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ABSTRACT

Here, we introduce the RobERt(Robotic Exoplanet Recognition) algorithm for the classification of exoplanetary
emission spectra. Spectral retrieval of exoplanetary atmospheres frequently requires the preselection of molecular/
atomic opacities to be defined by the user. In the era of open-source, automated, and self-sufficient retrieval
algorithms, manual input should be avoided. User dependent input could, in worst-case scenarios, lead to
incomplete models and biases in the retrieval. The RobERtalgorithm is based on deep-belief neural (DBN)
networks trained to accurately recognize molecular signatures for a wide range of planets, atmospheric thermal
profiles, and compositions. Reconstructions of the learned features, also referred to as the “dreams” of the network,
indicate good convergence and an accurate representation of molecular features in the DBN. Using these deep
neural networks, we work toward retrieval algorithms that themselves understand the nature of the observed
spectra, are able to learn from current and past data, and make sensible qualitative preselections of atmospheric
opacities to be used for the quantitative stage of the retrieval process.
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1. INTRODUCTION

The atmospheric retrieval of exoplanetary emission/trans-
mission spectra is a complex undertaking (e.g., Madhusudhan
& Seager 2009; Lee et al. 2011b; Line et al. 2012; Benneke &
Seager 2013; Griffith 2014; Waldmann et al. 2015a, 2015b).
Here, retrieval parameter dimensionality becomes an important
factor to consider and, though desirable, most times allowing
for all known atmospheric species to be fitted is too
computationally expensive. Hence, a user-defined preselection
of atmospheric absorbers/emitters must be made. A “seasoned
user” would make this preselection based on previous
experiences and a qualitative recognition of absorption/
emission features present in the observed spectrum. Here, the
human brain is very good in abstracting previously seen
patterns to unseen circumstances, a desirable feature to be
replicated by machines.

As we move to an era of largely automated retrievals,
through the provision of open-source code to the community
and future ground- and space-based spectroscopic surveys, it is
important to strive toward universally applicable self-sufficient
retrieval algorithms. In an ideal-case scenario, the retrieval suite
would posses recognition and learning capabilities similar to
the “seasoned user” and would not require any auxiliary user
input aside from the observed spectrum itself. In other words,
the program would understand what it is looking at and make a
qualitative preselection of absorbing/emitting atmospheric
species, followed by a quantitative retrieval.

In Waldmann et al. (2015b), we began working toward this
end by introducing a pattern recognition algorithm, Marple.
Based on principal-component analysis (PCA) facial-recogni-
tion approaches, Marpleis able to rapidly sift through large
molecular databases and return a list of the most probable
absorbing species in the observed spectrum. This information
can then be fed to the  -RExatmospheric retrieval code
(Waldmann et al. 2015a, 2015b) for a more quantitative
analysis. Based on intrinsically linear coordinate transforma-
tions, Marpleworks well for transmission spectroscopy where
the temperature–pressure (TP) profile can be assumed to be

isothermal and the transmission approximated by a linear
system.
The emission spectroscopy case is more complicated. Here,

the shape of the spectral features strongly depends on the
varying atmospheric thermal profile as well as varying
molecular abundances. Such a nonlinear system is often poorly
captured by a principal-component approach.
Consequently, we have developed a new neural-network-

based spectroscopic pattern recognition framework, RobER-
t(Robotic Exoplanet Recognition), capable of learning and
abstracting highly nonlinear systems and recognizing spectral
features found in emission spectroscopy.
In this paper, we introduce the concept of deep-belief

networks (DBNs) to the recognition of spectral features,
describe the training set and algorithm used, and discuss
RobERtʼs recognition abilities using simulated spectra.

2. RobERt

RobERtmimics human recognition of spectroscopic
features by using a pre-trained, deep-belief neural network
(Hinton 2006, 2007; Bengio et al. 2007; Le Roux &
Bengio 2010; Montavon et al. 2012; Bianchini & Scar-
selli 2014) at its core. DBNs are multi-layer, nonlinear
transformations of the input data, the emission spectrum in
this case, where each consecutive layer presents a progressively
higher level of abstraction of the underlying features in the
spectrum. These levels of abstraction are learned in an
unsupervised (i.e., autonomous) fashion from a large catalog
of input spectra. Once these features are learned from the data,
a second, supervised learning stage is used to assign the learned
features to their correct labels (e.g., H2O, CH4, etc.).
Neural networks are now commonly used in complex

