in the following

ρ̂TA ≡ (T ⊗ 1B)ρ̂ (1.16)
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all states       PPT statesseparable states

Figure 1.3.: Quantum mechanical states can be categorised as being separable or entangled
states. PPT states are states with positive partial transpose and need not be separable. PPT
states that are entangled are called PPT entangled states.

and call this map partial transposition. In a product basis spanned by vectors
|k〉 ⊗ |l〉 ≡ |k, l〉 on the bipartite Hilbertspace HAB = HA ⊗HB, partial transpo-
sition of a general state ρ̂ would amount to

〈k, l| ρ̂TA |m,n〉 = 〈m, l| ρ̂ |k, n〉.

The separability criterion ρ̂TA ≥ 0 is known as the positive partial transpose
(PPT) criterion[25, 26] and is a necessary but not sufficient criterion, in general.
The class of states which satisfy ρ̂TA ≥ 0 but are not separable are called PPT-
entangled states (Figure 1.3).

In summary,

ρ̂ separable ⇒ ρ̂TA ≥ 0 (1.17)

ρ̂ entangled ⇐ ρ̂TAhas negative eigenvalues. (1.18)

1.1.5. Negativity and logarithmic negativity

The results on positive maps presented in the previous section can also be put
to use for the quantification of entanglement in mixed states. The degree of
violation of positivity, as measured by the trace norm

‖ρ̂TA‖ = Tr

[√(
ρ̂TA
)†
ρ̂TA
]

= Tr

[√(
ρ̂TA
)2
]

(1.19)
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is immediately related to the negativity [27, 28, 29]

N (ρ̂) ≡ ‖ρ̂TA‖ − 1 (1.20)

and its close relative, the logarithmic negativity[29, 30]

L(ρ̂) ≡ ln ‖ρ̂TA‖ . (1.21)

Partial transposition preserves the trace Tr
[
ρ̂TA
]

= Tr [ρ̂] = 1, so that in terms
of eigenvalues vα of ρ̂TA negativity assumes

N (ρ̂) = 2
∑

vα<0

|vα| , (1.22)

hence negativity is given by two times the sum of moduli of negative eigenvalues
of ρ̂TA which justifies the nomenclature.

Negativity attains its maximum for pure states [29]. In terms of the Schmidt
decomposition Eq. (1.8) partial transposition on subsystem E amounts to

ρ̂TE = (|ψ〉〈ψ|)TE =
∑

α, α′

√
wαwα′ |wS

α′ , w
E
α〉〈wS

α, w
E
α′ | . (1.23)

Eigenvectors and eigenvalues of ρ̂TE are [31]

|wS
α, w

E
α〉 eigenvalue wα (1.24)

1√
2

(
|wS
α′ , w

E
α〉 ± |wS

α, w
E
α′〉
)

eigenvalue ±
√
wαwα′ (α < α′) (1.25)

giving rise to a total of χ+2 (χ−1)χ
2 = χ2 eigenvalues which exhausts the maximal

number of eigenvalues.
This leads to the negativity of bipartite pure state of Eq. (1.8)

N (|ψ〉〈ψ|) = 2
∑

α<α′

√
wαwα′ =


∑

α,α′

√
wαwα′


− 1 =

(∑

α

√
wα

)2

− 1 (1.26)

where we summed over the moduli of negative eigenvalues (compare Eq. (1.22)).
Owing to the concavity of the square root, one has that

χ∑

α=1

√
wα ≤

√
χ

where the equality holds if all eigenvalues wα = 1/χ, corresponding to a maxi-
mally entangled state. This implies the following relation for negativity

0 ≤ N (ρ̂) ≤ χ− 1, (1.27)
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where zero is assumed for separable pure states having Schmidt rank χ = 1.
Accordingly, logarithmic negativity of a pure state reads as [29]

L (|ψ〉〈ψ|) = 2 ln

(∑

α

√
wα

)
(1.28)

and provides an upper bound on entropy of entanglement [29]

E (|ψ〉〈ψ|) = 2
∑

α

wα ln

(
1
√
wα

)
(1.29)

≤ 2 ln

(∑

α

√
wα

)
= L (|ψ〉〈ψ|) . (1.30)

For pure states, both N and L can be expressed in terms of Rényi entropy

E(n)(ρ̂) ≡ 1

1− n
ln Tr [ρ̂nS ] (1.31)

⇔ L = E(1/2)(ρ̂), N = exp
(
E(1/2)(ρ̂)

)
− 1 (1.32)

hence we realise that, in general, neither negativity nor logarithmic negativity
reduces to the entropy of entanglement (E = limn→1 E(n)) which is sometimes
considered a deficiency. Only in the limit of maximally entangled states with
wα = 1/χ, logarithmic negativity equals the entropy of entanglement.

1.1.6. Entanglement monotones and bounds

For an entanglement measure to qualify as entanglement monotone, the following
two axioms were suggested to be mandatory [20]:

• Monotonicity under LOCC. Entanglement cannot increase under local
operations and classical communication.

• Entanglement vanishes on separable states.

On these grounds, both negativity and logarithmic negativity are entangle-
ment monotones[28, 30]. However, it was also suggested that a monotone E(ρ̂)
should obey certain other axioms: It should ideally reduce to the entropy of en-
tanglement in the case of pure states and should be additive (E(ρ̂⊗ ρ̂) = 2E(ρ̂))
and convex on the set of density operators: For any collection of non-negative
numbers pk with

∑
k pk = 1 and density operators ρ̂k convexity of E(ρ̂) implies

that

E

(∑

k

pkρ̂k

)
≤
∑

k

pkE (ρ̂k) .

A certain indecision persists among different authors as to whether negativity
and logarithmic negativity are to be rigorously regarded as monotones, in that,
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for example, negativity is not additive and logarithmic negativity is not convex
and neither of them has an immediate and widely accepted operational interpre-
tation. Often the the ease of their computation has vindicated their widespread
use in the literature (see list of citing articles of [29]) and has outweighed (from
practitioners’ perspective) the mentioned concerns.

A more convincing (and less well known) justification for negativity and loga-
rithmic negativity can be provided in terms of a lower bound to entanglement of
formation. Before stating this bound, we need to define the notion of a convex
function: A function that is defined on an interval I of the real line g : I → R is
called convex if

g (λx+ (1− λ)y) ≤ λg(x) + (1− λ)g(y)

for all x, y ∈ I and λ in the open interval (0, 1).
Now, Chen et. al. [32] proved that

EF (ρ̂) ≥ co
[
R(‖ρ̂TA‖)

]
(1.33)

where co[f(x)] denotes the so-called convex hull of the function f(x), i.e. the
largest convex function which is smaller than f(x) for all x except the extreme
points of f(x) [24].

Without detailing the complicated form of R(x), let us note that co [R(x)] was
shown in [33] to be a monotonically increasing convex function of x. Therefore,
bound Eq. (1.33) amounts to a powerful justification to use negativity or loga-
rithmic negativity as entanglement measures in that both are strictly increasing
functions of ‖ρ̂TA‖.

In conclusion, we adopt a utilitarian viewpoint with respect to negativity and
logarithmic negativity and disregard certain deficiencies when it comes to ax-
iomatic rigour and operational interpretation. Our justification of using them is
their capacity of providing bounds to more widely accepted monotones.
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2. Exploiting quench dynamics in spin
chains for distant entanglement and
quantum communication

In this chapter we propose a method to entangle two distant spin-1/2 particles
in a one dimensional array of spins through quantum quench [34, 35, 36, 37, 38].
A quench is the rapid change of internal or external parameters which govern
the physics of a system of interacting particles. This change of parameters could
concern, for instance, an alteration of competing particle-particle interactions
or the change of the amplitude of external fields, the temperature, pressure,
and so forth. When a quench is performed at zero temperature one refers to a
quantum quench. In this idealised case, the system would initially reside in its
ground state and would subsequently display a coherent response due to quench.
A strong response is expected if the initial and final set of parameters which
define the quench correspond to distinct phases that the interacting system would
equilibrate towards. An example is the superfluid state and the Mott insulator
state of a Bose Einstein condensate where a transition between them is triggered
by changing the depth of an optical lattice potential[39]. The dynamics which
occur in the course of such phase transitions have been of great interest in the
context of defect formation and a variety of physical systems[40].

The study of quantum quenches was recently fuelled by the prospect of realising
them in experiments on cold atoms which are trapped in the periodic troughs of a
potential landscape created by standing electromagnetic waves[39, 41]. These ex-
periments allow the observation of coherent quantum evolution of strongly corre-
lated atomic systems in conjunction with a high degree of experimental control[4].
Magnetic exchange interactions among the constituent particles where evidenced
in [5] and are dynamically tunable [42, 43, 44]. Hence, these systems are an al-
most ideal testbed for theoretical predictions of coherent effects after a quantum
quench. We briefly review some alternative experimental setups towards the end
of this chapter, in Sec. 2.6.3.

Following a brief discussion of the model under consideration (section 2.1) our
scheme to entangle distant spins exploiting a quantum quench will be explained
in section 2.2. Some methodical detail will be presented in sections 2.3 and 2.4.
We introduce the notion of purifiable entanglement in section 2.5. The chapter
closes with the presentation and discussion of our results in section 2.6
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2.1. The XXZ spin chain model

The model under consideration is an open ended chain of N spin-1
2 systems with

nearest-neighbour XXZ interaction

Ĥ =
N−1∑

l=1

J

2

(
σ̂xl σ̂

x
l+1 + σ̂yl σ̂

y
l+1 + ∆ σ̂zl σ̂

z
l+1

)
(2.1)

where the parameters J and ∆ denote the coupling strength and the anisotropy
respectively. The Pauli operators are defined by their action on the computa-
tional basis states {|↑〉, |↓〉} of a spin at site l

σ̂xl |↑〉 = |↓〉, σ̂xl |↓〉 = |↑〉 (2.2)

σ̂yl |↑〉 = i |↓〉, σ̂yl |↓〉 = −i |↑〉 (2.3)

σ̂zl |↑〉 = |↑〉, σ̂zl |↓〉 = −|↓〉, (2.4)

and obey the commutation relation

[
σ̂αl , σ̂

β
l

]
= 2i εαβγ σ̂

γ
l , α, β, γ ∈ {x, y, z} (2.5)

among operators of the same site l, where for two operators Â and B̂ the com-
mutator is defined as

[
Â, B̂

]
= ÂB̂ − B̂Â, (2.6)

and the totally antisymmetric tensor εαβγ is invariant under cyclic permutations
of its three indices, and assumes εxyz = 1 and εyxz = −1 while it is zero if two or
more indices are equal. Further, the Pauli operators commute for different sites
k 6= l: [

σ̂αl , σ̂
β
k

]
= 0, α, β ∈ {x, y, z}.

In this work we focus on quenches which involve different magnetic phases in
the state preparation and time evolution stage. For ∆ > 1 the ground state of
Eq. 2.1 has antiferromagnetic order and and the model is said to describe a Néel-
Ising-phase, where a finite energy gap separates the ground from higher excited
states.

Deep in the Néel Ising phase of the XXZ chain (∆ � 1) an estimation for
the gap is obtained by realising that elementary excitations will be the states
which arise upon flipping one spin in the perfectly ordered antiferromagnet (Fig.
2.1). This will affect the bonds left and right to that flipped spin in such a way
that now two aligned spins will reside on neighbouring lattice sites (so called
domain walls). A suitable superposition of all states with two domain walls will
be the first excited state, and the energy that is necessary to create two domain
walls amounts to ∼ 2J∆ in this limit [45]. The gap vanishes upon approaching
∆→ 1+, the isotropic point, where the Hamiltonian is fully rotational symmetric
in spin space.
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Figure 2.1.: Domain wall excitations in the Néel Ising phase of the XXZ model, which are
separated by an energy gap ∼ 2J∆ from the ground state. Figure reprinted from [45]

The parameter range −1 < ∆ < 1 corresponds to the gapless XY phase of the
model. At ∆ = 0 the model becomes particularly simple in that can be mapped
to a system of spinless fermions [46] which hop between lattice sites and interact
only via the exclusion principle (no more than one fermion is allowed at each and
every lattice site). For nonzero anisotropy ∆, depending on the sign, repulsive
or attractive forces among the fermions on neighbouring lattice sites give rise to
scattering effects making the solution substantially harder [47]. We will exploit
the exact mapping to fermions in the case ∆ = 0 in Sec. (2.4).

Finally, for anisotropies ∆ < −1 the ground state is two-fold degenerate and
displays ferromagnetic order where spins tend to align parallel.

Since irrespective of the value of ∆ one has that

[
Ĥ, Ŝz

]
= 0, (2.7)

with Ŝz =
∑N

l=1 σ̂
z
l , the ground state of Ĥ has is also an eigenvector of Ŝz with a

definite value of the total z-magnetisation 〈Ŝz〉. Furthermore, it is implied that
〈Ŝz〉 is a constant of motion when the time evolution is generated by H.

2.2. Quantum quench and distant entanglement
generation

Fig. 2.2 pictures our scenario, where Alice and Bob are situated at opposite ends
of a one dimensional (1D) lattice of perpetually interacting spin-1

2 particles. In
this chapter we suggest a scheme which allows the establishment of a strong
entanglement between Alice’s and Bob’s spins (the remotest spins of the lattice)
without any requirement of local control for the preparation of the initial state
of the chain or for the subsequent dynamics. In our scheme, first the lattice of

23



Ising

Alice Bob

BobAlice

XY

Figure 2.2.: Schematic of our proposal of entangling distant spins. Alice and Bob are at
opposite ends of the chain. Upon cooling the system to the Ising ground state and subsequent
non-adiabatic switching to an XY interaction entanglement is being established between Alice’s
and Bob’s spins. Figure reprinted from [48]

strongly interacting spins is cooled to its Néel Ising ground state. Then, upon
instantly changing the anisotropy parameter in its Hamiltonian, thereby crossing
the phase border separating Néel Ising phase from the XY phase, the pair of
edge spins evolve to a highly entangled mixed state. For this state, entanglement
purification methods are known [49, 50], which Alice and Bob can use to convert,
only by local operations and classical communication, a few (say n) copies of the
state to m < n pure |ψ−〉 states (see Sec. 2.5). These |ψ−〉 could then be used
to teleport any state from Alice to Bob.

In what follows, we will formulate the case of time-evolution of the Ising ground
state under action of the XX Hamiltonian. This corresponds to an instantaneous,
i.e. idealised quench in the anisotropy parameter ∆1 → ∆2 with ∆1 → ∞ and
∆2 = 0 thereby crossing critical value ∆ = 1, which separates the Néel-Ising-
phase from the XY-phase. For ∆ � J the Ising ground state gets arbitrarily
close to the ideal Néel state, which is twofold degenerate in the absence of an
external field. These ideal Néel states arise from the perfectly polarised state
|⇓N 〉 upon flipping every other spin:

|N1〉 ≡ |↓1, ↑2, ↓3, · · ·〉

and
|N2〉 ≡ |↑1, ↓2, ↑3, · · ·〉.

Note that these two states turn into each other by a spin flip at each place, i.e.
|N1〉 = (

∏N
k=1 σ̂

x
k)|N2〉 and vice versa. In an experiment, the initial preparation

of the Néel-Ising-ground state will yield, at low enough temperatures, an equal
mixture of both Néel orders and negligible admixture of higher energy eigenstates.
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We adopt the notion of thermal ground state from [16] for

ρ̂0 =
1

2

(
|N1〉〈N1|+ |N2〉〈N2|

)
, (2.8)

which exhibits the same symmetries as the Ising Hamiltonian H (∆ → ∞), as
opposed to each individual, degenerate ground state of the antiferromagnetic
Ising-chain.

We would like to investigate the dynamics of the long range nonclassical cor-
relations, i.e. the entanglement between the first and the last spin of the chain,
provided the system is initially prepared in the global state (2.8) and assuming
∆ = 0 for the subsequent time evolution. To this end, we compute the state
ρ̂1,N (reduced density operator) of the remotest pair of spins, from which we can
deduce the amount of entanglement between them. We find that after an optimal
time Tmax the pair of edge spins evolves into a entangled mixed state, which for
shorter chains is very well described by

ρ̂1,N ' f |ψ+〉〈ψ+|+ (1− f)

2
(|↑, ↑〉〈↑, ↑|+ |↓, ↓〉〈↓, ↓|),

where f is the fully entangled fraction which is a figure of merit in quantum
communication theory and indicates whether a mixed entangled state is purifiable
(see section 2.5).

In the following sections, we will discuss the results that were summarised
above in greater detail alongside a presentation of the methods that are involved
in their derivation. To this end, in section 2.3 we introduce the Hilbert-Schmidt
operator decomposition which leads to the expression of ρ̂1N in terms of correla-
tion functions. section 2.4 deals with the mapping of the spin degrees of freedom
to those of fermions which allows us to solve the time dependence of the correla-
tion functions. We also discuss the subject of entanglement distillation and the
effects of disorder.

2.3. Calculation of reduced density operators from
correlation functions

The nonclassical part of correlations that is established between the terminal sites
of the spin chain, labelled 1 and N , is encoded in the reduced density operator

ρ̂1,N ≡ Tr2···N−1 [ρ̂] , (2.9)

where ρ̂ is the state of the total system which evolves unitarily under the action
of the XXZ Hamiltonian Eq. (2.1). Instead of evaluating Eq. (2.9) explicitly, it is
more convenient to express ρ̂1,N in terms of two point correlation functions. In

general, any operator Â on the state space of the chain composed of N spin-1/2
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particles may be decomposed into

Â =

22N∑

k=1

Tr
[
ρ̂ X̂†k

]
X̂k (2.10)

(
X̂k, X̂l

)
≡ Tr

[
X̂†k X̂l

]
= δk,l (2.11)

∑

k

X̂k = 1 (2.12)

which is sometimes referred to as Hilbert-Schmidt operator decomposition [51].
For an operator A defined on the Hilbert space spanned by the two spin-1

2 degrees
of freedom associated to site l of a spin chain configuration it is convenient to
choose the following set of orthogonal operators:

{X̂} =
{
σ̂+
l , σ̂

−
l , P̂

↑
l , P̂

↓
l

}
, l = 1, 2, · · · , N (2.13)

σ̂±l =
1

2
(σ̂xl ± i σ̂

y
l ) (2.14)

P̂ ↓l = σ̂−l σ̂
+
l (2.15)

P̂ ↑l = σ̂+
l σ̂
−
l . (2.16)

An operator basis for the entire spin chain is obtained by means of a direct prod-
uct of these operators on different sites in all possible combinations. With respect
to the computational basis {|↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉} the following representation for
ρ̂1,N is obtained:

ρ̂1,N =




〈P̂ ↑1 P̂
↑
N 〉 〈P̂ ↑1 σ̂

−
N 〉 〈σ̂−1 P̂

↑
N 〉 〈σ̂−1 σ̂

−
N 〉

〈P̂ ↑1 σ̂
+
N 〉 〈P̂ ↑1 P̂

↓
N 〉 〈σ̂−1 σ̂

+
N 〉 〈σ̂−1 P̂

↓
N 〉

〈σ̂+
1 P̂
↑
N 〉 〈σ̂+

1 σ̂
−
N 〉 〈P̂ ↓1 P̂

↑
N 〉 〈P̂ ↓1 σ̂

−
N 〉

〈σ̂+
1 σ̂

+
N 〉 〈σ̂+

1 P̂
↓
N 〉 〈P̂ ↓1 σ̂

+
N 〉 〈P̂ ↓1 P̂

↓
N 〉


 (2.17)

One can exploit the intrinsic symmetries of H to reduce the number of non-
zero matrix entries above considerably. For states with fixed z-magnetisation
(including the ground state of H, as can be inferred from Eq. (2.7)) the following
expectation values along with their complex conjugates must vanish:

〈P̂ ↑1 σ̂
−
N 〉 = 〈σ̂−1 P̂

↑
N 〉 = 〈σ̂−1 σ̂

−
N 〉 = 〈σ̂−1 P̂

↓
N 〉 = 〈P̂ ↓1 σ̂

−
N 〉 = 0 .

Further, the remaining off-diagonal elements 〈σ̂−1 σ̂
+
N 〉 and 〈σ̂+

1 σ̂
−
N 〉 must be real

owing to the reflection symmetry about the middle of the chain. Hence, ρ̂1,N has
only the following non-zero elements:

ρ̂1,N =




a
b c
c b

a


 (2.18)

The following section deals with the question of how to compute the time depen-
dent quantities a, b, c, d for our specific scenario.
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2.4. Mapping to a lattice fermion model

We will now seek for a solution to the equations of motion governing the time
dependence of the reduced density operator Eq. (2.9) after an instantaneous
quench from an initial ∆ =∞ to a final ∆ = 0 was performed at time t = 0. For
the model under consideration, this is customarily done by passing over from spin
degrees of freedom to fermionic ones. By introducing Jordan-Wigner fermions

ĉ†l ≡

(
l−1∏

n=1

−σ̂zl

)
σ̂+
l (2.19)

which obey the canonical anticommutation relations (CAR)

[ĉ†k, ĉl]+ = δk,l, (2.20)

[ĉ†k, ĉ
†
l ]+ = [ĉk, ĉl]+ = 0, (2.21)

where the anticommutator is defined as [Â, B̂]+ = ÂB̂ + B̂Â, the XXZ Hamilto-
nian at ∆ = 0 (XX model, henceforth) turns into to a model of free1 fermions

Ĥ(∆ = 0) = J

N−1∑

l=1

ĉ†l ĉl+1 + ĉ†l+1ĉl . (2.22)

The matrix elements of ρ̂1N can be worked out in this language by diagonalising
Eq. (2.22). We show in Appendix C that in the Heisenberg picture

a = 〈ĉ†1(t)ĉ1(t)〉1 〈ĉ†N (t)ĉN (t)〉1 − 〈ĉ†1(t)ĉN (t)〉1 〈ĉ†N (t)ĉ1(t)〉1

− 1

2

(
〈ĉ†1(t)ĉ1(t)〉1 + 〈ĉ†N (t)ĉN (t)〉1 − 1

)
, (2.23)

b =
1

2
− a, (2.24)

c =
1

2

(
(−1)M+1 〈ĉ†N (t)ĉ1(t)〉1 + c.c.

