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Key Points 

 Clinical studies are designed to provide evidence on average treatment effects. 

 To tailor treatment towards individual patients, the presence or absence of 

treatment effect modification needs to be systematically elucidated.  

 Generalizability of treatment effects can be tested within the framework of 

equivalence testing.  

 The type of patient, the presence, the magnitude, and the number of effect 

modifiers determines whether no further analyses, univariable subgroup 

analyses, or multivariable subgroup analyses may need to be performed.   
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Abstract 

Applying results from clinical studies to individual patients can be a difficult process. 

Using the concept of treatment effect modification (also referred to as interaction), 

defined as a difference in treatment response between patient groups, we discuss 

whether and how treatment effects can be tailored to better meet patients’ needs. First 

we argue that, contrary to how most studies are designed, treatment effect modification 

should be expected. Second, given this expected heterogeneity, a small number of 

clinically relevant subgroups should be a priori selected, depending on the expected 

magnitude of effect modification, and prevalence of the patient type. Third, by defining 

generalizability as the absence of treatment effect modification we show that 

generalizability can be evaluated within the usual statistical framework of equivalence 

testing. Fourth, when equivalence cannot be confirmed, we address the need for further 

analyses, and studies tailoring treatment towards groups of patients with similar 

response to treatment. Fifth, we argue that to properly frame, the entire body of 

evidence on effect modification should be quantified in a prior probability.   
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Background 

Before launching a new treatment on the market, medical interventions and most notably 

drugs, are typically evaluated in randomized clinical trials (RCTs) which primarily focus 

on the intended effects of interventions. Sometimes, RCTs can also provide information 

on relatively common unintended (i.e. adverse) effects1-3. After marketing, intervention 

effects (both intended and unintended) are often monitored using nonrandomized 

studies (e.g., case-control or cohort studies), supplemented by post-launch RCTs when 

needed. These studies are usually designed to provide information on the average 

intervention effect. Therefore, differences in treatment effects between a wide range of 

potential users will often remain undetected4-7.  

 

When treatment effects differ between patients, this is referred to as effect modification, 

interaction, or heterogeneity of treatment effects. Consider a hypothetical trial (Table 1) 

that includes patients with diabetes (40%) and patients without (60%). The risk ratio 

(RR) of the intervention effect on the 5-years incidence of stroke, differs between 

patients with and without diabetes: e.g. RR= 0.75 among patients with diabetes and RR 

= 0.63 among patients without diabetes. The observed (average) intervention effect is a 

weighted average of the effects among patients with and patients without diabetes: RR = 

0.68. In this example, the intervention effect differs between subgroups based on 

diabetes status, i.e., there is effect modification by diabetes. Patients may be treated 

suboptimally when effect modification is not recognized. 

 

Throughout this paper, we will use the term effect modification, interaction and 

heterogeneity interchangeably. Some reserve the term interaction for the specific 
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situation of heterogeneity of treatment effect when a factor biologically interacts with the 

treatment and effect modification for the situation where it does not8. This distinction can 

usually not be determined analytically and will not be made here either. Also, it has been 

recognized that the presence of effect modification depends on the effect measure 

chosen9-11. In the example RCT (table 1) there was interaction on the RR (and on the 

risk difference [RD]) scale, however using the odds ratio (OR) the effect of treatment 

was 0.25, in both diabetic and non-diabetic patients12. Effect modification is therefore 

also referred to as effect measure modification. Here, we consider situations where the 

effect measure was selected a priori and thus only consider effect modification of the 

particular effect measure chosen.  

 

In this paper we build upon work by others4;13-15, and use the concept of treatment effect 

modification to discuss how generalizability of treatment effects can evaluated, and, if 

generalizability is absent, how to tailor effects to patients with a more homogenous 

treatment response.  

 

Should treatment effect modification be expected?  

