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Abstract 

Hydrophobic drugs that are P-gp substrates (BCS Class IV) such as paclitaxel, 

CUDC-101 etc. pose a serious challenge for oral drug delivery. Polymeric 

amphiphiles such as N-palmitoyl-N-monomethyl-N,N-dimethyl-N,N,N-trimethyl-6-O-

glycolchitosan (GCPQ) are capable of enhancing the bioavailability of hydrophobic 

drugs by forming nanoparticles. The general hypothesis is that the physicochemical 

properties of the polymer will affect the colloidal stability, encapsulation efficiency 

and absorption of hydrophobic drugs. The main aims of the project are as follows: a) 

to examine the feasibility of using GCPQ with different characteristics, for the oral 

and subcutaneous delivery of CUDC-101 and b) to examine the effect of N-(2-

phenoxyacetamide)-6-O-glycolchitosan (GCPh) on the P-gp efflux of paclitaxel.  

GCPh, a new polymeric amphiphile was synthesized by conjugating glycol chitosan 

to phenoxy acetic acid. Paclitaxel and CUDC-101 were encapsulated with GCPh 

and GCPQ of different molecular weights and hydrophobicity. The in vivo oral drug 

absorption profile for paclitaxel-GCPh nanoparticles and paclitaxel-Taxol® 

nanoparticles were determined in mice with and without verapamil, a P-gp inhibitor. 

In another study, the oral and subcutaneous drug absorption profile for CUDC-101 – 

GCPQ nanoparticles were conducted in mice and rat models respectively.  

Results indicated that GCPh improved the oral absorption of paclitaxel by improving 

the dissolution and promoting particle uptake through enterocytes. Experiments with 

Taxol® suggested that it is possible to saturate the P-gp pumps by improving the 

drug’s dissolution. Oral absorption of CUDC-101 was poor due to the drug’s 

extremely poor water solubility. The subcutaneous absorption of CUDC-101 – 

GCPQ nanoparticles were excellent. The colloidal stability and absorption of these 

nanoparticles can be improved by increasing polymer concentration and its 

hydrophobicity. These nanoparticles also prolonged the life span of human A431 

tumour bearing mice by 28 days (p < 0.001).  

To conclude, the new polymeric amphiphile (GCPh), capable of improving the oral 

absorption of BCS Class IV P-gp substrates was developed. A new strategy to 

nullify the P-gp efflux was developed. A clinically relevant subcutaneous dosage 

form for CUDC-101 was also successfully developed.  
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CARS Coherent anti-Stokes Raman Spectroscopy 

CD Cyclodextrin 

CFU Colony Forming Units 

Cmax Concentration maximum 

CMC Critical Micellar Concentration 

CsA Cyclosporine A 

DLS Dynamic Light Scattering 

DMF Dimethylformamide 

DMSO Dimethyl sulfoxide 

EDTA Ethylenediaminetetraacetic acid 

ELISA Enzyme-Linked Immunosorbent Assay 

EPO Erythropoietin 

EPR Enhanced Permeation and Retention 

FA Formic Acid 

FBS Fetal Bovine Serum 

FDA Food and Drug Administration 

FTIR Fourier Transform Infra-red Spectroscopy 

GAGs Glycosaminoglycans  

GC Glycol Chitosan 

GCPh Phenoxylated Glycol Chitosan 

GCPQ Quartenary ammonium Palmitoyl Glycol Chitosan 

GI Gastro Intestine 

Glc α-D-glucopyranose 

GPC Gel Permeation Chromatography 
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h Hour  

HA Hyaluronic Acid 

HAse Hyaluronidase enzyme 

HDAC Histone deacetylase 

HER2 Human Epidermal Growth Factor Receptor 2 

hGH Human Growth Hormone 

HPMA Hydroxy propyl methacrylamide 

HRP Horse Radish Peroxidase 

IC Inhibitory Concentration 

IM Intra Muscular 

ITC Isothermal Calorimetry 

IV Intra Venous 

IW Intestinal Wash 

LC-MS Liquid Chromatography – Mass Spectroscopy 

MALLS Multi-Angle Laser Light Scattering 

mg Milli Gram 

min Minute  

mL Milli Litre 

mmol Milli Molar 

mOsm Milli Osmole 

MRM Multiple Reaction Monitoring 

mV Milli Volt 

MWCO Molecular Weight Cutoff 

NCE New Chemical Entity 

ng Nano Gram 

NIR Near Infra Red 
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NMP N-Methyl-2-Pyrrolidone 

P-gp P-glycoprotein pump 

P% Mole % Palmitoylation 

PBS Phosphate Buffer Saline 

PD Pharmacodynamic 

PD Polydispersity 

PEG Polyethylene Glycol 

pEGFR Phosphorylated Epidermal Growth Factor Receptor 

PEO Polyethylene oxide 

Ph% Mole % Phenoxylation 

PK Pharmacokinetic 

PLGA Poly(lactic-co-glycolic acid) 

PO Peroral 

PTX Paclitaxel 

PVP Poly vinyl pyrrolidone 

Q%  Mole % Quaternisation 

rHuPH20 Human recombinant hyaluronidase enzyme 

RP-HPLC Reverse Phase – High Pressure Liquid Choromatography 

rpm Rotations per minute 

SC Subcutaneous 

SCF Supercritical Fluid processing 

SEDDS Self-emulsifying Drug Delivery Systems 

SGF Simulated Gastric Fluid 

SIF Simulated Intestinal Fluid 

TEM Transmission Electron Microscopy 

Tmax Time taken to reach Cmax 
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TR Texas Red 

UV Ultraviolet 

UWL Unstirred Water Layer 

v/v Volume by volume 

VEGF Vascular Endothelial Growth Factor 

w/v Weight by volume 

XRD X-ray Diffraction spectroscopy 

μL Microliter 

μm Micrometer 

μM Micro Molar 
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1 Introduction: 

This chapter of the thesis is a review on oral and subcutaneous drug delivery. 

The physiology of drug absorption sites, factors affecting the drug uptake and 

strategies used to enhance the drug uptake suggested in the literature are 

presented in this chapter. 

1.1 Oral drug delivery: 

Oral drug delivery systems are clear favorites in pharmaceutical research 

because of their patient compliance and cost effective nature1,2. The oral 

route for drug delivery doesn’t require any special skills to administer the 

dose, multiple doses are possible and more importantly the oral route is non-

invasive, which favors patient adherence. From an industrial point of view, 

the oral formulations are easy to mass-produce, do not require sterile 

production conditions and have a longer shelf life, all of which contribute to 

cheaper cost of production2. The oral route also has its limitations such as 

low drug levels in the blood and limited bioavailability when compared with 

the intravenous route, unconscious patients cannot take oral medication and 

more importantly the presence of various physicochemical and physiological 

barriers may hinder oral drug absorption. Even with all these limitations 

pharmaceutical companies prefer oral route, and this is evident from the high 

level of research in oral drug delivery3–5.  

Hydrophobic drug delivery is the prime focus of this project because a 

number of water insoluble NCEs (New Chemical Entities) are discovered 

each year6. Oral delivery of these hydrophobic NCEs is limited mainly due to 

their poor bioavailability, which in turn is dependent on their solubility, uptake 

and metabolism7. A large portion of these hydrophobic NCEs do not reach 

the clinical trials due to the lack of proper delivery systems2, which means 

development of an efficient oral delivery system might help some of these 

NCEs reach the market and thus benefit the society. In order to enhance the 

oral bioavailability of a drug, the drug formulation must overcome the 

physicochemical and physiological barriers of the digestive system, details of 

which and methods employed to overcome these barriers are discussed in 

this section.  
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1.1.1 Barriers to oral drug delivery: 

The barriers that hinder the oral drug delivery can be classified into two; they 

are physiological and physicochemical barriers. The physiological barriers 

are the conditions that exist in the digestive tract whereas the 

physicochemical barriers are due to the intrinsic properties of the drug and its 

formulation. The nature and properties of these barriers are as follows. 

1.1.1.1 Physicochemical barriers: 

1.1.1.1.1 Solubility and Dissolution   

Solubility is the major factor in determining the bioavailability. Only the 

substances that are soluble in the digestive fluids can be absorbed from the 

intestine8. The gastric medium is 100% aqueous, which means if the drug is 

insoluble in water then there is no chance that it will be absorbed from the 

gut. However, if the hydrophobic drug dissolves to some extent, it will be 

absorbed as the dissolved fraction will cross the gut epithelium, provided it 

can traverse the mucus barrier. Thus aqueous solubility is the biggest 

challenge for hydrophobic drugs, which limits their use orally. The 

hydrophobic drug formulations must be capable of maintaining the drug in 

solution while in the gut in order to get absorbed8.  

Dissolution is the process through which a drug dissolves in a solvent from 

the solid or semi-solid dosage form. Dissolution is directly dependent on a 

drug’s solubility and the speed at which a drug dissolves is called the 

dissolution rate9. The dissolution rate, solubility and drug absorption are 

directly proportional as in, the higher the solubility the faster the dissolution 

and more readily the drug is absorbed, provided it has good intestinal 

permeability. The equation for dissolution rate was first given by Noyes-

Whitney10,11 as follows, 

  

  
                                                                                   Equation 1.1 

where     is a constant, ‘C’ is concentration at a given time ‘t’,      is the 

saturation solubility and ‘S’ is the surface area. A higher rate of dissolution in 

the small intestine is preferred than in the stomach, because of the large 

surface area in the gut, which facilitates better absorption.  Hence, 
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hydrophobic drugs have poor oral bioavailability due to their poor aqueous 

solubility, which affects their dissolution rate12 and almost 40 % of the NCEs 

are practically insoluble in water5,13, which highlights the importance of 

solubility and dissolution in drug delivery. 

1.1.1.1.2 Particle size 

The particle size of a molecule affects its solubility and dissolution and thus 

influences the absorption14. As from Equation 1.1, the surface area and 

dissolution rate are directly proportional to each other. This means that the 

smaller the drug’s particle size the larger the surface area and higher the 

dissolution rate and ultimately the bioavailability.  

1.1.1.1.3 Ionisation 

The aqueous solubility of a drug depends on the extent of its ionisation and in 

general the drugs in an ionic state are more readily soluble than the 

unionised drugs15. Most of the drugs are either weak acids or weak bases 

that cannot undergo complete ionisation in aqueous media. The degree of 

ionisation at a particular pH can be determined from its pKa value and it is 

given by Henderson-Hasselbalch16 equation: 

For weak acid, 

               
                  ⁄                             (Equation 1.2) 

For weak base, 

               
                  ⁄                            (Equation 1.3) 

The knowledge on ionisation is particularly important to predict a drug’s 

absorption. Cell membranes are made of lipid bilayers and are only 

permeable to unionised solutes17. By using Henderson-Hasselbalch 

equation, it is easy to determine if a drug will ionise at physiological 

conditions, just by the knowledge of the drug’s pKa. For example, aspirin is a 

weak acid with a pKa of 3.5. By using Equation 1.2, the percentage of 

unionised aspirin in the stomach (pH 1.2) is calculated to be 99.5 %. This 

means the majority of the aspirin molecules will be absorbed from the 

stomach. Whereas when the drug reaches small intestine, the pH increases 

to 6.8, which means 99.9 % of the aspirin molecules will be ionized and thus 
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no drug absorption takes place. Hence the drug should not only be in solution 

but also should be unionized in order to be absorbed through the gut. 

1.1.1.1.4 Permeability 

Permeability is the process through which a drug molecule penetrates the 

intestinal epithelium and reaches the systemic circulation. A molecule can 

pass through the epithelium in three different ways; a) active transport, which 

is carrier mediated, b) passive diffusion, which is concentration dependent 

and c) specialized routes like endocytosis, paracellular transport. The 

majority of drug absorption occurs through passive diffusion18,19. In order to 

permeate the epithelial membrane, a molecule must possess a certain 

degree of lipophilicity because the epithelial plasma membrane is made of 

phospholipids. The LogP (the octanol/water partition coefficient) is a measure 

of lipophilicity and LogP value has a non-linear relation with permeability. 

Both low and high LogP values result in poor permeation and mid LogP 

values generally result in high permeability20. Apart from LogP, factors like 

molecular size, hydrogen bonding ability, molecular weight and ionisation 

have a profound effect on permeability21.  

The permeability of a molecule can be predicted using Lipinski’s rule of five, 

which states that a NCEs might be orally active, if it has not more than five 

hydrogen bond donors, not more than 10 hydrogen bond acceptors, a 

molecular mass lower than 500 Daltons and a LogP not greater than five. 

These four parameters determine a molecule’s permeability and any NCEs 

that does not obey these rules pose a serious challenge for oral delivery 3–5.  

1.1.1.1.5 Polymorphism and amorphism 

Some solid compounds exist in different physical states such as, crystalline 

and amorphous states22. When the molecules of a compound are arranged in 

a definite order then it is in crystalline form and if the molecules are in 

random order then the compound is in the amorphous form (Figure 1.1). 

Often, there also exists a different pattern in the crystalline molecular 

arrangement leading to polymorphism. For example, ice has fifteen known 

naturally occurring crystalline structures, which have different physical 

properties from one another23. The crystalline structure of a solid is 

considered to be thermodynamically more stable than the amorphous form 
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and some of the polymorphic forms can be metastable22. From a solubility 

point of view, amorphous forms of a solid are more soluble than the 

crystalline state (Solubility of amorphous > metastable polymorphs > 

crystalline). This is due to the fact that molecules are loosely packed in 

random order and have a low surface free energy in amorphous form, which 

enables the molecules to dissociate easily24. Thus the amorphous form of a 

drug has higher dissolution and hence better absorption than its crystalline 

counterpart24,25. 

1.1.1.2 Physiological barriers 

The morphology of the digestive tract and its secretions limit the absorption 

of many toxic substances along with that of useful therapeutics. 

Understanding the nature of these barriers is necessary to design an efficient 

oral formulation and the components of the gastrointestinal barrier are 

discussed below. Please refer to Figure 1.2 for an illustration of human 

digestive tract highlighting some of the physiological barriers for oral drug 

absorption. 

1.1.1.2.1 pH of the Gastrointestinal fluids 

Upon ingestion, the first barrier the drug molecule encounters is the extreme 

acidic conditions in the stomach (pH 1 - 2). These extreme acidic conditions 

might drastically affect the chemical stability of the drug where the drug may 

be degraded and lose its activity. Penicillin is a classic example of a drug 

losing its activity due to acid hydrolysis26. If the drug escapes the acidic 

conditions, it enters the small intestine, where the pH is around 5 – 7. This 

change in pH might affect the drug’s degree of ionisation, which might in turn 

affect its absorption.  
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Figure 1.1 Polymorphism in materials. 

(a) Crystalline structure – molecular arrangements in crystalline solids follow 
a definite long-range order; (b) Amorphism – molecules in amorphous solid 
lacks a long range order; (c) Polymorphism – molecular arrangement in 
polymorphism is definite and follows a long range order but differ from the 
original crystal; (d) gas – molecules in gaseous state are loosely packed. 