)
. (2.25)

Above we introduced the shorthand notation 〈 · · · 〉1 = 〈N1| · · · |N1〉 and M is the
conserved number of spin up states in the dynamical Néel state

( N∑

l=1

P̂ ↑l

)
e−iĤt|N1〉 = M e−iĤt|N1〉 ,

i.e. M = N/2 for even N and M = (N − 1)/2 for odd N . The Heisenberg

picture operators ĉ†k(t) read

ĉk(t) = eiĤtĉke
−iĤt =

N∑

l=1

fk,l(t) ĉl (2.26)

1the term free refers to the fact that the Hamiltonian may be cast into diagonal form of
noninteracting fermionic degrees of freedom, see Appendix A
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with

fk,l(t) ≡
N∑

m=1

gk,m gm,l e
i εm t (2.27)

gk,l =

√
2

N + 1
sin(qkl), (2.28)

εk = 2J cos(qk),

qk =
π k

N + 1
,

whereby the two point correlation function occurring in Eqs. (2.23)-(2.25) assume

〈ĉ†i (t)ĉj(t)〉1 =
N∑

k=1

fi,k(t)f
∗
j,k(t) 〈ĉ

†
k(0)ĉk(0)〉1 =

∑

l

fi,2l(t)f
∗
j,2l(t) (2.29)

where we used that at t = 0

〈N1|ĉ†k(0)ĉk(0)|N1〉 = δk,2l, l = 1, 2, · · · . (2.30)

Figure 2.3 shows the time evolution of the matrix elements for a chain of N = 9
spins.

2.5. Entanglement purification

We showed in the preceding sections that the state of the pair of edge spins
ρ̂1,N in the open XXZ chain is a mixed state and assumes the form Eq. (2.18)
during time evolution after a quench which is performed within this model class
(i.e., ∆ is the parameter which triggers the quench). Let us now discuss the
circumstances under which ρ̂1,N can be considered a useful resource for quantum
communication tasks. While it has become customary to quantify mixed state
entanglement of two qubits by means of concurrence [22], we will adopt for the
following discussion a more transparent measure, the fully entangled fraction
f , which has an immediate operational interpretation in terms of entanglement
purification.

That is, we ask whether ρ̂1,N contains sufficient entanglement between the
qubits for it to be purifiable into maximally entangled pure states and, if so, how
efficiently this can be done.

The density matrix Eq. (2.18) can be understood as a mixture of Bell states
of pairs of qubits

|ψ±〉 =
1√
2

(|↑↓〉 ± |↓↑〉) (2.31)

|φ±〉 =
1√
2

(|↑↑〉 ± |↓↓〉) . (2.32)

28



0 1 2 3 4 5 6
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

time t [J−1]

a

c

 b

Figure 2.3.: Time evolution after quench for N = 9. By means of numerical search one
finds that after an optimal time Tmax = 2.7905J−1 the matrix elements of ρ̂1,N assume
a = 0.0433, b = 0.4567, c = 0.4550 which amounts to a purifiable mixed state.
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The Bell states span the two-qubit Hilbert space, and in this representation ρ̂1,N

is diagonal:

ρ̂1,N = (b− c) |ψ−〉〈ψ−|+ (b+ c) |ψ+〉〈ψ+|+ a
(
|φ+〉〈φ+|+ |φ−〉〈φ−|

)
.

(2.33)

Assume that two parties Alice (A) and Bob (B) are supplied with n copies of the
state ρ̂1,N of a pair of qubits and that the parties have access to one member of
these pairs respectively. The object of entanglement purification is to extract a
lesser number m < n of asymptotically pure, maximally entangled states from
this initial supply only by local operations and classical communication (LOCC).
A procedure for this purpose, the so called recurrence method, has been proposed
in [49]. Since its inception many refined methods have been developed [24], yet
the core idea is the aggregation of the weight of one of the Bell states in the
above mixture at the expense of the weights of the others through LOCC. The
fist step of the recurrence method is to draw two impure pairs of qubits in state
ρ̂1,N from the initial supply. Subsequently, these pairs are entangled by applying
local unitary operations leading to a permutation of basis states |ψ±〉, |φ±〉 and
to alterations in their corresponding statistical weights. A local measurement in
the {|↑〉, |↓〉} basis on one of the pairs leaves the other, untouched pair in a state
which can be, statistically speaking, less mixed and more entangled. While the
measured pair becomes expendable, Alice and Bob can infer from comparing their
measurement results whether the untouched pair is to be kept or to be discarded.
The subset of kept pairs serves as the set of copies for the subsequent iteration
of the recurrence method, and will –under suitable conditions – gradually be
approaching a set of almost pure, maximally entangled states of pairs of qubits.

In the general case of an arbitrary density operator, a figure of merit for how
well purification methods can perform is the fully entangled fraction f defined as

f(ρ̂) = max
|e〉
〈e| ρ̂ |e〉 (2.34)

where ρ̂ is an arbitrary mixed state of two qubits and the maximisation is carried
out over the set of all maximally entangled states |e〉. In a state ρ̂ which is
diagonal in the basis of Bell states, f is given by its maximum eigenvalue [50],
hence for ρ̂1,N of Eq. (2.33) one has

f(ρ̂1,N ) = max (b+ |c|, a) . (2.35)

A density operator ρ̂ of two qubits is called purifiable if [49]

f(ρ̂) >
1

2

which is sufficient for the recurrence method to have a finite yield. The yield is
the fraction m

n of pairs in state ρ̂ with individual

f(ρ̂) = 1− ε, 0 ≤ ε < 1

2
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Figure 2.4.: Fully entangled fraction f as a function of the number of lattice sites N in a
semi-logarithmic scale. The data points for the analytic quench scenario (circles) exceed 0.5
for chains up to N = 241 spins. We find a good agreement of these data for N ≥ 25 to a
function of the form gfit(N) ∝ N−ν with ν = 0.22(9) (dashed curve). The main panel is
supplemented with data from numerical study of more general quenches and small system sizes
N ≤ 11. Triangles refer to a quench ∆ :∞→ 1 and squares label data for a quench ∆ : 3→ 0
Left inset: Typical time evolution of the fully entangled fraction after quench ∆ : ∞ → 0 for
different values of random disorder parameter (δ = 0, 0.1, 0.2, 0.3 for top to bottom curves
respectively). The lines refer to an average taken over 100 independent realisations of disorder.
Right inset: Linear size-scaling of the optimal time Tmax (circles), which is needed for f to reach
its first maximum value. Figure reprinted from [48]

which can be obtained, on average, from n > m initial pairs after a finite number
of iterations of the recurrence method. The yield goes to zero as ε goes to zero
[24], i.e. the recurrence method can achieve pure and maximally entangled state
in the asymptotic sense. In our specific case, ρ̂1,N is purifiable if

b+ |c| > 1

2
. (2.36)

2.6. Results and discussion

The idealised quench discussed so far gives rise to a significant amount of en-
tanglement at an optimal time Tmax after the instant of quench, in that in this
model it is purifiable (f > 0.5) for chains of up to N = 241 spins (Fig. (2.4)).
We observe a linear scaling of Tmax with system size, and the peak value of fully
entangled fraction f vanishes according to a power-law ∼ N−0.22(9) for N > 20.

In addition to this quench (∆ :∞→ 0), we have studied more general quenches
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purely numerically for small system sizes. We studied the effects of (a) having
an initial thermal ground state corresponding to finite ∆ which deviates from
the ideal mixture of the two Néel states (see Eq.(2.8)) and (b) time evolution
being generated by a Hamiltonian with 0 < ∆ ≤ 1. Numerics further allows us
to introduce random couplings which constitutes a form of disorder, subject to
which entanglement becomes degraded to a certain extent. Random couplings
amounts to choosing a site dependent coupling strength in the XXZ Hamiltonian
Eq. (2.1)

J → Jl = J(1 + δl)

with normally distributed random numbers δl having zero mean and standard
deviation δ. Figure 2.4 summarises our results.

One recognises from the data shown in the main panel of Fig. (2.4) that it
is not as crucial to have an ideal Néel-type ground state before the quench as
it is to time evolve with the XX-Hamiltonian (which corresponds to the free
fermion case). Therefore the dispersion-less and scattering-free evolution, that
is expected for the excitations of the XX spin chain, is seen to be the most
important ingredient, at least for longer chains, for purifiable entanglement to be
established. Still, over short ranges more general quenches obey the qualitative
features that are heralded by the idealised quench, and could be of interest for
experiments where only a few coupled qubits are involved.

2.6.1. Qualitative origin of entanglement growth

The linear scaling of Tmax with system size N , as shown in the lower right panel,
suggests that entanglement displays causality. Distant correlations are therefore
very likely due to earlier local events which tend to spread information with a
constant speed across the lattice. Calabrese and Cardy first proposed[36] this
idea of causality in the context of entanglement in many-body systems. They
argued that, due to quench, counter propagating quasiparticle excitations are
emitted from each lattice site in a spin chain and contribute a certain amount
of entanglement between a region of the chain of length l and its complement
once their causal cones (a pictorial notion of left and right moving wave-fronts
as functions of time) admit this, i.e. once one of the particles (but not both) is
contained within the region. With this in mind, one might expect that in our
quench scenario entanglement is established roughly at the the time when a pair
of right and left moving particles, emitted from the middle of the chain, have
simultaneously reached both ends. Given that the Fermi velocity of excitations
in the XX model reads as

vF =
∣∣∣ (∂qkεk) |qk=π

2

∣∣∣ = 2J,

one would expect that the time at which entanglement is first optimally estab-
lished will roughly scale as Tmax ∼ N

2vF
= N

4J . However, our data for Tmax in a

quench ∆ : ∞ → 0 are seen to obey the scaling Tmax ∼ N
πJ suggesting that the
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Figure 2.5.: The establishment of entanglement as a collective effect. Quasiparticle (quasi
hole) excitations are emitted locally from each |↑〉 (|↓〉), and give rise to a maximal fidelity with
|ψ+〉 at time Tmax, which occurs slightly later than the instance of time where wave-fronts which
were emitted from the middle hit the edges (solid arrows). We expect, that this is due to the
finite width of each wave-packet, which travels rather dispersion-less (in the idealised quench)
through the lattice. The edge spins then encounter contributions from multiple excitations,
sources of which are located in a broader region in the vicinity of the middle of the chain
(indicated by dashed lines).

process of establishing entanglement is slightly slower than this estimate. Yet,
the linear scaling with N is otherwise consistent with the causal cone picture.

This delay hints towards a collective effect, leading to an optimal entanglement
as a result of many such local events. The excitation that is emitted from the
centre of the chain (meaningful in the case of odd N) will, at the optimal time
Tmax, have encountered the terminal sites and will have been reflected from the
boundaries. Excitations which are emitted far from the middle, say, to the left
of the middle are yet to encounter the right end, and have been reflected from
the left boundary (Fig. (2.5)).

A subtlety arising in this study is that quenches in chains of even numbers
of spins do not give rise to purifiable entanglement at any time at all. Only
if one starts form pure initial states |N1〉 or |N2〉 even and odd chains behave
equivalently and time evolution produces entanglement between the ends in either
case. Hence, the mixedness must be made responsible for this even/odd effect.
We do not have a conclusive explanation for this phenomenon at present.

2.6.2. Thermalisation and decoherence

As to the preparation of the initial antiferromagnetically ordered Néel state, we
assumed a statistical mixture of the degenerate ground states thereby taking
into account thermalisation to a certain extent. Neglecting admixture of first
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and higher excited states will be appropriate if the energy gap |E1−E0| between
ground state and first excited is large compared to kBT where kB is the Boltz-
mann constant and T is the temperature. We argued in section 2.1 that the gap
of the Ising antiferromagnet is proportional to the coupling strength J . Therefore
strong coupling is preferable in order to prevent the system from thermalising.

The present study neglects effects which may stem from an interaction of the
spin chain to a thermal environment during the time evolution after quench.
This could be a valid assumption given that the process is essentially rather
fast: The optimal time after which entanglement is first maximally established
scales linearly in the system size N (see Fig. 2.4) and is inverse proportional to
the coupling strength. It is therefore hoped that under suitable conditions the
unitary evolution can be sufficiently fast for decoherent effects to be negligible.

2.6.3. Possible experimental implementations

The prospect of evidencing entanglement in a strongly correlated quantum sys-
tem using our quench based entangling scheme seems promising regarding recent
experiments in different setups. Suitable candidates for experimental tests will
be briefly reviewed hereafter.

Cold atoms in artificial lattice potentials are an ideal testbed to observe of
coherent quantum evolution after a quench[4]. In particular, the preparation of
a chain of atoms in a magnetic Néel state which our quench protocol relies on
(more precisely the pure state |N1〉 or |N2〉) has been realised with high fidelity
in a recent experiment[5], which also provided evidence for effective spin inter-
actions between neighbouring atoms. Yet, it might be challenging to evidence
entanglement between the atoms of particular sites including those at the ends.
This would require full state tomography of the ending spins.

Ions trapped by laser light[52] constitute another example of a very clean sys-
tem of strongly interacting particles, which can be cooled, confined and coher-
ently manipulated reliably for long time while experiencing only little perturba-
tion from the environment [53]. The relevant degrees of freedom for a collection
of trapped ions are the individual internal spin states, as well as their collective
motional modes which are caused by Coulomb forces. Spin and vibrational de-
grees of freedom can be coupled via incident laser light giving rise to an effective
spin-spin interaction among the ions [54]. While entangled states of pairs of ions
can be reliably obtained by other means, it will still be interesting to check the
predictions of our scheme in this highly controllable environment.

A simple architecture involving superconductor circuits is one where Josephson
junctions –formed by two superconductors separated by a thin, insulating layer–
form a linear array. Two quantum conjugate variables which can be used to form
a suitable qubit are the number of electron (Cooper) pairs on the electrode of a
junction giving rise to charge state qubits[55] or the phase difference between the
wave functions which arises upon crossing the insulating barrier and can be used
to form a flux qubit[56]. Coherent quantum evolution in superconducting circuits
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were observed [57] and the dephasing time was reported to be on the order of 20
ns, while in recent experiments the µs regime is approached. Coupling different
units to form chains or more elaborate architectures as well as switching the in-
teractions dynamically is subject of ongoing experimental efforts [58]. Methods
of simulating effective spin Hamiltonians in chain like architectures of Josephson
junctions were proposed in [59, 60]. A notable advantage is the mesoscopic scale
of these solid state devices which would enable single site access for measure-
ment and control. A noteworthy drawback is that highly elaborate cryogenic
techniques are required to cool the circuits to the mK regime[57]. Together with
fabrication this makes these experiments quite costly.

2.7. Related work

Galve et al. [61] proposed a similar scheme to entangle the distant ends of
a spin chain by periodically driving the coupling strengths J = J(t) in a XY
spin chain with a transverse magnetic field. There, the initially uncoupled spin
system, i.e. J(0), is cooled to the ferromagnetic ground state by virtue of a strong
external magnetic field. A periodic driving J(t) ∼ sin(ωdt) subsequently leads to
a dynamical response of the spin chain and, moreover, gives rise to a significant
amount of entanglement between the edge spins, particularly at resonance, i.e.
where ωd matches the Zeeman energy splitting of each spin. In this resonant
case the dynamical driving is seen to be mathematically equivalent to the static
quench described in this chapter [61].
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3. Extraction of pure entangled states
from many-body systems by distant
local projections

In this chapter, we explore the feasibility of extracting a pure entangled state of
noncomplementary and potentially well separated regions of a quantum many-
body system. By studying the effect of measurements of local observables, such as
the individual ground state magnetisation of separated blocks of spins of certain
spin chains, we find that such an extraction can be accomplished, in principle,
even though the state is a mixed state before the measurement. A general pro-
cedure is presented which is capable of predicting the optimal performance of
extracting pure entangled state through local projective measurements. Numeri-
cal results for the ground state of the transverse XY spin ring suggest a connection
of the projectively extractable pure entanglement (EPP ) to the symmetries of
the underlying model.

After a brief recap on the theory of ideal quantum measurements in section 3.1,
we introduce the notion of projectively extractable pure entanglement in section
3.2. We illustrate the concept of EPP on a simple example, namely that of a
supersinglet state, in section 3.3. We proceed by discussing a general procedure
(section 3.4) that predicts the optimal amount of pure entanglement which can
be extracted on average from a general mixed state of two parties by way of local
measurements. In the subsequent section 3.5 the transverse XY spin chain will
be introduced. This model will serve as a testbed for the general procedure, by
looking at the pure entanglement that is extractable from the ground state. The
results of this investigation are reported in section 3.6.

The work in this chapter has been done in collaboration with Dr. Javier
Molina (Universidad de Cartagena, Spain), Prof. Vladimir Korepin (Stony Brook
University, USA) and with my supervisor Prof. Sougato Bose.

3.1. Ideal quantum measurement

The von Neumann-Lüders measurement postulate may be formulated as follows
[12, 51]. Quantum theory assigns to each measurable physical quantity X a
Hermitian operator X̂, which is called observable. Here, we consider observables
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Figure 3.1.: Projective extraction of pure entanglement[62] versus localisable entanglement[14].
Top panel : Localisable entanglement (LE). In a typical quantum many-body system (i), en-
tanglement is dominantly shared between neighbouring particles[16, 17]. By locally measuring
observables of a designated subset of particles (ii) the range of entanglement among the other
particles (depicted here as the pair of particles at the terminal sites of an open ended chain)
can be increased. LE is the maximum amount of entanglement that can be localised between
this pair, on average. Bottom panel : The initially unperturbed state of the many-body system
(i) becomes subjected to measurements of observables that are local to the individual region of
particles, designated A and B (ii). The post-measurement state of the particles in these regions
can, under suitable conditions, be a pure and entangled state (iii). Projectively extractable pure
entanglement (EPP ) is the optimal amount of entanglement that can be extracted, on average,
from the blocks by means of such projective measurements. Reprinted from [62].

with discrete spectral decomposition

X̂ =
∑

k

xkP̂k (3.1)

where xk is an eigenvalue of the observable X̂ and corresponds to a possible
measurement outcome. With each eigenvalue xk one associates a projector

P̂k =

dk∑

jk=1

|xk〉〈xk| ⇔ X̂|xk〉 = xk|xk〉 (3.2)

where the sum accounts for a dk-fold degeneracy of xk. A projector is a Hermitian
P̂ †k = P̂ and idempotent P̂ 2 = P̂ operator.
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Let ρ̂ denote the density operator which describes a quantum statistical en-
semble before a measurement has been carried out. Then, upon measuring the
observable X̂, which we suppose yields the outcome xk, a new density operator

ρ̂′ =
P̂kρ̂P̂k

Tr
[
P̂kρ̂P̂k

] (3.3)

describes a sub-ensemble which is commensurate with this measurement out-
come. The denominator in Eq.(3.3) ensures normalisation and coincides with
the probability of obtaining the measurement outcome xk

p(xk) = Tr
[
P̂kρ̂P̂k

]
= Tr

[
P̂kρ̂

]
(3.4)

where we used the cyclic property of the trace, Tr
[
ÂB̂
]

= Tr
[
B̂Â
]
, and the

idempotence of the projector. With a single projector P̂k we can associate a
selective measurement of observable X̂, where all outcomes but xk are discarded.

If the eigenvalue xk is non-degenerate, then the mentioned sub-ensemble is de-
scribable by a pure state |Φ′〉, even if ρ̂ is a true mixture [51]. The circumstances
by which the sub-ensemble is describable by a pure state |Φ′〉, even though xk is
degenerate, will be laid out in the following section.

3.2. Extraction of pure entangled states by distant local
projective measurements

Assume that a quantum system is comprised of two regions A and B and their
complement AB, where the regions could be spatially separated. We will denote
the union of the two regions by AB = A ∪B.

