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Abstract 

 

Background: Genome-wide association studies (GWAS) have so far reported 12 loci associated with 

serous epithelial ovarian cancer (EOC) risk. We hypothesized that some of these loci function through 

nearby transcription factor (TF) genes and that putative target genes of these TFs as identified by co-

expression may also be enriched for additional EOC risk associations. 

Methods: We selected TF genes within 1 Mb of the top signal at the 12 genome-wide significant risk 

loci. Mutual information, a form of correlation, was used to build networks of genes strongly co-

expressed with each selected TF gene in the unified microarray data set of 489 serous EOC tumors from 

The Cancer Genome Atlas. Genes represented in this data set were subsequently ranked using a gene-

level test based on results for germline SNPs from a serous EOC GWAS meta-analysis (2,196 cases/4,396 

controls). 

Results: Gene set enrichment analysis identified six networks centered on TF genes (HOXB2, HOXB5, 

HOXB6, HOXB7 at 17q21.32 and HOXD1, HOXD3 at 2q31) that were significantly enriched for genes 

from the risk-associated end of the ranked list (P<0.05 and FDR<0.05). These results were replicated 

(P<0.05) using an independent association study (7,035 cases/21,693 controls). Genes underlying 

enrichment in the six networks were pooled into a combined network. 

Conclusion: We identified a HOX-centric network associated with serous EOC risk containing several 

genes with known or emerging roles in serous EOC development. 

Impact: Network analysis integrating large, context-specific data sets has the potential to offer 

mechanistic insights into cancer susceptibility and prioritize genes for experimental characterization. 
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Introduction 

 

The genetic architecture of inherited susceptibility to epithelial ovarian cancer (EOC) appears 

similar to other hormone-related cancers, but fewer EOC risk loci have been discovered compared to 

breast and prostate cancer, probably due to restricted sample size (1). Genome-wide association studies 

(GWAS) have so far identified 12 risk loci associated with serous EOC, the most common subtype of 

EOC (1–7). These account for 4 per cent of the excess familial risk of EOC, while rare, high-penetrance 

mutations in genes such as BRCA1 and BRCA2 explain about 40 per cent (8). This suggests that many 

undiscovered common serous EOC risk variants exist. 

Very stringent statistical thresholds are generally used to declare common variant susceptibility 

alleles at so-called genome-wide significance (P < 5×10-8). However, when there is limited statistical 

power, hundreds or thousands of single nucleotide polymorphisms (SNPs) with small effect sizes will not 

reach genome-wide significance (9). A key challenge in genetic epidemiology is to identify these risk 

SNPs with small effects. One approach is ever-larger studies allied to better coverage of common 

variation across the genome to increase statistical power.  However, even a case-control study with 

100,000 samples has just 23 per cent power to detect at genome-wide significance an allele of frequency 5 

per cent that confers a per-allele relative risk of 1.1. 

GWAS pathway analysis has emerged as a complement to imputation, single-variant testing and 

meta-analysis for the discovery of true genetic associations in the pool of SNPs that are below genome-

wide significance (10).  Pathway studies are guided by the hypothesis that true risk associations are more 

likely to cluster in genes that share a common biological function potentially dysregulated in disease 

pathogenesis. However, incomplete annotation and canonical representation of pathways in the literature 

are major limiting factors (11). 

One approach to overcome this limitation is by analyzing GWAS signals within the reduced 

search space of dynamic networks constructed from pairwise interactions observed in large, independent, 

tissue-specific transcriptomic data sets (12). Further, GWAS of cancer and other diseases increasingly 
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suggest that at least some genome-wide significant risk loci act through nearby transcription factor (TF) 

genes (13–15). Target genes of these TFs in turn have been found to be enriched for SNPs that fail to 

reach genome-wide significance but are nominally associated with the disease (16,17). Therefore, we 

adopted a risk locus TF gene-centric approach to integrating serous EOC transcriptomic and GWAS data 

sets. Seven of the 12 known genome-wide significant serous EOC risk loci harbor at least one TF gene in 

the 2 Mb interval centered on the top SNP at the locus. This includes nine members of the HOXD cluster 

and 10 members of the HOXB cluster at the 2q31 and 17q21.32 loci, respectively. The target genes of 

most homeobox (HOX) TFs remain largely unknown due to their promiscuous DNA binding properties in 

vitro (18). Since genes highly co-expressed with TF genes are more likely to represent their targets (19), 

and co-expression has been linked to shared function (20), we used the genes highly co-expressed with 

each TF in The Cancer Genome Atlas (TCGA) high-grade serous EOC microarray data set to build hub-

and-spoke type TF-target gene networks (21). We then systematically interrogated these networks for 

overrepresentation of genes containing SNPs ranked high for their association with serous EOC risk in a 