 

1.1.1.2.2 Gastric emptying 

The stomach, after thoroughly mixing the bolus of ingested food, periodically 

empties its content (chyme) into the duodenum of the small intestine for 

further digestion and absorption. This process is called gastric emptying and 

the rate at which it happens varies among individuals27. Hunger, anxiety and 

liquid intake hastens gastric emptying while a fatty diet, gastric ulcers and 

depression delay the gastric emptying28. The small intestine is the major site 

for drug absorption so a faster gastric emptying is preferred in particular for 

drugs that undergo acid hydrolysis. Variations in gastric emptying rate may 

play a significant role in determining a drug’s absorption. 
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Figure 1.2 Physiological barriers in the gastro-intestinal tract 

 

1.1.1.2.3 Influence of food in stomach 

Drug absorption from the intestine may be different in the fed and fasted 

state28. Food increases the viscosity of luminal fluids, which might affect the 

drug’s dissolution29. The intake of a fatty meal will also reduce gastric 

emptying, delaying the absorption30. Some drugs might not be compatible 

with some diets; for example, tetracyclines are poorly absorbed in the 

presence of dairy products31. Sometimes, food also enhances the dissolution 

of drugs, for example intake of a fatty meal triggers the secretion of bile salts, 

which improves dissolution of hydrophobic drugs through the formation of 

micelles32. Bile salts along with the breakdown products of fat metabolism 

form micelles, which can solubilise the hydrophobic drugs in their core, 

thereby enhancing the dissolution29. The presence of bile also reduces the 

interfacial tension between the luminal fluid and the drug particle, which 

improves the drug’s wettability and eventually its dissolution33.  
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1.1.1.2.4 Metabolism by intestinal enzymes 

The intestinal lumen is rich in enzymatic activity, where the majority of 

digestion takes place34. Cytochrome P450 (CYP450), a class of metabolising 

enzymes are present in the intestinal lumen and liver, which poses a huge 

barrier for oral drug delivery35. The bioavailability of drugs such as 

verapamil36, cyclosporine37 and midazolam38 are hugely reduced due to the 

activity of CYP450 enzymes. The enzyme oxidises the bound substrates by 

the addition of hydroxyl group and converts the substrates into metabolites 

that are easily eliminated from the body39. CYP450 family of enzymes have a 

wide range of substrate specificity because the enzyme’s binding pocket 

operates under the principle of induced fit, i.e. when a substrate binds to the 

CYP450 active site, conformational changes in the enzyme ensures a tighter 

binding35.  Hence, a wide class of compounds such as steroids, alkaloids, 

fatty acids, prostanoids and several small molecules are all metabolized by 

CYP45039.  

1.1.1.2.5 Mucus layer 

The whole of the alimentary canal is coated with the mucus layer, which is 

produced by the specialised cells in the underlying epithelium. The thickness 

of the mucus varies from 50-450 m in the intestine and this mucus layer 

protects the epithelial cells from harsh stomach acids and microbial 

colonisation19. Apart from the mechanical protection, the mucus also hinders 

the diffusion of solutes depending on the thickness of mucus layer, size of 

the drug molecule and any possible interaction with components of the 

mucus40,41. Due to the lipophilic nature of the mucus, hydrophobic molecules 

cross the mucus with relative ease when compared to the hydrophilic 

molecules42.  

1.1.1.2.6 Unstirred water layer 

Between the mucus and the epithelial cells, there is a thin lining known as the 

Unstirred Water Layer (UWL) with a mean thickness of 40 m. The UWL is 

made up of water, glycoproteins, proteins and ions, which are capable of 

binding with solutes. The drug molecules must diffuse through this layer in 

order to get absorbed into the systemic circulation, which is harder for 

hydrophobic drugs in particular43–45. 
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1.1.1.2.7 Tight junctions  

The epithelial wall of the intestine provides a vast surface for absorption but 

is only permeable for compounds which some degree of lipophilicity21. The 

intercellular spaces in the epithelium are encircled with tight junctions making 

them virtually impermeable. However, active transport of certain ions are 

facilitated through intercellular tight junctions but hinder the paracellular 

diffusion of many hydrophilic solutes 46.   

1.1.1.2.8 Efflux pumps 

The drugs that enter the epithelium through passive diffusion may be 

expelled back into the lumen if they are substrates of the P-glycoprotein (P-

gp)47,48 efflux pump. The P-gp efflux pumps belong to a class of efflux pumps 

found in the villi and they have a huge potential to limit the bioavailability of 

drugs such as verapamil47, cyclosporine49 and midazolam38. P-gp also has 

broad substrate specificity and most drugs, which are substrates of P-gp, are 

also substrates for cytochrome P-450 and this combined effect drastically 

reduces a drug’s bioavailability37.  

1.1.1.2.9 First pass effect 

The solutes, after crossing the entire gastrointestinal barrier, are absorbed 

via intestinal epithelium from where they are transported to liver, which is a 

locus for enzymatic activity50. Once in the liver, the solutes are extensively 

metabolised by various classes of enzymes including cytochrome P-45036. 

These enzymatic activities degrade any potential toxins to prevent them from 

entering the systemic circulation but also render therapeutics 

ineffective36,37,51. This is called hepatic first pass metabolism and this plays a 

significant role in reducing the bioavailability of many drugs including, 

lidocaine52, alprenolol53 and pethidine54. 

 

 

1.1.2 Poorly soluble drugs 

Of all the above-mentioned barriers, poor solubility is the major hindrance for 

low bioavailability for a large portion of lipophilic drugs55. As a matter of fact, 
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a certain degree of lipophilicity is necessary for a molecule to permeate the 

intestinal barrier but that should not be at the expense of poor aqueous 

solubility, which might greatly limit the absorption21. A drug is considered to 

be poorly soluble56 if its aqueous solubility is below 1 mg ml-1. With 40 % of 

NCEs being hydrophobic, poor aqueous solubility is of major concern for 

pharmaceutical industries, which is evident from the magnitude of research 

carried out to screen poorly soluble compounds at the initial stage of the drug 

development processes57. These poorly soluble NCEs can be delivered as 

parenteral formulations but their use is limited due to tolerability and patient 

compliance issues58. Developing oral formulations for these therapeutically 

important poorly aqueous soluble drugs will be of great benefit for not only 

the pharmaceutical industries but also for the consumers due to patient 

acceptability of these dosage forms1,2. Thus the following section is a brief 

review on methods to enhance the oral bioavailability of poorly soluble drugs. 

1.1.2.1 Methods to overcome the poor aqueous solubility: 

1.1.2.1.1 Chemical modification: 

Chemically modifying the existing drug species to improve the solubility and 

permeability is the most effective technique to improve oral bioavailability. 

The new chemical species formed might dissociate into its active state after 

metabolism (e.g. pro-drug) or be active on its own, based on the type of 

modifications carried out (salt forms). Table 1.1 gives an overview on 

different methods employed to overcome the poor aqueous solubility.  

Salt formation is the most common technique employed to improve the 

solubility of drug. Many scientists have reported increase in dissolution 

kinetics of the salt form of a drug, than the free drug itself59,60. Almost all new 

chemical entities (NCEs) that are poorly soluble will be tested for salt 

formation in order to improve the solubility.  Tolbutamide is a classic example 

for improving the drug absorption kinetics using salt forms, where salts of 

tolbutamide showed faster dissolution than its acidic form. Following the oral 

administration of tolbutamide salts, the blood glucose levels dropped by 20 – 

30 %, whereas the acidic form of the drug lowered the glucose by just 5 %. 

This difference is attributed to increased oral absorption of tolbutamide salts 
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and the mono-sodium salt of tolbutamide is currently in the market for the 

treatment of diabetes61. 

Table 1.1 Methods to overcome poor aqueous solubility 

Techniques Principle Disadvantages Examples 

Chemical 
modification 

Salt form60 
 

1) Converts the 
insoluble 
compounds into 
stable soluble 
salts. 
2) Effectively 
enhances solubility 
and dissolution. 

1) Requires an 
ionisable group in 
the compound. 
2) The Salt form 
should be 
ionisable at 
physiological pH. 
3) Common ion 
effect 

Mono-sodium 
salt of 
tolbutamide61 

Prodrugs6

2 

1) Insoluble 
compound is 
covalently linked to 
a chemical 
species. 
2) This soluble 
inactive precursor 
is activated by 
metabolism. 

1) Structural 
feasibility of the 
drug. 
2) Creates a new 
NCE. 

PEGylated 
Paclitaxel62 
activated by 
endogenous 
esterases. 

Physical 
modification 

Solid state 
polymorph
s22 

1) Amorphous 
state of a solid is 
highly soluble 
because of its 
thermodynamic 
properties. 
2) Solubility of 
amorphous > 
metastable 
polymorphs > 
crystalline 

1) Short shelf life 
due to high 
reactivity. 
2) Might revert 
back to stable 
crystalline 
condition upon 
exposure to 
solvents/moisture. 

Amorphous 
Cefuroxime 
axetil63 

Particle 
size 
reduction1

4 

1) Reduced 
particle size, 
increases the 
surface area which 
improves the 
solubility and 
dissolution (Noyes-
Whitney 
equation)10. 

1) Mechanical 
stress might 
degrade the 
compound as 
seen with 
Cryogrinding of 
Furosemide64. 

Micronized 
megastrol 
acetate65 

Co-administration with 
soluble excipients66 

1) The combined 
effect of mixture 
water miscible 
solvents/surfactant
s might improve 
the solubility. 

1) Might 
precipitate upon 
dilution with 
water. 
2) Toxicity issues 
with various 
solvents 

Nifedipine 
marketed as 
Procardia67. 



Enhancing the bioavailability of BCS Class IV drugs using polymeric nanoparticles 

 

32 

 

Techniques Principle Disadvantages Examples 

Cyclodextrin(CD) 
inclusion complexes68 

1) CDs are a class 
of cyclic 
oligosaccharides 
with hydrophilic 
outer surface and 
a hydrophobic 
cavity capable of 
forming inclusion 
complexes with 
hydrophobic drugs. 

1) Can only form 
complexes with 
the molecules 
that fit their pore 
size. 
2) Nephrotoxicity 
issues with 
repeated use69,70. 

Artemisin71 

Lipid based drug delivery 
systems72 

1) Lipophilic drugs 
can be solubilised 
in GRAS approved 
oils or liposomes. 
Micro-emulsions 
and SEDDS are 
highly 
advantageous73 

1) Limited drug 
loading capacity. 
2) Use of 
surfactants to 
stabilise the 
formulation might 
compromise the 
drug’s safety. 

Ampothericin 
B72 

Polymeric 
nanoparticles74 

1) Encapsulation of 
drugs in 
dendrimers or 
polymeric 
amphiphiles helps 
to suspend the 
drug in an aqueous 
environment. 

1) 
Physicochemical 
property of the 
drug makes it 
hard to develop a 
universal carrier. 

CyclosporinA, 
Griseofulvin 
by polymeric 
GCPQ 
amphiphiles75. 

 

Pro-drug administration is also a choice of interest to improve the 

bioavailability. The idea is to administer a chemically inactive form (pro-drug) 

of the drug, which is then converted into an active metabolite in situ, before 

reaching the target tissue. The pro-drug often displays a superior 

pharmacokinetic profile than its active form and relies on an endogenous 

enzyme for its activation76. The bioavailability of orally delivered PEGylated 

Paclitaxel (pro-drug) increased four folds when compared with paclitaxel 

alone62. The PEGylated pro-drug is activated by endogenous esterases to 

form active paclitaxel. The pro-drug enhanced the water solubility, improved 

the gut permeability and also protected the active drug from liver metabolism 

by the cytochrome P450 enzyme family, which ultimately increased the mean 

absolute bioavailability by 4 folds when compared to that of normal 

paclitaxel62. The structural feasibility of the drug for chemical modification 

remains a major constraint for drug delivery through this approach 77.  
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1.1.2.1.2 Physical modification: 

Modifying the physical properties of a drug such as particle size14 and solid 

polymorphic forms22 might also improve the drug’s bioavailability. Changing 

the crystalline form of a drug into its amorphous form, improves the 

pharmacokinetic parameters of the drug25. This is because the amorphous 

form of a solid has the highest internal energy among the different 

polymorphic forms which means the molecules are loosely packed in a 

random order with a low surface free energy25. This makes the molecule 

highly reactive which in turn improves the drugs solubility, dissolution and 

ultimately the bioavailability. The amorphous form of cefuroxime axetil63 

(antibiotic), improved the survival of mice infected with E. coli by 

approximately 20 %, when compared to the mice that received the normal 

drug, which is currently marketed. Most of the compounds are crystalline in 

their natural state, which is the lowest energy state and amorphous forms are 

obtained from the crystals using procedures like milling and compaction of 

crystals, lyophilisation, precipitation from solution, super-cooling of the melt 

or vapour condensation78,79. But the high reactivity of the amorphous state 

means they tend to recrystallize upon exposure to solvents or moisture, 

which might affect the shelf life of the drug and result in poor dissolution24. 

Thus, careful considerations should be made while selecting the excipients to 

stabilize the formulation. 

Particle size reduction is also another kind of physical modification, which 

reduces the particles into fine powder14. This increases the surface area of 

the drug that is in contact with the solvent and thus promotes solubility and 

dissolution. Bruner and Tolloczko in 190010 established the relation between 

the particle size and dissolution by elaborating the Noyes and Whitney 

equation as shown below. 

Noyes and Whitney initially stated: 

      
  

  
                                                                             (Equation 1.4) 

Where     is a constant, ‘C’ is the drug’s concentration at a given time ‘t’ and 

     is the saturation solubility. Bruner and Tolloczko demonstrated through a 
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series of experiments that the dissolution is also related to the surface area, 

temperature, stirring and thus the equation 1.4. becomes,  

     
  

  
                                                (Equation 1.1) 

where ‘S’ is the surface area, which means surface area is directly 

proportional to dissolution. So reducing the particle size increases the 

surface area thereby improving dissolution80. Micronized megestrol acetate 

tablets showed improved dissolution when compared with the conventional 

solid dosage form65. The mean AUC of human volunteers orally dosed with 

the micronized drug was twice higher than that of the conventional megestrol 

acetate tablets, which explains the usefulness of this strategy to improve the 

oral drug absorption.  

Milling, grinding, spray drying, homogenization etc. are the traditionally used 

methods used to reduce the particle size and improve the bioavailability. But 

the main disadvantage of these technique is that the compounds experience 

a huge amount of mechanical stress, which might degrade the compound 

and reduce its activity65. Cryogrinding mechanically induced the degradation 

of furosemide64, a diuretic, in a study, where high amounts of degraded 

furosemide residues were identified in the formulation. This resulted in 

chemical instability of the drug and illustrates the negative effect that these 

mechanical forces can impose on a drug, rendering it inactive. To overcome 

these difficulties novel techniques such as supercritical fluid processes 

(SCF), piston gap homogenizer, etc. have been developed which have their 

own advantages and limitations81.  

1.1.2.1.3 Co-administration with soluble excipients: 

Lipophilic drugs are often co-administered with a mixture of miscible solvents, 

in order to enhance their solubility66,82. Water miscible solvents like ethanol, 

PEG400, propylene glycol, glycerol and water insoluble solvents like 

vegetable oils, vitamin E, oleic acid etc. are used for this purpose. Nifedipine, 

a calcium channel blocker is marketed as Procardia, which is a solubilized in 

a soft gel capsule by excipients like PEG400, glycerine, peppermint oil and 

sodium saccharin67. In cases where the poor bioavailability is due to poor 

intestinal penetration, the drugs are often co-administered with mucolytic 
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agents or surfactants such as N-acetylcysteine (a mucolytic agent) and TX-

100 (a non-ionic surfactant)82. Mucolytic agents, dissolve the mucus barrier 

by breaking the disulphide bonds between the mucoproteins, which 

eventually reduces the viscosity of mucus facilitating easy diffusion of the 

drug82. Surfactants affect the fluidity of the epithelial cell membranes by 

solubilising the membrane components, which improves the drug’s 

permeability83.  

1.1.2.1.4 Cyclodextrin inclusion complexes: 

Cyclodextrins (CD) display amphoteric properties and possess a unique 

structure with an internal hydrophobic core; the internal hydrophobic core 

enables the cyclodextrins to form inclusion complexes with the hydrophobic 

drugs, solubilising these with aqueous media. CDs are cyclic oligomers of -

D-glucopyranose (Glc) units linked through (1-4) glycosidic bonds. This 

gives CDs their unique structure and based on the number of Glc units, the 

CDs are divided into ,  and  which have 6, 7 and 8 Glc units respectively. 

The increase in Glc units increases the size of the hydrophobic cavity and 

thus they can accommodate different sizes of hydrophobic molecules68,84. 