Building on the theory of measurement laid out in the foregoing chapter, we
ask whether it is feasible to perform a selective local measurement on the parts
A and B of the form P̂ = P̂A ⊗ P̂B with outcome x that leads to a pure state
|Φ〉 after measurement which is also entangled with respect to the bipartition
A
∣∣B. As a measure which captures both the amount of pure entanglement and

the probabilistic nature of actually obtaining x we introduce the projectively
extractable pure entanglement [62]

EPP = max
{P̂=P̂A⊗P̂B | P̂ ρ̂P̂=p−1|Φ〉〈Φ|}

{p E(|Φ〉)} (3.5)

where p = Tr
[
P̂ ρ̂
]

is the probability of measuring x .
Let us elaborate on the criteria that must be met so that a measurement gives

rise to a pure state of the measured regions. Suppose that before the measurement
the state of the whole system is described by a pure state

|ψ〉 ∈ HA ⊗HB ⊗HAB.
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The Schmidt decomposition (sec. 1.1.2) with respect to the bipartition AB
∣∣AB

reads as

|ψ〉 =

χ∑

α=1

√
wα |wABα 〉 ⊗ |wABα 〉 (3.6)

and the state of the subsystem, composed of the union of the regions AB, becomes

ρ̂ =

χ∑

α=1

wα|wABα 〉〈wABα | (3.7)

By virtue of Eq.(3.3) one has

ρ̂′ = p−1
∑

α

wα P̂ |wABα 〉〈wABα | P̂ (3.8)

which leaves us with seemingly two possibilities by which ρ̂′ = |Φ〉〈Φ|. The first
possibility is by choosing a projector P̂α which satisfies

P̂α|wABα′ 〉 = δα,α′ c |Φ〉 . (3.9)

with an amplitude c ∈ C that obeys c∗c = p . We stress that this assumption does
not imply |Φ〉 = |wABα 〉 since the Schmidt vectors do not constitute a complete
basis.

An apparent second possibility of obtaining a pure state after measurement
will be excluded now. To this end, assume that there exists a number n ≥ 2 of
Schmidt vectors labelled by the subset of indices

Q ⊂
{
α
∣∣α ∈ [1, 2, · · · , χ]

}

and a projection operator P̂ for which

P̂ |wABα′ 〉 = c |Φ〉 ∀ α′ ∈ Q,

where the amplitude c ∈ C obeys c∗c = p/n. It turns out that this is a conflicting
assumption with the properties of a projector and the orthonormality of the
Schmidt vectors: For α′, β′ ∈ Q, α′ 6= β′ one has

〈Φ|Φ〉 =
n

p
〈wABβ′ |P̂ 2|wABα′ 〉 =

n

p
〈wABβ′ |P̂ |wABα′ 〉 = 1 (3.10)

〈wABβ′ |wABα′ 〉 = 0  (3.11)

because there exists no projector which can satisfy the last equality of Eq.(3.10).
Hence, we have singled out the first of these possibilities which leads to a

pure state after measurement. The question of whether |Φ〉 will be entangled
can not be answered in general since this depends on the particular state under
consideration. We will discuss a simple example in the following section.
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3.3. Example: Supersinglet state of three qutrits

A general supersinglet state is defined as [63]

|S(d)
N 〉 =

1√
N !

∑

s[1···N ]

εs1,s2,··· ,sN |s1, s2, · · · , sN 〉 (3.12)

where sl = 1, 2, · · · , d and εs1,s2,··· ,sN denotes the completely antisymmetric ten-
sor which is zero if two or more indices are equal and assumes +1 (−1) for an
even (odd) permutation of indices. Supersinglet states arise as ground states of
certain permutation Hamiltonians when d = N [64] which shall serve here as an
illustration for the concept of projectively extractable entanglement EPP .

Consider the example of a number N = 3 so-called qutrit particles which are
labelled by A,B,C and whose respective state space is spanned by the vectors
{|1〉, |2〉, |3〉} and consequently d = 3. Suppose these three qutrits are in a super-
singlet state

|ψ〉 = |S(3)
3 〉 =

1√
3

(
|ψ−23〉AB|1〉C + |ψ−31〉AB|2〉C + |ψ−12〉AB|3〉C

)
(3.13)

where we used a shorthand notation for the direct product |i〉 ⊗ |j〉 = |i〉|j〉 and
introduced the generalised singlet state of the particles A and B

|ψ−ij〉AB ≡
1√
2

(|i〉A|j〉B − |j〉A|i〉B), i, j ∈ 1, 2, 3 .

Let us choose a local projector on subsystem A

P̂A = |2〉A〈2|+ |3〉A〈3|

and another on subsystem B

P̂B = |2〉B〈2|+ |3〉B〈3|

such that P̂ = P̂A ⊗ P̂B. The corresponding selective measurement amounts to
the contrived scenario of two experimenters, one of which has access to particle A
while the other has access to particle B, who conduct simultaneous measurements
on their respective particle A and B and independently ask whether their particle
is not found in state |1〉 without acquiring further knowledge about the details
of the state. One finds that whenever this question can be answered with yes
by both experimenters the combined system AB is left in the generalised singlet
state

|Φ〉 = |ψ−23〉AB .

Since the mentioned measurement outcome is obtained with probability

p = Tr
[
P̂ ρ̂AB

]
=

1

3
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and the resulting state has an entropy of entanglement

E(|Φ〉〈Φ|) = ln 2

the amount of projectively extractable pure entanglement is

EPP (ρ̂AB) =
1

3
ln 2

For this example, we chose local projectors of rank two which is equivalent of
having a degeneracy in the measurement outcome “both experimenters report
yes”. As stated in the foregoing chapter, a non-degenerate measurement outcome
would immediately yield a pure state |Φ〉. However, modifying

P̂A = |2〉A〈2|, P̂B = |3〉B〈3|

gives |Φ〉 = |2〉A|3〉B which is separable and hence EPP (ρ̂AB) = 0.

3.4. General procedure of projectively extracting pure
entangled states

While the choice of the particular measurement in the example of the previous
chapter was guided by intuition, often the form of the considered state of the
three parties does not easily allow such a guess. We explore in this section the
possibility of extracting pure and entangled states from a general state ρ̂AB of
the regions to be measured. The general procedure that will be explained below
amounts to a systematic algorithm capable of finding the maximal EPP that can
be achieved by local selective measurements.

Recall that under the assumption that the system ABC is in a pure state, the
reduced density operator of the considered regions reads as

ρ̂ =

χ∑

α=1

wα|wABα 〉〈wABα | (3.14)

We may decompose each Schmidt vector using a Schmidt decomposition

|wABα 〉 =

χα∑

β=1

√
wα,β|wAα,β〉|wBα,β〉 (3.15)

and construct local projectors of variable rank as follows

P̂Aα,µ =
∑

β∈Pαµ

|wAα,β〉〈wAα,β|, (3.16)

P̂Bα,ν =
∑

β∈Pαν

|wBα,β〉〈wBα,β| . (3.17)
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The summations are carried out over subsets of indices Pαµ and Pαν which con-
tain a particular ordered permutations of a number 2 ≤ rAµ , r

B
ν ≤ χα of indices.

The subscripts (αµ) label a specific permutation. This leads to local projec-
tors of rank rAµ and rBν for region A and B respectively. A combined projector,
concerning both regions, is then constructed as

P̂α(µν) = P̂Aα,µ ⊗ P̂Bα,ν .

For example, for a particular µ = 4 and ν = 3 which label the index permuta-
tions Pα4 = {2, 7} and Pα3 = {3, 5}, hence rA4 = rB3 = 2 and the local projectors
would read as

P̂Aα,4 = |wAα,2〉〈wAα,2|+ |wAα,7〉〈wAα,7| (3.18)

P̂Bα,3 = |wBα,3〉〈wBα,3|+ |wBα,5〉〈wBα,5| (3.19)

Whether the resultant projector P̂α(µν) qualifies for the extraction of a pure
state can be checked via Eq.(3.9). If one or more of the alternative projectors
P̂α(µν) qualify, we proceed by quantifying the entropy of entanglement of the
candidate states |Φα(µν)〉 which are obtained from

|Φα(µν)〉〈Φα(µν)| = Tr
[
P̂α(µν)ρ̂AB

]−1
P̂α(µν)ρ̂ABP̂α(µν) .

Finally, we define

EPP = max
α(µν)

{
Tr
[
P̂α(µν)ρ̂AB

]
E(|Φα(µν)〉〈Φα(µν)|)

}
(3.20)

which is the product of the entropy of entanglement of the post-measurement
pure candidate state |Φα(µν)〉 and the corresponding probability of preparing
that state, maximised among all candidates.

Since we argued that the set of qualifying P̂α(µν) corresponds to the only pos-
sible selective measurements by which pure states can be extracted, we conclude
that EPP as obtained through our general procedure will quantify the optimal
performance of extracting pure state entanglement through local projections.

We would like to test this procedure by looking at the ground state of a simple
one-dimensional spin model, which will be introduced hereafter.

3.5. The transverse XY spin chain model

The transverse XY spin chain describes a collection of spin-1
2 particles arranged

on a one dimensional lattice which is subjected to a uniform magnetic field. On
the one hand, two types of nearest neighbour interactions compete among each
other, attempting to minimise the energy by aligning spins along the X or Y axes
of the coordinate system respectively. On the other hand, the transverse field
–incident in Z direction– tends to align spins perpendicular to the X-Y plane.
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Figure 3.2.: Phase diagram of the transverse XY model. For h > 1 the model is paramagnetic.
The ground state becomes separable along the disorder line (dashed curve), which separates an
ordered oscillating phase (h2 + γ2 < 1, “OO”) from a ferromagnetic phase (h2 + γ2 > 1, “FO”).
The model undergoes quantum phase transitions at h = 1, 0 < γ ≤ 1 and at γ = 0, 0 ≤ h < 1
(bold lines).

At zero temperature, the systems therefore seeks the optimal balance between
these three contradictory orders so as to minimise the energy. It accomplishes
this task by means of quantum fluctuations.

The Hamiltonian of the transverse XY model reads as

Ĥ = −
N∑

l=1

[(
1 + γ

2

)
σ̂xl σ̂

x
l+1 +

(
1− γ

2

)
σ̂yl σ̂

y
l+1 + hσ̂zl

]
(3.21)

where 0 ≤ γ ≤ 1 designates the XY-anisotropy and the parameter h ≥ 0 governs
the transverse magnetic field amplitude. The transverse Ising model corresponds
to the limit γ = 1 while one recovers the transverse XX-model for γ = 0. We have
come across the latter (with zero magnetic field) in the preceding chapter. The
thermodynamical properties of the transverse XY model have been exhaustively
studied (see [65] and references therein). We illustrate the ground state phase
diagram in Fig.3.2.

Two distinct gapless1 (quantum critical) regimes in the (h, γ) plane can be iden-
tified (Fig.3.2): The Ising transition corresponds to the line h = 1 and 0 < γ ≤ 1

1the finite system will always display a gap, hence gapless refers to the spectrum of the infinite
system
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Figure 3.3.: Eigenspectrum of an XX spin chain (γ = 0) with N = 4 sites as a function of the
external magnetic field h. The ground state energy is highlighted in blue. Upon increasing h,
at each level-crossing of the ground state energy the quantum number M increases by one, and
the magnetisation displays a discontinuous jump. Reprinted from [69].

while the XX transition occurs at γ = 0 and 0 ≤ h < 1. We will return to the
critical properties of this model in section 4.2 of the following chapter in more
detail which will be justified in that context.

For a particular choice of parameters the ground state factorises (becomes
separable): This occurs along the disorder line [66, 67, 68] h2 + γ2 = 1.

Eigenstates of Ĥ are also eigenstates of the parity operator Ẑ =
∏
l σ̂

z
l , i.e.

[Ĥ, Ẑ] = 0. At the isotropic point γ = 0, the model additionally obeys conserva-
tion of total magnetisation along the z-axis, [Ĥ, Ŝz] = 0. At this isotropic point,
the ground state z-magnetisation per site varies from 〈Sz〉/N = 0 for h = 0 to
〈Sz〉/N = 1 for h = 1. For finite N , magnetisation does not vary continuously
but changes abruptly whenever a level crossing of the ground state energy occurs
(see Fig.3.3 for the example N = 4).

In this chapter, exclusively, periodic boundary conditions will be imposed:

σ̂αN+1 = σ̂α1 , (α = x, y, z).

3.6. Results and Discussion

In the following, we explore the ground state of the transverse XY model for a
particular system of N = 6 spins arranged on a ring through exact diagonalisa-
tion. This system will be partitioned symmetrically into diametrically opposite
and contiguous regions A and B, comprising two spins each, that are separated
from each other by a single site at either end (Figure 3.4, left).
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Figure 3.4.: Left: Partition of a spin ring with N = 6 into the measured regions A and
B, and their complement C which gives rise to a spatial separation. Right: Four odd parity
configurations (black circles correspond to |↑〉 and white circles to |↓〉) of the spin ring, which
display indivdual even parity of the regions A and B and are commensurate with a quantum
number M = 0 (equal number of up and down spins). Each of these configurations occurs
with equal amplitude in the ground state prior to measurement, owing to the discrete lattice
symmetry of translation. A local selective parity measurement on A and B (e.g., yielding even
parity of both regions) gives rise to a pure and entangled state |Φ〉 of the measured regions, see
text.

By numerically applying the general procedure that was explained in section
3.4, we find that nonzero pure entanglement can indeed be extracted by local
projections, in specific regions of the ground state phase diagram. Fig.3.5 shows
EPP as a function of the parameters h and γ.

Figure 3.5 highlights the interplay of having a finite probability of extracting
a pure state and the amount of entanglement of this extracted state (top and
mid panel respectively). Only if both conditions are met EPP assumes a finite
value. Considering a slice of the three dimensional graphs at γ = 0, we see that
EPP is a constant function between two discontinuous jumps at h ∼ ±0.5. This
suggests that in this regime of the phase diagram EPP is linked to the symmetry
of conserved z-magnetisation, the corresponding quantum number M of which
changes discontinuously at the same values of the external field.

The numerical implementation of the general procedure allows to infer which
particular projector has been singled out, and for the regime of nonzero EPP , we
find that these projectors correspond to either a local selective measurement of
z-magnetisation or local selective parity measurement. While global parity is a
conserved quantity for the entire phase diagram, the global z-magnetisation is
conserved only at h = 0, as pointed out in section 3.5.

Let us have a closer look at the case of a local selective parity measurement.
The region of nonzero EPP for h 6= 0 beyond (h = 0), as observed in Fig.3.5, is
numerically found to correspond to a ground state |ψ〉 with odd parity, that is
to say

Ẑ|ψ〉 = −|ψ〉 .

The unperturbed ground state must therefore obey certain conditions regarding
the local parity of region A, B and C individually: If the local parity of both
the regions A and B is even (|↓↓〉A(B) or |↑↑〉A(B)), then the complementary
spins must be of odd parity (|↓↑〉AB or |↑↓〉AB) so as to comply with the global

odd parity of ground state (recall that the eigenvalue of Ẑ is the product of the
parities of region A, B, and their complement).
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A local measurement of parity which does not discriminate between the par-
ticular configurations therefore seems a good candidate for a local selective mea-
surement leading to an entangled pure state, and is indeed singled out by the
general procedure as found numerically.

For simplicity, let us restrict ourselves to the region (h = 0, γ = 0) where the
ground state is characterised by both odd parity and a quantum number M = 0,
corresponding to an equal number of spin up and spin down. Hence, locally
measuring even parity in both regions A and B so that

P̂A(B) = |↓↓〉A(B)〈↓↓|+ |↑↑〉A(B)〈↑↑|

would, under the global constraint of odd parity, be consistent with four possible
spin configurations, which occur with equal amplitudes in the ground state by
virtue of discrete translational symmetry of the ring (Figure 3.4, right). Thus
after projection, the state of the whole system reads as

|Φ〉 =
1

2
(|↑↓〉AB + |↓↑〉AB)⊗ (|↑↑〉A|↓↓〉B + |↓↓〉A|↑↑〉B)

which was verified numerically in the considered part of the phase diagram. The
state of regions A and B is therefore pure and entangled, which is clear by
inspection.

We conclude that in the context of many-body ground states, this study sheds
light on the interrelation between nonzero EPP and certain quantum numbers
which classify the ground state. In the case of the transverse XY spin ring,
these quantum numbers are parity and z-magnetisation. The corresponding ob-
servables commute with the underlying Hamiltonian, and admit a meaningful
measurement both globally and locally.
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Figure 3.5.: Projectively extractable pure entanglement in the ground state of the transverse
XY spin ring model with N = 6. The regions of measurement are diametrically opposite blocks
of spins, comprising two spins each. EPP (bottom panel) is obtained from the general procedure,
as explained in the text, and amounts to the the product of the entropy of entanglement, shown
in the top panel, and the probability of preparing a particular pure state state by way of a local
selective measurement, shown in the mid panel. The factor of 1/ ln 2 in top and bottom panels
is due to the different definition of entropy of entanglement in our paper [62] which assumes a
logarithm to the base 2 as opposed to the natural logarithm used in this thesis. Reprinted from
[62].
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4. Scaling of negativity of separated
blocks in spin chains at criticality

In this chapter we quantify the entanglement between separated blocks in spin
chain models and study its behaviour in the vicinity of quantum critical points
in terms of negativity. The numerics suggest that at the transition negativity is
scale invariant in that it is a function of the ratio of the separation to the length
of the blocks. We observe that this entanglement displays an exponential decay
for large separations of the block and therefore markedly differs from behaviour
of correlation functions which at criticality decay according to a power law. We
study universal features of negativity and show that it is largely independent of
microscopic system parameters for models which belong to the same universality
class.

4.1. Introduction

In the past decade a vast interest in entanglement in ground states of many body
systems has emerged and a considerable body of results has been obtained[1]. At
quantum phase transitions, i.e. a situation where at zero temperature correla-
tions become particularly pronounced, entanglement displays several interesting
features. Figure 4.1 illustrates different forms of entanglement that can be stud-
ied in this context.

The study of phase transitions has a long standing tradition in condensed
matter theory [74]. Conventionally, transitions can occur between gaseous, fluid
and solid states upon varying pressure or temperature. An order parameter
differs markedly on each side of the transition, such as the particle density in the
mentioned example. At zero temperature, a transition between different phases
of matter can be triggered by microscopic coupling parameters or external electric
or magnetic fields. Quantum fluctuations between qualitatively different ground
states dominate the physics on the macroscopic scale, giving rise to the term
quantum phase transition [75].

A phase transition is a distinguished example of an emergent phenomenon, i.e.
a collective effect that arises in large samples of correlated particles. Usually,
thermodynamic properties display generic behaviour that is largely independent
of the details of the interaction among constituent particles as well as other
characteristics which would matter on the microscopic scale. This feature is
called universality, and has also been seen to have a bearing on entanglement at
quantum phase transitions [17, 70]. One of the most prominent examples in this
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Figure 4.1.: Forms of entanglement. Top panel (a): Entanglement between individual spins is
usually rather short ranged, even at quantum critical points where classical correlations exist
on all length scales [16, 17]. Mid panel (b): Entanglement between a contiguous block of spins
of length L, and the remaining spins. At quantum critical points, entropy of entanglement
shows universal scaling behaviour E ∼ c

6
lnL [70, 71, 72], where c is the conformal anomaly

number (or central charge), defining the universality class of the corresponding continuum model
that the model can be associated with at a quantum phase transition [65]. Bottom panel (c):
Entanglement between disjoint blocks of spins of length L, separated by a number d of spins.
This form will be under investigation in this chapter. Reprinted from [73]

context is the finding that in the case of ground states of quantum critical spin-
1/2 chains entropy of entanglement of a contiguous block of length L displays a
leading divergent term [70, 71, 72]

E ∼ ν c
6

lnL (4.1)

where c denotes the so called central charge, which is characteristic of the under-
lying quantum phase transition for a whole host of different microscopic models
[65]. The number ν = 1, 2 corresponds to the number of connections, that the
contiguous block has with the rest of the chain. For example, in quantum chains
with linear dispersion relation near the Fermi points εk ∼ vF |k| the central charge
shows up in the low temperature limit T � 1 of the specific heat [76, 77]

C =
πc

3

k2
B

~vF
T
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where we temporarily restored all constants. The Ising quantum phase transition
of the transverse XY model is characterised by c = 1

2 whereas the XX transition
displays a central charge c = 1.

Moreover, the scaling of entanglement of a distinguished region with its extent
L has an important implication for the simulability of quantum mechanical states
using classical computers [2], and we will comment on this relationship in the
context of a simulation algorithm in section 4.3.

Entanglement between individual spins is of interest from a quantum commu-
nication perspective. We argued in chapter 2 that this form of entanglement
is notoriously short ranged, even at quantum critical points. The entanglement
between neighbouring spins as measured by the concurrence [22] displays several
universal scaling features [17, 16]. Furthermore, concurrence heralds a transition
in finite size systems by developing singularities in its derivative with respect to
the coupling parameter driving the transition.

We unveil in this chapter, that in the case of spin chains the respective prop-
erties of these two forms of entanglement can be understood from a common
perspective: In fact, one identifies their qualitative properties as limiting cases
of the universal behaviour of entanglement between separated blocks of spins.
The transverse XY spin chain (Sec. 3.5) will be the model under consideration
in this chapter. In section 4.2 we start with a brief presentation of the quantum
phase transitions that are displayed by this model. After giving a motivation for
our chosen methodology, we proceed with explaining the technical steps that are
needed to arrive at the negativity of separated blocks of large blocks of spins in
Section 4.3. We finally present and discuss our results on universality and scaling
of negativity in sections 4.4 and 4.5.

The work in this chapter has been done in collaboration with Dr. Javier Molina
(Universidad de Cartagena, Spain), and with my supervisor Prof. Sougato Bose.

4.2. The quantum phase transitions of the transverse XY
spin chain

We introduced the transverse XY spin chain in Sec. 3.5. For convenience, we
recall that the Hamiltonian reads as

Ĥ = −
N∑

l=1

[(
1 + γ

2

)
σ̂xl σ̂

x
l+1 +

(
1− γ

2

)
σ̂yl σ̂

y
l+1 + hσ̂zl

]
. (4.2)

Here and in the following, open boundary conditions will be imposed:

σ̂αN+1 = 0, α = x, y, z

A quantum critical point is associated with a continuum of gapless excitations
which governs the low energy physics[75]. Two such regimes can be identified in
the model under consideration, the XX critical line and the Ising critical line, as
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pointed out earlier (Fig. 3.2). In this section we will have a closer look at the
single particle energy spectra, which reveal these two distinct critical phases.