GWAS meta-analysis. Our aims were to prioritize hub TF genes whose networks demonstrated such 

overrepresentation as candidates for post-GWAS functional characterization and to use these networks to 

identify novel pathways and potential sub-genome-wide significant risk loci involved in serous EOC 

development. Most GWAS SNPs lie outside protein-coding regions of the genome and may affect cancer 

susceptibility by regulating a gene or genes up to a megabase away making such integrative genomic 

approaches to prioritizing genes in these 1 Mb regions imperative (22,23). 
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Materials and Methods 

 

Ranking genes based on GWAS results for serous EOC risk 

 

This study used P-values for association with serous EOC risk from a published meta-analysis of 

a North American and UK GWAS for 2,508,744 SNPs that were either genotyped or imputed in a total of 

2,196 serous EOC cases and 4,396 controls (1). The meta-analysis was restricted to subjects of European 

descent and the HapMap II (release 22) CEU panel served as reference for imputation. The North 

American and UK GWAS together with the replication data set described below are summarized in 

Supplementary Table S1. All participants provided written informed consent and each contributing study 

was approved by the appropriate local institutional ethical review board. A complete list of genes 

annotated with start and end positions of each gene was downloaded via the Bioconductor package 

TxDb.Hsapiens.UCSC.hg19.knownGene (v2.8.0). After removing genes with ambiguous location, all 

SNPs were mapped to genes with boundaries defined by the start and end positions. The genes were 

ranked in descending order of the negative logarithm (base 10) of the minimum P-value among all SNPs 

in each gene after adjusting this P-value for the number of SNPs in the gene using a modification of the 

Sidak correction (24). This accounts for linkage disequilibrium (LD) between SNPs while reducing the 

effect of gene size on the minimum P-value (25). Pearson’s r between gene size and minimum P-value 

improved from -0.3 to +0.1. Adequacy of correction was further confirmed by quantile-quantile plots 

(Supplementary Figure S1). In all, 10,693 genes that were also represented in the TCGA gene expression 

data set (described below) were ranked based on the GWAS results for subsequent analysis. 

 

Constructing serous EOC-specific co-expression networks with TF genes at risk loci as hubs 

 

We selected genes with experimentally confirmed transcription factor activity as described in 

Vaquerizas et al. (26) that were less than 1 Mb from the most significant SNP at each of the 12 loci (1–7) 
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known to be associated with serous EOC risk at genome-wide significance (Table 1). The SNPs listed in 

Table 1 were obtained from the Collaborative Oncological Gene-environment Study Primer (27). 

Nineteen of the 29 TF genes selected belonged to either the HOXB or the HOXD cluster. We relied on co-

expression in serous EOC tissue to define possible context-specific target genes of the TFs. 

Genes co-expressed with each selected TF gene were identified in the “unified expression” data 

set downloaded from TCGA (28). The data set contains expression measurements from three different 

microarray platforms unified into a single estimate for 11,864 genes in 489 high-grade serous ovarian 

adenocarcinoma samples (21). Four of the 29 TF genes were not represented in this data set and were 

therefore excluded. Co-expression was measured by mutual information (MI), a form of correlation, 

estimated using the adaptive partitioning method implemented in the Algorithm for the Reconstruction of 

Accurate Cellular Networks (ARACNE) (29). A threshold of P < 0.01 after Bonferroni correction for 

11,864 pairwise tests was set in ARACNE to retain only the genes most strongly co-expressed with each 

TF gene. 

 

Gene set enrichment analysis (GSEA) 

 

Each TF gene and the genes co-expressed with it were treated as a single hub-and-spoke network. 