The drug-CD complexes are easy to form, by just supersaturating the CD 

solution with drug under mild agitation. The complex formation is mainly due 

to hydrophobic and van der Waals interactions and the complexes dissociate 

easily upon dilution thereby releasing the drugs for intestinal absorption. The 

problem with these complexes is the high ratio of CDs to drug that is required 

to form a complex with the given drug. This limits their use due to toxicity 

issues69. CDs are fermented by intestinal microflora, so they are considered 

as safe for enteral delivery at limited doses but are found to cause 

irreversible nephrotoxicity and haemolytic activity on repeated use via 

parenteral route85. Various modifications of natural CDs have been carried 

out to overcome their nephrotoxicity and the presence of a primary alcohol 

group on the Glc unit facilitates these modifications70. Artemisin71 and 

tolbutamide86 are some of the examples of drugs exhibiting improved 

bioavailability upon complexion with cyclodextrins.  
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1.1.2.1.5 Drug nanoparticles: 

A recent trend in drug delivery is to associate drugs with specially engineered 

vectors to form nano carriers such as nanoparticles14, polymeric micelles87 or 

vesicles88, which increase the therapeutic index through a variety of different 

mechanisms. Briefly, reducing the particle size increases the surface area, 

which favours better dissolution, which in turn enhances the absorption. 

Nanoparticles also have other advantages such as prolonging the drug 

absorption, evading phagocytes and targeted delivery, which are few of the 

mechanisms that help in improving the efficacy of the drugs74.  

Hydrophobic drugs are conjugated89, solubilised90 or encapsulated91 with 

their nano carriers in order to achieve an enhanced therapeutic index.  

Chemical conjugation of drugs with a water-soluble polymer will improve the 

solubility of the drug and eventually its absorption. Paclitaxel was covalently 

linked to N-(2-hydroxypropyl)-methacryla-mide (HPMA) copolymer, which not 

only increased the water solubility of paclitaxel but also improved its 

cytotoxicity against tumour tissue due to the site-specific targeting of the 

HPMA copolymer92. Amphiphilic and hydrophobic drugs solubilised in 

liposomal vesicles offers an efficient method for drug delivery, mainly via 

intravenous route93. A poorly water-soluble drug fenofibrate was solubilized 

in liposomes made up of soybean phosphatidylcholine and sodium 

deoxycholate and the bioavailability of these liposomes was 5 folds higher 

than that of the micronized finofibrate94. The liposomes are made of lipid 

bilayers with an aqueous core and thus can be used to solubilise both 

hydrophobic and hydrophilic drugs. Liposomes have versatile functions in the 

field of drug delivery and currently researched extensively for the delivery of 

small molecules, proteins, antibiotics, and vaccines and also for diagnostic 

purposes95,96. Encapsulation of amphiphilic and hydrophobic drugs in an 

amphiphilic polymer matrix result in drug-loaded micelles that are capable of 

enhancing the oral bioavailability to a significant level97. The amphiphilic 

polymers in an aqueous environment form micelles with an outer hydrophilic 

shell, which helps to suspend the drug in an aqueous environment while the 

inner hydrophobic core acts as a reservoir for poorly water soluble drugs. 

Bioavailability of gresiofulvin and cyclosporine A were enhanced by 6 folds 
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and 5 folds respectively, by using GCPQ, an amphiphilic modification of 

glycol chitosan. The mechanism of action is through improved dissolution, 

mucoadhesion and transcellular drug uptake75. The potential of drug nano 

carriers have been well understood by scientific world and ever since a 

variety of polymers like block-polymers, dendrimers, amphiphilic polymers 

etc. have been developed and researched for their potential as delivery 

vehicles75,98–100.  

1.1.2.1.6 Emulsions: 

Emulsions are colloidal suspensions of two or more immiscible liquids i.e. 

dispersion of oil droplets in water or water droplets in oil. These emulsions 

are more often stabilised by a surfactant, which reduces surface tension 

between the two liquid phases there by decreasing the kinetic interactions, 

thus increasing the stability73. Based on the size of the colloidal liquid phase, 

the emulsions may be classified as nano emulsions or micro emulsions. A 

new class of delivery system called self-emulsifying drug delivery systems 

(SEDDS) have been recently exploited for drug delivery101. In SEDDS an 

isotropic mixture of oil, surfactant, solvents and co-solvent of a hydrophobic 

drug are used to improve the solubility of the drug and upon ingestion, the 

mixture forms emulsions due to the gastric motility.  A concept of non-

aqueous emulsions also prevails, where other polar solvents such as 

glycerol, PEG400 etc, replace the aqueous phase102. These systems 

possess unique properties different from traditional emulsions and may be 

useful to deliver the drugs that are neither soluble in water or in oil, which 

might aid in oral delivery of certain hydrophobic drugs, while scarcity of 

information and narrow choice of polar phase pose limitations on use of 

these non-aqueous emulsions102–104.  

The idea of using oils for drug delivery stems from the way the fats are 

metabolised in the digestive tract. Fats upon ingestion, form crude emulsions 

due to the action of gastric lipases and gastric motility. When these crude 

emulsions enters the duodenum, it stimulates the secretion of bile salts, 

cholesterol, and phosphatidylcholine from gall bladder and pancreatic 

lipases/co-lipase from pancreas105. The action of bile salts promotes 

micronisation of oil droplets and the action of pancreatic lipases along with 
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the breakdown products promotes the formation of stable micellar and 

vesicular species, which are readily absorbed by the intestinal epithelium. 

Based on this principle various hydrophobic drugs were dissolved in lipid-

based delivery systems and the oral bioavailability of amphotericin B was 

successfully enhanced using a lipid based drug delivery system106. When the 

amphotericin B SEDDS formulation was orally administered to the rats 

infected with Aspergillus fumigatus, it reduced the total CFU count for the 

fungus by >80 % when compared to the non-treated controls107. This 

superior pharmacodynamic activity is attributed to the improved drug 

solubility, better in vitro stability and reduced renal toxicity of amphotericin B 

SEDDS formulation107. 

1.1.2.1.7 Gastro-retentive dosage forms: 

Prolonging the gastric retention time of the dosage form is another strategy 

used to improve the absorption of drugs with a narrow absorption window. 

The absorption of certain drugs occurs only at certain segments of the 

gastro-intestinal tract due to high variations in the pH of the gastro-intestinal 

tract. So prolonging the residence time of the dosage form in the stomach 

serves as an excellent strategy to improve the absorption of the drugs that 

are predominantly absorbed at low pH conditions.  

Different approaches are available to increase the gastric residence time 

such as floating systems, mucoadhesive systems, swelling systems and 

expanding systems. The idea behind these techniques is to increase the 

gastric residence time by escaping gastric emptying by using physical 

principles108,109. For example, floating dosage forms do not sink in the gastric 

medium due to their low density in comparison with the gastric fluid. Swelling 

or expanding devices increase their size by several folds so that they cannot 

pass through the pylorus during the gastric emptying. Mucoadhesive systems 

adhere to the mucous lining in the stomach thus prolonging its gastric 

retention time. Using a floatation device, the bioavailability of atorvastatin 

calcium, a hydrophobic drug was enhanced up to 1.6 folds when compared 

to that of the conventional tablets110. A floatation device for ciprofloxacin is 

also currently marketed under the brand name Cifran O.D by Ranbaxy111.  
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1.1.3 Competent oral formulation strategies:  

Although there are different options available to enhance the bioavailability of 

a hydrophobic drug, each strategy has its own advantage and disadvantage 

as shown in Table 1.1. Also, the feasibility of using a technique is mainly 

limited by the physicochemical properties of the drug. For example, it may 

not be possible at all to develop a pro-drug form of a drug due to its structural 

constraints. Thus while choosing a formulation strategy one has to make a 

rational approach by assessing the physicochemical properties of the drug 

along with other considerations related to the desired release profile, 

manufacturing limitations etc. 

Of all the strategies to enhance the oral absorption of hydrophobic drugs, 

developing a salt form of a drug is by far the most successful strategy 

amongst the pharmaceutical industries112. According to a study more than 50 

% of the drugs listed in the US Orange Book Database are formulated with 

the salt forms of the drug113.  The popularity of this technique lies in the fact 

that a) it is an old concept, which means the technique is well understood; b) 

no expensive excipients are used and c) it is relatively easier to generate a 

stable salt form of a drug114. The success of this technique also lies in the 

fact that a salt form of a drug is also compatible with other formulation 

strategies. For example, calcium salt of atorvastatin was used to develop an 

amorphous form of the drug as the combined effect of solubility and 

amorphous nature improved the dissolution by a factor of 2 when compared 

to that of the crystalline atorvastatin calcium115.  

Physical modifications of the drug such as alternative polymorphic forms and 

particle size reduction are also successful strategies to enhance the 

dissolution of the hydrophobic drugs. But the formulation strategies such as 

salt forms or polymorphic forms only focuses on improving the concentration 

of the API in the blood stream after oral administration. The drug molecules 

are then left on their own to find their target and in this pursuit most of the 

molecules end up in tissues where they are not meant to be. This seems to 

be like a strategy of previous era due to the advent of ‘smart drug delivery 

systems’ that are capable of targeting the right tissues, reducing the toxicity, 
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enhancing the absorption, reducing the dosing frequency etc. all of which 

improves the therapeutic outcome. New drug delivery systems such as 

liposomes, polymeric nanocarriers, gastro-retention devices etc. have made 

these changes possible. 

Polymers that are capable of forming micelles or nanoparticles with the API 

have found novel uses in drug delivery. They are used to orally deliver a 

variety of therapeutics such as small molecules, proteins, peptides, anti-

bodies, nucleic acids and vaccines to hard to reach targets such as central 

nervous system or a tumour116. The polymeric carriers are capable improving 

the aqueous solubility of the drug, protect them from harsh environment in 

the GI tract, improve the drug absorption and can also deliver their drug load 

to the pathological site117,118. The surfaces of these polymeric nanoparticles 

can be functionalized with target ligands due to the presence of reactive 

functional groups. This has led to the development of a variety of applications 

for polymeric nanoparticles, such as stimuli-responsive drug release, target 

recognition, disease diagnosis and intracellular drug delivery119. Gastro-

retention is another smart strategy to improve the absorption of drugs that 

have a narrow absorption window.  Releasing the drug specifically at the 

absorption site ensures complete uptake of the drug, which eventually 

enhances the treatment efficiency.  

Due to increase in the global awareness on drug safety and efficacy, use of 

smart drug delivery systems is the current trend in drug delivery120. Polymeric 

nanoparticles in particular are gaining popularity due to their tremendous 

potential for versatile applications118–124. Even though the salt forms of the 

API dominate the current market, the future drug delivery strategies will 

revolve around exploiting the polymer technology for the delivery of API in an 

efficient way.  

1.2 Subcutaneous drug delivery: 

Parenteral dosage forms are the first choice delivery option for a hard-to-

formulate poorly soluble drug, for which the bioavailability following the oral 

delivery is negligible. Other advantages of parenteral delivery include, drug 

delivery to unconscious patients, easy access to systemic circulation and 
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rapid drug action, while the disadvantages are poor patient compliance and 

the high cost of production125. Of all the parenteral routes, subcutaneous 

injections are by far less painful and has better patient adherance126. Also 

controlled or prolonged release of the active ingredient is possible leading to 

less frequent injections. Thus the subcutaneous route for drug administration 

is one of the desired routes for drug delivery and this section gives an 

overview of subcutaneous drug absorption. 

1.2.1 Factors affecting the subcutaneous drug absorption 

1.2.1.1 Physiological Factors 

Unlike oral absorption, subcutaneous absorption is fairly straightforward and 

has fewer barriers hindering the drug absorption. Both the nature of the 

subcutaneous tissue as well as the physiochemical property of the drug 

would affect the rate, duration and the extent of drug absorption. The main 

factors affecting the subcutaneous drug absorption are as follows. 

 

Figure 1.3 Structure of interstitium 

 

1.2.1.1.1 The interstitial space: 

The subcutaneous layer forms the hypodermis of the skin and is the last 

layer of the integumentary system. The main components of the 
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subcutaneous layer in respect to drug absorption are the interstitial space, fat 

cells (adipocytes), salts, plasma proteins, blood and lymph vessels127. The 

interstitial space is made up of loose connective tissue, which consists of 

elastin, collagen, glycosaminoglycans such as hyaluronan along with salts 

and proteins (Figure 1.3).  The presence of collagen provides a structural 

framework to the connective tissue and anchors the hypodermis to the deep 

fascia of muscle skeleton, elastin contributes towards elasticity while the 

glycosaminoglycans (GAGs) form a gelatinous network, providing firmness to 

the tissue127.  

Hyaluronan (hyaluronic acid) that makes the bulk of GAGs is a high 

molecular weight (105 - 107 Da) polymer made of repeating disaccharide 

units. It forms an entangled network in an aqueous environment, which under 

physiological conditions forms a porous gel. The gel phase provides a barrier 

to the bulk fluid flow, while the porous matrix acts as a filter by impeding the 

flow of macromolecules127. Hyaluronan is negatively charged and this strong 

negative charge of the GAG limits the interstitial fluid content and hydraulic 

conductivity. The negative charges of GAGs attract the counter ions to 

establish electro neutrality, which in turn increases the interstitial osmotic 

pressure that maintains fluid balance128. Hydraulic conductivity describes the 

ease with which a fluid passes through a porous matrix and it depends on the 

fluid’s density and viscosity129. Since the GAGs make up the porous 

gelatinous matrix of the interstitium, the contents of the GAGs determines the 

hydraulic conductivity and thereby interstitial fluid flow129. 

The passage of injected fluids in the subcutaneous space is facilitated by 

either by convection or diffusion. The driving forces for the convection are the 

hydrostatic and osmotic pressure differences that occur among the blood 

capillaries, interstitium and the lymphatics129. The rate of convection of a 

molecule is limited by steric hindrance and the charge of the molecule while 

the rate of diffusion of a molecule is inversely proportional to its molecular 

weight. Thus the absorption of hydrophilic small molecules such as glucose 

is rapid from subcutaneous injections while large molecular weight proteins 

have slower absorption rates127,129.  
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The other factor hindering the diffusion of particles in the interstitial fluid is the 

net negative charge of GAGs.  This might affect the diffusion of charged 

solutes due to electrostatic attractions or repulsions. Ionic interactions with 

salts, interstitial protein binding, hydration status of the interstitial space, are 

the other factors affecting the subcutaneous absorption of the drugs130.  

1.2.1.1.2 Blood and lymphatic vessels: 

The plasma proteins and other components of the interstitial space are 

constantly replenished by the drainage through blood and lymph vessels. 

The same applies for xenobiotics injected into the subcutaneous tissue. The 

xenobiotic travels through the interstitial space and reaches either the blood 

or lymphatic vessels, from where it reaches the systemic circulation. The 

molecular weight and permeability of a molecule determines if it is absorbed 

through blood capillaries or lymphatic vessels, where a molecule of molecular 

weight less than 16 kDa gets predominantly absorbed from the blood 

capillaries, while a large molecular weight compound gets absorbed through 

lymph. The difference is mainly due to the structural differences between the 

blood and lymph vessels127.  

The blood capillaries contribute to the bulk of fluid volume exchange between 

the tissues (20 – 40 L/day against 2 – 4 L/day of fluids drained by lymphatic 

vessels) and thus a major transporter for injected xenobiotics131. The arteries 

in the subcutaneous layer form highly branched network of capillaries called 

the cutaneous plexus, which eventually combines together to form post-

capillary veinule.  The capillary walls are made of single layer of endothelial 

cells lined by basal lamina but characterised by the presence of nano pores 

(Figure 1.4a). The presence of tight junctions in these endothelial cells forms 

a virtually impermeable barrier to the fluid flow132. But there is continuous 

exchange of plasma contents between the vascular capillaries and the 

interstitium due to convective fluid flow and diffusion through the 

nanopores129,132. The convective fluid flow is due to the hydrostatic and 

osmotic pressure differences between the vasculature and the interstitial 

space. For example the absorption of glucose, a hydrophilic small molecule 

is rapid following the subcutaneous administration, which is mainly due to the 

capillary uptake mechanism. 
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On the other hand, the absorption of high molecular weight solutes such as 

proteins and colloidal particles are facilitated through the lymphatic system. 