classification tasks such as image recognition (e.g.,
Krizhevsky et al. 2012; Liu et al. 2014; Wang et al. 2016;
Shen et al. 2015), speech and music recognition (e.g., Hung
et al. 2005; Jaitly & Hinton 2011; Zhang & Wu 2013; Pradeep
& Kumaraswamy 2014), biology (e.g., Head-Gordon &
Stillinger 1993; Plebe 2007; Wu & McLarty 2012; Spencer
et al. 2015), and are finding increased use in the classification
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of galaxies and cosmology (e.g., Collister & Lahav 2004;
Agarwal et al. 2012, 2014; Reis et al. 2012; Karpenka et al.
2013; Dieleman et al. 2015; du Buisson et al. 2015; Ellison
et al. 2015; Huertas-Company et al. 2015).

Whereas an in-depth derivation of DBNs is beyond the scope
of this paper, we will briefly outline its underlying architecture
and implementation. We refer the interested reader to Bengio
(2009), Hinton (2012), and Fischer & Igel (2014) for detailed
derivations.

2.1. Restricted Boltzmann Machines

Figure 1 shows a schematic of the the deep-belief network.
The multi-layer DBN can be constructed from several
Restricted Boltzmann Machines (Freund & Haussler 1992;
Bishop 2006; Le Roux & Bengio 2008; Bengio 2009, 2012;
Lee et al. 2011a; Hinton 2012; Montavon et al. 2012; Fischer &
Igel 2014) with the addition of a logistic regression layer at the
top of the network. The RBM is a two-layer neural network
able to learn the underlying probability distribution over its set
of input values. It represents a particular kind of Markov
Random Field (Davison 2008) consisting of one layer of binary
or Gaussian stochastic visible units (the input data) and one
layer of binary stochastic hidden units. In RBMs, all of the
hidden units are connected to all of the visible units but have no
intra-layer dependence. Hence, all of the hidden units given the
visible units are statistically independent and we can write the
probability of all visible units given all hidden units and
vice versa as the product of the individual probabilities:
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where v and h are the column vectors of the visible and hidden
units, respectively, and i and j are their corresponding indices.
We now want to find a configuration of the hidden layers, h,
that allows us to reconstruct the input, v, with minimal error.
Since v hP ( ∣ ) and h vP ( ∣ ) are factorial, we can write the
activation functions of the individual visible and hidden binary
units as
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where ς is the sigmoid function
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Assuming that both the visible and hidden units are binary,
RBMs assign an energy term for each configuration of v and h:

v h b v c h h vE W, , 4T T T( ) ( )= - - -

where b and c are the bias vectors for the visible and hidden
units, respectively, and W is a matrix of connection weights
between v and h. The probability over all of the visible and
hidden units v hP ,( ) is now given by
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where Z is the partition function
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Figure 1. Schematic outline of a Restricted Boltzmann Machine (RBM) on the left and a full deep belief network (DBN) in the form of a Multi-layer Perceptron
(MLP) on the right. The blue bottom layers are the “visible units” which are set to the input spectrum during training and recognition. The red layers are “hidden units”
forming increasingly abstract representations of the input layer the further up the network they are. Green represents logistic units linking data labels to the top layer of
hidden units. All of the units are connected (black lines) with all of the units in the layers above and below but no intra-level connections exist. It can be seen that the
DBN can be built from three consecutive RBMs with the addition of a logistic regression layer.
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The probability over the visible units as given by the RBM can
now be calculated by summing over all of the hidden units:
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We now train the RBM by finding a set of parameters,
W b,{ }q = , that maximizes the log-likelihood of the data,

vPln ( ∣ )q . The derivative of the log-likelihood with respect to
the individual weights gives us the gradient on vPln ( ∣ )q :
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where v hi j dataá ñ is the expectation value of all of the the hidden
and visible unit activations given the training data and
v hi j modelá ñ is the same expectation under the reconstructed
model distribution. The cost function for the optimization
algorithm is now simply given by

w v h v h , 11ij i j i jdata model( ) ( )D = á ñ - á ñ

where ò is a learning rate parameter.
Training can be performed using simple gradient descent.

However, an exact calculation of v hi j modelá ñ is highly
computationally expensive. The likelihood gradient can be
approximated by sampling the likelihood using Gibbs sampling
(Press et al. 2007). Here, samples are iteratively drawn from
v hi j dataá ñ and v hi j modelá ñ until the Markov Chain Monte Carlo
(MCMC) sampling converges. Contrastive Divergence (CD;
Hinton 2002) further simplifies the Gibbs sampling process by
breaking the requirement for exact convergence and restricting
the MCMC chain to a few (as few as one) iterations. This leads
to significant gains in convergence speed. For an in-depth
explanation of CD, we refer the reader to Hinton (2002),
Bengio et al. (2007), and Bengio (2009).