GSEA (30) was used to determine overrepresentation of genes from the serous EOC-associated end of the 

ranked list generated on the basis of the GWAS meta-analysis, in each network. Before evaluating each 

network by GSEA, its parent hub TF gene was excluded from the network. Ten thousand permutations 

were performed with the number increased to 50,000 for networks with P = 0 at 10,000. Genes in the 

ranked list that were not among the 11,864 genes in the TCGA data set were excluded before GSEA as 

their co-expression with the TFs could not be evaluated. GSEA is optimized for gene sets/networks 

containing 15 to 500 genes (30). Applying this cut-off led to the exclusion of 11 of the 25 networks from 

the primary GSEA. We also conducted a secondary GSEA run allowing for networks with more than 10 

genes. This enabled evaluation of 24 out of the 25 co-expression networks. Only the network centered on 
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HOXD9 was excluded in the second GSEA run since it contained just six genes. Networks with GSEA P 

< 0.05 and FDR < 0.05 were considered significant. We also reported fold enrichment as the ratio of the 

number of genes from the top 5% of the ranked list that were observed in each network to the number 

expected. Cytoscape (v2.8.3) was used for network visualization (31). 

 

Replication analyses 

 

First, we examined the effect of LD between SNPs in closely spaced genes. The frequent co-

expression of genes co-localized on the genome coupled with LD between SNPs in such genes has the 

potential to inflate the GSEA signal (25). We subjected all SNPs in genes that were in the ranked list 

input to GSEA to LD-based clumping using PLINK (v1.07) (32) and CEU LD information from HapMap 

II (release 22). Starting from the most significant SNP, all SNPs with r2 > 0.7 within 250 kb of it were 

removed and the step repeated for the next best available SNP. Using the LD-thinned SNP list, SNP-to-

gene mapping, gene ranking and GSEA were repeated as described above. 

 Second, to replicate significant findings from our primary analysis, we used an independent data 

set from the Collaborative Oncological Gene-environment Study (COGS). The COGS data set included 

7,035 serous EOC cases and 21,693 controls of European descent after exclusion of overlap with the 

samples used in the primary analysis (Supplementary Table S1). These were genotyped using the iCOGS 

custom array (1) and imputed into the 1000 Genomes March 2012 EUR reference panel (Kuchenbaecker 

et al., under review). The imputed data set was filtered to retain 7,768,381 SNPs with minor allele 

frequency > 0.03 for consistency with the GWAS meta-analysis. SNP-to-gene mapping (without LD-

based clumping), gene ranking and GSEA were repeated as described above. 
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Analysis of combined network 

 

 The “leading-edge” subsets of genes from all co-expression networks that were significant in the 

primary analysis were combined into a single network. The leading-edge subset is the core of a gene set 

or network that drives its enrichment signal. It is defined as those members of the network that are ranked 

higher than the position in the ranked gene list where the network enrichment score is maximum (30). 

Subsequent analyses were conducted on genes in the combined network. 

 First, we input the genes to the Disease Association Protein-Protein Link Evaluator (DAPPLE, 

v1.0) (33). DAPPLE uses a database of 169,810 well-established pairwise interactions between 12,793 

proteins to connect input proteins (genes) directly or indirectly via a single protein not in the input. 

Biologically meaningful networks are more connected than random ones and DAPPLE tests the 

significance of indirect connectivity in the resultant network using permutation.  

 Second, we measured co-expression between each TF gene that was the hub of a significant 

network in the primary analysis and 17,255 other genes with expression levels profiled in the 245-sample 

Australian Ovarian Cancer Study (AOCS) serous EOC microarray data set (GSE9899) (34,35) using MI 

calculated by ARACNE. All 17,255 genes were ranked based on the strength of their co-expression with 

each hub TF. For each hub TF, we then counted the number of genes co-expressed with it in the 

combined network that were also observed among the top (strongest) 1% and top 10% of co-expression 

interactions for the TF in the AOCS data set as arbitrary estimates of tissue-specific replication of these 

co-expression-derived interactions. 