Most clinical studies are not designed to detect treatment effect modification and usually 

assume homogeneity of treatment effects16. Because of this, power to detect interaction 

effects is generally low, and absence of significant interaction effects should not be seen 

as proof for the absence of treatment effect modification (a point we will revisit). Despite 

this expected low power, Poole, Shrier and VanderWeele17 describe that between 34% 

to 47% of the meta-analyses reviewed by Engels et.al.18, Deeks19 and Sterne and 

Egger20, rejected homogeneity of treatment effects. This, perhaps unexpected, high 
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percentage of heterogeneity is likely not solely attributable to differences in treatment 

response but may also be explained by between study differences in dosage, adherence 

strategies or co-medication (see Sun et.al.13;21 and Rothwell22, for a more complete 

discussion).  

 

Given the above mentioned problems of empirical evidence for treatment effect 

heterogeneity we refer to theoretical work of Greenland who showed that if both 

treatment and a potential effect modifier have an effect on the outcome, treatment effect 

modification must be present on at least one effect measure scale23 (e.g., RD or RR). 

Given that most human diseases are complex in nature, multiple factors will be involved 

in a wide range of endpoints. Combining this with the tendency of more representative 

studies24;25, and therefore more heterogeneous patient samples, we feel that some 

degree of treatment effect modification should be expected in most studies in which 

treatment has an effect on an outcome.. Whether this effect modification is relevant for 

clinical practice, is a difficult question, which should be explored case by case.  

 

Which potential effect modifiers to pre-specify.  

An essential question when designing a study is for whom we want to assess the effects 

of treatment, whether treatment effects may differ, and if so what defines the subgroups 

for which treatment effects may differ. To pre-specify potential effect modifier it seems 

sensible to take account of any prior knowledge of the biological mechanism, potential 

patient benefit, the frequency certain patients are encountered in practice, and the costs 

involved in measuring a patient characteristic. When e.g. comorbidity is a potential effect 

modifier, it seems more reasonable to assess whether relatively common diseases, such 
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as diabetes, modify the effect of treatment. Discussions on the choice of subgroups 

should focus on patients included but also certainly on patients not included in a (future) 

study26.  

 

Too often, however, discussions on generalizability or the absence of treatment effect 

modification revolve around the question whether a patient sample is representative of 

the target population or the “average” patient27. Representativeness however, plays only 

a minor role in applying treatment effects to individuals14;25;28;29. In the absence of effect 

modification the same treatment effect applies to every patient subgroup, and thus, 

representativeness is irrelevant. In the presence of treatment effect modification, due to 

unequal subgroup sizes, a representative sample will more often than not preclude 

detection of treatment effect modification. Hence, representativeness often results in 

wrongfully assuming homogeneity of treatment effects and thus possibly in patients 

being treated suboptimally. A more fruitful approach when expecting treatment effect 

modification is to design a study to oversample the pre-specified patient subgroups to 

ensure sufficient power to detect interaction or its absence.  

 

Even if one is interested in population average treatment effect30 one should be aware 

that in the presence of treatment effect modification, small differences between 

populations can result in markedly different main treatment effects31. Assume, for 

example that, in a population aged 65, the main treatment effect is 1.00 (RR). In the 

presence of an interaction effect of 0.95 (RR) per year, the treatment effect in a 

population aged 70 will be 0.77 (RR) [i.e., 𝑒ln(1.00)+ln(0.95)∗(70−65) ≈ 0.77]. Hence, unless 
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treatment effect modification is minimal, population average treatment effects are not 

expected to generalize to other settings.  

 

Thus, when discussing generalizability or treatment effect modification, it is essential to 

define the patient group(s) of interest. Such subgroups should be chosen based on 

biological plausibility, potential patient benefit, subgroup frequency, and measurement 

costs, this should, however, not be guided by the issue of representativeness.  

 

When are treatment effects generalizable? 