The lymph capillaries are made of endothelial cells with a discontinuous 

basal layer (Figure 1.4b). Also the endothelial cells in the lymph capillaries 

are loosely bound and overlapping to form a ‘cleft-like’ junction. These clefts 

open and close due to changes in the interstitial pressure, which also allows 

the passage of large molecular weight solutes and colloidal particles of size 

around 100 nm as the molecules above the size 100 nm are usually found to 

be trapped in the interstitium. The interstitial fluid pressure is affected by 

blood pressure, composition of the interstitium, cell density, tissue hydration, 

metabolism and exercise131,132. 

 

Figure 1.4 Structure of a) Blood capillaries and b) Lymph capillaries 

 

1.2.1.1.3 Site of administration 

The rate and extent of the absorption of therapeutics depends on the site of 

subcutaneous injection. This is because the thickness and composition of the 

subcutaneous tissue varies throughout the body and also varies from person 

to person. For example, the amount of muscular activity, BMI of a person, 

gender can all contribute towards the composition and thickness of the SC127. 

The relationship between the subcutaneous pharmacokinetics and the site of 

injection has been reported for insulin and several other proteins in 

humans133,134.  In a study, the absorption of insulin was monitored following 
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the subcutaneous administration at three different injection sites, abdominal, 

deltoid and femoral133. Abdominal injections produced greater Cmax values for 

insulin when compared with deltoid and femoral injections. The Tmax value 

also varied among the injection sites but the AUC values were not greatly 

influenced by the injection site. The delayed absorption from femoral and 

deltoid sites resulted in prolonged duration of action for insulin, which means 

more potential sites for subcutaneous injections should be studied in order to 

achieve desired PK and PD properties133. The variation is mainly due to the 

regional differences in the blood pressure, which affects the interstitial fluid 

flow and lymph flow influencing the drug uptake127.  

1.2.1.1.4 Catabolism  

The bioavailability of the therapeutics, particularly proteins, might be affected 

by proteolysis at the subcutaneous injection site. The endogenous protein 

content of the interstitium is totally derived from that of plasma but the 

concentration of these proteins is usually around 40 % of what is found in the 

plasma135. Thus endogenous proteases and peptidases might be a problem 

for protein and hormone therapeutics such as insulin136, hGH137 etc. In a 

study, PEGylated erythropoietin (EPO) was used to demonstrate the effect of 

catabolism in reducing the bioavailability following its subcutaneous 

administration138. Radioactively labelled EPO and lymph duct cannulised rat 

models were used in this study. After various experimental observations, the 

bioavailability of EPO was reduced by 60 – 70 %, which is mainly attributed 

to catabolic activities at the subcutaneous injection site and also at the lymph 

nodes138.  

1.2.1.2 Physicochemical properties of the drug 

1.2.1.2.1 Water solubility: 

The interstitial space is a highly hydrated environment and thus the water 

solubility of the drug will affect its subcutaneous absorption. Precipitation of 

the drug would result in the dosage being physically trapped in the interstitial 

matrix and thus unavailable for absorption. However, some degree of 

lipophilicity is required to cross the epithelial barrier of the capillaries due to 

the nature of the plasma membrane132. The ideal logP to cross the cellular 

barriers in the gut3 and blood brain barrier (BBB)139 is logP < 5 and logP 1.5 
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– 2.7 respectively. Given the similarities in the structure of endothelial cells140 

in BBB and subcutaneous capillaries (Figure 1.4a), an ideal logP to penetrate 

the blood capillaries following the subcutaneous injection could be assumed 

to be similar to that of the BBB (logP 1.5 – 2.7), although there could be 

exceptions to this generalisation. 

1.2.1.2.2 Molecular size 

As discussed earlier molecular weight and molecular size plays an important 

role in determining the subcutaneous absorption of injected molecules. 

Molecules that are 10 nm in diameter are absorbed via blood capillaries while 

larger molecules are taken up via the lymph. In terms of molecular weight, 

therapeutics that are less than 16 kDa are predominantly taken up via the 

blood capillaries while larger molecules are taken up via the lymph. In 

general the absorption of small molecules are rapid, which is mainly due their 

rapid movement through the interstitial space, while large particles (> 100 

nm) are trapped in the interstitial space. A linear relationship between the 

size of the molecule and lymphatic absorption was observed on different 

occasions in animal models141 and sometimes the dosage forms are 

specifically designed to target lymphatic absorption by increasing the 

molecule’s size142. For example, several researchers have used liposomes of 

different sizes and have demonstrated enhanced lymphatic absorption of 

drug-loaded liposomes143–145. This phenomenon could be potentially used to 

treat diseases that affect the lymph node146.  

1.2.1.2.3 Charge of the molecule: 

As previously mentioned, the interstitial space is negatively charged due to 

the presence of glycosaminoglycans. Thus the movement of positively 

charged molecules will be impaired due to electrostatic attraction. In a study, 

involving liposomes the lymphatic absorption of the liposomes was rapid for 

negatively charged liposomes, followed by positively charged and neutral 

liposomes147. This is because the negative charges in the liposomes move 

with ease due to electrostatic repulsion in the interstitial space. There are 

several other publications that have reported a rapid uptake rate for 

negatively charged particles when compared to the positively charged 

ones148–150. This charge-based discrepancy in the rate of subcutaneous 
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absorption could be potentially used to prolong the drug absorption by 

formulating the drug in a positively charged delivery vehicle. 

1.2.2 Considerations while designing for subcutaneous injections 

One advantage of subcutaneous injection is that, manipulation of the dosage 

form to meet the therapeutic requirement is possible unlike other parenteral 

routes; example, the dosage form can be designed for lymphatic uptake or 

controlled release. While the intramuscular (IM) route is also used for 

controlled release depot formulations, the IM routes are more invasive and 

cause tissue damage, which limits the patient adherence. The following 

section is about the factors to consider, while designing subcutaneous 

dosage forms for human use.  

1.2.2.1 Carrier selection: 

A hydrophilic or amphiphilic carrier often facilitates the subcutaneous 

absorption of hydrophobic drugs or unstable proteins. The carrier could be of 

synthetic, semisynthetic or inorganic origin. An ideal carrier should a) be 

biocompatible and biodegradable – the carrier should be toxicologically safe 

and get eliminated by normal metabolic pathways; b) deliver the drug at 

clinically effective doses and c) be amenable for modifications to achieve 

desired drug release profile. Due to diversity in diseases, dosage range and 

special requirements, a multitude of vehicles are available for subcutaneous 

injections. Polymeric materials such as α – hydroxyacids (PLGA)151, 

polysaccharides (hyaluronic acid, chitosan etc.)152, nanoparticle systems 

such as liposomes153 and inorganic materials such as hydroxylapatite154 are 

some of the commonly used carriers for subcutaneous drug delivery.  

1.2.2.2 Pharmacokinetic (PK) profile: 

The main factor to consider while designing a subcutaneous dosage form is 

the desired pharmacokinetic profile of the drug. For example, for some 

treatments, slow and steady release of the active ingredient would be 

desirable and for some a rapid release rate might be desirable. The dosage 

form should be carefully designed to meet these PK requirements in order to 

achieve a clinical effect. Advances in polymer technology have led to the 
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development of subcutaneous dosage forms with a variety of drug release 

profile. By modifying the molecular weight and the hydrophobicty, Poly lactic-

co-glycolic acid (PLGA) was tuned to achieve different drug release profile155. 

In one particular study156, PLGA microspheres of three different molecular 

weights (10, 20 and 30 kDa) were used to encapsulate exenatide, a peptide 

used to treat type II diabetes. When given subcutaneously to humans, the 

10-kDa PLGA microspheres had a severe initial burst release, while the 

release of exenatide from the 30-kDa PLGA microspheres was prolonged for 

a period of 30 days156. 

Controlled drug release is also possible, where a polymer matrix can be 

engineered to respond to an external or internal stimulus such as heat, pH 

changes, electrical field or radiation. Extensive research is being carried out 

to explore the control drug release behaviour of polymeric matrices. A 

thermo-sensitive in situ forming hydrogel was developed by conjugating 

Paclitaxel to poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) 

(PCEC/PTX), which remains liquid at room temperature but solidfies to form 

a gel at body temperatures when injected157. This thermosensitive gel 

sustained the release of paclitaxel for a period of 28 days in animal models 

and the release of the drug was due to gradual erosion of the polymer matrix.  

In another study, on/off release of the drug load was achieved by using Near 

Infra red (NIR) waves as a trigger for N-isopropylacrylamide-co-acrylamide 

(NIPAAm-co-AAm) hydrogels loaded with silica-gold nanoshells158. The 

nanoshells when irradiated with NIR achieve their peak extinction coefficient, 

which converts light radiations into heat energy, which heats the surrounding 

microenvironment. NIPAAm-co-AAm forms hydrogels at body temperature 

but collapses at temperatures around 50 °C. When the hydrogels containing 

silica-gold nanoshells are irradiated with NIR laser, a local rise in temperature 

destabilizes the hydrogel with reversible effects. When this hydrogel - 

nanoshell matrix is loaded with a drug, switching on or off the NIR laser 

source can control its release.  

1.2.2.3 Targeting lymphatic system: 

Lymph vessels form an important unidirectional circulation route for 

extravasated plasma proteins, excess fluid and cell debris130. It also plays an 
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important role in the transport of dietary lipids and highly lipophilic 

compounds from the site of absorption to the circulatory system bypassing 

liver metabolism. In addition to this, the lymphatic system plays a key role in 

the maintenance of an effective immune system and dissemination of the 

metastases from solid tumours159. It is also established that the bacterial and 

viral pathogens might use the lymphatic system to gain access to the 

systemic circulation. Thus, targeting the lymphatic system serves as a 

formulation strategy when the drug undergoes high first-pass metabolism or 

the drug’s desired site of action is lymph nodes such as in case of treating 

tumour metastasis146.   

As previously discussed, macromolecules with molecular weights greater 

than 16 kDa and particulates that are larger than 10 nm in diameter are 

preferentially absorbed via lymph capillaries following subcutaneous 

injections. Hence, by nature, the bio therapeutics such as proteins and other 

macromolecules are selectively absorbed via the lymph due to their high 

molecular weight. For small molecules that are less 16 kDa, colloidal 

particles larger than 10 nm in diameter offer an easy way to facilitate 

lymphatic absorption. Liposomes are widely used for lymphatic delivery and 

in one particular study, LyP-1, a cyclic peptide for tumour targeting was 

conjugated to PEGylated liposomes loaded with fluorescein or doxorubicin160. 

These liposomes selectively accumulated in lymphatic nodes, following the 

subcutaneous injection of these liposomes in tumour bearing mice. Thus by 

specifically designing the formulation, the subcutaneous route can be 

effectively used to selectively target the lymphatics.  

1.2.2.4 Formulation parameters: 

Other formulation parameters to consider while designing a subcutaneous 

formulation are, the dosage volume, viscosity, pH and osmolality of the 

formulation132. The viscosity of the formulation shouldn’t be too high as this 

will restrict interstitial flow or would be difficult to inject causing discomfort to 

the patients. Similarly, extreme pH in the formulation might give rise to local 

irritation at the injection site. The formulation should also be isotonic, which is 

determined by the ionic strength or osmolality of the formulation. Also factors 

like, massage, exercise, heat can also affect subcutaneous drug 
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absorption127. As described previously, the interstitial fluid flow is regulated 

by the oncotic and hydrostatic pressure difference in the blood capillaries, 

interstitium and the lymph129. This pressure gradient would be disrupted 

when hyperosmolar solutions are injected in the interstitium, resulting in 

excess extravasation leading to necrosis.  

Also there are restrictions on the total volume of formulation that could be 

administered subcutaneously. Unlike furry mammals, humans have fibrous 

bands that run deep into the fascia, which reduces the compliance of tissue 

space to injected fluids. This limits the subcutaneous injection volume in 

humans to less than 2 mL161. One strategy to overcome this restriction is to 

reduce the viscosity of the interstitial space by depolymerizing the hyaluronan 

component of the interstitial matrix. The hyaluronan has a half-life of just 15 – 

20 h and hence the degraded polymer would be quickly restored allowing 

sufficient time for the absorption of the injected liquid. Traditionally, 

hyaluronidase enzyme from the bovine and ovine sources were used for this 

purpose. But the use of hyaluronidase obtained from animal sources will lead 

to potential immunogenic reactions in humans162. Thus the Human 

recombinant hyaluronidase (rHuPH20) enzyme was synthesized using 

genetic engineering technology, which offers a safe and highly specific 

method for the degradation of the hyaluronan in humans162. Experiments 

revealed that the depolymerized hyaluronan layer was restored to its former 

self within 24 hours following the injection of rHuPH20 and importantly, the 

subcutaneous injection volume could be increased up to 5 – 10 mL per 

injection. Co-administration with rHuPH20 also affects the pharmacokinetics 

of the therapeutics, where the bioavailability of the peginterferon and 

infliximab were dramatically increased when injected with rHuPH20162. 

rHuPH20 is currently marketed under the brand name Hylenex®, by 

Halozyme® therapeutics and is approved by FDA for cancer treatment in 

combination with Herceptin. 

1.2.3 Competent subcutaneous formulation strategies 

As mentioned earlier, drug delivery is advancing towards the development of 

‘smart drug delivery systems’120. Advances in polymer technology has 
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enabled these progress in smart drug delivery possible99,119,163. The biggest 

advantage of subcutaneous drug delivery is that the smart drug delivery 

systems could be easily deployed via this route of adminstration127.  This is 

due to the nature of the subcutaneous site, which facilitates easy drug 

absorption while reducing the pain and discomfort for the patients. Polymeric 

systems that are capable of prolonging the absorption, controlling the drug 

release, targeting the lymph nodes etc. have been recently developed and 

the ultimate goal of these smart drug delivery systems is to reduce the dosing 

frequency while maximising its therapeutic efficacy119.  

While targeting the lymphatic system via subcutaneous route is a good 

strategy, it is particularly useful only if the pathological site is the lymph 

node146. If the disease target is elsewhere then there is no particular 

advantage in delivering therapeutics via the lymphatic route in the context of 

subcutaneous administration. But on the other hand, controlled drug delivery 

has many exciting applications for the delivery of therapeutics. For example, 

drug delivery systems are engineered to respond to a stimulus, which 

triggers the drug release only when the stimulus is present164. The stimulus 

could be internal, such as pH, an indigenous chemical or external, such as 

heat, radiation etc. Various small molecule drugs such as docetaxel, 

ethosuxcimide, leuprolide etc. are formulated in stimuli-responsive polymers 

for disease treatments163. Self-propelled polymeric ‘nanomotors’ that are 

capable of delivering hydrophobic drugs such as doxorubicin are also 

recently developed165. These locomotive structures loaded with anticancer 

agent were designed to sense the hydrogen peroxide released by cancer 

cells, utilise it as their fuel and self-propel their motion towards them, where 

they release their cargo and eventually kill the cancer cells166. The 

nanomotors could be potentially used to treat and diagnose cancer, wound 

healing and tissue regeneration.  

The advantages of using these controlled drug delivery systems include, 

prolonged drug release, targeted drug release to the site of pathology, 

improved treatment efficacy, reduced side effects and reduced dosing 

frequency163. With these novel and versatile applications, ‘polymeric 
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controlled drug delivery systems’ are gaining popularity120,158,163,167 and thus 

serves as a competent strategy for subcutaneous drug delivery. 

1.3 Aim: 

The aim of the project is divided into two main categories. First, is to enhance 

the oral absorption of hydrophobic drugs that are P-gp substrates (BCS 

Class IV) such as paclitaxel, CUDC-101 by the use of new and existing 

polymeric amphiphiles as excipients. The absorption of hydrophobic drugs 

that are P-gp substrates are hampered by poor solubility and P-gp efflux. Use 

of the new amphiphilic polymers might enhance the drug absorption by 

forming colloidal particles that behave differently when compared to the free 

drug. While more NCEs are discovered each year due to the advances in 

combinatorial chemistry, there is always a growing demand for more and 

more efficient excipients for oral drug delivery57. Thus this project might lead 

to the development of an efficient oral drug delivery system for BCS class IV 

drugs. 