 Third, we used PSCAN (v1.2.2) (36) to test overrepresentation of known TF binding motifs from 

TRANSFAC (Human) (37) up to 1 kb upstream of transcription start sites of genes in the combined 

network. HOXB and HOXD motifs were absent in PSCAN but some homeodomain motifs were 

represented. 
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Results 

 

The network-based analytical strategy we used to integrate serous EOC GWAS and gene 

expression data sets is outlined in Figure 1. A total of 29 TF genes were located within 1 Mb of the top 

risk-associated SNP at seven of the 12 known genome-wide significant serous EOC risk loci (Table 1). Of 

these, four TFs were not represented in the TCGA data set used in this study and could not be evaluated 

further (Table 1). Computing pairwise mutual information between the somatic expression levels of each 

remaining TF gene (fixed as a hub) and the 11,863 other genes in the TCGA data set using an adaptive 

partitioning procedure with a Bonferroni-adjusted threshold of P < 0.01 to retain only the most strongly 

co-expressed genes yielded 25 hub-and-spoke type networks ranging in size from 6 to 1,953 genes. 

Fourteen TF genes from five risk loci were hubs of co-expression networks that included between 17 and 

368 genes placing them in the gene set size range (15 to 500 genes) optimal for GSEA (Tables 1 and 2). A 

total of 689,882 of the approximately 2.5 million SNPs from the serous EOC GWAS meta-analysis were 

located within the boundaries of 10,693 of the 11,864 genes represented in the TCGA data. These genes 

were ranked in descending order using the negative logarithm (base 10) of the modified Sidak-corrected 

minimum P-value among all SNPs in each gene. 

Six of the 14 networks tested by GSEA (with hubs HOXB2, HOXB7, HOXB6, and HOXB5 at 

17q21.32, and hubs HOXD3 and HOXD1 at 2q31) were significantly enriched for genes that ranked high 

for their association with serous EOC risk (GSEA P < 0.05 and FDR < 0.05; Table 2). The significant 

networks demonstrated between 1.5- and 8-fold enrichment for genes from the top 5% of the ranked list 

as compared to expectation (Table 2). Supplementary Table S2 lists the genes in each significant network. 

The six networks identified by the primary analysis remained significant in replication analysis 

using the linkage disequilibrium-thinned SNP list indicating that the primary GSEA signals were not 

being driven by strongly correlated SNPs in closely spaced genes (Supplementary Table S3). All six 

networks were also significantly associated (P = 0.03 to 4×10-4) with serous EOC risk in replication 

analysis using the independent COGS data set (Supplementary Table S4). Next, we observed that 33 
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genes were shared by more than one of the six networks. Further, 18 genes across the six networks were 

located less than 1 Mb from the most significantly-associated SNPs at the 2q31 and 17q21.32 risk loci. To 

eliminate potential inflation of the GSEA signal due to genes co-expressed locally with the hub TF genes 

anchoring the significant networks, we pooled the 249 genes in the six original networks and removed the 

18 genes at 2q31 and 17q21.32. We also counted the overlapping genes only once in the pooled network. 

The result was a set of 174 genes of which 170 were covered by SNPs in the COGS data set. This filtered 

set was also significantly associated with serous EOC risk in GSEA using the ranked gene list derived 

from the COGS data (P = 0.007). A secondary GSEA run with less stringent parameters that allowed 

inclusion of the 24 co-expression networks with more than 10 genes (including the 10 previously 

excluded networks containing > 500 genes) did not identify any additional significant networks at the P < 

0.05 and FDR < 0.05 threshold (Supplementary Table S5). Supplementary Table S6 shows differences in 

the number of genes from the TCGA data set covered by intragenic SNPs in the ranked lists generated 

from the GWAS meta-analysis, LD-thinned, and COGS data sets. 

Given that all networks significant in the primary analysis were centered on hub TFs from the 

HOX gene family and the observation that some of their targets were shared, we merged the leading edge 

subsets (i.e., the genes underlying the GSEA signal) from each of the six networks. This yielded a 

combined network of 50 non-redundant genes most strongly associated with serous EOC risk and 81 

interactions between them (Figure 2). The 50 genes were submitted as input to the web-based tool, 

DAPPLE, to determine if they demonstrate significant connectivity at the protein-protein interaction (PPI) 

level, a frequent characteristic of disease associated networks (38). DAPPLE connected the proteins 

encoded by the genes using a database of high-confidence PPIs, allowing for connections between input 

genes/proteins that were either direct or indirect via a single intermediate protein not in the input group. 