The model can be solved by mapping it to spinless fermions [65], along essen-
tially the same lines which were presented for the simple case of the XX model
without external field (Appendix A). This procedure gives rise to a free fermion
Hamiltonian which assumes, up to constant terms,

Ĥ ∼
∑

k

εkη̂
†
kη̂k (4.3)

with single particle energy spectrum [65]

εk = 2

√
(h− cos qk)2 + γ2 sin2 qk , (4.4)

where the momenta 0 ≤ qk < 2π, k = 0, 1, · · · , N − 1 slightly depend on the
chosen boundary conditions. Quite generally |qk+1 − qk| ∼ N−1 [65], hence as
N becomes large qk approaches a continuous function q. The critical properties
are revealed in the limit of vanishing momentum of the single particle spectrum
(this corresponds to the low-lying excitations when h ≥ 1)

εk
∣∣
q→0

= 2
√

(h− 1)2 +
(
(h− 1) + γ2

)
q2 +O(q4) . (4.5)

One recognises that in the thermodynamic limit and along the Ising critical line
0 < γ ≤ 1 (see Fig.3.2) the gap vanishes as∼ |h−1|. Regarding the isotropic point
γ = 0, it is seen from Eq.(4.4) that the gap vanishes for q = arccos(h), h < 1,
which happens to coincide with the Fermi wave number[78]. Hence, we have
identified the two zero temperature critical phases which are displayed by the
transverse XY spin chain.

4.3. Method of quantifying entanglement between
disjoint regions in spin chains

In contrast to the study of entanglement of a contiguous block of spins with the
remainder of the spin chain, which can be largely handled analytically for the
models at hand, rather substantial obstacles arise when attempting to quantify
entanglement between disjoint regions of spins in spin chains. This seems surpris-
ing at first sight, given that the model under consideration is commonly regarded
as being completely solvable.

On the one hand, the reduced density operator (RDO) of disjoint blocks of
spins assumes no simple structural expressions for the ground state of the chain,
in general, even if it maps to a free fermion theory [79, 80]. This stands in sharp
contrast to the RDO of a contiguous block of length L where it is a simple expo-
nential ∼ e−H involving a quadratic form H of Jordan-Wigner fermion operators
[81, 70]. Entanglement entropy can then be obtained by diagonalising an L× L
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dimensional matrix which, in simple cases, is given by the collection of two point
correlation functions Ci,j = 〈ĉ†i ĉj〉[81, 70]. We will exploit this method to study
the limit of adjacent blocks in section 4.5.

On the other hand, even if it were possible to derive such an equivalent ex-
pression in terms of fermionic operators one would have no immediate advantage
from it: We argued that the quantification of entanglement between disjoint re-
gions A and B requires measures such as negativity. Presently, the literature is
lacking a useful result that would enable the computation of negativity based on
the fermionic correlation functions. Consequently, one would have to numerically
construct the full density operator in the computational basis which is feasible
only for small system sizes due to the enormous growth of matrix dimensions.
Moreover, the full matrix could then be obtained, with less effort, by exact diag-
onalisation in the original spin representation.

This state of affairs suggests a numerical approach, and we will explain in the
following how to apply the concepts of matrix-product-states (MPS) or density
matrix renormalisation group (DMRG) to the problem at hand. At the heart
of MPS and DMRG in one dimensional composite quantum systems lies the
Schmidt decomposition (SD) (see Sec. 1.1.2). Consider a quantum state defined
on a product Hilbert space H = H1⊗H2⊗· · ·HN of individual Hilbert spaces Hl
of spin-1/2 particles. In the following, let Hl (l = 1 · · ·N) be spanned by the σ̂zl
eigenstates |σl〉 ∈ {|↑〉, |↓〉} . A SD is defined for each bond l which partitions the
chain into left and right parts giving rise to an overall N − 1 possible SD’s. The
finite system DMRG algorithm which was devised in [82] amounts to optimally
approximating (in a sense to be made precise below) all these SD’s along with
the basis transformations which relate an SD at bond l to that of l− 1 and l+ 1.

Let us start the discussion with the SD at bond 1, thereby conceptually fol-
lowing [83],

|ψ〉 =
∑

α1

√
wα1 |wLα1

〉 ⊗ |wRα1
〉, α1 = 1 · · ·χ1 . (4.6)

Recall that the Schmidt rank χl is always bounded by the smaller of the two
Hilbert space dimensions of HL = H1 ⊗ · · · ⊗ Hl and HR = Hl+1 ⊗ · · · ⊗ HN ,
hence χ1 ≤ 2.

The SD of the neighbouring bond l = 2 is obtained from Eq. (4.6) using the
following definitions

|wRα1
〉 ≡

∑

α2

∑

σ2

Λ[2]σ2
α1,α2

√
wα2 |σ2〉 ⊗ |wRα2

〉, α2 = 1 · · ·χ2 (4.7)
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inserting in Eq.(4.6) gives

|ψ〉 =
∑

α1,α2

∑

σ2

√
wα1 Λ[2]σ2

α1,α2

√
wα2 |wLα1

〉 ⊗ |σ2〉 ⊗ |wRα2
〉, (4.8)

|wLα2
〉 ≡

∑

α1

∑

σ2

√
wα1 Λ[2]σ2

α1,α2
|wLα1
〉 ⊗ |σ2〉, (4.9)

⇔ |ψ〉 =
∑

α2

√
wα2 |wLα2

〉 ⊗ |wRα2
〉 . (4.10)

Clearly, we can iterate this procedure until we reach the rightmost bond at
l = N − 1. The boundaries require a slight modification

|wLα1
〉 =

∑

σ1

Λ[1]σ1
α1
|σ1〉, (4.11)

|wRαN−1
〉 =

∑

σN

Λ[N ]σN
αN−1

|σN 〉 . (4.12)

In the computational basis the state therefore decomposes into

|ψ〉 =
∑

σ[1···N ]


 ∑

α[1···N−1]

Λ[1]σ1
α1

√
wα1 Λ[2]σ2

α1α2
· · · √wαN−1 Λ[N ]σN

αN−1


 |σ1, σ2, · · · , σN 〉

(4.13)

which suggests that each coefficient can be interpreted as a matrix product that
is terminated to the left and right by vectors so as to give rise to a scalar. We
are left with a compact matrix product representation of an arbitrary state on
H

|ψ〉 =
∑

σ[1···N ]

A[1]σ1A[2]σ2 · · ·A[N ]σN |σ1, σ2, · · · , σN 〉 (4.14)

where we introduced matrices (and boundary vectors)

(
A[1]σ1

)
α1

≡ Λ[1]σ1
α1

√
wα1 (4.15)

(
A[l]σl

)
αl−1,αl

≡ Λ[l]σl
αl−1αl

√
wαl (l = 2 · · ·N − 1) (4.16)

(
A[N ]σN

)
αN−1

≡ Λ[N ]σN
αN−1

. (4.17)

At this point, it will be useful to introduce a pictorial description in order to
elucidate how our study of entanglement between separated blocks is carried
out. We started above with a representation of the ground state in terms of the
SD at bond l = 1. We may represent this setting pictorially as follows

[L1][RN−1],
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where square brackets designate a Schmidt basis or block representation, “L, R”
label left and right blocks, and the subscript indices represent the number of
spins in the blocks respectively.

In the second step we represented the SD at bond l = 2 “[L2][RN−2]” in terms
of its preceding SD at l = 1. The computational steps carried out in going from
Eq. (4.6) to (4.10) can then be depicted as follows:

[L1][RN−1]→ [L1] • [RN−2]→ [L2][RN−2],

where the bold dot represents the computational basis of a single spin.
The tensors Λ and

√
w which occur in Eq. (4.13) are obtained through a

variational procedure called density matrix renormalisation group (DMRG), the
details of which are explained in Appendix D. In practise, a DMRG calculation
will not retain all Schmidt basis vectors for a given bipartition. In fact, one
truncates the SD – ordered term-wise with decreasing weights

√
wα – at the

M -th term. The number M is called bond-dimension. As a result, the tensor

dimensions of Λ
[l]σl
αl−1αl and

√
wαl are all bounded by M . A figure of merit which

is commonly used to judge the accuracy of the DMRG method is the so-called
truncated weight

ε =
∑

α>M

wα . (4.18)

In this sense, DMRG gives rise to an optimal approximation to the actual ground
state coefficients for a given bond dimension M .

A complication arises for quantum critical systems, where the entropy of en-
tanglement diverges logarithmically with the size of a block (Eq. 4.1). In the
case of the left block in DMRG, one has a single boundary of the block with the
rest of the chain, which gives rise to the entropy scaling (1� l� N) [71]

E = −
χl∑

αl=1

wαl lnwαl ∼
c

6
ln l . (4.19)

A rough estimate on the scaling of the Schmidt rank can be obtained by assuming
that all Schmidt values are equal (for a given E this would yield a minimal χl).
Hence, one obtains that the actual Schmidt rank diverges at least as a power of
the subsystem size

χl ∼ lc/6 (4.20)

which inhibits the study of arbitrarily large system sizes N with DMRG at crit-
icality.

Let us now turn to the quantification of entanglement between disjoint blocks
of spins. The starting point is the SD of a symmetric bisection of a spin chain
(assuming even N)

[LN/2][RN/2] .
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Once all matrices A[l] are obtained through DMRG, we are in a position to change
to a representation

[LN/2−1] • •[RN/2−1] .

The next step amounts to forming the density operator in this representation
ρ̂ = |ψ〉〈ψ| and trace out those degrees of freedom which are associated to the
separating spins “••”. This leaves us with the reduced density operator ρ̂AB in
the representation

[LN/2−1][RN/2−1]

corresponding to the state of two blocks of spins separated by d = 2 spins. This
procedure is iterated, yielding a set of operators ρ̂AB for increasing separations
d = 2, 4, 6, · · · .1 It follows, that one can perform the otherwise computationally
demanding steps of partial transposition

(
ρ̂AB

)
α,β,γ,δ

=
(
ρ̂TBAB

)
γ,β,α,δ

(4.21)

and subsequent diagonalisation of ρ̂TBAB with comparative ease in the compact
representation of Schmidt bases: By way of the procedure explained above, ρ̂AB
is represented by a matrix with entries

(
ρ̂AB

)
α,β,γ,δ

= 〈wLα(N−d)/2
| ⊗ 〈wRβ(N+d)/2

| ρ̂AB |wLγ(N−d)/2
〉 ⊗ |wRδ(N+d)/2

〉 (4.22)

and with matrix dimensions of at most M2 ×M2. The negativity N is obtained
from the eigenvalues of ρ̂TBAB, and Eq. (1.20). This is the computational step
which, together with the individual amount of available random access memory
(RAM), limits the value of the bond dimension M . With 2 gigabytes of RAM,
we find that M ∼ 60 sets the upper limit.

4.4. Negativity of disjoint blocks of spins

In a first step, we study negativity in the vicinity of the Ising transition at a
critical value hc = 1 of the parameter h of the transverse magnetic field. In Figure
4.2 we show for different system sizes N and a fixed size ratio µ = d/L = 1/3 the
negativity as a function of the deviation h − hc. While the size dependence of
negativity is rather pronounced in the non-critical regime, at exactly h = hc all
curves for different N coincide at a certain value of negativity. This is the main
insight from this first study. Scale invariance is an ubiquitous feature of systems
at criticality [74, 84]. From a broader perspective, scale invariance is a signature
of a more general feature of systems at criticality, namely that of scaling. In its
simplest form, this means that two measurable quantities depend on each other
in a power-law fashion. For instance, a thermodynamic quantity φ(x) which is

1odd values of d could be obtained with only slight modifications, but we restrict ourselves to
symmetric partitions and even values of d in this treatise
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Figure 4.2.: Scale invariance of negativity at the critical point of the transverse Ising model
(γ = 1 in Eq.(3.21)). The curves represent data for different system sizes N = 32 (open circles),
N = 64 (squares), N = 128 (diamonds), and N = 256 (filled circles). The ratio of (block
separation):(block length) is fixed to µ = d/L = 2/3. The quantum phase transition occurs
at h = hc = 1 where all curves coincide beyond N ∼ 256 within the numerically achievable
accuracy. This scale invariant point lies at (h − hc = 0, N = 0.052) for this choice of µ and is
highlighted with the dashed lines. The finite-size shift of the peak value of negativity vanishes
as a power law ∼ N−1, which is often observed for physical quantities near the transition,
heralding the presence of a critical point [84]. However, the height of the peak of negativity
decreases with N , suggesting that there will be no singularity at h = hc = 1 and N → ∞.
Figure reprinted from [73].

supposed to be a function of the spatial coordinate x (for dimensioned quantities)
would usually behave under a scale transformation x→ bx as

φ(bx) ∼ byφφ(x) (4.23)

where yφ is a characteristic exponent and where we omitted constants which
would make the relation dimensionally consistent. Scaling laws like Eq. (4.23)
herald a power-law spatial dependence, and we see that qualitatively the physics
would not depend on the scale one uses to observe it. This could already be the
definition of scale invariance, but a concise definition usually requires the notions
of renormalisation group [84]. We only intend to give a flavour of the canoni-
cal notion of scale invariance here, so as to underline that the variant of scale
invariance exhibited by negativity is indeed different and manifest: Negativity
is invariant with respect to increasing the sizes of the regions and that of the
separation by a common factor (in fact, this is not a scale tranformation in the
aforementioned sense).
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Figure 4.3.: Negativity as a function of the ratio µ = d/L in a semi-logarithmic scale. The data
shown correspond to the two distinct critical regimes which are displayed by the transverse XY
model [see Eq.(3.21)]. The two data sets within the Ising critical regime, i.e. Ising (h = 1, γ = 1)
and XY (h = 1, γ = 1/2) fall onto the same curve, while the data for the XX model at vanishing
field (h = 0, γ = 0) quantitatively differ. This is commensurate with the different universality
classes to which these models belong. The decay of negativity displays a characteristic crossover
between what seems to be a power-law decay for (µ < 1) and an exponential decay for large
separations (µ > 1). We model the data with a functional ansatz of the form N ∼ µβe−αµ,
which yields an accurate fit to our data (dotted lines). Reprinted from [73].

It is questionable that a simple dimensional analysis would lead to the same
conclusion. Since negativity is a measure of correlations it is always dimension-
less. If all dimensions in our study were restored, it would depend on the dimen-
sioned quantities d′ = d a and L′ = La, where a is the unit of the inter-particle
distance. Dimensionally consistent dependencies would therefore be N (d′/L′)
which is scale invariant in the manifest sense or N (d′/a, L′/a) which is not.

A similar set of graphs as in Fig. 4.2 can be plotted for other values of the
anisotropy 0 ≤ γ < 1, and while one obtains qualitatively the same graph with
different magnitudes in the proximity of the transition, exactly at the critical
point negativity turns out to be independent of γ. We discuss this feature more
closely in the second half of this section.

Let us summarise the two important features of negativity that are predicted
by the first part of this numerical study. At the quantum critical point

• negativity of disjoint blocks is manifestly scale invariant and

• independent of the model parameter γ in the universality class of the Ising
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transition.

We will now investigate negativity at the critical points (h = 1, 0 < γ ≤ 1) and
(0 ≤ h < 1, γ = 0) more closely. If upon doubling the system size N at the critical
point we detect no discernible change in the value of N with an accuracy of 3
(5) significant figures in the XX (Ising) critical regime, we will regard negativity
as being converged. In the Ising case, convergence sets in upon doubling the
system size from N ∼ 256 to ∼ 512 in the case of the Ising phase transition. We
also note that the bond dimension M is varied with the system size, so as to fix
the truncated weight ε ∼ 10−10. Simulation of the XX critical phase is harder
regarding the DMRG simulation [here, c = 1 compared to c = 1/2 in the Ising
critical regime which leads to a stronger divergence of the Schmidt rank, see Eq.
(4.20)], but it is seen that convergence sets in earlier. Hence, we will conduct
our numerical study for system sizes of N = 96 and N = 256 for XX and Ising
critical points respectively where the higher numerical accuracy can be achieved
for the latter.

Negativity is then plotted as a function of the ratio µ = d/L, for different
values of the anisotropy γ, see Fig.4.3. As stated above, we find that negativity
is independent of the anisotropy when varying it within the parameter regime
0 ≤ γ < 1, which defines the Ising critical transition line. At the second phase
transition, which occurs at the isotropic XY point γ = 0 and for the magnetic field
varying within 0 ≤ |h| < 1, we see a quantitative difference in N , commensurate
with the different universality class that is associated with this transition.

For both the Ising and the XX transition we observe a common decay be-
haviour. In the semi-logarithmic scale of the graph in Fig.4.3, one recognises a
crossover between what seems like a power-law decay for µ < 1 (corresponding
to small separation and large blocks) and an exponential decay for µ > 1. One
could, on the one hand, attribute this behaviour to the fact that the sizes of
the blocks become comparable to the overall system-size N = 2L + d. On the
other hand, qualitatively similar results have been obtained for the continuum
limit of chains of harmonic oscillators, where the blocks are pieces of an infinitely
extended system[85]. We therefore expect that in spin chains of infinite extent,
one would observe a similar crossover phenomenon for µ ∼ 1.

By making an ansatz

N ∼ µ−β e−αµ (4.24)

for the functional form of negativity, allowing for adjustable parameters α and
β, one can achieve an accurate least-squares fit to the data points of XX and
Ising critical regimes respectively (see Fig.4.3). The precise values of α and β
are slightly sensitive (in the second decimal place) to the chosen fitting interval.
By fixing the latter to 0.1 ≤ µ ≤ 3 we find for the two transitions

Ising : α = 1.68, β = 0.38, (4.25)

XX : α = 0.96, β = 0.47, (4.26)
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which might serve as a hint for future attempts to relate these values to the
decay exponents of correlation functions, for instance. In the case of the XX
model, it is known [86] that the dominant correlation functions asymptotically
decay as 〈σ̂xi σ̂xj 〉 ∼ 〈σ̂

y
i σ̂

y
j 〉 ∼ |i− j|−1/2, while the remaining correlation function

〈σ̂zi σ̂zj 〉 decays far quicker, namely as ∼ |i − j|−2. On these grounds, and by
comparing the fitted value β = 0.47 one might expect that in the case of the XX
critical regime β is linked to the decay exponent 1/2 of the dominant correlation
functions. A cross check of this behaviour in the Ising critical regime, however,
does not support this conjecture. In the subsequent section we study negativity
in the limit of adjacent blocks by analytical means, which verifies the polynomial
divergence as µ→ 0 and suggests that α could instead be related to the central
charge c, albeit no conclusive link has been established, yet.

The emergence of a dimensionless scale, given by the exponent α, is rather sur-
prising in that correlations are usually expected to decay in a power-law fashion
at a quantum critical point [75]. Despite extended efforts, the determined values
of α and β could not be unequivocally related to known characteristic exponents
of the underlying models as yet. Qualitatively, one can attribute this exponential
decay with a property of entanglement called monogamy: Each spin is seen to
have a finite capacity to entangle with other spins. In contrast, the amplitude of
classical correlations is not restricted in a setting with multiple parties and can
be maximal among all of them, in principle. If among nearest neighbours this
capacity of entanglement is almost exhausted (this was evidenced in [16, 17]),
clearly entanglement must become strongly suppressed for large separations.

Finally, from a quantum information perspective, it is an interesting observa-
tion that while pairs of spins are usually unentangled beyond a separation of few
lattice sites, blocks of spins can become entangled across substantial distances, as
long as their respective extent is sufficiently large. This behaviour was therefore
attributed to multipartite entanglement in [1].

4.5. Negativity in the limit of adjacent blocks of spins

The problem of quantifying negativity in the case of adjacent blocks becomes
comparatively simple, and can be studied on the basis of the exact solution of
the transverse XY spin chain. We do so in this section for the case γ = 0 and
h = 0 which corresponds to the XX spin chain (Sec.2.1). The diagonalisation of
this model is presented in Appendix A. Note that the present definition of the
Hamiltonian differs by an overall minus-sign and J = 1 in comparison to the
XX model of chapter 2 and Appendix A which can be absorbed into the single
particle energies

εk = −2 cos

(
πk

N + 1

)
(4.27)

so that the ground state corresponds to an occupation of all fermionic modes
with k ≤ N+1

2 (Fermi sea).
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Since the state of the two blocks is pure, in this case negativity can be obtained
by formula [see Eq.(1.26)]

N =
(

Tr
[√

ρ̂L

])2
− 1

where ρ̂L denotes the reduced density operator of the right or left half of the
chain (these operators are identical for chains of an even number of sites due to
reflection symmetry about the middle of the chain), which are both of length L.
It is shown in Ref. [81] that the reduced density operator assumes the form

ρ̂L = K e−
ˆ̃
H

where K ensures normalisation and where the exponent can be represented by a
free fermion operator

ˆ̃
H =

∑

k

ε̃kf̂
†
k f̂k .

Hence, the matrix representation of the density operator of the block factorises
with respect to the multi-mode Fock basis of the fermion operators f̂k

ρL = K ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρL
with single particle density matrices (unnormalised)

ρk =

(
1 0
0 e−ε̃k

)
.