When interaction effects can be quantified with sufficient precision to exclude clinically 

relevant treatment effect modification, the main (i.e. average) treatment effect equally 

applies to all subjects studied and - because there is no direct reason to believe the 

treatment acts differently in other subjects – this treatment effect is possibly 

generalizable to, and perhaps beyond, the population included in the study30;31. As 

stated previously non-significant interaction tests are not sufficient to claim 

generalizability; to quote Altman32 “absence of evidence is not evidence of absence”. 

Instead to ‘prove’ generalizability, so called equivalence tests should be used. 

 

Recognizing that the strict null-hypothesis (i.e., H0: μ0 = null) probably never holds, tests 

of equivalence determine margins between which differences in treatment effect 

estimates are small enough to be deemed clinically irrelevant33;34. When the treatment 

effect estimate and its confidence interval fall between these margins, equivalence is 

‘proven’ (Figure 1). Equivalence tests can be applied to interactions effects by 

determining a margin around the neutral interaction effect or around the subgroup 
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specific effects, and testing if both the point estimates and their confidence intervals fall 

within this margin. For example, let 𝑑 be the predefined margin of equivalence, 𝛿𝑖 the 

effect for the 𝑖𝑡ℎ subgroup, when 𝑖 = {0,1} the interaction effects equals 𝜃 = 𝛿0 − 𝛿1, 𝜎𝑖 

the subgroup specific standard errors of 𝛿𝑖, and 𝜎𝜃 the standard error of the interaction 

effect. In this case an interaction effect is sufficiently absent when (𝛿𝑖 − 𝑧 ∗ 𝜎𝑖, 𝛿𝑖 + 𝑧 ∗

𝜎𝑖) ⊂ (−𝑑, 𝑑) is true for all subgroup effects or (𝜃 − 𝑧 ∗ 𝜎𝜃, 𝜃 + 𝑧 ∗ 𝜎𝜃) ⊂ (−𝑑, 𝑑), where 

𝑧 =  𝜙−1 (1 −
𝛼

2𝑘
), with typically 𝛼 = 0.05 and 𝑘 equalling the number of subgroups or 1 if 

using an interaction effect. These procedures test against the following null-hypotheses 

𝐻0: |𝛿𝑖| < 𝑑 and 𝐻0: |𝜃| < 𝑑. The subgroup specific equivalence test is appealing 

because it requires complete equivalence in every subgroup, however as shown in 

Figure 2 power is likely low. Using the same margin as for the subgroup specific effects, 

an interaction equivalence test is more powerful (Figure 2). However, when using the 

interaction equivalence test with more than 2 underlying subgroups, some subgroup 

specific effects may violate the equivalence margins which may be undesirable. A clear 

benefit of the interaction equivalence tests over its subgroup specific counter parts is 

that it straightforwardly extends to linear effect modifiers (e.g., age), preventing arbitrary 

categorizations.  

 

Detecting treatment effect modification.  

Effect modification can be detected by testing whether the interaction effect differs from 

zero35;36. However, such interaction tests are renowned for their lack of power (i.e., the 

probability of correctly concluding that an interaction exists) which may be compounded 

by large type 1 errors (i.e., the probability of falsely concluding that an interaction exists) 
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when the data are sparse10;37-43. Note, data sparseness is intuitively defined as a small 

expected cell count but generalizes to continuous data with low densities (or 

frequencies) at certain values. Often this underperformance of interaction tests is viewed 

as inevitable; however, this underperformance is merely a result of a lack of a proper 

design to detect interaction effect; often resulting in sparse data. 

 

For more definitive conclusions on the absence or presence of treatment effect 

modification, the current approach to interaction testing needs improvement. A first step 

is to more actively share and pool individual patient data to increase the effective sample 

size, power, and by decreasing data sparseness, ensuring nominal type 1 error rates for 

interaction tests31;44;45.  