The other aim of this project is to develop a subcutaneous dosage form for 

CUDC-101, an anti-cancer agent to be taken into clinical trials.  The dosage 

form has to be optimized for drug content, tonicity and should be easily 

injectable. The main challenge lies in achieving therapeutically effective 

levels of the CUDC-101, particularly due to the extremely hydrophobic nature 

of the drug and limitations on subcutaneous dosage volume in humans. 

1.4 Model drugs: 

1.4.1 CUDC-101: 

CUDC-101 is a clinical stage multi-target anti-cancer drug developed by 

Curis Inc., USA and is currently in Phase1b clinical trial as an intravenous 

dosage form168. CUDC-101 targets epidermal growth factor receptor (EGFR), 

epidermal growth factor 2 (Her2) and histone deacetylase (HDAC) with very 

low IC50 values of 2.4nM, 15.7nM and 4.4nM respectively168,169.  

Though CUDC-101 (Figure 1.5) is a potent anti-cancer drug, its chemical 

properties make it highly hydrophobic (Table 1.2). CUDC-101 is classified as 
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a Class IV drug under Biopharmaceutical Classification System (BCS), which 

means a drug has poor permeability and poor solubility. While the LogP of 

the drug is 4, the poor permeability is due to the fact that the drug is P-

glycoprotein substrate (Curis’s internal data). This makes CUDC-101 an ideal 

candidate for our experiments to develop a drug delivery system for poorly 

soluble drugs. 

1.4.2 Paclitaxel  

Paclitaxel (Figure 1.5) was first isolated from the bark of Pacific Yew tree, 

Taxus brevifolia and is currently marketed under the trade name Taxol® for 

the treatment of various types of cancer. Paclitaxel interferes with normal 

breakdown of microtubules during cell division by binding to beta-tubule 

subunits of the microtubule170. This blocks the progression of mitosis and 

triggers apoptotic pathways leading to cancer cell death. Paclitaxel is 

extremely hydrophobic and is a substrate of P-gp efflux, thus has very low 

oral bioavailability (6.5 %)170,171. 

Table 1.2 Physicochemical properties of the model drugs 

Common name CUDC-101 Paclitaxel 

Chemical name 

7-(4-(3-

ethynylphenylamino)

-7-

methoxyquinazolin-

6-yloxy)-N-

hydroxyheptanamid

e 

(1S,2S,3R,4S,7R,9S,10S,12R,15S

)-4,12-Diacetoxy-15-{[(2R,3S)-3- 

(benzoylamino)-2-hydroxy-3- 

phenylpropanoyl]oxy}-1,9- 

dihydroxy-10,14,17,17-tetramethyl 

-11-oxo-6-oxatetracyclo 

[11.3.1.0~3,10~.0~4,7~] heptadec-

13-en-2-yl rel-benzoate 

Appearance 
White crystalline 

powder 
White crystalline powder 

Molecular 

Formula 
C24H26N4O4 C47H51NO14 

Molecular weight 434.49 g mol-1 853.9 g mol-1 



Enhancing the bioavailability of BCS Class IV drugs using polymeric nanoparticles 

 

54 

 

Common name CUDC-101 Paclitaxel 

Water solubility 
29 ± 10 μg ml-1 

(calculated value) 
5 μg ml-1 (predicted value) 

Cal LogP 4 3 

 

 

Figure 1.5 Chemical structures of a) CUDC-101 and b) Paclitaxel 
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2 Amphiphile synthesis and characterisation 

2.1 Introduction: 

Amphiphilic molecules are those with both hydrophilic and hydrophobic 

functional groups in their structure. This gives amphiphiles a unique property 

of self-assembly in aqueous environment, where the hydrophobic units of the 

amphiphiles are oriented in such a way to reduce their contact with water. 

This phenomenon forms colloidal particles called micelles and the driving 

force for micelle formation in aqueous environment is the entropy gain 

enjoyed by the water molecules when they are liberated from a hydrophobic 

environment. The amphiphiles have surface-active properties and have a 

wide range of applications in the field of drug delivery172.  

The use of polymeric amphiphiles for oral drug delivery has gained attention 

in recent times and the potential for these systems to aid in drug delivery has 

been researched extensively173. Polymeric amphiphiles are those with 

repeating units of hydrophilic and hydrophobic units that self-assemble in 

aqueous environment and are capable of forming nanoparticles with 

hydrophobic molecules, which improves drug absorption. This chapter covers 

the synthesis and characterisation of polymeric amphiphiles, namely N-

palmitoyl-N-monomethyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycolchitosan 

(GCPQ) and N-(2-phenoxyacetamide)-6-O-glycolchitosan (GCPh).  

2.1.1 Glycol Chitosan based amphiphiles: 

2.1.1.1 GCPQ: 

GCPQ is a chitosan based amphiphilic polymer, with hydrophobic palmitic 

acid molecules covalently linked to hydrophilic sugar backbone174. This comb 

shaped amphiphile (Figure 2.1) has positively charged quaternary 

ammonium groups, which increase the water dispersibility of the molecule 

and also aids in mucoadhesion75. GCPQ form micelles when suspended in 

aqueous environments and has been shown to encapsulate hydrophobic 

drugs and peptides75,175. The micelles are formed at a low critical micellar 

concentration (CMC) of ~20 M75. It has been previously shown that the 

GCPQ nanoparticles enhanced the bioavailability of the therapeutics through 
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ocular176 and the oral route75. It was also established through CARS 

(Coherent Anti-Stokes Raman Spectroscopy) imaging that the drug loaded 

GCPQ nanoparticles are taken up as a whole through enterocytes175,177. The 

mechanism of action of GCPQ is to increase the aqueous solubility of the 

drugs, mucoadhesion, protecting the therapeutic from degradation and 

enhancing its transcellular transport 75,175. 

 

Figure 2.1 Chemical structure of GCPQ  

Structure of GCPQ, x = GC units with hydrophobic palmitoyl group, y = GC 
units with trimethyl ammonium group (Quarternized ammomium), z = 
unmodified GC units, m and n = dimethyl and monomethyl ammonium 
groups formed during quaternization. 
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2.1.1.2 GCPh 

GCPh is a new chitosan based amphiphile, in which the phenoxyacetamide 

ring contributes to the hydrophobicity of the polymer (Figure 2.2). Amphiphilic 

polymer forms self-assemblies in aqueous environment, with its hydrophobic 

group forming the core of the assembly. When a hydrophobic drug is added 

to this dispersion, the drug will either precipitate or aggregate within the core 

of the amphiphilic self-assembly forming colloidal particles of sizes in 

nanometer range. The principle behind the polymer self-assembly and the 

formation of hydrophobic nanoparticles can be explained as follows. When a 

hydrophobic moiety is dropped in an aqueous medium, the hydrogen bonds 

of the surrounding water molecules are broken to accommodate the 

hydrophobe178. This is an endothermic reaction as the water molecules do 

not interact with the hydrophobe and heat energy is used to break the 

hydrogen bonding of water molecules. The distorted water molecules form 

new hydrogen bonds surrounding the hydrophobe like a cage. But this affects 

the entropy of a system (ΔS), which becomes negative. According to the 

Gibbs free energy equation,  

ΔG = ΔH – TΔS                                                                      (Equation 2.1) 

where ΔG is change in Gibbs free energy, ΔH is change in enthalpy, T is 

temperature and ΔS is change in entropy. A negative ΔS value means that 

the ΔG is positive, which means that the mixing of water molecules and the 

hydrophobe is thermodynamically unstable.  To overcome this instability, the 

hydrophobic molecules start to interact among themselves, which results in 

the breakage of water cage formed around the hydrophobe. These liberated 

water molecules increase the entropy of the system and thus ΔS becomes 

positive. A positive ΔS ensures a negative ΔG, which means the system is 

now thermodynamically stable. Thus the liberation of water molecules during 

hydrophobic interactions is the key driver for polymer self-assembly and also 

the formation of drug – polymer nanoparticles75,178.  

The idea behind using a phenoxy ring is to exploit the aromatic interactions 

between the polymer’s side chain and that of the drug, forming stable 
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nanoparticles. Aromatic interactions are considered to be the strongest of all 

hydrophobic interactions179, which is due to the π-π stacking of the electrons 

in the π orbital. The interaction is further strengthened by the delocalisation 

of the electronic charge in an aromatic ring, which contributes towards 

London dispersion forces. Thus the hydrophobic interaction between two 

aromatic molecules would be stronger than the interaction between an 

aliphatic and aromatic molecule. Given that the most of the drug molecules 

contain aromatic ring in their structure, GCPh might form stable nanoparticles 

with those molecules.  

 

Figure 2.2 Chemical structure of GCPh  

Structure of GCPh, x = GC units with hydrophobic phenoxy acetamide group, 
y = naturally acetylated GC units, z = unmodified GC units. 

2.1.2 Characterisation methods 

2.1.2.1 Nuclear Magnetic resonance: 

Nuclear Magnetic Resonance (NMR) is a structure prediction tool, based on 

the observation that atomic nuclei behave like bar magnets when placed in a 

magnetic field. The atoms with an odd number of protons or neutrons have a 
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non-zero nuclear spin whereas atoms with an even number of protons and 

neutrons have a zero spin and NMR relies on non-zero nuclear spin (I) for 

structural prediction. 1H and 12C being the most common elements in organic 

molecules, studying their spin behaviour will help us to predict a molecule’s 

structure180. But 12C has a zero nuclear spin and hence its naturally occurring 

isotope 13C is studied for structural prediction. Both 1H and 13C have a spin I 

= ½ and can align in 2I+1 ways or just in 2 ways when applied a magnetic 

field, a low energy orientation aligned with applied field or higher energy 

orientation opposed to the applied field (Figure 2.3).  

So, the nucleus of an atom aligns when in a magnetic field and at a particular 

frequency they change their orientation from lower energy to higher energy, 

which is called as resonance frequency for that atom. Once the resonance 

pulse is over, the nuclei return to their low energy state with a release of 

energy and a receiver coil picks up these minute energy responses, which 

are documented for structural determination. The resonance frequency is 

dependent on both the nature of the nuclei and applied field strength, which 

means an independent nucleus, will always have the same resonance 

frequency. But in a complex molecule there are many neighbouring atoms, 

whose nuclear magnetic field will influence the alignment of other nearby 

nuclei causing them to resonate at a different frequency. The influence of one 

atom over another has been extensively studied and it is this information that 

is particularly valuable for structural determination180,181.  
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Figure 2.3 Nuclear magnetic spin (I=1/2) pattern with an external 

magnetic field. 

 

The presence of electron withdrawing atoms (O, N),  bonds and high 

electron density, will all have an impact on the resonance frequency and will 

result in different chemical shifts (). The chemical shift of an atom is the 

difference between the resonance frequency of the atom in analysis and that 

of a reference standard, usually tetramethylsilane (TMS), which has an 

arbitrary assigned shift of =0181. These chemical shifts are generally 

recorded, as peaks in the NMR spectrum and the relative area under these 

peaks are directly proportional to the number of protons giving rise to the 

signal. The test samples are dissolved in a solvent that does not give rise to 

the signals on its own. Deuterated solvents such as D2O, CDOD3, C6D6, d6-

DMSO etc. are usually used for this purpose. 
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For complex organic molecules, complete spectrum assignment is not 

possible with one-dimensional NMR alone, so two-dimensional techniques 

like Correlation Spectroscopy (COSY), Nuclear Over Hauser Effect 

Spectroscopy (NOESY), etc. are developed. In COSY, the connectivity of a 

molecule is probed by determining which protons are spin-spin coupled. 

These complex NMR techniques provide scope for accurate prediction of a 

molecule’s structure.  

2.1.2.2 Fourier Transform Infrared Spectroscopy (FTIR) 

Infrared spectroscopy is a rapid, convenient and non-destructive method for 

characterisation of a molecule. When a range of infrared frequencies is 

passed through a molecule, some of the frequencies get absorbed and the 

rest are transmitted unchanged. The absorption is because of the energy 

transfer between the covalent bonds in a molecule and the infrared (IR) 

frequencies and this energy transfer changes the vibrational status of the 

chemical bonds involved. The energy transfer occurs only at a certain 

frequency called the resonance frequency, where the frequencies of the 

natural vibration of the molecule and the infrared radiation match. As a result 

of this the vibration of the chemical bonds are amplified and this generates 

an IR spectrum unique for the molecule. An important criterion for molecules 

to absorb infrared frequencies is that there should be a net change in its 

dipole moment. A dipole moment arises when there is a difference in electron 

densities around the atoms involved in the bonding.  As the bond vibrates, 

the atomic charge differences in the dipole create an electrical field. This field 

will interact with the electrical field associated with the IR radiation and if the 

resonance frequency is matched the molecular vibration is amplified. When 

the molecules lacks a dipole moment, there will be no interaction with the 

electrical field of IR radiation and thus the molecule will be IR inactive180.  
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Figure 2.4 Instrumentation of FTIR 

 

In FTIR, the sample of interest is placed on a dais and the IR beam is shone 

on it (Figure 2.4). The IR beam is initially split into two in an interferometer 

using a beam splitter and a fixed mirror reflects one of the beams while the 

other beam is reflected in a movable mirror. By adjusting the position of the 

movable mirror, a path difference is created between the two laser beams, 

which are later combined together in the interferometer and shone on a 

sample. The intensity differences in the IR radiation before and after striking 

the sample were monitored using a suitable detector within the interferometer 

and the signal is Fourier transformed to yield the IR spectrum.  

2.1.2.3 Gel Permeation Chromatography-Multi-angle Laser Light 

Scattering (GPC-MALLS) 

Gel Permeation Chromatography (GPC) is a size exclusion chromatographic 

technique, which separates molecules based on size (molecular mass and 

hydrodynamic radius). The GPC columns are packed with porous beads of 
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different pore sizes and molecules with large hydrodynamic radii can’t pass 

through these pores and thus elute quickly. Whereas molecules with radii 

that fit the pores pass through these pores, which hinders their movement 

and they elute later. So molecules with high molecular weight (Mw) elute first 

followed by molecules with lower molecular weights in a descending order182.  

The eluted molecules are monitored using a Multi-Angle Laser Light 

Scattering (MALLS) detector, which works on the principle of Rayleigh 

scattering. When a monochromatic light of certain intensity is incident on a 

solution, the solute molecules scatter some portion of light elastically (same 

intensity as that of incident light) in different directions according to the 

concentration, size and shape of the solute molecules. The scattered light is 

monitored using various detectors set at different angle and this information 

is used to calculate the Mw
183. But the light scattering information alone will 

not give us accurate molecular weight. 

Absolute measurements of molecular weight are possible when the 

concentration, refractive index () and differential refractive index increment 

d/dc values are known184. For this purpose, a differential Refractive Index 

(dRI) detector is connected in line with the GPC-MALLS. If the concentrations 

of solutes in a solution are known, it is possible to calculate the values for  

and d/dc from which the exact Mw can be calculated from the following 

equations. 

 
  

  
⁄      

⁄      
⁄ (   

 

   ⁄  )     
   ⁄         

                        (Equation 2.2) 

where, c is solute concentration; R is the Rayleigh ratio; Mw, the weight-

averaged molecular weight; , the wavelength of incident light; , , the 

scattering angle; <r>z, the z-averaged mean radius of gyration and A2, the 

second virial coefficient, which quantifies the interaction between the 

macromolecule and the solvent. Kc is given by equation  
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⁄                                                            (Equation 2.3) 

where, No is the Avogadro’s number; , the refractive index and d/dc, the 

change in refractive index per unit change in solute concentration. 

2.2 Aims and objectives: 

The aim of this chapter is to synthesize amphiphilic polymers by hydrophobic 

modification of glycol chitosan for drug delivery. One of the main objectives is 

to synthesise and characterise a new amphiphilic polymer with 

phenoxyacetamide group as the hydrophobic moiety.  