Two PPI networks were formed (Supplementary Figure S2), with the larger network involving 29 of the 

50 input genes/proteins. Compared to 10,000 permuted networks with similar underlying topology, the 

input proteins were more likely to be connected to each other indirectly (through a single intermediate 

protein) than expected by chance alone (P = 0.01). Next, we evaluated whether the genes co-expressed 
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with the hub TF genes in the combined network were more likely to be among the genes most strongly 

co-expressed with the same TFs in an independent microarray data set from the Australian Ovarian 

Cancer Study. All interactions in the combined network between a hub TF gene and another HOX cluster 

gene and 25/44 (57%) hub TF and non-HOX cluster gene interactions were among the top 10% of 

interactions for the corresponding hub TF in the AOCS data set (for HOX non-HOX interactions, 

binomial test P = 2×10-14). In fact, 32/37 (86%) HOX-HOX and 13/44 (30%) HOX-non-HOX interactions 

were seen at a more stringent top 1% level (for HOX non-HOX interactions, binomial test P = 4×10-16). 

HOX-HOX interactions were analyzed separately since HOX cluster members are already known to 

interact with each other (39). Finally, we assessed enrichment of known TF binding motifs up to 1 kb 

upstream of the 40 non-HOX cluster genes in the combined network using the online tool PSCAN to look 

for possible overrepresentation of the few homeodomain motifs that are well established. The binding 

motif for the cooperative homeodomain TFs, HOX-A9-MEIS1, was the second most overrepresented 

among the 40 non-HOX cluster genes in the combined network (P = 0.008), second only to the motif for 

SPZ1 (P = 0.006). Thus, the AOCS data set and the PSCAN tool further supported the TF-target gene 

interactions observed in the combined network. 
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Discussion 

 

 In this study, we used network analysis to integrate TCGA gene expression data with GWAS 

meta-analysis summary findings to identify six networks significantly associated with serous EOC risk 

and replicated our results using the independent COGS data set. Network construction was guided by the 

premise that TF genes near genome-wide significant serous EOC risk SNPs may be the functional targets 

of these SNPs. The TFs may regulate pathways of target genes, represented by genes strongly co-

expressed with each TF gene that are, in turn, enriched for SNPs nominally associated with serous EOC 

susceptibility. The product of the multi-step analysis presented here is a combined network of 50 genes 

and 81 interactions (Figure 2). A significant proportion of these interactions were further supported by co-

expression analysis in the independent AOCS microarray data set. 

Hub TF genes of the six significant networks and the genes in their combined network suggest 

that specific members of the HOXD and HOXB clusters potentially mediate the effects of the 2q31 and 

17q21.32 serous EOC risk loci, respectively. While this analysis was ongoing, a parallel comprehensive 

functional follow-up of the 2q31 locus revealed that SNPs at this locus impact serous EOC development 

through HOXD9 (Lawrenson et al., submitted). HOXD9 could not be evaluated as a hub TF using GSEA 

since its network contained just six genes (including HOXD1 and HOXD3) at the stringent cut-off we 

used for identifying only the most strongly co-expressed genes. However, it is worth noting that HOXD9 

is a leading edge or core member of two of the significant networks identified (centered on HOXD1 and 

HOXD3) and therefore appears in the combined network uncovered by this analysis (Figure 2). Thus, 

HOXD9 may have a putative master regulatory role upstream of HOXD1 and HOXD3 in serous EOC 

development. At 17q21.32, HOXB5, HOXB6 and HOXB7 have collectively been implicated in early 

carcinogenic reprogramming of transcription in epithelial cells (40). HOXB7 is also known to be involved 

in DNA repair catalyzed by poly(ADP-ribose) polymerase (41). HOXB7 expression is elevated in ovarian 

cancer and overexpression is associated with marked proliferation of immortalized normal ovarian surface 

epithelial cells by upregulation of basic fibroblast growth factor (42). Hypermethylation of HOXB5, a 
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possible tumor suppressor, is also a frequent somatic change reported in ovarian cancer and 

corresponding in vitro models (43). Overall, the identification of a novel HOX-centric pathway is 

consistent with the emerging role of developmental genes in ovarian carcinogenesis (44). Other members 

of the HOX gene family have previously been shown to guide both reproductive tract patterning during 

early development and epithelial ovarian cancer cellular morphology (45). 