 

Second, for interaction tests to be anything but exploratory, interaction tests should not 

only be pre-specified but also include proper sample size calculations and sampling 

strategies (e.g., equally sized subgroups); ensuring appropriate power and type 1 error 

rates. One attractive idea is to incorporate interaction tests using adaptive trial designs46-

48. For example, consider an RCT of a particular treatment, conducted within a 

homogenous group of patients. If during interim analysis there is enough evidence to 

expect that the treatment is effective (i.e. there is a beneficial average effect), the 

second study period (the period following the interim analysis) can be used to enrich the 

patient sample to explore heterogeneity between pre-specified clinically important 

patient subgroups. We recognize that this contrasts with the more usual approach of 

focusing on a single promising subgroup after interim46;49. Here we actually reverse the 

usual approach; we start with a subgroup where we expect treatment to be most 
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beneficial and in the second stage (after interim) explore consistency of this treatment 

effect across important subgroups.  

 

Third, to increase the interpretability of interaction tests (or any test) we feel it is 

essential to a priori define the prior probability of rejecting a test. For example let’s 

assume that data from multiple well designed studies are available, ensuring sufficient 

power (let’s say 70%, or type 2 error rate of 0.30) to reject an interaction test using a 

statistical significance level (alpha) of 0.05. Suppose two different drug compounds are 

evaluated, for the first compound we know that for a similar drug 1% of interaction test 

were true positives, for the second compound this was 25%. In the first case the 

probability that a rejected interaction test reflects a true positive equals 1 −

𝛼(1−𝑝𝑟𝑖𝑜𝑟)

𝛼(1−𝑝𝑟𝑖𝑜𝑟)+𝑝𝑟𝑖𝑜𝑟(1−𝛽)
=  1 −

0.05(1−0.01)

0.05(1−0.01)+0.01(1−0.30)
= 0.13, while for the second compound 

this equals 0.82. Quantifying a prior probability is of course inherently subjective an 

issue which we address later.  

 

How to personalize treatment effects. 

We suggest that after one identifies important potential effect modifiers (based on the 

criteria discussed), and quantifying the available prior knowledge, one explores if 

generalizability can be shown. If generalizability cannot be proven, we propose a 

thorough multivariable analyses to explore for which patients treatment needs to be 

modified.  
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To explore generalizability one first needs to define regions of equivalence as discussed 

above. After which pre-specified interaction tests can be compared against this region. 

In itself pre-specification does not significantly increase power to detect interactions 

unless proper design steps are taken (e.g., oversampling of subgroups)50. We suggest 

that, regardless of pre-specification or not, these interaction tests are deemed 

exploratory unless steps are made to quantify the prior evidence, ensure sufficient 

sample size, power, and type 1 error levels.  

 

After determining the amount of within study heterogeneity, and assuming multiple 

studies exist, between study heterogeneity should be explored, for example by 

comparing  aggregated results from different studies44;51. However, attributing 

differences in treatment effects between studies to differences in baseline characteristics 

or study design, using for example meta-regression, may result in (ecological) bias. 

Therefore, significant interaction effects found in aggregated meta-analyses should 

always be confirmed using individual patient data (IPD) or independently replicated.  

 

If, after performing the above analyses, absence of effect modification cannot be 

excluded with confidence, confirmatory analyses are needed, tailoring treatment effects 

towards groups or individuals. If treatment homogeneity is rejected one may be tempted 

to treat this as a true positive results. However, as with any discovery, replicating results 

is essential, hence results on interaction effects should be independently confirmed. If 

the results are replicated, it seems sensible to finally combined data from both the 

confirmatory and exploratory steps to increase precision in the subgroup specific effect 
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estimates of the treatment52, and use these to tailor treatment (e.g., RR = 0. 75 for 

diabetes patients versus RR = 0.63 in patients without diabetes).  

 

Recently, subgroup-specific estimates based on a single variable (i.e., univariable 

interactions) have been criticized15;53-56. Among other reasons, critics recognized that 

patients likely differ on more than one characteristic (i.e., there is unexplained treatment 

effect modification). A straightforward solution is to include multiple interaction tests, for 

example exploring whether treatment effects differ by diabetes, gender, and age. 