2.3 Materials and methods: 

2.3.1 Materials 

Chemical Purity Supplier 

1-Methyl-2-pyrrolidone 99% 
Sigma-Aldrich 

(Gillingham, UK) 

Acetic acid  

VWR BDH Prolabo 

(Fontenay-sous-Bois, 

France) 

Acetonitrile HPLC grade ≥ 99.5% 
Fisher Scientific 

(Loughborough, UK) 

Amberlite IRA-96, free 

base, 20-50 mesh 
 

Sigma-Aldrich 

(Gillingham, UK) 

Deutrium oxide  
Sigma-Aldrich 

(Gillingham, UK) 

Diethyl ether ≥ 99.5% 
Sigma-Aldrich 

(Gillingham, UK) 



Enhancing the bioavailability of BCS Class IV drugs using polymeric nanoparticles 

 

65 

 

Chemical Purity Supplier 

DMTMM ≥ 96% 
Sigma-Aldrich 

(Gillingham, UK) 

Ethanol (absolute) 99.7-100% 
UCL School of 

Pharmacy 

Glycol chitosan ≥ 60% 
Sigma-Aldrich 

(Gillingham, UK) 

Hydrochloric acid 36.5-38% 

VWR BDH Prolabo 

(Fontenay-sous-Bois, 

France) 

Iodomethane, reagent 

plus 
99% 

Sigma-Aldrich 

(Gillingham, UK) 

Methanol-D4 99.80% 

Cambridge Isotope 

Laboratories, Goss 

Scientific Instruments 

Ltd. (Worleston, 

Nantwich, UK) 

N-Methylmorpholine ≥ 99.5% 
Sigma-Aldrich 

(Gillingham, UK) 

Palmitic acid N-hydroxy 

succinamide ester 
98% 

Sigma-Aldrich 

(Gillingham, UK) 

Phenoxyacetic acid 98% 
Sigma-Aldrich 

(Gillingham, UK) 

Sodium acetate 

anhydrous 
≥ 99% 

Sigma-Aldrich 

(Gillingham, UK) 

Sodium bicarbonate ≥ 99.5% 
Sigma-Aldrich 
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Chemical Purity Supplier 

(Gillingham, UK) 

Sodium hydroxide 99.13% 
Sigma-Aldrich 

(Gillingham, UK) 

Sodium iodide ≥ 99.5% 
Sigma-Aldrich 

(Gillingham, UK) 

Visking dialysis 

membranes with a cut-

off of  3.5, 7, 12-14 kDa 

 
Medicell International 

LTD (London, UK) 

Water deionised  
Millipore Elix-Progaard 

2 

Water double deionised <18 ohm 
Millipore Synergy- 

Simpak1 

2.3.2 Methods 

2.3.2.1 Synthesis of Quaternary Ammonium Palmitoyl Glycol Chitosan 

(GCPQ) 

GCPQ was synthesized as previously described174 and a brief outline of the 

protocol is as follows. Please refer to Figure 2.5 for schematic representation 

of GCPQ synthesis. 

Acid Degradation of Glycol Chitosan 

Glycol chitosan (10 g) was degraded by dissolving it in hydrochloric acid (4 

M, 760 ml) and incubated on a pre-heated water bath at 50C.  Separate 

batches of degradation were set, where the batches were degraded for 2 

hours, 24 hours and 48 hours to get GC2, GC24 and GC48 respectively. 

Variations in degradation time will give rise to degraded glycol chitosan with 

different molecular weights (approximate estimation) as shown in Table 2.1. 

After the reaction time, the product was isolated by exhaustive dialysis 
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against water using dialysis membrane with a molecular weight cut-off 

(MWCO) of 3500 Da. The degraded glycol chitosan was recovered as cream-

coloured cotton-wool-like solid.  

Table 2.1 Relationship between degradation time and molecular weight 

of GC 

Final (GC) molecular weight (Da) GC degradation time (h) 

80000 – 120000 0 (undegraded GC) 

35000 – 45000 2 

10500 – 12000 24 

6500 – 8500 48 

 

Palmitoylation of degraded Glycol Chitosan  

N-palmitoyl-6-O-glycol chitosan (PGC) was synthesized by dissolving 

degraded GC (6 g) and Sodium bicarbonate (4.585 g) in a mixture of water 

(912 mL) and absolute ethanol (288 mL), to which was added drop-wise a 

solution of Palmitic acid N-hydroxysuccinamide ester (PNS, 9.65 g) dissolved 

in absolute ethanol (1830 mL) over a period of 1 hour.  PGC with different 

degrees of palmitoylation could be obtained by modifying the GC to PNS 

molar ratio and drop-rate of PNS (Table 2.2).  The mixture was stirred for a 

period of 72 hours and the product was isolated by removing the excess of 

ethanol by evaporation and the remaining aqueous phase was extracted with 

thrice the volume of diethyl ether. The aqueous mixture of PGC was the 

exhaustively dialysed (MWCO = 12-14 kDa) against water (5 L) for a period 

of 24 hours with six changes of water. The resultant product was freeze - 

dried and the PGC was recovered as white cotton-like solid. 

Table 2.2 Relationship between molar ratio and drop-rate on 

palmitoylation of GC 
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GC48 

(mg) 
PNS (mg) 

Ethanol 

(mL) 

Drop rate 

(mL min-1) 

Temperature 

(°C) 

Expected 

%P (%) 

500 

792 

150 

8 – 11 

20 

16 – 18 

792 12 – 15 24 – 28 

1984 12 – 15 35 – 50 

396 6 – 8 9 – 12 

198 2 – 4 3 – 5 

 

Quarternisation of PGC 

GCPQ was synthesized from PGC (7 g) by dispersing it in N-Methyl-2-

Pyrrolidone (590 mL) for minimum of 2 hours. An ethanolic suspension (5 

mL) of sodium hydroxide (944 mg), sodium iodide (1062 mg) and methyl 

iodide (10.38 mL) were added and the reaction mixture was stirred under a 

stream of nitrogen at 36C. GCPQ with varying degrees of quarternisation 

can be obtained by varying the reaction time and also by altering the methyl 

iodide volume. The GCPQ was recovered by adding excess of diethyl ether 

and the precipitate was washed with copious amount of absolute ethanol. 

The resulting brown hygroscopic precipitate was dissolved in 100 mL of 

water and the solution was dialysed exhaustively (MWCO 7000 Da) against 

water (5 L) for 24 hours with six changes of water. The quaternary 

ammonium iodide salt was passed through a column (Amberlite IRA, 10 cm 

in length) and the straw coloured, fibrous, cotton wool like GCPQ is 

recovered from the resultant filtrate by freeze-drying.  

Deprotonation of GCPQ: 

GCPQ was deprotonated by dialysis of an aqueous suspension of GCPQ 

(3.5 g in 100 mL of water) against a dialysate (5 L) containing sodium 

chloride (0.1 M) and sodium bicarbonate (0.01 M) for 4.5 hours with three 

changes of the salt solution. The GCPQ solution was then exhaustively 
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dialysed against water (5 L) for 24 hours with six changes of water and the 

deprotonated GCPQ was collected by freeze-drying.   

2.3.2.2 Storage stability of GCPQ 

Samples of GCPQ were stored dry in sealed amber bottles at room 

temperature for 36 months.  At various time intervals, samples were 

withdrawn and analysed by 1H NMR and GPC-MALLS, to monitor any 

changes in polymer characteristics during storage. 

2.3.2.3 Synthesis of Phenoxy Glycol Chitosan (GCPh): 

High molecular weight Palmitoylated Glycol Chitosan (GCPh) was 

synthesized from GC2 by dissolving GC2 (500 mg) in a mixture of water and 

absolute ethanol (1:1, 50 mL). Phenoxyacetic acid (125 mg) was dissolved in 

absolute ethanol (100 mL) and added drop-wise at the rate of 5 mL min-1 to 

the GC2 solution, followed by N-Methylmorpholine (100 µL) and 4-(4,6-

Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM, 

1660.32 mg). The reaction was carried out at room temperature for 5 hours in 

an uncapped vessel and the product was isolated by evaporating most of the 

ethanol and extracting the remaining aqueous phase with diethyl ether 

(3x100 ml). The aqueous mixture of the polymer was exhaustively dialyzed 

against water (MWCO 12-14 kDa) and the resultant product was freeze-dried 

to get Phenoxyacetic glycol chitosan (GCPh) as a fibrous solid. 

2.3.2.4 Characterisation of the amphiphiles 

2.3.2.4.1 1H and COSY NMR spectroscopy 

In a vial, the polymer (2 mg for proton NMR, 20 mg for Carbon NMR) was 

dissolved in of suitable solvent (0.6 mL, dissolve DGC in D2O; PGC, GCPQ 

and GCPh in CD3OD). A drop of deuterated acetic acid may be added to 

solubilise the polymer if necessary. Then the solution was transferred to a 

clean NMR tube and analysed for 1H NMR proton shifts using the Bruker 

AMX 400 MHz spectrometer, Bruker instruments, UK. 
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Figure 2.5 Schematic representation of synthesis of GCPQ 

 

The spectra obtained were processed and analysed using the Topspin 

software for windows. Phenoxylation, Palmitoylation and quarternisation 

percentages were calculated from the spectrum by taking the ratio of 

respective peaks against sugar proton peaks and multiplying the quotient by 

100.  
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2.3.2.4.2 Gel Permeation Chromatography - Multi-angle Laser Light 

Scattering (GPC-MALLS)  

Gel Permeation Chromatography (GPC) coupled with Multi Angle Laser Light 

Scattering (MALLS) detector and a differential Refractive Index (dRI) detector 

enables us to accurately measure the molecular weight of the polymer 

produced. The detectors used were 120 mW solid-state laser (wave length, 

658 nm) DAWN HELEOSTM II MALLS detector and Optilab rEX 

Interferometric Refractometer (dRI) detector, which were supplied by Wyatt 

Technology Corporation, USA. MALLS detector was also coupled to Quasi 

Elastic Light Scattering (QELS) detector supplied by Wyatt Technology 

Corporation. GPC was performed using POLYSEPTM-GFC-P 4000 column 

(300 x 7.8 mm) protected by a POLYSEPTM-GFG-P guard column (35 x 7.8 

mm) as stationary phase. The columns were from Phenomenex, Cheshire, 

UK and the mobile phase was fed to the column using a HPLC system 

assembled with Agilent Series Isocratic pump coupled with Agilent 1200 

series degasser and auto sampler that are all supplied by Agilent 

Technologies, Berkshire, UK.  

The mobile phase (500 mM, Acetate buffer) was prepared by dissolving 

anhydrous sodium acetate (24.6 g) and glacial acetic acid (11.4 mL) in 

double deionised milli-Q water (1 L). The buffer was filtered using a 0.2 m 

PES filter (Millex-HA, Millipore) before passing it in the HPLC system. To 

determine the molecular weight of GC and DGC, acetate buffer is used, 

whereas for GCPQ and GCPh, 35:65 volume-by-volume ratios of acetate 

buffer and methanol were used. This is to prevent the self-aggregation of 

GCPh/GCPQ micelles in the aqueous media. 

Specific refractive index increments over concentration (d/dC) were 

measured by, manually injecting a series of standard solutions of the polymer 

at different concentrations (0.1 to 0.6 mg mL-1), dissolved in an appropriate 

mobile phase, through the dRI detector set at 25C and a wave length of 658 

nm and a pump flow rate of 0.3 mL min-1.  
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GPC-MALLS experiments were performed by injecting a known 

concentration of the polymer (5 mg mL-1) in an appropriate solvent through 

the GPC column and analysing the eluent using MALLS detector and dRI 

detector at a flow rate of 0.7 mL min-1 and a run time of 20 minutes. The data 

obtained from both d/dC and GPC-MALLS experiment were analysed using 

the ASTRA software for Windows, version 5.3.4.14 supplied by Wyatt 

Technologies.  

2.3.2.4.3 CMC measurements: 

The heats of demicellization of GCPh were measured using an ITC200 

MicroCalorimeter (MicroCal, LLC, Northampton, MA USA). The sample cell 

was filled with degassed ultrapure water. Concentrated polymer samples 

were loaded into a syringe (17.35 μM / 1 mg mL-1, 40 μL), and at 120 s 

intervals, polymer samples (2 μL) were injected into the sample cell and the 

heat flow was measured as a function of time. The syringe was rotated at 

1000 rpm to enable even mixing throughout the experiment. Data analysis 

was carried out using the MicroCal Origin version 7.0 Software. Each titration 

experiment was carried out at room temperature (25 °C). 

2.4 Results  

2.4.1 Degradation and characterisation of GC: 

Different batches of GC were degraded and characteristics documented as 

shown in Table 2.3. The 48 hours-degraded GC was designed as GC48, 

where the suffix ‘48’ represents the time duration in hours for which the 

degradation was carried out, while the 24 hours and 2 hours degraded GC 

was labelled GC24 and GC2 respectively. The degraded GC was then 

characterised using NMR and GPC-MALLS. From the table, it can be seen 

that the molecular weight of the GC is inversely proportional to the duration of 

degradation. Thus the GC of required molecular weight can be obtained by 

adjusting the degradation time accordingly. 

From the NMR (Figure 2.6), the proton spectrum was assigned to DGC as 

follows180: 1H NMR [D2O], δ2.02 = [CH3−CO−NH−, acetylated glycol chitosan], 

δ2.6 = (−CH(OH)−CH(NH2)−, glycol chitosan), δ2.7 = (−CH−CH−NH−CO−, 
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glycol chitosan), δ3.4−4.2 = [−CH(OH)− and −CH2−OH, glycol chitosan], δ4.4 = 

water, δ5.2-5.5 = (O−CH−O anomeric proton). Yield of GC48 ~ 6.2 g (62 %); 

GC2 ~ 8.1 g (81 %). 

2.4.2 Characterisation of Palmitoyl GC (PGC): 

The proton NMR characterisation of PGC (Figure 2.7) is as follows; 1H NMR 

[CD3OD]:  δ0.9 [t, CH3−(CH2)14−CO−, palmitoyl], δ1.25 [m, 

CH3−(CH2)12−CH2−CH2−CO−, palmitoyl], δ1.50 [CH3−(CH2)12−CH2−CH2−CO−, 

palmitoyl], δ2.00 [CH3−CO−NH−, acetyl glycol chitosan], δ2.20 

[CH3−(CH2)12−CH2−CH2−CO−, pamitoyl], δ3.1 (−CH−CH−NH−CO−, glycol 

chitosan), δ3.3 = methanol, δ3.6−4.2 = [−CH(OH)− and −CH2−OH, glycol 

chitosan], δ4.4-5.5 = water and (O−CH−O anomeric proton) (Figure 2.3.1.2). 

Percentage of Palmitoylation (P %) was calculated from Equation 3 and 

found to be 27.35 %. Yield ~ 7.19 g (45.9 %). 

Table 2.3 Characteristics of degraded GC 

 
Mn (Da) Mw (Da) 

Mw/Mn 

(polydispersity) 

GC 87630 129800 1.481 

GC2 40260 102600 2.548 

GC2 47780 58090 1.216 

GC24 11740 16050 1.368 

GC48 5526 6618 1.198 

2.4.3 Characterisation of GCPQ: 

The GCPQ was synthesized from PGC and labelled along with their 

manufacturing dates and the initials of chemist who synthesized it. For 

example, Q48 101111SR means, the GCPQ is from 48 hours degraded GC 

and was synthesised on 10th of November 2011 by a chemist with initials 

‘SR’. This type of nomenclature was followed to label all the polymers for 

identification purposes.  