Using Tr [ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρL] =
∏
k Tr [ρk] gives for the normalisation constant

Tr [ρL] = 1 = K
L∏

k=1

(1 + e−ε̃k) ⇔ K =
L∏

k=1

1

1 + e−ε̃k
. (4.28)

The pseudo-energies ε̃k are related to the eigenvalues ζk of the correlation matrix
Ci,j = 〈ĉ†i ĉj〉, where the ĉi denote the Jordan-Wigner fermion operators (2.19).
One obtains (see Eq. B.21, and [81])

ε̃k = ln
1− ζk
ζk

⇔ K =
L∏

k=1

(1− ζk) (4.29)

For negativity, we find

N =
(

Tr
[√

ρ̂L

])2
− 1 = K

[∏

k=1

(1 + e−ε̃k/2)

]2

− 1 (4.30)

=

[
L∏

k=1

√
(1− ζk)

(
1 +

√
ζk

1− ζk

)]2

− 1 (4.31)

=

[
L∏

k=1

(√
1− ζk +

√
ζk

)]2

− 1 (4.32)
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The correlation matrix is known analytically in terms of the coefficients gk,l
(Eq.2.28)

Ci,j = 〈ĉ†i ĉj〉 =
L∑

m=1

gi,mgm,j .

Here, index m runs over values for which the single particle energies of the system
are negative (this corresponds to the Fermi sea). By numerically diagonalising
C, we obtain the eigenvalues ζk which subsequently allows to compute N .

A prediction from conformal field theory for negativity can be given in this
limit, and for large L, based on the result from [71]

Tr [ρ̂nL] ∼ L−(c/12)(n−1/n) (4.33)

which holds for a finite system of length N with open boundaries, partitioned at
an interior point into left and right halves. From this the scaling of negativity
can be inferred

N ∼
(
L−(c/12)(n−1/n)

)2 ∣∣∣
n→ 1

2

− 1 ∼ Lc/4 (4.34)

implying for the XX model (c = 1) that

N ∼ L1/4 .

This scaling is accurately verified in the XX spin chain up to N = 400 spins
(Fig.4.4).

Crucially, the exponent of the power-law divergence 1/4 does not match the
earlier numerical result for the exponent β = 0.47 of our ansatz Eq.(4.24) in this
model which, one might naively expect, should coincide for small ratios µ.

Firstly, we stress that the study in this section concerns finite-size scaling while
our functional ansatz Eq.(4.24) had in mind the thermodynamic limit. Clearly,
to include finite size effects such as the correct scaling with L at d = 0 one would
have to adjust the ansatz so as to comply with the study herein.

Nonetheless, the results of this section should approximately serve as an upper
bound on the expected divergence for finite but small separations and large but
finite block sizes, i.e. µ� 1, since by tracing away degrees of freedom the amount
of entanglement can not increase. In the case of adjacent blocks no tracing is
involved which leads to this reasoning.

Hence, we conclude that our ansatz of the previous section might be too sim-
plistic in the limit d→ 0 while L is large but finite.

4.6. Related work

In Ref. [85], authors conducted independently a very similar study. These authors
studied the logarithmic negativity of disjoint blocks in the continuum limit of an
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Figure 4.4.: Scaling of negativity of adjacent blocks (symmetrically bisected chain) in the
XX spin chain model (γ = 0, h = 0) as a function of the size of the blocks L = N/2 at the
critical point in a double-logarithmic scale. The divergence of our data (black bullets) accurately
matches with the conformal field theoretic prediction N ∼ Lc/4 (red solid line) for c = 1.

infinitely extended chain of coupled harmonic oscillators. They showed that
logarithmic negativity displays the same qualitative feature as found for spin
chains in this chapter, and that it can be accurately fitted to our ansatz Eq.
(4.24) as well. Due to

L = ln(N + 1) = N − 1

2
N 2 +O(N 3) (N < 1)

negativity and logarithmic negativity are expected to behave similarly in the
relevant value range. Hence, this independent finding strongly substantiates our
own results. In the case of the XX model, we fitted the logarithmic negativity to
our ansatz, and we obtained β ∼ 1/3, a number which has been independently
confirmed by the authors in Ref. [85] .

By means of bosonisation [47] the similarities of the XX spin chain model and
the continuum limit of the harmonic oscillator chain become apparent: Both
models are described by a bosonic field theory, yet it would be wrong to identify
these fields with each other: The bosonisation approach for spins is based on the
fermionisation described in Appendix A, and additionally the Kronig identity
[87]

∞∑

k=1

kb̂†k b̂k =

∞∑

n=1

nf̂ †nf̂n +
1

2

(
N̂2 + N̂

)
,
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where the left hand side is a Hamiltonian of bosonic operators b̂k and the right
hand side is given in terms of fermionic operators f̂n and the fermionic number
operator N̂ ≡

∑
n f̂
†
nf̂n . Close to the Fermi surface qk ∼ π

2 of the XX model
(N →∞), one can linearise the spectrum εk ∼ vF |k| and use the Kronig relation
to bosonise the theory. However, the fermion operators with respect to which the
XX Hamiltonian is diagonal and which would allow the bosonisation are very non-
local operators in terms of the underlying lattice. In other words, by diagonalising
the spin-chain one has changed to a kind of momentum representation. On top
of that, the lattice fermions are already non-local operators of the spin degrees
of freedom (Sec.2.4). Returning to a real-space coordinates within the boson
picture would superficially link the harmonic oscillator chain to the bosonised
spin chain. The relationship between the original spin degrees of freedom and
their bosonised descendants is therefore highly nontrivial [47].

Despite this correspondence a marked difference in the value of the exponent
α ∼ 1 in our study versus α ∼ 2

√
2 in their study suggests that the two models

are not genuinely equivalent. The reasons for the exceptionally good match for
the power-law part of the decay in both models are unknown as yet.
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5. Universality of the negativity in the
Lipkin-Meshkov-Glick model

The numerical study conducted in the previous chapter raises several questions
concerning universal properties of negativity of noncomplementary regions of
spins at a continuous quantum phase transition. Will this critical quantity di-
verge in the thermodynamic limit? Does negativity exhibit universality? If so,
can its scaling features be related to known exponents of the underlying model?

Extrapolation of numerical results towards the thermodynamic may lead to
rather misleading conclusions, and therefore the study of the preceding chapter
can merely be considered as a hint towards universal features and scaling prop-
erties of negativity in the truly macroscopic system. The inherent complexity of
the 1D models studied there has so far prevented a detailed analytical study. We
argued that even if the structure of the ground state wave-function is known, it
is not implied that negativity assumes a closed-form expression and, hence, its
evaluation turns out to be intractable for large systems.

Building on the material of the previous chapter, our principal motivation for
the work presented below is to learn about the universal properties of negativity
and its scaling behaviour at quantum phase transitions in a controlled, that is,
analytical fashion. This knowledge could prove helpful for hypothesising scaling
relations of this quantity in the possibly less contrived critical models in 1D.

To this end, in this chapter we study the so-called Lipkin-Meshkov-Glick
(LMG) model [88, 89, 90] of interacting spin-1/2 particles which becomes partic-
ularly simple in the thermodynamic limit, admitting a closed-form expression of
negativity across the entire phase diagram. The simplicity of this model is bought
at the expense of notions such as length, dimensionality, or region boundaries.
In fact, the LMG model is defined on an infinitely coordinated graph and all
coupling strengths between the constituents (spin-1

2) are of equal strength (Fig.
5.1). In order to study entanglement between noncomplementary parts of this
system, a substitute for what used to be the length of one part will now simply
be the number of spins that are contained within this region. The notion of dis-
tance between the considered parties which played a major role in the previous
sections is obviously lost and will consequently be replaced by the number of
spins belonging to region C (the complementary region of A and B which is not
accessed by either party).

Despite its simplicity the LMG model exhibits two distinct continuous quantum
phase transitions in the thermodynamic limit where the gap which separates
the energy level of the ground state from that of the first excited state vanishes
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Figure 5.1.: Schematic of a spin system on a graph with infinite coordination. A coloured
vertex designates a single spin, and an edge denotes a uniform coupling between vertices which
it connects. The concepts of distance, dimensionality, region boundary lose their meaning in
such a topology. We quantify, in this chapter, the residual entanglement between two groups of
spins, e.g. those labelled 1 and 3 above, after averaging over the degrees of freedom associated
to their complementary group, here 2.

according to some power law upon approaching the transition. Also, a correlation
number Nc can be defined [91] which, reminiscent of the correlation length in 1D
models, exhibits an algebraic singularity at the transition.

Let us give a brief outline of this chapter. After providing the essential com-
putational tools in Sec. (5.1) we will introduce the model under consideration
and discuss its ground state properties in Sec. 5.2. We proceed by bosonising
the model in Sec. (5.3), which will allow us to perform the thermodynamic limit
and subsequently lead the discussion conveniently in terms of Gaussian states
(Sec. (5.4)). In Sec. (5.5) we report our results on logarithmic negativity be-
tween noncomplementary regions of spins in this model and discuss its properties
in the vicinity of the quantum phase transition. Section (5.6) deals with the limit
of complementary regions and subsequently, in Sec. (5.7), a scaling hypothesis
is employed linking the finite-size scaling of logarithmic negativity with that of
entropy of entanglement. Finally, we investigate the isotropic case of the LMG
model in Sec. (5.8).

The work in this chapter has been done in collaboration with Dr. Julien Vidal
(Université Pierre et Marie Curie, Paris, France), and with my supervisor Prof.
Sougato Bose.
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5.1. Mathematical prerequisites

The aim of this section is to provide the reader with an overview of those com-
putational tools and mathematical results of continuous variable (CV) systems
and Gaussian states which are essential for the study presented in the remainder
of this chapter. This section does not pretend to be an exhaustive treatment.
Nowadays, this topic is a rather well established branch of quantum information
and is dealt with at length in several excellent texts, notably [92, 93, 94]. There-
fore, herein we adopt a utilitarian approach to most subjects and will provide
details of the derivations of the relevant statements in the Appendices. We will
refer to specialised literature where appropriate.

First, the notion of phase space as a symplectic vector space will be introduced.
Second, the Wigner representation of the quantum state of CV systems will be
recalled. Thereafter, the so-called Gaussian states will be defined in this frame-
work and, finally, we will cover the issue of quantifying bipartite entanglement
in these states in terms of (logarithmic) negativity. To that end, the essential
link between partial transposition in Hilbert space and partial time-reversal[95]
in phase space will be established.

5.1.1. Phase space and symplectic transformations

Let ρ̂ be a density operator on a Hilbert space H spanned by the direct product
of Fock bases of N bosonic modes [8]

H = span(|n1〉 ⊗ |n2〉 · · · ⊗ |nN 〉)|ni=0,1,..., (5.1)

that is ρ̂ describes the state of 2N canonical degrees of freedom. We introduce
the 2N vector r̂ of canonical operators

r̂ =

(
x̂
p̂

)
= [x̂1, x̂2, · · · , x̂N , p̂1, p̂2, · · · , p̂N ]T (5.2)

which is obtained from the bosonic annihilation and creation operators through
(

â
â†

)
=

1√
2

(
1N i1N
1N −i1N

)(
x̂
p̂

)
(5.3)

in an obvious matrix notation where 1N denotes the N × N unit matrix. The
canonical commutation relations (CCR) among these operators can be formu-
lated in terms of the symplectic matrix Ω

Ωk,l = i[r̂k, r̂l], Ω =

(
ON −1N
1N ON

)
(5.4)

with ON denoting the N ×N zero matrix. A homogeneous linear transformation
S which satisfies

SΩST = Ω (5.5)
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will be called a symplectic transformation. It leads to a new set of canonical
operators through r̂ = Sr̂′ and therefore preserves the CCR. Such transformations
constitute the symplectic group [96]

Definition 5.1.1. (Symplectic group) The real symplectic group in 2N di-
mensions will be denoted by

Sp(2N,R) = {S ∈ R2N×2N | SΩST = Ω} . (5.6)

Finally, we introduce a useful theorem [97]

Theorem 5.1.2. (Williamson) Let M be a 2N × 2N real symmetric and posi-
tive definite matrix, then there exists a symplectic transformation S ∈ Sp(2N,R)
such that

SMST = Λ⊕ Λ (5.7)

with a diagonal N×N positive definite diagonal matrix Λ = diag(λ1, λ2, · · · , λN ).
The symplectic eigenvalues λn are given by the positive square roots of the eigen-
values of (iΩM)2.

A simple proof, as found in Ref. [98], will be laid out in Appendix E.

5.1.2. Wigner representation and Gaussian states

The Wigner representation [19] of quantum state ρ̂ can be defined as

W(x,p) =
1

(2π)N

∫
d2Nξ χ(−ξ)eiξTΩr, ξ =

(
ξx
ξp

)
∈ R2N (5.8)

where r = (x,p)T ∈ R2N and χ(ξ) is the characteristic function

χ(ξ) = Tr
[
eiξTΩr̂ρ̂

]
= Tr

[
ei(ξTp x̂−ξTx p̂)ρ̂

]
. (5.9)

Within this framework, we introduce an important class of many-body states.

Definition 5.1.3. (Gaussian N-mode state) A quantum state ρ̂ with char-
acteristic function

χ(ξ) = exp

(
−1

4
(Ωξ)T Γ Ωξ − idTΩξ

)
(5.10)

is called a Gaussian N-mode state. Here, d and Γ are displacement vector and
covariance matrix collecting first and second moments respectively

d ∈ R2N di = 〈r̂i〉 (5.11)

Γ ∈ R2N×2N Γi,j = 〈r̂ir̂j + r̂j r̂i〉 − 2didj (5.12)

where 〈· · · 〉 = Tr (ρ̂ · · · )
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We will make use of the fact that the Gaussian character of ρ̂ is preserved
under the symplectic transformation r̂ = Sr̂′

χ(ξ) = Tr
[
ρ̂eiξTΩr̂

]
= Tr

[
ρ̂eiξTΩSr̂′

]
= Tr

[
ρ̂ei(ΩSTΩT ξ)TΩr̂′)

]
(5.13)

and with S−1 = ΩSTΩT it follows that

χ(ξ) = χ′(S−1ξ) . (5.14)

It can be straight-forwardly shown that the covariance matrices in both repre-
sentations are related through

Γ = SΓ′ ST (5.15)

Finally, it is easy to see that the reduced density matrices, ρ̂S = TrE ρ̂, which
arise from ρ̂ through partial trace TrE over environmental degrees of freedom
are Gaussian states if ρ̂ is a Gaussian state. The covariance matrix ΓS of the
reduced state ρ̂S is obtained by erasing those rows and columns of Γ associated
to the environment.

5.1.3. Partial transposition and bipartite entanglement of Gaussian
states

The set of all canonical degrees of freedom {x̂i, p̂i}, i = 1 · · ·N may be divided
into a subset {x̂i, p̂i} i = 1 · · ·NA associated to Alice (A) and its complement
which we assume is belonging to Bob (B). The entanglement that is shared
between A and B, assuming their global state ρ̂AB is a Gaussian state which need
not be pure, will be quantified in terms of logarithmic negativity L = ln ‖ρ̂TAAB‖.
The following alternative definition of the Wigner function (see Appendix F for
the connection to definition Eq. (5.8) and further details)

W(x,p) =
1

(2π)N

∫
dNξx 〈x− ξx/2|ρ̂AB|x + ξx/2〉e−iξTx p, ξx ∈ RN

elucidates, by inspection, that under partial transposition TA the Wigner func-
tion is subjected to a reversal of the momenta belonging to Alice pA → −pA
(a.k.a. partial time-reversal) [95]. Now, let Γ be the covariance matrix of the
Gaussian state ρ̂AB. The correspondence that was set forth above implies that
ρ̂TAAB has, again, a Gaussian characteristic function with covariance matrix ΓTA

arising from Γ by changing the sign in those elements Γi,j which involve an un-
paired momentum variable of Alice’s (caution: no actual transposition is involved
on the level of covariance matrices despite the notation ΓTA). Logarithmic neg-
ativity assumes (Appendix I)

L = ln ‖ρ̂TAAB‖ = −
∑

λm<1

lnλm. (5.16)

in terms of the symplectic eigenvalues λm of ΓTA (see Appendix I for a derivation).
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5.2. The model and the Hamiltonian

The Lipkin-Meshkov-Glick model describes a collection of mutually interacting
spin-1

2 and is well-established in the study of magnetic phase transitions in nuclei
[88, 89, 90]. In terms of spin-1

2 operators its Hamiltonian reads as

Ĥ = − 1

2N

∑

i<j

(
σ̂xi σ̂

x
j + γσ̂yi σ̂

y
j

)
− h

2

∑

i

σ̂zi −
1

4
(1 + γ) (5.17)

highlighting the similarities to the one-dimensional XY model from the previous
sections, except for the infinite coordination (all spins are coupled mutually, see
Fig.5.1 for an illustration) and a factor 1/N which ensures that the ground state
energy per spin remains finite in the thermodynamic limit [99].

In the bosonisation approach to be laid out below, and in the thermodynamic
limit, one can distinguish two distinct magnetic phases. For h > 1 (symmetric
phase) the ground state is unique and a gap ∆ =

√
(h− 1)(h− γ) separates its

energy from that of the first excited state. Furthermore the magnetisation is
aligned with the external magnetic field. In the so called broken phase h < 1
a two-fold degeneracy is predicted to develop as ∼ e−N [91], and is therefore
manifest in the thermodynamic limit. The two degenerate ground states are
eigenstates of the parity (or spin-flip) operator Ẑ =

∏N
k=1 σ̂

z
k, so for finite N

this spin-flip symmetry is broken, and the ground state has a definite parity ±1.
In the present study, which mainly concerns the thermodynamic limit, we will
focus on one of these degenerate ground states which – by virtue of continuity –
originates from its unique, finite N analogue [99].

Importantly, continuous phase transitions occur at h = hc = 1 and also in
the isotropic limit γ = 1 where in both cases the gap closes according to a
power law in N [99] . Distinct sets of critical exponents which are associated
to these transitions allow a comparative study of universal behaviour of physical
quantities. The present study exploits this property and aims at the investigation
of universality of logarithmic negativity.

A more convenient form of Eq. (5.17) for the subsequent discussion is achieved
in terms of collective spin operators

Ĥ = − 1

4N

∑

ij

(
σ̂xi σ̂

x
j + γσ̂yi σ̂

y
j

)
− h Ŝz (5.18)

= − 1

N

(
Ŝ2
x + γŜ2

y

)
− h Ŝz (5.19)

= − 1

2N
(1 + γ)

(
Ŝ2 − Ŝ2

z

)
− 1

4N
(1− γ)

(
Ŝ2

+ + Ŝ2
−
)
− h Ŝz . (5.20)
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Collective spin operators are defined in the usual way

Ŝα ≡
1

2

∑

i

σ̂αi (α = x, y, z) (5.21)

Ŝ2 ≡ Ŝ2
x + Ŝ2

y + Ŝ2
z (5.22)

Ŝ± ≡ Ŝx ± iŜy. (5.23)

From Eq. (5.20) one recognises that for every value of γ

[Ŝ2, Ĥ] = [Ŝ2, Ŝz] = [Ŝ2, Ŝ±] = 0 .

Therefore, the ground state is a superposition of the permutation symmetric
Dicke states which are defined as (assume N is even for simplicity)

Ŝ2 |S,M〉 = S(S + 1) |S,M〉 S = 0, 1, · · · , N/2 (5.24)

Ŝz |S,M〉 = M |S,M〉 M = −S,−S + 1, · · · , S (5.25)

and consequently the ground state belongs to the maximum spin sector S = N/2
which minimises the energy. This also renders numerical studies in this model
very convenient, since the representation of Hamiltonian (5.20) can be restricted
to this relevant N + 1 dimensional spin sector.

5.3. Mapping to a three mode boson problem

The collection of spins can be partitioned arbitrarily into groups of N1, N2 and
N3 spins respectively, so that N1 + N2 + N3 = N . This will allow us to study
entanglement between two of the parties while the degrees of freedom belonging
to the third party will be traced over. One decomposes collective spin operators

accordingly into Sα = S
(1)
α +S

(2)
α +S

(3)
α and proceeds by casting the Hamiltonian

Eq. (5.20) into this partitioned representation. Concurrently, we bosonise the
expressions making use of

Ŝ(k)
z = S(k) − â†kâk (5.26)

Ŝ
(k)
− = (Ŝ

(k)
+ )† = â†k (2S(k) − â†kâk)

1/2, k = 1, 2, 3 (5.27)

where operators âk obey the bosonic commutation relations

[â†k, âl] = δkl, [â†k, â
†
l ] = [âk, âl] = 0 .