2.2. Deep Belief Networks

We now construct the DBN using RBMs as building blocks.
In agreement with convention and in accordance with Figure 1,
we refer to the data input as being at the “bottom” of the
network and increasing in abstraction as we go “up” the
network.

The bottom RBM has the normalized emission spectrum as
input (i.e., visible) units. Here, a binary representation of the
observed data is not ideal and we replace v with Gaussian units.
These better represent the continuous values found in spectro-
scopic data. The hidden units and all of the higher DBN layers
remain binary. For the Gaussian RBM layer, the unit
activations (Krizhevsky 2009; Wang et al. 2016) become
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where  is the Normal distribution and σ is the standard
deviation of the spectrum. Furthermore, we substitute the
energy term (Equation (4)) with
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We now learn the RBM greedily until convergence and take the
resulting hidden layer as input to the next higher up RBM. We
repeat this process for three consecutive RBMs. This
constitutes the unsupervised training stage as the DBN learns
on un-labeled data.
Once the RBM layers are trained, we form a Multi-Layer

Perceptron (MLP) by attaching a logistic regression layer to the
top layer of the network (Equation (12)). This links the top-
most hidden units to the data labels (e.g., H2O, CH4, CO2, etc.).
We now greedily learn the whole network using stochastic
gradient descent by presenting a spectrum of a given
composition and its corresponding data label to the network.
This supervised learning has two purposes: (1) it fine-tunes the
network and (2) it associates labels to the network. More
specifically, in the supervised learning stage, the RBM layers
are fixed and act as a feed-forward network. The logistic
regression layer now learns the mapping between the high-level
representations of the upper RBM layer and the associated data
labels. We refer the interested reader to the standard literature
(e.g., Bishop 2006; Hilbe 2009) for an in-depth treatment of
logistic regression.
We learn the MLP using mini-batch stochastic gradient

descent (Li et al. 2014). Mini-batches determine the number of
training examples looked at simultaneously before updating the
DBN weights. Looking at “chunks” of data simultaneously,
allows us to vectorize the gradient computation and achieve
higher convergence speeds than for standard stochastic gradient
descent methods. We did not require the use of any
regularizations during supervised learning, but employ “early
stopping” criteria to avoid overfitting (see Section 3.2). It is
worth mentioning that “dropout” algorithms (Hinton
et al. 2012; Srivastava et al. 2014) have recently been shown
to reach lower reconstruction errors than conventional
supervised learning (with or without regularization) and are
found to be highly robust against overfitting, hence avoiding
the need for early stopping criteria.

3. IMPLEMENTATION AND TRAINING

RobERtis written in python using the scipy optimization
toolbox and the theano1 library. Theano is a very powerful
graph and symbolic math toolbox with efficient parallelization
(through the BLAS library) and native GPU support. The
training data was generated using  -RExrun with OpenMP
parallelization to produce the required grid of emission forward
models.

3.1. Training Data Set

In the unsupervised training stage, RobERtrequires a large
set of example emission spectra to train with. Such a training
set should include a broad range of planet types, atmospheric
trace gasses, and TP-profiles. We considered a total of five
planets ranging from warm Super-Earths (GJ1214b,

1 https://pypi.python.org/pypi/Theano
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Charbonneau et al. 2009) to strongly insolated hot-Jupiters
(e.g., WASP-12b, Hebb et al. 2009). In total, we simulated
17,150 emission spectra per planet and 85,750 spectra in total.
Each spectrum contains only one trace gas species at a time and
no mixtures are considered in the training set. Table 1
summarizes the training set parameters. The creation of the
training set took ∼3 hr on 96 Intel Xeon E5-2697v2 cpus.

The data set was then randomly divided into 80% training
data and 20% test data. RobERtis only trained on the training
data with random selection of spectra from the test data
presented to RobERtat every Nth iteration of the supervised
learning to test RobERtʼs prediction accuracy.

3.1.1. Normalization

Before training RobERton the catalog of input spectra, we
first normalize the input to a zero mean and unit variance grid.
Though this is not strictly necessary, the normalization
significantly improves convergence properties of DBNs. The
normalization consists of three steps.