Enhancing the bioavailability of BCS Class IV drugs using polymeric nanoparticles 

 

74 

 

Table 2.4 summarizes the characteristics of different batches of GCPQ 

synthesized. Protonated and deprotonated GCPQ with varying degrees of 

palmitoylations and molecular weights were successfully synthesized and 

characterized. The proton NMR characterization of GCPQ (Figure 2.8) is as 

follows; 

1H NMR [CD3OD]: δ0.9 = [CH3−(CH2)14−CO−, palmitoyl], δ1.3 = [ 

CH3−(CH2)12−CH2−CH2−CO−, palmitoyl], δ1.60 = 

[CH3−(CH2)12−CH2−CH2−CO−, palmitoyl], δ2.02 = [CH3−CO−NH−, acetylated 

glycol chitosan], δ2.20-2.40 = [ CH3−(CH2)12−CH2−CH2−CO−, palmitoyl],  δ2.7−3.2 

= [−CH−CH−NH−CH3− and −CH−CH−N(CH3)2, monomethylamino and 

dimethylamino glycol chitosan], δ3.3 = methanol, δ3.4 = [−CH−CH−N(CH3)3, 

trimethylamino glycol chitosan], δ3.6−4.4 = [−CH(OH)− and −CH2−OH, glycol 

chitosan], δ4.8 = water, δ5.20 = (O−CH−O anomeric proton) (Fig 2.3.1.3). For 

the main batch of polymer, the Palmitoylation percentage (P%) and 

quarternisation percentage (Q%) were calculated to be 18.23 % and 8.94 % 

respectively. Yield = 4.82 g (68.8 %).  

 

 

 

Table 2.4 Characteristics of GCPQ batches 

Polymer name Palmitoylation 
(P %) 

Quarternisation 
(Q %) 

Mn 
(Da) 

Mw 
(Da) 

PD 

Q48 100413SR* 18 5 8710 10830 1.24 

Q24 050213 SR 18 6 14060 16440 1.17 

Q2 090313 SR 11 11 44140 48130 1.09 

Q2 220213 SR 19 13 63830 70130 1.1 

Q48 091111SR* 35 11 6500 7058 1.08 
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Polymer name Palmitoylation 
(P %) 

Quarternisation 
(Q %) 

Mn 
(Da) 

Mw 
(Da) 

PD 

Q48 080612 SR 31 7 5950 8630 1.45 

Q48 150812 SR 6 11 9200 9750 1.06 

Q48 070313 SR 14 26 9180 9210 1.01 

Q48 101111 SR 18 9 8670 9470 1.091 

Q48 240114 SR 5 5 9420 10040 1.065 

Q48 290110 KS 20 9 8710 10830 1.24 

*deprotonated polymer; PD = polydispersity 
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Figure 2.6 1H NMR of Glycol Chitosan (48 hours degraded) in D2O 
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Figure 2.7 1H NMR spectrum of Palmitoylated Glycol Chitosan (PGC) in 

CD3OD 
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Figure 2.8 1H NMR spectrum of Quaternary Ammonium Palmitoyl Glycol 

Chitosan (GCPQ) in CD3OD. 
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2.4.4 Stability studies on GCPQ: 

GCPQ when stored at room temperature is stable for 18 months (Table 2.5).  

At month 24 there is a notable change in the Mw data with the Mw doubling, 

although the Mn data remains unchanged.  This data provides evidence of 

chain cross-linking.  The reason for the change in Mw is not clear and 

warrants further study. It should also be noted that the experiments were 

done on only one batch of GCPQ (n = 1). Hence, a detailed study should be 

carried out on different batches of GCPQ with more replicates.  

Table 2.5 Long-term storage stability of GCPQ (Q48 101111 SR) 

 Months Mw (Da) Mn (Da) PD Q% P% 

0 9400 8680   1.091 8.94 18.23 

3 9670 7400   1.306 9.44 19.33 

6 9250 9230   1.003 9.54 18.32 

9 11020 9960   1.107 8.33 18.76 

12 9220 8500   1.085 10.11 17.9  

18 10500 10210 1.032 11.25 17.4  

24 22030 10800 2.041 10.93 19.41 

36 28290 8743 3.236 10.51 18.65 

P% = palmitoylation percentage; Q% = quaternization percentage 

2.4.5 Characterisation of Phenoxyacetic GC (GCPh 2): 

The covalent conjugation of phenoxy acetic acid to glycol chitosan chain was 

confirmed by the presence of signals for the carboxamide functional group in 

both FTIR spectrum (Figure 2.9) and 13C NMR spectrum (Figure 2.11). The 

primary amines in the sugar unit react with the carboxylic acid group of 

phenoxyacetic acid in th 

e presence of the coupling agent DMTMM in basic conditions to form the 

carboxamide functional group, which covalently links phenoxy acetic acid to 

glycol chitosan. Additionally, the fingerprint signals for the aromatic ring were 

also found on 1H NMR spectrum (Figure 2.10) further confirming the 



Enhancing the bioavailability of BCS Class IV drugs using polymeric nanoparticles 

 

80 

 

synthesis of Phenoxyacetic glycol chitosan. Yield of the reaction was 

approximately 0.521 ± 0.046 g (~84 %). The GCPh thus synthesized was 

thoroughly characterized as follows (Table 4). 

1H NMR (CD3OD): δ2.05 = [s, CH3−CO−NH−], δ2.7−3.2 = [b, −CH−CH−NH+
3], 

δ3.30 = solvent, δ3.50−4.40 = (−CH−O), δ4.50−5.00 = (solvent, O−CH−O anomeric 

carbon), δ7.05 = [m, O-C-CH-CH-CH-CH-CH- (ortho protons in the 

phenoxyacetamide ring)], δ7.4 = [m, O-C-CH-CH-CH-CH-CH- (meta and para 

protons in the phenoxyacetamide ring)]. The level of Phenoxylation was 

calculated by comparing the ratio of phenyl protons (δ7.05) to sugar 

methine/methylene protons (δ3.5 - 4.4). Phenoxylation levels of 18-22 % were 

consistently achieved.  

13C NMR – δ50 = solvent (methanol), δ60 - 80 = [R3CH in sugar unit], δ110 - 130 = 

[aromatic carbons], δ158 = (−CO−NR). The presence of peak at δ158 

corresponds to the amide group that was formed due to the reaction of 

phenoxyacetic group with the primary amines in the glycol chitosan.  

FTIR spectrum of GCPh was assigned as follows180.  (cm-1) = 3364 (O-H 

stretch), 2918 and 2851 (C-H stretch), 1648 (C=O amide stretch), 1599, 

1547, 1493 (C-C aromatic stretch).  

Table 2.6 Characteristics of GCPh batches 

Polymer batches Phenoxylation 
(%) 

Mn (Da) Mw (Da) PD 

GCPh 110513 SR 23 44280 49070 1.108 

GCPh 021013 SR 18 39810 51650 1.298 

GCPh 020314 SR 21 56330 67030 1.19 

    PD = Polydispersity 
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Figure 2.9 FTIR spectrum of GCPh 

 

 

Figure 2.10 1H NMR of Phenoxyacetic glycol chitosan in CD3OD. 

 



Enhancing the bioavailability of BCS Class IV drugs using polymeric nanoparticles 

 

82 

 

 

Figure 2.11 13C NMR of Phenoxyacetamide glycol chitosan in CD3OD. 
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2.4.6 CMC measurements 

The CMC of the GCPh polymer was measured using Isothermal Calorimetry 

(ITC) and was found to be 0.3 ± 0.025 μM (Table 2.7 and Figure 2.12). ITC is 

a probe free method to estimate the CMC and has been previously shown to 

be the most reliable method for CMC measurements185. This extremely low 

CMC value would facilitate the formation extremely stable self-assemblies in 

aqueous environment, which would enable the formulation to resist 

disintegration upon dilution in the gastro-intestinal tract. The low CMC value 

of GCPh is due to the presence of hydrophobic pendant group, which 

presents a large hydrophobic surface to the aqueous medium. The self-

assembly is driven by the entropy gain enjoyed by the liberated water 

molecules on contact with hydrophobic surfaces of the polymer. The entropy 

gain on micellization experienced by GCPh polymer (TΔSmic = + 314 kJ mol-1) 

exceeds that of GCPQ (TΔSmic = + 37 kJ mol-1)75 and DAB – GCPQ claw 

shaped amphiphile of similar molecular weight (TΔSmic = + 280 kJ mol-1)186. 

This exceptionally high TΔS value would result in extremely stable self-

assembly. The CMC values of GCPh are at least 100 folds lesser than that of 

GCPQ (6 – 100 μM) and at least 10 folds higher than DAB-GCPQ, which is 

mainly due the differences in the molecular weight and the hydrophobicity of 

the polymer186. 

Table 2.7 Critical Micellar Concentration and thermodynamics of GCPh  

Polymer Mw (Da) CMC (mM) 
ΔGmic (kJ 

mol-1) 

ΔHmic (kJ 

mol-1) 

TΔSmic (kJ 

mol-1) 

GCPQ75 12,195 1.9 x 10-2 - 36.9 + 0.96 + 37.9 

GCPh* 49,070 3.2 ± 0.25 x 10-4 
- 43.5 ± 0.68 + 272 ± 32 + 315 ± 31 

DAB-

GCPQ186 
33,000 1.3 x 10-5 

- 55 + 225 + 280 

*Values expressed as mean ± Standard deviation. n = 3. 
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Figure 2.12 Dilution enthalpogram for an aqueous dispersion of GCPh 

2.5 Discussion: 

Chitosan has been extensively studied in recent years as a drug carrier 

because the polymer is more amenable to chemical modification, apart from 

being cheap, non-toxic and mucoadhesive, all of which makes it an ideal 

candidate for drug delivery research187. Chitosan itself is poorly water-soluble 

and the addition of glycol moiety to the sugar units, overcame the poor 

aqueous solubility of chitosan polymer. This modified chitosan (Glycol 

Chitosan) is hydrophilic and the presence of free primary amines provides 

scope for further chemical modifications188. Various amphiphilic chitosan 

derivatives were synthesized out of chitosan by hydrophobically modifying 

the polymer189 and GCPQ is one such polymer with pendent palmitic acid 

groups attached to the GC chain. The palmitoyl chain provides certain 

degree of hydrophobicity, the presence of charged quaternary ammonium 

rendered high aqueous dispersibility, while low acetylation levels and low 
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molecular weight accounts for less toxicity174. GCPQ has been previously 

shown to self-assemble at low CMC values and also facilitated absorption for 

hydrophilic and hydrophobic drugs through, oral and ocular routes75.  

A variety of GCPQ molecules were synthesized with different palmitoylation 

and quaternisation percentages. The characteristics were conformed using 

1H NMR experiments and the palmitoylation levels varied between 5 – 35 %, 

while the quaternisation levels were 9 – 26 % for different batched of GCPQ. 

The molecular weight of the GCPQ ranged between 7 – 70 kDa, which was 

measured using GPC-MALLS. It was possible to synthesis GCPQ with 

different characteristics by altering the molar ratio of the reactants and other 

reaction parameters as mentioned in Table 2.1 and Table 2.2. Long-term 

storage stability studies suggested that the GCPQ synthesized is has a shelf 

life of 18 months after which the Mw of the polymer doubled. The synthesis 

and characterization of GCPQ has been previously reported on a number of 

occasions but this is the first instance where the storage stability of dry 

polymer has been reported.  

Phenoxyacetic glycol chitosan (GCPh) is an amphiphilic polymer, where the 

hydrophobic phenoxyacetamide moiety is attached to a hydrophilic GC 

backbone. The presence of phenoxy ring will facilitate stronger π-π 

interactions with hydrophobic drugs containing aromatic ring thus forming 

stable nanoparticles. While most of the chitosan-based amphiphiles have 

linear hydrophobic units, GCPh has a phenolic ring, which might be 

advantageous with certain hydrophobic drugs189,190. The synthesis of GCPh 

molecule was confirmed using 1H, 13C NMR and FTIR spectroscopy. The 

presence of carboxamide signals in the spectrum is a strong indication for the 

chemical conjugation. The phenoxylation levels of the polymers ranged from 

18 – 22 % and molecular weight ranged between 50 – 70 kDa. The CMC of 

GCPh was calculated using the ITC and was found to be around 0.3 μM.  

In the literature different synthetic routes are mentioned to synthesise 

amphiphiles from chitosan as summarised in Table 2.8. Most of the synthetic 

steps involve the use of toxic solvents such as methanol, toluene, pyridine 

and DMF. Care should be taken to ensure the complete removal of solvent 
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residue from the final product to reduce the toxicity issues. It is to be noted 

that the synthesis of GCPh involves only the use of ethanol, which is 

relatively safe and can be easily evaporated from the reaction mixture. Also, 

the synthesis of GCPh is a one step reaction and altering the molar ratio of 

the reactants involved could control the degree of hydrophobic substitution, 

as observed with GCPQ and other chitosan amphiphiles.  

The CMC of GCPQ and GCPh are 6 – 100 μM and 0.3 μM respectively. The 

CMC values of these amphiphiles are within the range of CMC values 

reported for other chitosan amphiphiles of similar molecular weight.  While 

the method for CMC calculation in Table 2.8 is predominantly done by pyrene 

probe based fluorescent spectroscopy, our method of CMC calculation is 

done by probe-free ITC, which measures the changes in the enthalpy on 

demicellization (ΔHmic) and other basic thermodynamic parameters such as 

binding affinity and binding stoichiometry. These measurements are then 

used to calculate the change in Gibbs free energy (ΔGmic) and the change in 

entropy (ΔSmic), from which the critical micellar concentration is calculated. 

Thus CMC calculations from ITC are considered to be more accurate and 

reliable185 as basic thermodynamic parameters are used to calculate the 

CMC, without any interference from a fluorescent probe (pyrene). 
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Table 2.8 List of chitosan amphipihiles as mentioned in the literature 

Name of the 

Amphiphile 
Reaction steps 

Solvents 

used 
Reactants 

Degree of 

substitution 

(%) 

CMC (μM) 

Molecular 

weight 

(kDa) 

N-octyl-O-sulphate 

chitosan191,192 

N-octylation of 

chitosan 
Methanol Octaldehyde 0.38 

0.45 1000* 

O-Sulfonation of 

chitisan 
DMF Chlorosulfonic acid 2.56 

PpIX – conjugated GC193 
Coupling of PpIX to 

GC 
DMSO 

Protoporphyrin IX, 

N- 

hydroxysuccinamid

e (NHS), EDC 

4.24 ± 0.23 
Not 

available 
250# 

O-carboxymethyl 

chitosan194 

O-carboxymethylation 

of chitosan 
Isopropanol 

Monochloroacetic 

acid 
100 0.096 520* 
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Name of the 

Amphiphile 
Reaction steps 

Solvents 

used 
Reactants 

Degree of 

substitution 

(%) 

CMC (μM) 

Molecular 

weight 

(kDa) 

GCPQ75,176 

N-Palmitoylation Ethanol PNS 1.2 – 23 

6 – 100 4 – 19 

N-methylation NMP Methyl iodide 2.7 – 13.8 

GCPh 
N-phenoxylation of 

GC 
Ethanol 

Phenoxyacetic 

acid, NMM, 

DMTMM 

18 – 23 0.318 49 – 67 

Anacardoylated 

chitosan195 

N-anacardoylation of 

chitosan 

DMF, thionyl 

chloride, 

Pyridine 

Anacordic acid, 

acetic anhydride 
Not available 

Not 

available 
196* 

O-carboxymethylated 

chitosan – deoxycholic 

acid196 

N-deoxycholation of 

O-carboxymethyl 

chitosan 

DMSO, 

methanol 
Deoxycholic acid 3.6 – 6.9 0.31 – 0.76 85* 



Enhancing the bioavailability of BCS Class IV drugs using polymeric nanoparticles 

 

89 

 

Name of the 

Amphiphile 
Reaction steps 

Solvents 

used 
Reactants 

Degree of 

substitution 

(%) 

CMC (μM) 

Molecular 

weight 

(kDa) 

N-deoxycholic acid – 

N,O-hydroxyethyl 

chitosan197 

N,O-

hydroxyethylation 
Acetic acid Ethylene oxide 89.5 – 114 

1.6 – 2.6 100* 

N-deoxycholate 

grafting 
DMF Deoxycholic acid 1.1 – 8.1 

Chitosan – arachidic acid 

conjugate198 

Coupling of arachidic 

acid to chitosan 
DMSO 

Arachidic acid, 

EDC, NHS 
~ 5 0.28 5 

3-diethyl aminopropyl 

bearing GC199 

Grafting of 3-diethyl 

aminopropyl 

isothiocyanate 

DMSO, 

pyridine, 

triethylamine 

3-diethyl 

aminopropyl 

isothiocyanate 

95 0.024 250# 

Lauroyl sulfated 

chitosan200 

N-Sulfonation Methanol Sulfobenzoic acid 1.12 
Not 

available 
270* 

N-Lauroylation Acetic acid Lauryl chloride 23.07 
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Name of the 