A striking feature of the combined network is that it connects genes at five of the 12 genome-

wide significant serous EOC risk loci. This is particularly compelling because only TF genes from two of 

these loci (2q31 and 17q21.32) were used as seed hubs for the six significant networks that underlie the 

combined network. The other three were picked up by the combination of co-expression and enrichment 

analysis, that is, without any a priori input. A small number of genes contribute to the combined network 

from the three non-hub loci in this group of five: BNC2 (HOXD1 network member) at 9p22; HNF1B 

(HOXB6 and HOXB7 networks) and LHX1 (HOXD1 network) at 17q12; and ABHD8 (HOXB7 network) 

at 19p13. Serous EOC risk SNPs at 17q12 have previously been associated with significantly higher 

HNF1B methylation (46). Likewise, the SNPs at the 9p22 risk locus are likely to represent multiple 

transcriptional regulatory elements acting on BNC2 based on an integrated functional analysis (Buckley et 

al., in preparation). Finally, functional work on 19p13 indicates that ABHD8 is the most likely target of 

serous EOC and breast cancer risk SNPs at this locus (Lawrenson et al., in preparation) (4,47). Taken 

together, these findings for ABHD8, HNF1B and BNC2 underscore the power of integrating GWAS with 

tissue-specific gene expression data in a network paradigm to prioritize the genes likely to be regulated by 

genome-wide significant risk variants for downstream functional characterization (23). 

The addition of orthogonal biological priors to statistical evidence from GWAS may also unravel 

interesting targets at loci that are nominally significant but fail to reach genome-wide significance. For 

example, the oncogene WT1 that appears in the combined network is a highly specific serous ovarian 

lineage marker (48). The top SNP in this gene has P = 0.012 in the GWAS meta-analysis that strengthens 

to P = 0.0078 in the COGS data set. However, while it is intriguing to identify such possible functional 

targets associated with serous EOC susceptibility, it will require extensive experimental validation to 
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confirm their role in disease predisposition. Profiling of the relevant HOXB and HOXD transcription 

factor binding in fallopian tube and ovarian surface epithelial cells and in ovarian cancer cells may 

identifying binding sites containing serous EOC risk SNPs analogous to what has been done to establish 

the role of other TFs in breast cancer susceptibility (49,50). The emergence of genome editing 

technologies such as the CRISPR-Cas9 system may further enable modification of risk SNPs in these 

HOX binding sites to modulate and confirm the role of the HOX target genes in cellular models that 

reflect early stages of ovarian cancer (51). 

The observation that 29 of the 50 genes in the combined network were also part of a protein-

protein interaction network with significant indirect connectivity suggests that this gene network is 

biologically coherent. The failure to capture the remaining 21 co-expressed genes in the PPI network also 

hints that some interactions are perhaps tissue-specific and/or specific to the transcriptome since 

DAPPLE, the tool used for the PPI network analysis, relies on protein interactions found in different 

tissues (33). 

 There are limitations inherent in this study. GSEA is optimized to detect enrichment in gene sets 

or networks containing between 15 and 500 genes. Although we applied it to the 10 networks containing 

more than 500 genes in a secondary analysis, our failure to detect any additional significant networks 

among the very large networks does not rule out the presence of genuine enrichment in these networks. 

Co-expression is likely not the perfect proxy for defining TF targets and the risk locus-TF gene and TF-

target gene interactions suggested by this analysis warrant follow-up. 