1. We normalize the emission spectrum with the Planckian
of the planetʼs host star to obtain the planetary intensity

I F F BB
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where F Fp * is the column vector of the planetary/stellar
flux ratio and BB* is the Planck function at the stellar
temperature. This normalization step ensures that the
training process is not biased by the underlying stellar
blackbody function.

2. We now convert Ip into brigthness temperatures using
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where k is the Boltzmann constant, h is the Planck constant, c is
the speed of light, and λ is the wavelength.

3. Finally, we subtract the mean value of Tp and normalize
to unit variance to give the normalized spectrum Tp
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Figure 2 shows an example input spectrum of H2O before
normalization (top, blue) and after normalization (bot-
tom, red).

3.2. Training

RobERtis now set up to contain three RBM levels of 500,
200, and 50 neurons from bottom to top, respectively, with the
input data vector containing 900 spectral points. As discussed
in Section 6, we find that slightly smaller networks have similar
performance levels but larger networks are too redundant.
The unsupervised training stage ran over 100 iterations per

RBM level at a learning rate of ò=0.01. We find that for all of
the layers, convergence is typically reached between the 80th–
90th iteration. During the supervised training stage, we adopt a
learning rate of ò=0.01 and mini-batch sizes of typically 100
training spectra. The reconstruction error of the DBN given the
test data is computed at each training epoch. Convergence of
the supervised learning is reached when no improvement in the
reconstruction error is obtained over a maximum of 20 epochs
and the iteration with the lowest reconstruction error is then
taken as final result. This early stopping prevents significant
overfitting during the supervised training stage.
The full training process takes ∼1.5 hr on 6 cpu cores or

<10 minutes using an Nvidia Tesla K40 card (2880 GPUs).
RobERtcompletes the supervised training stage with a test data
recognition accuracy of 99.7%.

4. RECOGNITION OF EMISSION SPECTRA

One major advantage of DBNs is their ability to generalize
patterns over large ranges of parameter spaces, both seen and
perviously unseen by the network. To demonstrate this
behavior, we generated emission spectra of the hot-Jupiter
WASP-76b (West et al. 2013), unknown to RobERt, for a
variety of trace gas molecules, mixtures, and signal-to-noise
ratios (S/N). The spectral recognition process then proceeds in
three stages.

Table 1
Summary of Training Set

No. planets 5
Planetsa WASP-12b, HD189733b,

HD209458b, HAT-P-11b, GJ1214b
No. molecules 10
Molecules H2O, HCN, CH4, CO2,

CO, NH3, NO, SiO, TiO, VO
Abundance range 1×10−7

–1×10−2

Compositions/planet 5
TP-profiles/planet 7
λ range 1–20 μm
Resolution 300 (constant)
Points/spectrum 900
Spectra/planet 17150
Spectra total 85750

Note.
a All parameters are from http://exoplanet.eu.

Figure 2. Top: example spectrum of a hot-Jupiter (water only) generated by
 -REx. Bottom: the normalized emission spectrum used for training RobERt.
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1. The observed spectrum is normalized following the steps
described in Section 3.1.1.

2. The mean of each spectral bin is randomly perturbed
within the measurement error bar, resulting in a “noisy”
spectrum.

3. The visible units of the DBN are set to the normalized,
noisy spectrum and the DBN is run in the forward
direction to obtain the label probabilities P(label).

Steps2and3 are repeated 100 times and the label
probabilities are recorded, summed, and normalized.

Figure 3 shows four normalized example spectra and
the results of RobERtʼs identification for S/Ns of 20, 10,
5, and 2. Spectra containing only one main trace gas
component are recovered >99% of the time, across all of
the planet types considered. This remains true for
strongly saturated spectra with molecular abundances of
>1×10−2 and very low S/N values. Surprisingly, even
S/Ns of 0.5–1.0 allow RobERtto recognize the dominant
trace gas component with good accuracy. RobERtwas
trained on only individual trace gases, i.e., pure water
spectra or pure methane spectra, but not on mixtures of
trace gasses. This is mainly due to the very large number
of permutations required to represent mixtures of
molecules accurately over varying abundances and TP-
profiles in the training data. It is hence encouraging to see
that RobERtunderstands mixtures well when presented
with them. Figure 3 shows two examples of spectra
containing H2O + CH4 and H2O, CO2, and TiO. In the
three molecules example, RobERtidentifies the main
constituents, water and carbon-dioxide, with a high
probability and the third constituent is either attributed
to TiO, VO, CO, or NO with TiO having the highest
probability of these candidates. In an automated retrieval
context, the retrieval code would run a first pass with
CO2, H2O, TiO, VO, CO, and NO as input and proceed to

nested model down-selection in subsequent retrieval runs
(Waldmann et al. 2015b).