The mapping in equations (5.26-5.27) is known as the Holstein-Primakoff repre-
sentation [100]. This procedure casts the spin problem into the more convenient
language of three bosonic modes, each of which represents a group of spins. Since
in the ground state one has S(k) = Nk/2, we neglect terms of order higher than
O(1/N)0 which is justified for N → ∞. In taking this limit, we assume that
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the ratios τk = Nk/N, k = 1, 2, 3 are fixed. Additionally, in the broken phase
h < 1 it is necessary to rotate the spin representation such that the z component
coincides with the magnetisation axis [99]. The detailed calculation is carried
out in Appendix K. Omitting scalar valued terms, which will be irrelevant in the
following, the Hamiltonian assumes

Ĥ ∼
3∑

k,l=1

â†k Ak,l âl +
1

2
(â†k Bk,l â

†
l + H.c.) +O(N−1) . (5.28)

Recall that the bosonic operators â†k and âk are labelled according to the group
of spins from which they originate. We have introduced the adjacency matrices

A = r




1 0 0
0 1 0
0 0 1


 , r =

{
2h−γ−1

2 h > 1 ,
2−γ−h2

2 0 6 h < 1 ,
(5.29)

B = s




τ1
√
τ1τ2

√
τ1τ3√

τ1τ2 τ2
√
τ2τ3√

τ1τ3
√
τ2τ3 τ3


 , s =

{
γ−1

2 h > 1 ,
γ−h2

2 0 6 h < 1 .
(5.30)

Let us finally note that r > 0 and r > s in both broken and symmetric phase.
Eq. (5.28) is a quadratic form, that can be diagonalised by a canonical transfor-
mation to new bosonic operators η̂m such that

H ∼
∑

m

εm

(
η̂†mη̂m +

1

2

)
(5.31)

where εm denote the single particle energies. Hence, if all εm > 0, the ground
state is non-degenerate and coincides with the bosonic vacuum ηm|0〉 = 0∀m.

5.4. Derivation of the covariance matrix

As shown in Appendix G, the bosonic vacuum |0〉 is a Gaussian state with co-
variance matrix Γ′ = 1 and vanishing first moments. In order to obtain the
covariance matrix Γ of the ground state of Eq. (5.28) in the original coordinates,
one invokes formula (5.15) where S takes the role of the symplectic transforma-
tion which gives rise to the diagonal form of Eq. (5.28). This rather technical
step will be revised in Appendix H. One finds [101, 102]

Γ = Γx ⊕ Γp (5.32)

Γx = Γ−1
p = V −1/2

x (V 1/2
x VpV

1/2
x )1/2V −1/2

x (5.33)

Vx = A + B ≥ 0 (5.34)

Vp = A− B ≥ 0. (5.35)
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The direct sum in Eq. (5.32) leads to a block-diagonal covariance matrix, there-
fore second moments of the form 〈xipj〉 + 〈pjxi〉 which mix coordinates and
momenta vanish identically. Since in our special case one has that, trivially,
[A,B] = 0 it follows that [Vx, Vp] = 0 and consequently the covariance matrix can
be further simplified, yielding

Γx = Γ−1
p = V 1/2

p V −1/2
x . (5.36)

Combining equations (5.29) and (5.30) with equation (5.36) and noting that
Bn = sn−1B we find

Γx =

[
1− B

r

]1/2 [
1+

B
r

]−1/2

=

[ ∞∑

k=0

(
1/2

k

)(
−B
r

)k][ ∞∑

l=0

(
−1/2

l

)(
B
r

)l]

=

[
1+

B
s

∞∑

k=1

(
1/2

k

)(
−s
r

)k
][
1+

B
s

∞∑

l=1

(
−1/2

l

)(s
r

)l
]

=

[
1+

B
s

((
1− s

r

)1/2
− 1

)][
1+

B
s

((
1 +

s

r

)−1/2
− 1

)]

= 1+

(√
r − s
r + s

− 1

)
B
s

= 1+
(
α−1 − 1

) B
s

(5.37)

where in the second line we invoked the binomial theorem and we introduced the
short α =

√
(r + s)/(r − s). An analogous computation leads to

Γp = 1+ (α− 1)
B
s
. (5.38)

which concludes the derivation of the covariance matrix.

5.5. Logarithmic negativity in a tripartition

Let us return to our objective of computing entanglement of noncomplementary
groups of spins in this model. As we saw in Sec. (5.1) the logarithmic negativity
between two groups, 1 and 3, say, of spins which persists after averaging over the
degrees of freedom of the remainder, here 2, can now be computed from the 4×4
submatrix Γ̃ of Γ which is obtained by keeping only rows and columns of Γ that
are belonging to the considered modes (1 and 3). In the present representation
the submatrix assumes Γ̃ = Γ̃x ⊕ Γ̃p where

Γ̃x = 1+ (α−1 − 1)

(
τ1

√
τ1τ3√

τ1τ3 τ3

)
(5.39)

Γ̃p = 1+ (α− 1)

(
τ1

√
τ1τ3√

τ1τ3 τ3

)
(5.40)
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We proceed with determining the Simon invariants (see Sec. 5.1) of Γ̃ in terms
of which the symplectic spectra of Γ̃ and Γ̃T1 can be computed conveniently. To
this end, we reshuffle the canonical variables so as to group degrees of freedom
belonging to the individual parties r = (x1, x3, p1, p3)T → r′ = (x1, p1, x3, p3)T

leading to

Γ̃ =

(
P R
R Q

)

P = 1+ τ1

(
α−1 − 1 0

0 α− 1

)
, detP = 1 + τ1(1− τ1) (α+ α−1 − 2)

Q = 1+ τ3

(
α−1 − 1 0

0 α− 1

)
, detQ = 1 + τ3(1− τ3) (α+ α−1 − 2)

R =
√
τ1τ3

(
α−1 − 1 0

0 α− 1

)
, detR = −τ1τ3 (α+ α−1 − 2).

Partial time-reversal (Appendix F) amounts to detR → detR′ = −detR, and
the characteristic polynomial for the matrix1 (iΩΓ̃T1)2 can now be written in
terms of detP, detQ, detR, and det Γ̃ [95, 29, 103]

λ4 + (detP + detQ− 2 detR)λ2 + det Γ̃ = (5.41)

λ4 + 2(1 + g)λ2 + (1 + 2g′) = 0 (5.42)

where

g =
1

2

(
τ1 + τ3 − (τ1 − τ3)2

)
(α+ α−1 − 2) (5.43)

g′ =
1

2

(
τ1 + τ3 − (τ1 + τ3)2

)
(α+ α−1 − 2) (5.44)

leading to the symplectic eigenvalues λ+ and λ−

λ± =

√
1 + g ±

√
(1 + g)2 − (1 + 2g′) (5.45)

=

√
1 + g ±

√
g2 + 4τ1τ3(α+ α−1 − 2). (5.46)

Clearly, we have that λ+ ≥ 1 and λ− ≤ 1 so that by virtue of Eq. (5.16) loga-
rithmic negativity is simply given by

L(τ1, τ3, γ, h) = − ln λ− (5.47)

which is the main result of this chapter. Let us finally discuss the limiting value
of L when h → 1, that is the system is at criticality. Equivalently we may
study α → 0, thereby saving ourselves studying the limits h → 1+ and h → 1−

1recall that the eigenspectrum of this matrix leads to the symplectic spectrum of ΓT1 by virtue
of Theorem 5.1.2
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Figure 5.2.: Logarithmic negativity L for an equal tripartition τ1 = τ2 = τ3 = 1/3 as a
function of the magnetic field h and for two different values of the anisotropy parameter γ. In
the thermodynamic limit, corresponding to the red lines, at the critical point, L is universal
(independent of γ). Black lines correspond to numerical data for N = 90, 150, 210, which match
the analytical prediction N =∞ increasingly well. Note also that L vanishes for h =

√
γ where

the ground state is separable [99]. Figure reprinted from [104].
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separately. Departing from Eq. (5.46) and introducing the shorthand notations
x = (α+ α−1 − 2) and y = (τ1 + τ3 − (τ1 − τ3)2)/2 we find

lim
α→0

λ− = lim
x→∞

√
1 + xy −

√
x2y2 + 4τ1τ3x (5.48)

= lim
x→∞

√
1 + xy

(
1−

√
1 +

4τ1τ3

xy2

)
(5.49)

= lim
x→∞

√
1 + xy

(
1− 1− 2τ1τ3

xy2

)
(5.50)

=

√
τ1 + τ3 − (τ1 + τ3)2

τ1 + τ3 − (τ1 − τ3)2
(5.51)

and therefore Eq. (5.47) assumes2

L(τ1, τ3, γ, h = 1) = −1

2
ln

(
τ1 + τ3 − (τ1 + τ3)2

τ1 + τ3 − (τ1 − τ3)2

)
. (5.52)

We see that L assumes a finite value in the thermodynamic limit and for any
tripartition 0 < τ1, τ2, τ3 < 1 such that τ1 + τ2 + τ3 = 1, including the critical
point h = 1 where it is manifestly independent of the anisotropy γ.

5.6. Logarithmic negativity in a bipartition

The limit of τ2 → 0 corresponds to the bipartite case, a situation where negativity
between parties 1 and 3 is singular at h = 1, 0 ≤ γ < 1. In order to study this
divergence, one should impose a bipartition from the start since we required all
ratios τk, k = 1, 2, 3 to be fixed and nonzero when taking the thermodynamic
limit. Then, studying L in the vicinity of τ2 ∼ 0 is certainly not allowed and may
lead to wrong implications (recall that we expanded H to zeroth order of 1/N2).
However, nothing prevents us from studying the negativity between party 1 and
2∪ 3 which is what we do now. So the common state of the considered parties is
no longer mixed but pure, leading to a drastic simplification. In fact, as shown
in Sec. 1.1 (compare Eq. (1.28)), the logarithmic negativity can be obtained, in
this particular case, in terms of the eigenvalues wn, n = 0, 1, 2 · · · of the reduced
density matrix ρ̂1 of subsystem 1 (obtained from tracing away 2 and 3)

L = 2 ln
∑

n

√
wn (5.53)

The covariance matrix of ρ̂1 becomes

Γ̃ =

(
1 + (α−1 − 1) τ1 0

0 1 + (α− 1) τ1

)
. (5.54)

2we stress that there is a typo in Eq.(12) of [104] and should read as Eq.(5.52) of this treatise.
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Figure 5.3.: Logarithmic negativity L as a function of the magnetic field h for a bipartition
τ1 = 1/3, τ3 = 2/3, and γ = 1/2, shown as red line. In the broken phase h < 1 numerical
data display an artificial shift of ln 2 in L which is a signature of the parity-broken ground
state[105]. We account for this shift by plotting L + ln 2 in this regime (at h =

√
γ the

ground state is separable [106, 105]). Black lines corresponds to exact diagonalisation data
for N = 180, 270, 360. Inset: Scaling of L with system size N = 120, 150, ..., 1080 from exact
diagonalisation (black circles) approaching a linear dependence on lnN with slope 1/6 (dashed
line) for large N. Figure reprinted from [104].
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Even though Γ̃ is diagonal, the diagonal entries are not the symplectic eigenvalues.
Williams theorem implies that we have only one symplectic eigenvalue which is
obtained from the spectrum of (iΩΓ̃)2 and reads as

λ =
√

(1 + (α−1 − 1)τ1) (1 + (α− 1) τ1) . (5.55)

The eigenvalues of ρ̂1 are related to λ as (compare Eq. J.12 of Appendix J)

wn =
2

λ+ 1

(
λ− 1

λ+ 1

)n
, n = 0, 1, 2 · · · . (5.56)

Logarithmic negativity becomes, using Eq. (5.53)

L(τ1, 1− τ1, γ, h) = 2 ln

√
2

λ+ 1

∑

n

(√
λ− 1

λ+ 1

)n
(5.57)

= ln
2

(√
λ+ 1−

√
λ− 1

)2 . (5.58)

For fixed values of τ1 = 1/3, γ = 1/2 we plot L as a function of h in Figure 5.3
and our result will be studied near criticality in the following chapter.

5.7. Finite-size scaling

In principle, phase transitions occur only in the thermodynamic limit N → ∞.
Phenomenological finite-size scaling (FSS) [Fisher] is based upon the insight that
while certain physical quantities φ diverge according to some power law in the
thermodynamic limit and upon approaching the transition h→ hc

φ ∼ |h− hc|ξφ (N =∞). (5.59)

Here, h denotes a parameter that drives the transition such that the system is
critical for h = hc and N =∞. In finite systems no such thermodynamic singu-
larity can occur and the quantities φ are well-behaved and finite: The limiting
critical behaviour is inhibited. Principal objects of FSS are either, given the
properties in the thermodynamic limit, to find the dependence of φ on N at the
point h = hc or, conversely, given the scaling with N (e.g., from numerics) in
the vicinity of an anticipated h = hc, to infer about model properties at N =∞
which would otherwise be inaccessible. To this end, and in order to comply
with the insight stated above one hypothesises the existence of a regular function
Gφ called scaling function such that in the vicinity of the transition φ obeys a
so-called scaling form

φ ∼ |h− hc|ξφ Gφ(N |h− hc|ν
∗
). (5.60)

Here, the exponents ξφ and nφ are specific to the quantity φ under consideration
while ν∗ is model specific [91]. The properties of the scaling function are assumed
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to be such that Gφ(x)→ const for x→∞ granting that the divergent behaviour
Eq. (5.59) is recovered when N → ∞. When x → 0, corresponding to finite N
and |h − hc| → 0, one supposes that Gφ(x) ∼ x−ξφ/ν

∗
. In this way, Gφ leads to

an identical cancellation of the divergent term and φ remains finite, implying a
non-trivial scaling of φ with N as

φ ∼ |h− hc|ξφ(N |h− hc|ν
∗
)−ξφ/ν

∗
= N−ξφ/ν

∗
(h = hc). (5.61)

In order to apply these ideas to logarithmic negativity of a fixed bipartition of
the LMG model, at first we note that one identifies φ = eL as a quantity which
diverges as a power law at the transition. Further, the scaling form Eq. (5.60)
with ν∗ = 3/2 was verified with high accuracy through explicit expansion in 1/N
of many different quantities in this model. We proceed by expanding3 eL from
Eq. (5.57) around h = 1+ revealing that at the leading order

eL ∼ 2 (1− γ)1/4(τ1(1− τ1))1/2

|h− 1|1/4
+O(|h− 1|1/4)

and hence ξφ = −1/4. Therefore, we conclude that φ ∼ N1/6 or

L(τ1, 1− τ1, γ, h = 1) ∼ 1

6
lnN (5.62)

which is the result of this section. The same scaling behaviour was found for
other measures in this model, including entropy of entanglement E , geometric
entanglement G, and single-copy entanglement S which leads us to conjecture
that a similar equivalence holds in other models, including one-dimensional spin
chains for which the equivalence among E ,G, and S has already been established
[107].

It would be desirable to test the scaling hypothesis, for example, by computing
the leading terms of an 1/N expansion of φ, similar to what was done by Barthel
et. al. in [106]. In this way one could verify the particular form of the scaling
variable that was hypothesised above. Given the considerable complication that a
1/N expansion would entail (keeping higher order terms of the Holstein Primakoff
boson mapping in Sec. 5.3), we choose to verify the predicted size scaling of L
numerically, instead. This is done by way of exact diagonalisation in systems of
up to N ∼ 1000 spins (see Fig. 5.3).

As a final remark let us note that the origin of the logarithmic divergence
above is most probably different from the ubiquitous ln l scaling of E [2] in one-
dimensional models at criticality (where l is the length of the subsystem). In the
present study, the fact that one will observe at most logarithmic divergence with
the subsystem size can be traced back to the symmetry properties of the ground

3the leading term of this expansion is found with the aid of computer algebra software Math-
ematica
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state of the LMG model. As argued in Sec. 5.2 the ground state of the LMG
model is a superposition of Dicke states

|φ0〉 =

N/2∑

M=−N/2

pM |N/2,M〉 (N even).

The Schmidt decomposition of Dicke states, that will be introduced in the fol-
lowing section (Eq. (5.70)), implies that the Schmidt rank χ of |φ0〉 for an equal
bipartition is at most N/2 + 1. This leads to an upper bound on L (which is
achieved when all Schmidt numbers

√
wn are equal and the Schmidt rank assumes

its maximum value)

L = 2 ln

(
χ∑

n=1

√
wn

)
(5.63)

≤ 2 ln



N/2+1∑

k=1

1√
N/2 + 1


 (5.64)

= ln (N/2 + 1) ∼ lnN (N →∞) (5.65)

One has additionally the lower bound E ≤ L for pure states (Eq. 1.29). In the
LMG model it was found that E ∼ 1/6 lnN [106] and consequently

1/6 lnN ≤ L ≤ lnN .

5.8. The isotropic case

The final step in giving a rather complete picture of negativity in the LMG model
will be to look at the isotropic case γ = 1, which has been disregarded so far.
The model is again critical on the entire line γ = 1, 0 ≤ h ≤ 1 but belongs to
a different universality class compared to the transition studied in the foregoing
sections. For γ = 1 the Hamiltonian Eq. (5.20) commutes with S2 as well as
Ŝz which implies that the ground states are the Dicke states |S,M〉 which were
defined in Equations (5.24) and (5.25). The quantum number M changes as
a function of h, and in the limit h = 1− the ground state is |N/2, N/2 − 1〉,
that is, a permutation symmetric superposition of a single spin deviation in an
otherwise fully polarised background of spins. So we can visualise the presence or
absence of that single spin with |↑〉, |↓〉 This state reads in an equal tripartition
τ1 = τ2 = τ3 = 1/3

|N/2, N/2− 1〉 =
1√
3

(|↑〉|↓〉|↓〉+ |↓〉|↑〉|↓〉+ |↓〉|↓〉|↑〉) (5.66)
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for which the negativity may be worked out straight forwardly. The reduced
density operator of two of the groups, and its partial transpose, assume

ρ̂red =
1√
3




1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0


 (5.67)

ρ̂T2
red =

1√
3




1 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0


 (5.68)

The negative eigenvalue of ρ̂red reads λ− = 1
2
√

3
(1−
√

5) and therefore logarithmic

negativity in this setting is

L = ln

(
1√
3

(
√

5− 1) + 1

)
(5.69)

Let us now look at a general tripartition of the state |N/2, N/2− 1〉. The Dicke
state |N/2,M〉 ofN spin-1

2 particles can be written in a bipartite fashion (dividing
the system into N1 and N2 spins with N1 + N2 = N assuming N1 and N2 are
even integers)

∣∣∣N
2
,M
〉

=
∣∣∣N

2
,
N

2
− n

〉
=
∑

k

√√√√
(
N1

k

)(
N2

n−k
)

(
N
n

)
∣∣∣N1

2
,
N

2
− k
〉 ∣∣∣N2

2
,
N

2
− n+ k

〉

(5.70)

where the sum runs over allowed values of k commensurate with the relation-
ship between quantum numbers S and M appearing on the right hand side
(M ∈ {−S,−S + 1, · · · , S}). This is the Schmidt decomposition of this particu-
lar Dicke state which can be found in, e.g. [108]. Performing this decomposition
twice, the ground state can be written in tripartite fashion as

∣∣∣N
2
,
N

2
− 1
〉

=

1∑

k=0

1−k∑

l=0

√√√√
(
τ1N
k

)(
τ2N
l

)(
τ3N

1−k−l
)

(
N
1

) ×

∣∣∣τ1N

2
,
N

2
− k
〉 ∣∣∣τ2N

2
,
N

2
− l
〉 ∣∣∣τ3N

2
,
N

2
− 1 + l + k

〉
(5.71)

=
√
τ1 |↑〉|↓〉|↓〉+

√
τ2 |↓〉|↑〉|↓〉+

√
τ3 |↓〉|↓〉|↑〉 (5.72)
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The reduced density operator of partitions 1 and 3 (after tracing away 2) reads

ρ̂red =
1√
3




0 0 0 0
0 τ1

√
τ1τ3 0

0
√
τ1τ3 τ3 0

0 0 0 τ2


 (5.73)

ρ̂T2
red =

1√
3




0 0 0
√
τ1τ3

0 τ1 0 0
0 0 τ3 0√
τ1τ3 0 0 τ2


 . (5.74)

The relevant negative eigenvalue reads λ− = 1
2

(
τ2 −

√
τ2

2 + 4τ1τ3

)
and the loga-

rithmic negativity becomes

L = ln

(
1− τ2 +

√
τ2

2 + 4τ1τ3

)
(5.75)

which matches the earlier result for the equal tripartition in the limit τk = 1/3 .
This result underlines that negativity exhibits universality in this model, in that
Eq. (5.75) differs markedly from Eq. (5.52) commensurate with the fact that we
are dealing with a different universality class in this section.
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6. Conclusions and Outlook

In this treatise, we have shed some light on the subject of entanglement between
noncomplementary regions of many-body system.

We have seen in chapter 2 that the coherent dynamics after a quantum quench
can give rise to a substantial amount of entanglement between a designated pair
of spins in a spin chain. It seems feasible that this form of entanglement could
be evidenced in an actual experiment. Future work could focus on more realistic
quench scenarios, respecting the experimentally achievable limits within which
parameters can be adjusted, as well as the finite temporal rate at which such a
quench could be performed (our study assumed instantaneous quenches, so far).

The work of chapter 3 focused on the question of whether a measurement
on disjoint regions of many-body system can give rise to a pure and entangled
state of these regions. We have seen by studying ground states of quantum
spin chains that particular measurements, namely those where a measurement
outcome is compatible with more than one quantum state of the regions, can
accomplish this. The probabilistic aspects of measurement clearly imply that
such a pure entangled state could not be achieved at will, but one would have to
assume that the experimenter would be granted sufficient time to learn about the
measurement outcome and that the state would not change the mean time. Yet,
the concept of localisable entanglement [14, 15] rely on similar such assumptions.

In the context of ground states, and particularly at quantum phase transitions,
entanglement between noncomplementary regions of particles is still far from
being fully understood. From a theoretical perspective, it would be interesting to
find an explanation for the emergence of an exponential decay of entanglement
that was evidenced in chapter 4, and which seems surprising in view of the
ubiquitous power-law decays in critical systems. A future direction could be
to study this subject from the perspective of conformal field theory [65], where
entanglement of disjoint regions (that with the remainder of the system but not
between the regions) has recently attracted much interest [79, 109]. However, it
is still unclear how one would quantify entanglement between the regions in this
framework.