In conclusion, by identifying a HOX-centric gene co-expression network associated with serous 

EOC risk, this report highlights the potential of network analysis to combine GWAS with other molecular 

data to offer insights into the mechanisms linking population studies with cancer biology. 
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Tables 

 

Table 1. Summary of 12 genome-wide significant serous EOC risk loci 

       

Locus SNP Chr Position OR 95% CI TF genes < 1 Mb away from SNP 

2q31 rs711830 2 177,037,311 1.12 1.08-1.15 HOXD1, HOXD3, HOXD4a,  

      HOXD8a, HOXD9b, HOXD10, 

      HOXD11b, HOXD12b, HOXD13b 

3q25 c3_pos157917010 3 157,917,010 1.44 1.35-1.54 SHOX2 

4q32c rs4691139 4 165,908,721 1.2 1.17-1.38  

5p15 rs10069690 5 1,279,790 1.09 1.05-1.13 IRX4b 

8q21 rs11782652 8 82,653,644 1.19 1.12-1.26  

8q24 rs7814937 8 129,541,475 1.18 1.13-1.24 MYC 

9p22 rs3814113 9 16,915,021 1.21 1.17-1.25  

10p12 rs7084454 10 21,821,274 1.1 1.06-1.14  

17q12 rs7405776 17 36,093,022 1.12 1.08-1.17 HNF1Bb 

17q21.31 rs2077606 17 43,529,293 1.15 1.12-1.19  

17q21.32 rs7218345 17 46,502,917 1.12 1.08-1.16 HOXB1b, HOXB2, HOXB3, 

      HOXB4a, HOXB5, HOXB6, HOXB7 

      HOXB8b, HOXB9b, HOXB13b, 

      SP2, SP6a, TBX21, NFE2L1 

19p13 rs8170 19 17,389,704 1.14 1.09-1.17 KLF2b, NR2F6 

aTranscription factor gene was not represented in the TCGA data set.  
bTranscription factor gene excluded because it was the hub of a co-expression network with < 15 or > 500 genes. 
cAssociated with serous EOC risk in BRCA1 mutation carriers only (7). 
Abbreviations: Chr: chromosome; OR: odds ratio; CI: confidence intervals. 
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Table 2. GSEA results for 14 serous EOC risk locus TF-centric gene co-expression networksa 

       

Serous EOC Network hub Co-expression Normalized Nominal FDR Top 5% 

risk locus TF gene network size enrichment P-value q-value fold enrichment 

17q21.32 HOXB2 17 1.64 2.0E-05b 4.0E-05b 8.00 

17q21.32 HOXB7 31 1.62 0b 5.0E-05b 4.50 

17q21.32 HOXB6 33 1.43 5.0E-04 3.0E-03 4.50 

2q31 HOXD3 52 1.39 5.0E-04 4.9E-03 3.67 

17q21.32 HOXB5 30 1.37 4.0E-03 5.1E-03 3.00 

2q31 HOXD1 69 1.25 8.1E-03 0.04 1.50 

17q21.32 SP2 134 1.18 7.7E-03 0.09 1.57 

17q21.32 HOXB3 103 1.18 0.02 0.08 2.17 

17q21.32 TBX21 46 1.10 0.19 0.22 1.33 

17q21.32 NFE2L1 315 1.06 0.12 0.35 1.06 

19p13 NR2F6 312 1.04 0.23 0.43 1.50 

8q24 MYC 130 1.02 0.37 0.45 0.71 

3q25 SHOX2 368 1.00 0.53 0.56 0.95 

2q31 HOXD10 85 1.00 0.52 0.52 0.80 

aHub-and-spoke networks containing 15 to 500 genes constructed from serous EOC TCGA data. 

bFor 50,000 permutations, since nominal P-value = 0 at the default number of 10,000 permutations. 

 

 

 

     
 

 

 

Figure Legends 
 

Figure 1. Outline of steps involved in the integrated analysis of GWAS and tissue-specific expression 

data sets to identify, replicate and computationally follow-up gene networks associated with serous EOC 

susceptibility. 

 

Figure 2. Cytoscape visualization of the combined network. Hub TF genes of the six significant networks 

underlying the combined network are outlined in green. Candidate genes at genome-wide significant risk 

loci other than the input hub loci (2q31 and 17q21.32) are outlined in blue. Nodes are colored according 

to the P-value of the most significant intragenic SNP in the GWAS meta-analysis (uncorrected for the 

number of intragenic SNPs). Diamond shaped genes have P < 0.05 after applying the modified Sidak 

correction. 