4.1. Restricted Wavelength Ranges and Resolution Mismatches

Whereas it is more adequate to train the DBN with
instrument-specific resolutions and wavelength ranges, e.g.,
for Hubble Space Telescope (HST)/WFC3, James Webb Space
Telescope (JWST)/MIRI, and JWST/NIRSPEC, it is an
intriguing exercise in itself to explore the effect of incomplete
wavelength ranges on RobERtʼs ability to recognize molecular
species. As stated previously, in this example, RobERtwas
trained on a wavelength grid ranging from 1 to 20 μm with a
constant resolution of 300. Figure 4 shows the normalized
water-only emission spectrum for the HST/WFC3 G141 grism
wavelength range (yellow spectrum). The remaining spectrum
outside the wavelength range considered is padded with zeros
on both sides. RobERtis clearly able to identify water as the
dominant trace gas. We now consider increasingly restrictive
wavelength ranges until the clear water detection breaks down
at the 1.26–1.53 μm bandpass and RobERtattributes nearly
equal probabilities to H2O, CH4, and NO. While initially
surprising, upon closer inspection, all three molecular species
have strong overlapping features in this wavelength range (blue
and black lines in Figure 4 show the normalized spectrum of
NO at 1×10−2 and CH4 at 1×10−4, respectively) and a
“visual” separation of molecules becomes very difficult.
We now investigate the effect of resolution mismatches

between the observed data and the resolution with which the
DBN is trained. As expected, downsampling from a higher
resolution to the DBN resolution does not impair recognition
efficiency. The effect of upsampling, i.e., interpolating the
observed spectrum to the resolution of the DBN, is more case
dependent. We find no degradation of the recognition
efficiency upsampling broad absorbing species such as H2O
or CH4 from resolutions as low as R = 30 to the native

Figure 3. Left: example normalized emission spectra at S/N = 20. From top to bottom, the spectral compositions are as follow: (1) H2O (1×10−4); (2) CH4

(1×10−4); (3) H2O (1.5×10−4) and CH4 (1×10−4); (4) H2O (2×10−4), CH4 (2×10−4), and TiO (1×10−4). Right: corresponding probability of the molecule
being present in the spectrum to the left. All of the probabilities are normalized (p x p xmax( ) [ ( )]) for clarity and are color coded to represent four different S/N
values of the input spectrum: 20 (black), 10 (brown), 5 (orange), and 2 (yellow).
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resolution of the DBN. Here, the interpolation simply adds
noise to the spectrum against which the DBN is very robust.
Generally speaking, all of the molecules can be identified
unless their features are strongly undersampled. Trace gases

with more narrow emission/absorption bands (e.g., CO, NO)
are hence more strongly affected. For the molecular mixtures
considered here, we find a conservative lower limit of R ∼ 25
(constant with λ) below which feature detection becomes

Figure 4. Similar to Figure 3. The left shows input spectrum at S/N = 20 for a normalized water spectrum in the HST/WFC3 G141 grism passband (yellow,
1.1–1.8 μm). Darker color shading represents progressively smaller passbands for which the recognition was performed. Blue dashed and black dotted lines show
normalized spectra of NO and CH4, respectively. The right shows the corresponding detection probability per molecule for the varying wavelength ranges. Water is
readily recognized to be the main trace gas component except for the smallest bandpass considered where H2O, CH4, and NO are assigned roughly equal probabilities.
As can be seen in the left plot, H2O, CH4, and NO normalized spectra all have very similar features when only the most restricted (darkest shaded) spectral range is
considered.

Figure 5. Spectral reconstruction (or “dreaming”) of three molecules H2O, CO2, and TiO. The top three panels show neuron activations for the bottom (L1) to top (L3)
Restricted Boltzmann Machine layers. The bottom two rows show normalized H2O, CO2, and TiO spectra reconstructed by the neural network and real data examples
as comparison. The similarities between the “dreamed” and real spectral features are striking. This indicates a good representation of molecular features in the neural
network.

6

The Astrophysical Journal, 820:107 (8pp), 2016 April 1 Waldmann



difficult. It should be noted that a strongly undersampled
spectrum will always be difficult to interpret independently of
the methodology used.