Finally, in chapter 5 entanglement of noncomplementary parts of interacting
spins on an infinitely connected graph, described by the Lipkin-Meshkov-Glick
model, has been investigated. This simple model allowed a rather complete ana-
lytical treatment of negativity in the thermodynamic limit. Recently, the quan-
tum phase transition of the Dicke model [110] has been observed experimentally
in an atomic cloud which interacts with a optical cavity mode[111]. Due to its
similarities to the Lipkin-Meshkov-Glick model, it will be interesting to extend
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our study of chapter 5 to the Dicke model and assess the possibility of evidencing
the entanglement in an experimental setup.
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A. Diagonalisation of the XX model

The Hamiltonian of the XX spin chain reads as

Ĥ =
N−1∑

l=1

J

2

(
σ̂xl σ̂

x
l+1 + σ̂yl σ̂

y
l+1

)
, (A.1)

or, in terms of spin raising and lowering operators, σ± = 1
2(σ̂x ± iσ̂y)

Ĥ =

N−1∑

l=1

J
(
σ̂+
l σ̂
−
l+1 + σ̂−l σ̂

+
l+1

)
(A.2)

and assumes a quadratic form

Ĥ(∆ = 0) = J

N−1∑

l=1

ĉ†l ĉl+1 + ĉ†l+1ĉl . (A.3)

in Jordan Wigner fermions (Eq. (2.19)). This form can be diagonalised [46] by
introducing new fermionic operators

η̂†k =
∑

l

gk,lĉ
†
l (A.4)

with real coefficients gk,l which must satisfy the condition

∑

l

gk,lgl,m = δk,m (A.5)

so that the ηk be fermion operators and satisfy the CAR. The ansatz

Ĥ =
∑

k

εkη̂
†
kη̂k + const. (A.6)

⇔ [η̂k, Ĥ]− εkη̂k = 0 (A.7)

leads, when (A.7) is combined with Equations (A.3) and (A.4), to the following
set of linear equations for gk,l

J gk,l−1 + J gk,l+1 − εk gk,l = 0 (A.8)
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which subject to the boundary condition gk,l = 0 for k, l ∈ {0, N + 1} and the
constraint Eq. (A.5) is solved by

gk,l =

√
2

N + 1
sin(qkl) (A.9)

εk = 2J cos(qk) (A.10)

qk =
π k

N + 1
(A.11)

whereby the ansatz Eq. (A.6) is verified.
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B. Factorisation of fermionic correlation
functions

We will show here, that fourth order correlation functions of fermion operators
ck factorise according to

〈ĉ†nĉ†mĉk ĉl〉 = 〈ĉ†nĉl〉〈ĉ†mĉk〉 − 〈ĉ†nĉk〉〈ĉ†mĉl〉 (B.1)

if the expectation value is taken with respect to a density operator

ρ̂ = Ke−
ˆ̃
H , (B.2)

where K ensures normalisation and

ˆ̃
H =

∑

i,j

ĉ†iAi,j ĉj , A ∈ R4×4 (B.3)

ˆ̃
H
†

=
ˆ̃
H . (B.4)

By virtue of canonical anticommution relations (CAR) among ck

[ĉ†k, ĉl]+ = δk,l (B.5)

[ĉk, ĉl]+ = [ĉ†k, ĉ
†
l ]+ = 0 (B.6)

it is implied that AT = A. Henceforth,

〈· · · 〉 ≡ Tr

[
· · ·Ke−

ˆ̃
H

]
. (B.7)

Eq. (B.1) is an instance of Wick’s theorem in statistical mechanics, see e.g. [112].
In analogy to the procedure presented in Appendix A, the quadratic form Eq.
(B.3) is diagonalised by introducing new fermionic operators

η̂k =

4∑

l=1

gk,l ĉl, gk,l ∈ R (B.8)

where coefficients gk,l are the solutions to

Agk = ε̃k gk, gk = (gk,1, gk,2, gk,3, gk,4)T ∈ R4 (B.9)
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under the constraint Eq.(A.5). It follows that [46]

ˆ̃
H =

∑

k

ε̃kη̂
†
kη̂k + const. (B.10)

and furthermore

η̂k ρ̂ = e−ε̃k ρ̂ η̂k (B.11)

η̂†k ρ̂ = eε̃k ρ̂ η̂†k (B.12)

where in the second line we made use of the formula for noncommuting operators
Â and B̂

e−αÂB̂eαÂ = B̂ − α[Â, B̂] +
α2

2!
[Â, [Â, B̂]]∓ · · · .

Therefore, we deduce

〈ĉ†nĉ†mĉk ĉl〉 =
∑

i,j,µ,ν

gn,igm,jgk,µgl,ν〈η̂†i η̂
†
j η̂µη̂ν〉 (B.13)

〈η̂†i η̂
†
j η̂µη̂ν〉 = δj,µ〈η̂†i η̂ν〉 − 〈η̂

†
i η̂µη̂

†
j η̂ν〉 (B.14)

= δj,µ〈η̂†i η̂ν〉 − δj,ν〈η̂
†
i η̂µ〉+ 〈η̂†i η̂µη̂ν η̂

†
j〉 (B.15)

(B.12)
= δj,µ〈η̂†i η̂ν〉 − δj,ν〈η̂

†
i η̂µ〉+ eε̃j 〈η̂†j η̂

†
i η̂µη̂ν〉 (B.16)

= δj,µ〈η̂†i η̂ν〉 − δj,ν〈η̂
†
i η̂µ〉 − e

ε̃j 〈η̂†i η̂
†
j η̂µη̂ν〉 (B.17)

⇔ 〈η̂†i η̂
†
j η̂µη̂ν〉 =

δj,µ
1 + eε̃j

〈η̂†i η̂ν〉 −
δj,ν

1 + eε̃j
〈η̂†i η̂µ〉 (B.18)

The elementary correlation function are of second order and read as

〈η̂†kη̂l〉 = δk,l − 〈η̂lη̂†k〉 (B.19)
(B.12)
= δk,l − eε̃k〈η̂†kη̂l〉 (B.20)

⇔ 〈η̂†kη̂l〉 =
δk,l

1 + eε̃k
. (B.21)

In the first step, we additionally made use of the cyclic property of the trace

Tr
[
ÂB̂
]

= Tr
[
B̂Â
]
. Combining Equations (B.21) and (B.18) and (B.1) gives

〈ĉ†nĉ†mĉk ĉl〉 =
∑

i,j,µ,ν

gn,igm,jgk,µgl,ν

(
〈η̂†j η̂µ〉〈η̂

†
i η̂ν〉+ 〈η̂†j η̂ν〉〈η̂

†
i η̂µ〉

)
(B.22)

= 〈ĉ†mĉk〉〈ĉ†nĉl〉 − 〈ĉ†mĉl〉〈ĉ†nĉk〉 (B.23)

which is the desired factorisation formula. It holds for time dependent problems
as well, given that Heisenberg operators may be decomposed according to

ĉl(t) =
∑

k

fk,l(t) ĉk,
∑

m

f∗m,k(t)fm,l(t) = δk,l (B.24)

87



C. Time dependence of the reduced
density operator following quench

We show in this Appendix, that the time dependence of matrix elements a, b and
c of ρ̂1,N (Eq. (2.18)) can be rewritten in terms of two-point correlation functions
of the Jordan Wigner fermions

ĉ†l ≡
( l−1∏

n=1

−σ̂zl
)
σ̂+
l . (C.1)

Matrix entry a reads as

a = 〈P̂ ↑1 P̂
↑
N 〉 (C.2)

= Tr
[
ρ̂(t) σ̂+

1 σ̂
−
1 σ̂

+
N σ̂
−
N

]
(C.3)

=
1

2

(
〈N1|eiĤtσ̂+

1 σ̂
−
1 σ̂

+
N σ̂
−
Ne
−iĤt|N1〉+ 〈N2|eiĤtσ̂+

1 σ̂
−
1 σ̂

+
N σ̂
−
Ne
−iĤt|N2〉

)
. (C.4)

The appearance of products of four spin operators in a will lead to quartic terms
(four-point correlators) in fermion operators as well. These can be reduced to
two-point correlators with the help of Wick’s theorem (Appendix B).

However, this can not be done straight away for expectation values of the form
〈· · · 〉 = Tr [ρ̂1,N (t) · · · ]: Recall that the quench is triggered by an instantaneous
change in the anisotropy parameter ∆ : ∞ → 0. This can be rephrased by
saying that the ground state of the Ising Hamiltonian becomes subjected to time
evolution under the XX Hamiltonian. The Ising Hamiltonian is not quadratic,
but quartic in Jordan Wigner fermions, and therefore we find that the initial state
ρ̂0 = 1

2(|N1〉〈N1| + |N2〉〈N2|) of Eq. (2.8) is not an exponential of a quadratic
form. But then, this is the condition for Wick’s theorem to hold (Appendix B). It
is, however, easily seen to hold for |N1〉 and |N2〉 1 and also for times t > 0, if the
time evolution is generated by a quadratic Hamiltonian. This is the case here.
Hence, we apply Wick’s theorem separately on Schrodinger picture expectation
values

〈· · · 〉1 ≡ 〈N1|eiĤt · · · e−iĤt|N1〉

and
〈· · · 〉2 ≡ 〈N2|eiĤt · · · e−iĤt|N2〉 .

1one could think of a simple quadratic Hamiltonian describing a staggered magnetic field,
which would have one of |N1〉, |N2〉 as non-degenerate ground state
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Denote X̂ = ⊗Nk=1σ̂
x
k so that |N1〉 = X̂|N2〉 and [X̂, Ĥ] = 0, then Eq. (C.4)

becomes

a =
1

2

(
〈σ̂+

1 σ̂
−
1 σ̂

+
N σ̂
−
N 〉1 + 〈X̂σ̂+

1 σ̂
−
1 σ̂

+
N σ̂
−
NX̂〉1

)
(C.5)

=
1

2

(
〈σ̂+

1 σ̂
−
1 σ̂

+
N σ̂
−
N 〉1 + 〈σ̂−1 σ̂

+
1 σ̂
−
N σ̂

+
N 〉1
)

(C.6)

and in terms of fermion operators we find using (−σ̂zl )2 = 1

a =
1

2

(
〈ĉ†1ĉ1ĉ

†
N ĉN 〉1 + 〈ĉ1ĉ

†
1ĉN ĉ

†
N 〉1
)
. (C.7)

Invoking Wick’s theorem (Appendix B) gives

a = 〈ĉ†1ĉ1〉1 〈ĉ†N ĉN 〉1 − 〈ĉ
†
1ĉN 〉1 〈ĉ

†
N ĉ1〉1 −

1

2

(
〈ĉ†1ĉ1〉1 + 〈ĉ†N ĉN 〉1 − 1

)
. (C.8)

The matrix entry b is then determined by Tr [ρ̂1,N ] = 2a+ 2b = 1. It remains to
determine c which is slightly more subtle because the non-local string of operators
occurring in definition of the Jordan Wigner fermions Eq. (C.1) does not cancel:

c =
1

2

(
〈σ̂−1 σ̂

+
N 〉1 + 〈σ̂−1 σ̂

+
N 〉2
)

(C.9)

=
1

2

(〈
σ̂−1

(
⊗N−1
l=1 − σ̂

z
l

)
ĉ†N

〉
1

+ c.c.
)

(C.10)

=
1

2

(
(−1)M+1 〈ĉ†N ĉ1〉1 + c.c.

)
. (C.11)

Here, M is the conserved number of spin up states in the dynamical Néel state

( N∑

l=1

P̂ ↑l

)
e−iĤt|N1〉 = M e−iĤt|N1〉 ,

i.e. M = N/2 for even N and M = (N − 1)/2 for odd N .
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D. Density matrix renormalisation
group algorithm

The DMRG algorithm in its original form[82] is a non-perturbative computa-
tional method aimed at finding an optimal approximation for the ground state
wave function of a Hamiltonian describing particles in one spatial dimension with
preferably short-range interaction. Here we discuss this procedure for the ground-
state of a spin-1/2 chain with open boundary conditions and nearest-neighbour
interactions. Any wave function of such a 1D arrangement of spin-1/2 can be
brought to the form

|ψ〉 =
∑

σ[1···N ]


 ∑

α[1···N−1]

Λ[1]σ1
α1

√
wα1 Λ[2]σ2

α1α2
· · · √wαN−1 Λ[N ]σN

αN−1


 |σ1, σ2, · · · , σN 〉

(D.1)

as shown in section 4.3. Contracting this tensor representation with respect to
all indices σm and all but one of the indices αm, (m 6= l) gives rise to the Schmidt
decomposition at bond l

|ψ〉 =
∑

αl

√
wαl |w

L
αl
〉 ⊗ |wRαl〉, αl = 1 · · ·χl . (D.2)

The DMRG algorithm proceeds in two basic steps. These are (i) system growth
and (ii) variational optimisation, which are also referred to as infinite and finite
system DMRG respectively[82]. Our target will be an optimal approximation to
the wave function of Eq.(D.1) for a spin chain of length N .

Sytem growth. Starting with a spin chain of n = 2 spin-1/2, the Hamiltonian
is constructed in the computational basis, giving rise to one two-body term h1,2

and two one-body terms h1 and h2 in the computational basis of two spins

Ĥ = ĥ1 + ĥ1,2 + ĥ2,

assuming open boundary condition. The ground state of this short lattice is
obtained through exact diagonalisation, and the Schmidt decomposition with
respect to a bisection at bond l = 1 can easily be found by means of singular
value decomposition (see, e.g. [51])

|ψ〉 =
∑

α1

√
wα1 |wLα1

〉 ⊗ |wRα1
〉 .
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The notation above entails a certain ambiguity, in that at this stage of the DMRG
procedure |wLα1

〉 and |wRα1
〉 do not coincide with the Schmidt basis states of the

wave function of the spin chain with target size N > 2 (Eq.(D.2)). First, this
slight inconsistency is intended to prevent a cluttered notation. Second, these
Schmidt basis states will, at the final stage of DMRG, be identified with an
optimal approximation to those of Eq. (D.2), justifying the lack of notational
rigour.

Now, two additional spins will be added to the present configuration. In pic-
torial terms, using the notation which was introduced in Sec. 4.3, we seek for a
representation of the form

[L1] • • [R1] .

In the computational basis, “• • • •”, the Hamiltonian would read as (note that
the spin formerly labelled 2 is now labelled 4)

Ĥ = ĥ1 + ĥ1,2 + ĥ2 + ĥ2,3 + ĥ3 + ĥ3,4 + ĥ4 .

Our aim is, however, to represent Ĥ in a compact basis of Schmidt vectors |wLα〉
and |wRα 〉 which were found earlier. To this end, we introduce left and right block
Hamiltonians, with matrix representation (compare Equations (4.11) and (4.12))

〈wLα1
|ĤL|wLα′1〉 =

∑

σ1, σ′1

Λ[1]σ1
α1

(
Λ

[1]σ′1
α′1

)∗〈σ′1|h1|σ1〉 (D.3)

〈wRα3
|ĤR|wRα′3〉 =

∑

σ4, σ′4

Λ[4]σ4
α3

(
Λ

[4]σ′4
α′3

)∗〈σ′4|h4|σ4〉 . (D.4)

Here, the tensors Λ which yield the basis transformations were obtained in the
course of the Schmidt decomposition corresponding to a ground state with n = 2.
Therefore, these basis states are not strictly appropriate for left and right blocks
of the present setting with n = 4. We stress that DMRG is a variational procedure
which ultimately gives rise to an accurate approximation, while during system
growth no rigorous accuracy is intended.

Left and right blocks (presently containing one spin each) are interacting via
the coupling terms h1,2 and h3,4 to their adjacent sites, respectively. When
referring to the desired representation, [L1]•• [R1], we will rename these operators
as follows

〈wLα1
, σ′2|ĤL •|wLα′1 , σ2〉 =

∑

σ[1,2], σ
′
[1,2]

Λ[1]σ1
α1

(
Λ

[1]σ′1
α′1

)∗〈σ′1, σ′2|h1,2|σ1, σ2〉 (D.5)

〈wRα3
, σ′4|Ĥ•R|wRα′3 , σ4〉 =

∑

σ[3,4], σ
′
[3,4]

Λ[4]σ4
α3

(
Λ

[4]σ′4
α′3

)∗〈σ′3, σ′4|h3,4|σ3, σ4〉 (D.6)

finally giving rise to the Hamiltonian of the n = 4 chain

Ĥ = ĤL + ĤL • + ĥ2 + ĥ2,3 + ĥ3 + Ĥ•R + ĤR .
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The growth procedure continues by iteratively carrying out the following steps,
until the desired system size n = N is reached

1. Find ground state of Ĥ by sparse diagonalisation (e.g., Lanczos method
[21])

2. compute Schmidt decomposition with respect to the symmetric bisection,
keeping only M vectors with the largest weights

√
wα

3. store all block operators and basis transformations of the present configu-
ration

4. define new left and right blocks by adding a single site to the former blocks
respectively

5. form operators ĤL, ĤL•, Ĥ•R and ĤR using the Schmidt bases from the
previous step 2 and add two spins in between, thereby increasing the system
size n by two.

6. form new Hamiltonian Ĥ = ĤL + ĤL •+ ĥn
2

+ ĥn
2
,n
2

+1 + ĥn
2

+1 + Ĥ•R + ĤR

Variational optimisation. Up to this point, the lattice was grown from an
initial configuration of n = 2 spins by iteratively adding two sites. Now, that
we have reached the desired system size n = N , our aim is to variationally
optimise the tensors Λ and

√
w which, at the present stage, constitute rather

poor approximations to the actual tensors appearing in Eq. (D.1).
This is achieved by successive so-called finite-size sweeps, which amount to

gradually shifting the free lattice sites (initially placed at the bond l = N/2) by
means of a concatenation of appropriate basis transformations to the left termi-
nal sites, then to the right terminal sites, and back to the symmetric partition.
Pictorially, in a middle-to-left sweep the right block is grown at the expense of
the left block, thereby keeping N constant

[LN/2−1] • • [RN/2−1]→ [LN/2−2] • • [RN/2]→ · · · → • • [RN−2] .

Next, a left-to-right sweep grows the left block at the expense of the right block

• • [RN−2]→ [L1] • • [RN−3]→ · · · → [LN−2] • •,

and so forth. Consider, for example, a right-to-left sweep. Each individual change
of representation (referring to all operator representations as well as the ground
state representation) of the form

[Ll−1] • • [RN−l−1]→ [Ll−2] • • [RN−l],

is partly governed by the most recent tensor Λ
[l+1]σl+1
αlαl+1 which was obtained in the

course of the Schmidt decomposition at bond l (compare Eq. (4.6) to Eq. (4.10)).
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This change of representation is instrumental in growing the right block Hamil-
tonian ĤR by a single site. More explicitly, the operator ĤR of the forthcoming
representation is equivalent, up to a similarity transformation, to the operator
ĤR + Ĥ•R + hl+1 of the present representation. By contrast, the forthcoming
left block Hamiltonian ĤL, being of shrinking size, is read from the memory. It
is therefore reminiscent of an earlier left-to-right sweep (or, where required, the
system growth procedure) and will be updated in a subsequent sweep1. Opera-
tors Ĥ•R and ĤL• are constructed in basically the same vein. For an in-depth
discussion, including details on several technical subtleties, we refer the reader
to [113].

Subsequently, the ground state of Ĥ is found in each of these representations,
using an appropriate sparse algorithm. Finally, the Schmidt decomposition (trun-
cated at M -th order) is computed and the corresponding tensors Λ and

√
w are

determined and are used to replace stored tensors from previous sweeps.
In this spirit, the representation Eq. (D.1) is approached with an accuracy de-

pending on the system size N , the particulars of the ground state wave-function,
and the chosen bond dimension M . After usually five to ten full sweeps the
variational procedure has converged towards an optimal approximation of the
ground state of

Ĥ =

N−1∑

l=1

(
ĥl + ĥl,l+1

)
+ ĥN ,

in terms of tensors Λ and
√
w (see Eq.(D.1)).

1unless the variational optimisation terminates beforehand
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E. Proof of Williamson’s theorem

In what follows, we will present a simple proof of William’s theorem 5.1.2 (for the
case of real, symmetric positive definite matrices). The following property of the
eigenspectrum of a product of matrices (a consequence of Sylvester’s determinant
theorem) will turn out to be useful in this context:

Lemma E.0.1. (Cyclicity of characteristic polynomial) Let matrices X and Y
be square matrices and let Y be nonsingular. Then, the matrices XY and Y X
have the same eigenvalues.

Proof. Let wm denote the eigenvalues of matrix XY , so they are the solutions
to the characteristic polynomial

det(XY − wm1) = 0 . (E.1)

One has that

det(XY − wm1) = det(Y −1(Y X − wm1)Y ) = det(Y X − wm1) (E.2)

which proves the lemma.

Let us restate Williamsons theorem, for convenience,

Theorem E.0.2. (Williamson) Let M be a 2N ×2N real symmetric and posi-
tive definite matrix, then there exists a symplectic transformation S ∈ Sp(2N,R)
such that

SMST = Λ⊕ Λ (E.3)

with a diagonal N×N positive definite diagonal matrix Λ = diag(λ1, λ2, · · · , λN ).
The symplectic eigenvalues λn are given by the positive square roots of the eigen-
values of (iΩM)2.