However, depending on the number of subgroups (and type, e.g., binary or not), 

exploring higher order interactions will increase data sparseness, which may 

dramatically reduce power and increase type 1 error rates10;39-42;57-62.  

 

To (partially) solve this, a two-step multivariable method has been suggested. First, a 

multivariable risk prediction model is developed, predicting the risk of the outcome if a 

subjects is not treated63;64. For example, using a logistic model, the predicted risk equals 

𝑙𝑜𝑔𝑖𝑡(�̂�𝑖) = 𝑙𝑜𝑔𝑖𝑡(𝑃𝑟𝑜𝑏[𝑌 = 1|𝑍]) =  �̂�0 +  ∑ �̂�𝑗𝑧𝑖𝑗
𝑘
𝑗=1  [equation 1], where Z equals a 

𝑛 𝑏𝑦 𝑘 matrix and Y a 𝑛 𝑏𝑦 1 column matrix. In the second step, the predicted risk is 

multiplied by a relative treatment effect estimate (e.g. a risk ratio) 56. Assume, for 

example, that in our previous trial the multivariable 5-years predicted risk of stroke 

without treatment equals 
1

1+𝑒−𝑙𝑜𝑔𝑖𝑡(�̂�𝑖) =
1

1+𝑒2.20
= 0.10, for a particular patient with 

diabetes. Based on the RR of 0.75, treating this patient will result in a predicted 5 year 

risk of 0.075 (i.e., 0.75 * 0.10 = 0.075) and in an individualized RD of 0.100 – 0.075 = 
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0.025; in the general case the RD can be individualized using equation 2: 𝑅𝐷𝑖 =

𝑙𝑜𝑔𝑖𝑡(�̂�𝑖)
−1 ∗ 𝑅𝑅.  

 

While this multivariable approach to subgroup analysis is indeed an improvement, one 

should be aware, this approach is only valid if the relative treatment effect measure 

(e.g., the RR) is homogenous across different levels of the predicted risk. If unknown to 

the researcher, the relative treatment effect measure is in fact heterogeneous, applying 

the above approach may falsely induce treatment effect modification on the risk 

difference scale. We propose that when the above approach is applied, this should be 

combined by the following sensitivity analysis exploring 1) if the relative effect measure 

is heterogeneous across the range of predicted risks and 2) to what extend the RD is 

truly heterogeneous across the predicted risk. Following the risk stratification approach 

by Kent and Hayward 15 and others we suggest subdivide the subjects sample based on  

quantiles of the predicted risk (equation 1) and estimate quantile specific treatment 

effects (e.g., RR and RD)15 to explore if the treatment effects changes with increasing 

risk. Using this approach one can judge if the relative effect measure is fairly 

homogenous across the predicted risk and if individualized treatment effects on the RD 

scale (equation 2) agree with the quantile specific treatment effects on RD scale. As with 

any testing procedure one should be careful not to over interpret non-significant 

interaction tests results, because, as addressed before ,this does not imply 

homogeneity. To increase power and only if quantile specific treatment estimates 

linearly change one could use the predicted risk as a linear term in a statistical model 

and include a treatment by predicted risk interaction term65. Depending on the amount of 

linearity such a model is expected to be more precise and powerful than the quantile 
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specific approach. A remaining issue with the above described approaches is that, 

typically, the predicted risk is treated as if it was observed without error, possibly 

erroneously decreasing the standard error of any test66. A second more general 

comment is  that all the discussed multivariable approaches only allow for individualized 

treatment effect estimates in so far as variables are related to the outcome. A strategy to 

include variables unrelated with the outcome in a multivariable interaction test is to use 

unsupervised cluster analysis to identify multivariable patient clusters, and test if 

treatment effectiveness differs across cluster memberships67-69.  