5. DREAMING OF ATMOSPHERES

When RobERtis used for recognition purposes, we set the
visible units to the values of the input spectrum and propagate
the network forward (i.e., upwards) to obtain a classification
label. Another approach to qualitatively check the convergence
quality of the DBN is to reverse the network and propagate the
network weights backwards (i.e., downwards) starting from a
label. In other words, we activate the, e.g., H2O label, and
RobERtwill return what it “thinks” are the defining features of
a water spectrum. This backwards propagation is commonly
referred to as “dreaming” in the machine learning literature.
Figure 5 shows dreams of three molecules, H2O, CO2, and TiO.
We compare these dreams with real, normalized spectra with
abundances of 1×104 underneath. The likeness of the
dreamed spectra with real data is striking. L1, L2, and L3
represent the neural activations of the bottom, middle, and top
RBMs, respectively. We find the neural activations in the
dream state to be a useful indicator of the sparsity (i.e., number
of units set to or close to zero) of the neural network and find
networks with ∼10% average sparsity to yield the most
accurate spectral reconstructions.

6. DISCUSSION

The size of the DBN is an important factor to be considered;
RobERtconsists of three RBMs of 500, 200, and 50 neurons
from bottom to top, respectively. We find a three-layer DBN to
work best but also find that networks with too many neurons
per layer, particularly in the upper levels, lead to noisy
reconstructions, low maximum likelihoods, and a poorer
recognition performance. We attribute this effect to a high
level of redundancy in the network, which introduces noise. As
described above, by inspecting the neural activations during the
dream state of RobERt, we can measure the sparsity of
individual layers for individual states (i.e., molecule activa-
tions). Tests have shown that ∼10% in sparsity averaged across
activation states produces the most robust and highest S/N
networks. Smaller, simpler networks run the risk of not being
able to differentiate between molecules correctly.

As stated previously, RobERthas only been trained on
spectra containing one trace gas at a time. Despite this obvious
limitation, in Section 4 we show that RobERtis indeed able to
identify mixtures of molecules, though caveats to this
capability should be mentioned. Similar to inspecting a
spectrum by eye, RobERtis able to identify mixtures if the
trace gas signatures are very different from one another (e.g.,
H2O and CO, Figure 5) or if sufficient wavelength coverage is
provided (e.g., CH4 and H2O, Figure 3). The DBN struggles
whenever either too little wavelength coverage is available
(e.g., Figure 4) or the secondary trace gas is an order of
magnitude less abundant than the primary absorber/emitter,
i.e., secondary signatures imprint themselves as noise on the
main absorber/emitter.

Though some of these limitations are fundamental (i.e.,
insufficient wavelength coverage, too low S/N, etc.), future
work will investigate the use of convolutional deep-belief
networks (e.g., Lee et al. 2011a) to boost recognition accuracy
by learning the localized correlations in the observed spectra.

Additionally, an updated supervised learning cost function is
imaginable where not the identification of a single trace gas is
rewarded but instead a “best ranking” of groups of molecules.
As pre-selector to the  -RExretrieval suite, RobERtwill

provide rankings of the most likely molecules to be considered
in the quantitative retrieval. This is an iterative process with the
retrieval models increasing in complexity from the simplest
atmospheres (containing only the few most likely molecular
absorbers/emitters detected by RobERt) to more complex
models (containing less likely opacities). The Bayes factor is
the measure of convergence here (Waldmann et al. 2015b). In
future implementations of RobERt, online learning will become
important after its initial training phase is complete. With each
new data set, RobERtwill be able to update and improve its
DBN, taking the  -RExresults as a labeled training set. Such
an application is particularly suited as part of a larger data
reduction/analysis pipeline for future large-scale ground- and
space-based surveys.

7. CONCLUSION

In this paper, we present the use of deep belief networks in
the identification and classification of exoplanetary emission
spectra. We have shown that DBNs are well suited to
identifying molecular signatures in extrasolar planet spectra.
They are very robust to low S/Ns and are able to identify trace
gases even when wavelength ranges are strongly restricted
compared to the initial training setup. This property is
important as training a DBN is relatively computationally
intensive, and hence one would ideally want the trained DBN
to be as universally applicable as possible. Their ability to
abstract and generalize nonlinear systems very effectively
makes DBNs an ideal tool for qualitative “preselection” of
parameter spaces for spectral retrieval applications.

I.P.W. thanks G. Tinetti, R. Varley, M. Rocchetto, A.
Tsiaras, and G. Morello for useful discussions. This work was
supported by the ERC project 617119 (ExoLights) and STFC
grant ST/P000282/1.
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