Proof. (As found in Ref. [98]) The matrix which solves Eq. (E.3) reads as

S = DOM−1/2

the factors of which being the 2N ×2N matrices M−1/2 (real symmetric positive
definite), O ⇔ OTO = OOT = 1N (orthogonal), and D = Λ1/2⊕Λ1/2 (diagonal
and positive definite). For the so defined S to be element of Sp(2N,R) we have
to ask

SΩST = DOM−1/2ΩM−1/2OTD
!

= Ω (E.4)
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The matrix M−1/2ΩM−1/2 is antisymmetric owing to ΩT = −Ω and nonsingular
because its factors are nonsingular. Therefore, there exists an orthogonal O such
that

OM−1/2ΩM−1/2OT =

(
ON −Λ−1

Λ−1 ON

)
, (E.5)

with Λ−1 diagonal and positive definite. Hence, with this choice of O, S satisfies
Eq. (E.4) and therefore S ∈ Sp(2N,R) concluding the proof of the first part of
the theorem.

The second part can be proved as follows. Denoting the eigenspectrum of a
matrix Y by spec (Y ), and making use of the cyclic property of spec (XY ) (Y
nonsingular, see Lemma E.0.1) as well as Ω2 = −1, one finds

spec
(
(iΩM)2

)
= spec

(
−(ΩS−1(Λ⊕ Λ)S−T )2

)
(E.6)

= spec
(
−(Ω2STΩT (Λ⊕ Λ)S−T )2

)
(E.7)

= spec
(
−(Ω(Λ⊕ Λ))2

)
(E.8)

= spec
(
Λ2 ⊕ Λ2

)
(E.9)

implying that the eigenvalues w2
m of (iΩM)2 are related to the symplectic spec-

trum λm of M as w2
m − λ2

m = 0.
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F. Partial transposition in continuous
variable systems

In this section we set forth the correspondence between partial transposition
in Hilbert space and partial time-reversal in phase space. Let ρ̂ ∈ HA ⊗HB be
the density operator of a composite continuous variable quantum system. Partial
transposition ((TA⊗1B)ρ̂) can be seen to be equivalent to reversing the momenta
of Alice’s subsystem (pA → −pA) of the quasi-probability distribution describing
the state. Making use of the operator identity eX+Y = eXeY e−[X,Y ]/2 which
holds when the individual operators X and Y commute with their commutator,
we may rewrite the characteristic function Eq. (5.9) as follows

χ(−ξ) = Tr
[
e−i(ξTp x̂−ξTx p̂)ρ̂

]
(F.1)

= Tr
[
eiξTx p̂e−iξTp x̂ρ̂

]
eiξTx ξp/2 (F.2)

=

∫
dNq 〈q|eiξTx p̂/2e−iξTp x̂ρ̂eiξTx p̂/2|q〉 eiξTx ξp/2 (F.3)

=

∫
dNq e−iξTp q〈q− ξx/2|ρ̂|q + ξx/2〉, (F.4)

where in equation (F.3) we wrote the trace in coordinate representation and
subsequently used that position displacements are generated by the momentum
operator, exp(iδp̂)|x〉 = |x+ δ〉. The Wigner function Eq. (5.8) becomes

W(x,p) =
1

(2π)N

∫
dNq

∫
dNξx

∫
dNξp e

iξTp (x−q)〈q− ξx/2|ρ̂|q + ξx/2〉eiξTx p

=
1

(2π)N

∫
dNξx 〈x− ξx/2|ρ̂|x + ξx/2〉e−iξTx p. (F.5)

We see that the Wigner function is a Fourier transform of certain matrix elements
of ρ̂, here in coordinate representation. The canonical degrees of freedom can be
regarded as being subdivided into those belonging to Alice and those belonging
to Bob, i.e. (x, p) : (xA, xB, pA, pB). Partial transposition (TA ⊗ 1B)ρ̂ then
amounts to reversing those momenta within the Wigner function belonging to
Alice, W(xA, xB, pA, pB)→W(xA, xB, −pA, pB), as can be directly inferred
from Eq. (F.5) by changing the sign of the corresponding integration variables
(ξx)A. The usefulness of this correspondence becomes particularly apparent for
the computation of bipartite entanglement measures which are based on partial
transposition and when further ρ̂ belongs to the class of Gaussian states. This
will be recalled in Appendix I.
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G. Gaussian Wigner representation of
bosonic vacuum

Let bosonic operators be defined in the usual way âk = (x̂k + ip̂k)/
√

2 . The
bosonic vacuum, defined as âk|0〉 = 0 ∀ k, is an example for a Gaussian state as
will be shown now. In position representation we have

0 =
1√
2
〈x|(x̂k + ip̂k)|0〉 (G.1)

=
1√
2

(xk + i∂xk)〈x|0〉 (G.2)

φ0(x) ≡ 〈x|0〉,
∫
dNqφ∗0(q)φ0(q) = 1 (G.3)

⇔ φ0(x) = π−N/4 exp

(
−1

2

∑

k

x2
k

)
. (G.4)

The characteristic function (F.4) assumes

χ(ξ) =

∫
dNq eiξTp qφ0(q + ξx/2)φ∗0(q− ξx/2) (G.5)

= π−N/2
∫
dNq eiξTp qe−

1
2

(q+ξx/2)T (q+ξx/2)e−
1
2

(q−ξx/2)T (q−ξx/2) (G.6)

= π−N/2 e−ξ
T
x ξx/4

∫
dNq e−q

Tq+iξTp q (G.7)

= e−ξ
T ξ/4 . (G.8)

In the last line we invoked the identity for Gaussian integration [8]

1
(√

2π
)N
∫
dNq e−

1
2
qT γ q+ixTq =

1√
det γ

e−
1
2
xT (γ−1)x, (G.9)

where γ is a real symmetric positive N ×N matrix and x ∈ RN . By inspection
of (G.8) it is revealed that the bosonic vacuum is a Gaussian state, see definition
5.1.3, with covariance matrix Γ = 1 and vanishing first moments di = 0.
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H. Ground state covariance matrix of a
quadratic Hamiltonian

We show in this section that the covariance matrix of the ground state of a
Hamiltonian which is quadratic in bosonic operators

Ĥ =

N∑

k,l=1

â†k Ak,l âl +
1

2
(â†k Bk,l â

†
l + H.c.) (H.1)

can be calculated in terms of the adjacency matrices A, B ∈ RN×N (which we
assume to be real, symmetric, and positive). We start with diagonalising Ĥ. To
this end, it will be convenient to cast Ĥ into matrix form

Ĥ =
1

2

(
â
â†

)T (
B A

A B

)(
â
â†

)
(H.2)

which by using Eq. (5.3) turns into

Ĥ =
1

2

(
x̂
p̂

)T (
Vx 0
0 Vp

)(
x̂
p̂

)
, (H.3)

Vx = A + B (H.4)

Vp = A− B. (H.5)

Following loosely [101], we can diagonalise Ĥ by means of a concatenation of two

symplectic transformations. The first, S1 = (V
−1/2
x )⊕ (V

1/2
x ) ⇔ r̂ = S1r̂

′, turns
(H.3) into

Ĥ =
1

2
(r̂′)T

(
1 0

0 V
1/2
x VpV

1/2
x

)
r̂′ (H.6)

while the second, S2 = OD1/2 ⊕ OD−1/2, involves an orthogonal transforma-
tion OTO = OOT = 1 and a diagonal matrix D = diag(ε1, ε2, . . . , εN ) so that

V
1/2
x VpV

1/2
x = OD2OT . Finally, with r̂′ = S2r̂

′′, the Hamiltonian assumes its
diagonal form

Ĥ =
1

2
(r̂′′)T

(
D 0
0 D

)
r̂′′ =

N∑

m=1

εmη̂
†
mη̂m + const. (H.7)
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where bosonic operators ηm and canonical operators r̂′′ are connected through
Eq. (5.3). By virtue of Eq. (5.15) and Γ′′ = 1 the ground state covariance matrix
in terms of original degrees of freedom r̂ = S1S2r̂

′′ is given by Γ = SST where
S = S1S2. Therefore, using ST1 = S1 we obtain the final result [101, 102]

Γ = S1(S2ST2 )S1 (H.8)

= (V −1/2
x ⊕ V 1/2

x )(ODOT ⊕OD−1OT )(V −1/2
x ⊕ V 1/2

x ) (H.9)

= V −1/2
x (V 1/2

x VpV
1/2
x )1/2V −1/2

x ⊕ V 1/2
x (V 1/2

x VpV
1/2
x )−1/2V 1/2

x . (H.10)

One could have, alternatively, concatenated the two symplectic transformations

S3 = (V
1/2
p )⊕(V

−1/2
p ) and S4 = O2D

1/2⊕O2D
−1/2 with V

1/2
p VxV

1/2
p = O2D

2OT2 .
This diagonalises Ĥ as well, and the resulting form of the covariance matrix is

Γ = S3(S4ST4 )S3 (H.11)

= V 1/2
p (V 1/2

p VxV
1/2
p )−1/2V 1/2

p ⊕ V −1/2
p (V 1/2

p VxV
1/2
p )1/2V −1/2

p . (H.12)

Often one representation turns out to be easier to evaluate than the other, for
instance if one of Vx, Vp is diagonal.
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I. Bipartite entanglement of Gaussian
states

We saw that in Sec.(1.1) that ‖ρ̂TA‖ > 1, ρ̂ ∈ HA⊗HB is an important indicator
of bipartite entanglement in mixed quantum states, for it can be used to provide
a lower bound on entanglement of formation [32], which in turn can be given
operational interpretation in terms of entanglement cost. We will now show
that if ρ̂ is a Gaussian state (or, more generally, an operator with Gaussian
characteristic function), then ‖ρ̂TA‖ can be evaluated efficiently. To this end,
we make use of the property ‖X ⊗ Y ‖ = ‖X‖‖Y ‖ of the trace norm, and the
following

Lemma I.0.3. (Direct product of Gaussian states) An N -fold direct prod-
uct

ρ̂ =

N⊗

m=1

ρ̂m (I.1)

of Gaussian states ρ̂m with individual covariance matrices Γm is itself a Gaussian
state with covariance matrix

Γ =
N⊕

m=1

Γm (I.2)

in canonical coordinates r̂ = ⊕mr̂m .

Proof. From Eq. (F.5) one has that for a general ρ̂ = ⊗m=1ρ̂m

W(x,p) =
∏

m

Wm(xm,pm) (I.3)

by inspection. Let now ρ̂ be a Gaussian state and let χ(ξ) = exp(−(Ωξ)TΓΩξ/4)
be its characteristic function (the first moments can always be made to vanish
by appropriate phase-space translations), then with (G.9)

W(x,p) =
1

(2π)N

∫
d2Nξ e−

1
4

(Ωξ)TΓΩξeiξTΩr =
e−r

T (Γ−1)r

√
det(Γ/2)

. (I.4)

With Γ = ⊕nΓn and the properties

(⊕mΓm)−1 = ⊕mΓ−1
m
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and
det(⊕mΓm) =

∏

m

det Γm

we find

W(x,p) =
∏

m

e−r
T
m(Γ−1

m )rm

√
det(Γm/2)

. (I.5)

Hence, the Wigner functions Wm of Eq. (I.3) are themselves of Gaussian form
which concludes the proof

For a Gaussian state a consequence of the above Lemma in conjunction with
William’s theorem is that, in canonical variables r̂ = (x̂1, p̂1, x̂2, p̂2, . . . , x̂N , p̂N )
which bring the covariance matrix to normal form,

Γ =

N⊕

m=1

Γm, Γm = diag(λm, λm)

ρ̂ becomes a direct product ρ̂ = ⊗mρ̂m, m = 1 · · ·N of Gaussian states ρ̂m with
covariance matrices Γm = diag(λm, λm) and hence

‖ρ̂‖ =
∏

m

‖ρ̂m‖ . (I.6)

Now, in order to compute ‖ρ̂m‖ we will relate the eigenvalues w
(m)
n , n = 0, 1, 2, . . .

of ρ̂m to the (two fold degenerate) symplectic eigenvalue λm of Γm. This is done
in Appendix (J), and the result reads as (see Eq. (J.12))

w(m)
n =

2

λm + 1

[
λm − 1

λm + 1

]n
. (I.7)

We finally obtain for the trace norm of the Gaussian state ρ̂

‖ρ̂‖ =

N∏

m=1

‖ρ̂m‖ =

N∏

m=1

∞∑

n=0

2

λm + 1

∣∣∣∣
λm − 1

λm + 1

∣∣∣∣
n

(I.8)

=

N∏

m=1

2

λm + 1− |λm − 1|
=

{
1 for λm ≥ 1 ,∏N
m=1

1
λm

for λm < 1 .
(I.9)

The entire calculation of the trace norm ‖ρ̂‖ can be carried out analogously if
the partial transpose ρ̂TA takes the role of ρ̂, where only we have to replace Γ
with ΓTA which is obtained from Γ by reversing all momenta of subsystem A (see
Appendix F), implying that logarithmic negativity in terms of the symplectic
spectrum λm of ΓTA reads as [29]

L = ln ‖ρ̂TA‖ = −
∑

λm<1

lnλm. (I.10)
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J. Density matrix spectra of bosonic
Gaussian states

Our aim in this section is to show that a Gaussian state ρ̂ (assuming as usual
vanishing first moments) with covariance matrix Γ = Γx ⊕ Γp is an exponential
of a quadratic form, and that its spectrum can be related to the symplectic
eigenvalues of its covariance matrix by following the methodology of [81]. To this
end, we make the ansatz

ρ̂ = Ke−
∑
kl x̂kXk,lx̂l+p̂kPk,lp̂l = Ke−

∑
m ε̃m(η̂†mη̂m+ 1

2
), (J.1)

whereK is a normalisation constant, X and P are real symmetric positive definite
N × N matrices, and in the second step we diagonalised the quadratic form in
the exponent along the very same lines presented in Appendix H, i.e. by means
of a suitable symplectic transformation r̂ = (Sx ⊕ Sp)r̂′ leading to the diagonal
form in bosonic operators η̂m = (x̂′m + ip̂m)/

√
2. We have that

(Γx)i,j = 2Tr [x̂ix̂j ρ̂] (J.2)

=
∑

m,n

(Sx)m,i(Sx)n,jTr
[
(η̂†m + η̂m)(η̂n + η̂†n)ρ̂

]
(J.3)

and by using the formula for noncommuting operators A and B

e−αABeαA = B − α[A,B] +
α2

2!
[A, [A,B]]∓ · · ·

one obtains the relations

η̂mρ̂ = e−ε̃m ρ̂η̂m (J.4)

η̂†mρ̂ = e+ε̃m ρ̂η̂m (J.5)

which together with cyclic invariance of the trace lead to

(Γx)i,j =
∑

m,n

(Sx)m,i(Sx)n,j

(
〈η̂†mη̂n〉+ 〈η̂mη̂†n〉

)
(J.6)

=
∑

m

(Sx)m,i(Sx)m,j

(
1

eε̃m − 1
+

1

1− e−ε̃m

)
(J.7)

=
∑

m

(Sx)m,i(Sx)m,j coth

(
ε̃m
2

)
(J.8)
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It follows, that the pseudo-energies ε̃m and the symplectic spectrum of Γ are
related through

λm = coth

(
ε̃m
2

)
(J.9)

meaning the ansatz in (J.1) is verified, for it recovers all second moments of
the state. It also leads to the correct factorisation of higher moments according
to Wick’s theorem [112] (Appendix B). The state ρ̂ factorises in the Fock basis

η̂†mη̂m|nm〉 = nm|nm〉, and by absorbing constant terms into K we have

ρ̂ = K ′
N⊗

m=1

[ ∞∑

nm=0

e−nmε̃m |nm〉〈nm|

]
(J.10)

requiring Tr [ρ̂] = 1 and using the identity [114]

coth−1(x) =
1

2
ln

(
x+ 1

x− 1

)
, x 6= 0, 1

gives

ρ̂ =
N⊗

m=1

[ ∞∑

nm=0

2

λm + 1

(
λm − 1

λm + 1

)nm
|nm〉〈nm|

]
(J.11)

which shows that the spectrum w
(m)
n , n = 0, 1, 2, . . ., of the single mode density

matrices ρ̂m ⇔ ρ̂ = ⊗mρ̂m is related to the symplectic spectrum λm of Γ as

w(m)
n =

2

λm + 1

(
λm − 1

λm + 1

)n
. (J.12)
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K. Bosonisation of the LMG
Hamiltonian

Here, we derive the three mode boson representation of the Lipkin-Meshkov-Glick
Hamiltonian which was stated in Eq. (5.28). We begin the derivation for the
symmetric phase h ≥ 1. Here, 〈Ŝx〉 = 〈Ŝy〉 = 0 such that the expectation value
of the vector-valued ground state magnetisation M ∼ 〈Ŝ〉 points in z-direction.
This is due to the spin-flip symmetry [Ĥ,

∏
k σ̂

z
k] = 0, which the unique ground

state respects for h ≥ 1. We depart from the following representation of the
LMG Hamiltonian

Ĥ = − 1

2N
(1 + γ)

(
Ŝ2 − Ŝ2

z

)
− 1

4N
(1− γ)

(
Ŝ2

+ + Ŝ2
−
)
− h Ŝz. (K.1)

In subsequent steps we will omit scalar valued terms as they will not be impor-
tant for the discussion of ground state entanglement but only shift the energy
spectrum. Since we are interested in the ground state properties, we are entitled
to replace the operator S2 by its expectation value (N/2)(N/2 + 1). Then

Ĥ ∼ 1

2N
(1 + γ)Ŝ2

z −
1

4N
(1− γ)

(
Ŝ2

+ + Ŝ2
−
)
− h Ŝz. (K.2)

Using the mapping Eq. (5.26) and (5.27) for S = N/2, one has that

Ŝz =
3∑

k=1

Ŝ(k)
z = N/2−

3∑

k=1

â†kâk (K.3)

Ŝ2
z = N2/4−N

3∑

k=1

â†kâk +O(N0) (K.4)

and since S+ =
√
N − â†â â =

√
N â+O(N−1/2)

Ŝ2
+ = (Ŝ2

−)† =

(
3∑

k=1

Ŝ
(k)
+

)2

=

(
3∑

k=1

√
Nk ak

)2

+O(N0) . (K.5)

Combining Eqs. (K.2), and (K.3-K.5) then leads to the quadratic representation
of Eq. (5.28) for the symmetric phase h ≥ 1. Now consider the symmetry-broken
phase 0 ≤ h < 1, where a two-fold degeneracy develops in the thermodynamic
limit [115], and the magnetisation of neither of the symmetry-broken ground
states points into the spin-z direction (see Fig. (K.1)). Therefore, the first thing
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Figure K.1.: The two degenerate mean-field ground states. Figure reprinted from [99].

to do is to rotate the spin operators so as to align the semi-classical magnetisation
M = (N/2)(sin θ cosφ, sin θ sinφ, cos θ) (φ = 0 or π) with the spin-z direction [99]




Ŝx
Ŝy
Ŝz


 =




cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ






Ŝ′x
Ŝ′y
Ŝ′z


 (K.6)

where θ = arccosh . In terms of the primed operators, the LMG Hamiltonian
Eq. (5.19) becomes

Ĥ = − 1

N

((
hŜ′x +

√
1− h2Ŝ′z

)2
+ γŜ′2y

)
− h2Ŝ′z + h

√
1− h2Ŝ′x (K.7)

= − 1

N

[
(1− h2)Ŝ′2z +

h2 + γ

2

(
Ŝ′2x + Ŝ′2y

)
+
h2 − γ

2

(
Ŝ′2x − Ŝ′2y

)]

− h
√

1− h2

N

(
Ŝ′xŜ

′
z + Ŝ′zŜ

′
x

)
− h2Ŝ′z + h

√
1− h2Ŝ′x (K.8)

= − 1

N

[
(1− h2)Ŝ′2z +

h2 + γ

2

(
Ŝ′

2 − Ŝ′2z
)

+
h2 − γ

4

(
Ŝ′2+ + Ŝ′

2

−
)]

− h
√

1− h2

2N

(
Ŝ′+Ŝ

′
z + Ŝ′zŜ

′
+ +H.c.

)
− h2Ŝ′z +

h
√

1− h2

2

(
Ŝ′+ + Ŝ′−

)
. (K.9)

Like before, we replace Ŝ′
2 → (N/2)(N/2+1) and ignore the scalar valued terms,

for they do not enter the ground state wave-function

Ĥ ∼ − 1

N

[(
2− γ − 3h2

2

)
Ŝ′2z +

h2 − γ
4

(
Ŝ′2+ + Ŝ′2−

)]

− h
√

1− h2

2N

(
Ŝ′+Ŝ

′
z + Ŝ′zŜ

′
+ +H.c.

)
− h2Ŝ′z +

h
√

1− h2

2

(
Ŝ′+ + Ŝ′−

)
.

(K.10)

105



By expanding Ĥ to order O((1/N)0) using equations (K.3)-(K.5) we get1

Ĥ ∼ 2− γ − h2

2

∑

k

â†kâk +
γ − h2

4N

∑

kl

√
NkNl

(
â†kâ
†
l +H.c.

)
+O(N−1)

(K.11)

which is the desired quadratic form of Eq. (5.28).

1the second and last term of Eq. (K.10) cancel identically at this order
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