 

Quantifying the prior probability of treatment effect modification. 

Throughout the previous sections we frequently emphasized the need to quantify the 

prior probability for the presence of an interaction. Here we detail what to base this prior 

probability on.  

 

As stated previously, RCTs are the gold standard in intervention research. Despite this, 

we feel strongly against a priori deciding to quantifying the prior probability solely on 

RCT results. RCTs are not initiated at random. Instead, RCTs are initiated based on 

information from basic experiments, genetic studies, nonrandomized studies and/or 

previous RCTs, therefore to properly quantify the prior knowledge these sources should 

all be considered. Depending, however, on the potential risk of bias, taking account of 

the endpoints of interest, and the general potential risk of an intervention, these multiple 

source of prior knowledge should be reweighted. In some cases, for example, when 

exploring the intended effect of statins on a myocardial infraction, one may choose to 

weight non-RCT data by zero. This reweighing or elimination of data should obviously be 
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clearly presented and justified. We appreciate that this introduces a certain amount of 

subjectivity in analyses that may seem otherwise objective. However, this is no different 

than excluding RCTs at perceived high risk of bias from a meta-analysis, a thing which 

is customarily (although not without discussion) done in, for example, cochrane reviews.  

 

Summary  

In the present commentary we have argued that detecting treatment effect modification 

is essential to bridge the gap between results from clinical studies and treating 

individuals in daily practice. We addressed strategies to detect effect modification and 

used these in a framework to assess if there is a need for more individualized treatment 

effects, and estimate this in confirmatory analyses.  

 

We conclude with the following recommendations. First, treatment effect modification 

should be formally assessed using interaction tests. Second, pre-specified subgroups 

should be selected based on biological plausibility, prevalence of the patient type and 

cost-effectiveness of determining the patient characteristic. Third, before tailoring 

treatment effects to patient subgroups one should first consider if generalizability or the 

absence of treatment effect modification can be proven, using e.g., an equivalence test. 

Fourth, for interaction tests to be anything but exploratory, these should not only be pre-

specified, but include a quantification of the prior knowledge, use proper sample size 

calculations and sampling strategies to ensure appropriate levels of power and type 1 

error rates (taking account of possible multiple testing). Finally, if after careful 

consideration and sufficient replication, subgroup effects are found to be consistent 

across different studies, this should have an impact in daily clinical practice. What is 
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sufficient evidence, however, should be determined on a case by case basis and 

depends, amongst other things, on the disease, intervention related risks and the 

magnitude of interaction. 
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Tables 

Table 1 Stroke risk by exposure (X) and baseline diabetes (D) status and their interaction on different measurement scales.  

 D = 0 D = 1  

X = 0 0.80 0.89 

X = 1 0.50 0.67 

   

Measure of risk difference 
interaction 

Measure of risk ratio interaction Measure of odds ratio interaction 

0.67 − 0.50 − 0.89 + 0.80 = 0.08  0.67 ∗ 0.80

0.50 ∗ 0.89
= 1.20 

0.67
0.33

∗
0.80
0.20

0.89
0.11

∗
0.50
0.50

= 1.00 
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Figure captions 

 

Figure 1. Examples of equivalence testing using confidence intervals*.  

*Based on Jones et al. 33. 

 

Figure 2. Empirical power of two test for equivalence of treatment effect 

modification*.  

 

* The dashed line with a square symbol indicates power for an equivalence test using an 

interaction effect, the dashed dotted line with the circle symbol indicates power for the 

equivalence test based on subgroup specific effects. Simulated results were based on a 

scenario (1,000 replications) with subjects treated or untreated 𝑗 = {1,0} and exposed or 

unexposed to a potential effect modifier 𝑖 = {1,0}, with the endpoint incidence equaling 

𝑟𝑖𝑗 = {0.20, 0.15, 0.15, 0.10}, and each group of 𝑖𝑗 subjects occurring 1,000 times.  
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