Amphiphile 
Reaction steps 

Solvents 

used 
Reactants 

Degree of 

substitution 

(%) 

CMC (μM) 

Molecular 

weight 

(kDa) 

N-octyl-O-glycol 

chitosan201 

N-octylation Hexane Octaldehyde 24.2 – 58.7 

0.06 – 0.36 87# 

O-glycolation Acetic acid Ethylene oxide 102 – 105 

Oleoyl - Chitosan202 
N-acylation of oleoyl 

chloride 

Pyridine, 

chloroform 
Oleoyl chloride 5 – 27 0.28 – 2.8 35* 

Linolenic acid - 

chitosan203 
Coupling reaction Methanol 

Linolenic acid, 

EDC 
1.8 0.33 150* 

N-cholanoyl-6-O glycol 

chitosan204 
Coupling reaction Methanol 

5β-cholanic acid, 

EDC, NHS 
1.1 – 11.5 0.2 – 0.8 250# 

Deoxycholate chitosan205 Coupling reaction Methanol 
Deoxycholic acid, 

EDC 
2.8 – 5.1 0.37 – 0.58 70* 
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Name of the 

Amphiphile 
Reaction steps 

Solvents 

used 
Reactants 

Degree of 

substitution 

(%) 

CMC (μM) 

Molecular 

weight 

(kDa) 

Stearic acid grafted 

chitosan206 
Coupling reaction Ethanol Stearic acid, EDC 9.79 – 63.4 1.33 – 5 3 – 18 

N-succinyl-N’-octyl 

chitosan207 

N-octlylation Acetic acid Octaldehyde 28.6 – 52.5 

0.06 – 0.3 

100* 

 N-succinylation Methanol Succinic anhydride 14.7 – 39.1 

*Molecular weight of the chitosan starting material. #Molecular weight of the glycol chitosan starting material. 
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2.6 Conclusion 

The amphiphilic polymers such as GCPQ and GCPh were synthesised and 

characterised. GCPQ with different molecular weight, palmitoylation and 

quaternisation levels were synthesized as previously mentioned by altering 

the reaction parameters. GCPh, a new polymeric amphiphile was also 

successfully synthesized and the covalent attachment of the 

phenoxyacetamide moiety was confirmed using NMR and FTIR. The 

following chapters focus on using these polymeric amphiphiles for the oral 

delivery of BCS Class IV drugs such as Paclitaxel and CUDC-101. 
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3 Oral delivery of paclitaxel 

3.1 Introduction 

Paclitaxel (PTX) is a BCS Class IV anticancer agent with poor aqueous 

solubility and poor gut permeability due to the drug being a substrate for P-gp 

efflux pump171. The oral bioavailability of paclitaxel is generally low and there 

are numerous publications on improving the bioavailability of paclitaxel through 

various strategies such as prodrugs62, micelles191,208, modulation of P-gp 

activity209 etc. In this section, the use of GCPh, a new polymeric amphiphile to 

enhance the oral absorption of paclitaxel is discussed. The research was 

specially focused on deducing the link between the in vivo dissolution and the 

impact of P-gp efflux on the oral absorption of paclitaxel, as the activity of P-gp 

efflux pump and poor dissolution are the main reasons for poor absorption of 

paclitaxel47.  

3.1.1 Transmission Electron Microscope (TEM): 

The principle of Transmission Electron Microscope (TEM) imaging relies on the 

ability of atoms to scatter a beam of electrons, which are focussed on a 

photographic film or phosphorescent screen to form an image210. The resolving 

power of TEM is 1000 times higher than that of an optical microscope and with 

modern technology it is possible to image even a particle of 0.5 nm in size211. 

The image contrast is higher when the electrons are scattered more and the 

electrons are scattered more if the atomic number of an atom is large. But since 

the majority of atoms in biological samples are of small atomic number (carbon, 

hydrogen, oxygen, nitrogen, phosphorous and sulphur), the samples are 

negatively stained with heavy metal salts such as lead acetate, uranyl acetate 

and osmium tetroxide, in order to improve the image contrast210. This means, 

the sample will appear as pale spots because of their poor electron scattering 

while the electron dense stained background will appear dark due to high 

electron scattering210,211. 
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3.1.2 Reverse Phase-High Performance Liquid Chromatography (RP-

HPLC): 

High Performance Liquid Chromatography (HPLC) coupled with a UV detection 

is a commonly used analytical technique to quantify the concentration of a 

particular solute in a sample212. The various solutes are separated based on 

their polarity, i.e. hydrophilicity. There are two phases in HPLC; the stationary 

phase (column), where the solute binds and the mobile phase (fed by pump), 

which elutes the solutes from the column. In Reverse Phase-HPLC (RP-HPLC), 

the stationary phase is more hydrophobic and a gradient mixture of polar and 

organic (apolar) solvents make up the mobile phase212,213. The solutes 

effectively bind to the column and when a gradient of mobile phase is passed 

through the column, the polar compounds elute first.  When the organic solvent 

content in the gradient increases the hydrophobic compounds start to elute with 

the most hydrophobic solute eluting later. If the solute has a UV chromophore, it 

can easily be detected using a UV detector attached inline. The intensity of the 

UV signal increases linearly with the concentration of the solute, which makes 

the quantification straightforward with the help of a standard curve.  

3.2 Aims and Objectives 

The aim of this chapter is to enhance the oral uptake of paclitaxel using GCPh 

nanoparticles. The objectives are as follows: 

 Understand the role of dissolution in improving the absorption of 
paclitaxel. 

 Understand the mechanism of action of GCPh nanoparticles. 
 
The criteria of success for this project was established based on the objectives 
as follows: 

1. To get GCPh-Paclitaxel nanoparticles that is as good as Taxol® in terms 
of absorption, if not better. 

2. To improve the oral absorption of paclitaxel without using a P-gp inhibitor 
to an AUC value of 1000 ng.h mL-1 approx.. 

 
 
 

3.3 Materials and Methods 

3.3.1 Materials 
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Chemical Purity Supplier 

Acetonitrile HPLC 

grade 

≥ 99.5% Fisher Scientific 

(Loughborough, UK) 

Pancreatin ~100% Sigma-Aldrich 

(Gillingham, UK) 

Texas Red - X 

succinimidyl ester 

 Invitrogen (Paisley, UK) 

Paclitaxel  LC laboratories (MA, 

USA) 

Verapamil  Sigma-Aldrich 

(Gillingham, UK) 

Pepsin  Sigma-Aldrich 

(Gillingham, UK) 

Phosphate buffer saline  Sigma-Aldrich 

(Gillingham, UK) 

Potassium dihydrogen 

phosphate 

99.5 Sigma-Aldrich 

(Gillingham, UK) 

Sodium chloride 99.50% Sigma-Aldrich 

(Gillingham, UK) 

Sodium hydroxide 98.90% Sigma-Aldrich 

(Gillingham, UK) 

Trifluoro acetic acid ≥ 99.5% Fluka Chemicals 

(Gillingham, UK) 

Water double deionised <18 ohm Millipore Synergy- 

Simpak1 

 

3.3.2 Methods 
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3.3.2.1 Preparation of paclitaxel formulations: 

Paclitaxel GCPh nanoparticles: GCPh (40 mg, GCPh 110513SR) was 

dispersed in water (1.9 mL) and probe sonicated (QSonica, USA) for 10 

minutes. Paclitaxel ethanol solution (0.1 mL, 40 mg mL-1) was added to the pre-

sonicated polymer dispersion (final concentration of 5% v/v ethanol) while probe 

sonicating the mixture on an ice bath for 10 minutes at an amplitude intensity of 

10%.  

Paclitaxel Taxol® nanoparticles: Commercial paclitaxel formulation, Taxol® 

was prepared by dissolving paclitaxel (6 mg) in a mixture of ethanol and 

cremophor EL (1:1, v/v, 1 mL). This solution was diluted to 2 mg mL-1 with water 

before administration. This formulation was used as a positive control to 

compare the performance of Paclitaxel GCPh nanoparticles.  

RP-HPLC was performed using Agilent Technologies 1200 series 

chromatographic system, which consisted of a vacuum degasser, a quaternary 

pump, a standard and preparative auto-sampler, a column compartment with a 

thermostat and a variable wavelength UV detector. The flow rate was set at 1.5 

mL min-1, samples (10 μL) were chromatographed over a reverse phase column 

(Onyx Monolithic C18 column, 100 x 4.6 mm) fitted with a guard column 

maintained at 40 °C, and monitored for absorption at 227 nm wavelength. 

Samples were diluted in mobile phase [acetonitrile:water, 1:1] and analysed 

using a standard curve (y = 36.79x - 0.0857, r2 = 0.998) with a concentration 

range of 0.1 - 1.0 μg mL-1. 

3.3.2.2 Characterization of paclitaxel formulations: 

Photon Correlation Spectroscopy was used to measure the particle size and 

particle size distribution of the formulations. The instrument (Malvern Zetasizer 

3000HSA, Malvern Instruments, UK.) was set at 25 ˚C at a wavelength of 633 

nm and the data analyzed using the Contin method. Measurements were 

performed in triplicate. Transmission electron microscopy was performed using 

Philips/FEI CM120 Bio Twin (Philips, Netherlands). A drop of the formulation 

was dried on a copper TEM grid (300 mesh- Fomvar/ carbon coated) and 

stained with a drop of uranyl acetate (1% w/v, negative staining). Once dried, 

the samples were analysed under the TEM and the representative images were 

photographed and documented.  
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3.3.2.3 Dissolution testing of oral formulations 

The paclitaxel formulations were diluted with water to a final concentration of 

0.01 mg mL-1 paclitaxel. The diluted formulation (1.5 mL) was then placed in a 

dialysis bag (MWCO: 7000) and the whole bag was placed into 48.5 mL of 

simulated gastric fluid (SGF, pH 2) or simulated intestinal fluid (SIF, pH 6.8) and 

shaken at 125 rpm at 37 ˚C. Samples (0.5 mL) were withdrawn at specific time 

points and measured for drug content using Reverse Phase – High 

Performance Liquid Chromatography (RP-HPLC) as mentioned above. 

3.3.2.4 Oral absorption studies: 

The paclitaxel formulations were prepared as mentioned above. Prior to oral 

administration, all formulations were analysed by HPLC to determine the exact 

drug concentration for dose calculations. Male MF-1 mice weighing 22-35 g 

were fasted for 12 h prior to dosing and for a further 4 h thereafter. The mice 

had free access to water throughout the study. Paclitaxel formulations were 

administered at low (6.66 mg kg-1), medium (10 mg kg-1) and high doses (20 mg 

kg-1) by oral gavage in the form of high dissolving formulations (GCPh paclitaxel 

nanoparticles or Taxol®). The doses were selected based on the literature 

references on Taxol® as suggested by other researchers191.  Paclitaxel was 

administered in the absence or presence of the P-gp efflux pump inhibitor 

verapamil (40 mg kg-1). Verapamil was chosen, as it is a well-known P-gp 

inhibitor used to enhance the bioavailability of Paclitaxel47. Blood samples were 

taken at various time intervals by cardiac puncture following the euthanasia of 

the mouse. Blood samples were centrifuged for 10 minutes at 1000 g and the 

isolated plasma (100 μL) was then mixed with internal standard solution (10 μL, 

10 μg mL-1 4-hydroxybenzoic acid n-hexyl ester in 50% acetonitrile) and ethyl 

acetate (1 mL). Standard solutions (10 μL, 0.1 – 20 μg mL-1 paclitaxel in 50% 

v/v acetonitrile in water) were added to the plasma in case of standard curve 

preparations. After vortex mixing for 1 minute, the mixture was centrifuged for 

15 minutes at 10,000 g and then the organic layer (900 μL) was transferred to a 

clean tube and evaporated until dry. The residue was dissolved in 50% 

acetonitrile (90 μL) by vortex mixing for 1 minute, and centrifuged for 15 

minutes at 10,000 g to obtain the supernatant, which was analyzed for 

paclitaxel content using RP-HPLC. 
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RP-HPLC was performed using an Agilent Technologies 1200 series 

chromatographic system, as mentioned above. The flow rate was set at 2 mL 

min-1, samples (50 μL) were chromatographed over a reverse phase column 

(Onyx Monolithic C18 column, 200 x 4.6 mm) fitted with a guard column 

maintained at 40 °C, and monitored for absorption at 227 nm wavelength. 

Samples were diluted in mobile phase [36% v/v acetonitrile in water] and 

analysed using a standard curve (y = 36.79x - 0.0857, r2 = 0.998) with a 

concentration range of 0.02 - 10.0 μg mL-1.  

3.3.2.5 Ex-vivo confocal laser scanning imaging: 

GCPh was labeled with Texas Red (Invitrogen, U.K.) using the protocol 

supplied by the manufacturer. Texas red is a fluorescent marker used in 

histology but can also be used to study the cellular uptake of nanoparticles75. 

Briefly GCPh 110513SR (100 mg) was dissolved in sodium bicarbonate buffer 

(0.1 M, 10 mL). Texas Red-X succinimidyl ester (5 mg) was dissolved in DMSO 

(0.1 mL) and was slowly added to the GCPh solution with continuous stirring. 

The reaction mixture was incubated for 1 h at room temperature, and the 

reaction was stopped by adding freshly prepared hydroxylamine (1.5M, 0.1 mL) 

to the mixture. The hydroxylamine containing reaction mixture was incubated for 

a further 1 h at room temperature, exhaustively dialyzed (5 L with 6 changes 

over a period of 24 h, MWCO = 12−14 kDa) and purified using Amicon Ultra15 

centrifugal filters (Millipore, UK) as follows. The GCPh-Texas red conjugate (50 

mg) was dissolved in 60 % Methanol (50 mL). The solution was then acidified 

with HCl (1.5 mL, 4M) and centrifuged at 5000 g (Hermle, Germany) for 1 h 

using Amicon spin filter columns (MWCO = 10 kDa). This step was repeated 

twice with the retentate and the final retentate containing purified GCPh-TR 

conjugate was isolated by freeze-drying. The reaction and purification mixtures 

were protected from light throughout the whole process. A GPC−MALLS 

analysis was used to confirm the attachment of the fluorescent probe (Texas 

Red) to GCPh as well as to ensure complete removal of unreacted dye from the 

labelled polymer.  

GCPh – Texas red (20 mg mL-1, ∼1 mL, 100 mg kg-1) in distilled water was 

dosed to male Wistar rats (weight = 200−250 g) by oral gavage and after two 

hours animals were euthanized and their small intestines harvested. The small 
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intestine was divided into three sections, the duodenum (up to ∼8 cm from the 

stomach), jejunum (the next ∼30 cm) and ileum (the next ∼20 cm). The jejunum 

was flushed with phosphate buffered saline (PBS, 50 mL, 10 mM) and then 

sealed at one end with a knot, filled with OCT and then sealed at the other end 

with a knot. The samples were frozen by placing it in an eppendorf tube and 

dipping in iso-pentane dry ice mixture. This procedure was carried out as 

quickly as possible (i.e. within 10 min) to avoid the tissue deterioration. The 

frozen intestinal samples were then cut to remove the knotty ends and prepared 

for sectioning. The tissues were sectioned into thin slices (30 μm) using a 

cryostat (LeicaCM1850) set at −25 °C. The slices were placed on poly-Lysine 

microscope adhesion slides and fixed with freshly prepared paraformaldehyde 

(4% w/v) in PBS (pH = 7.4). The slides were soaked in PBS for 10 min and a 

drop of Vectashield® Hardset™ mounting medium with DAPI stain (10 µL) was 

added on to tissue slices and sealed with a cover slip. Slides were imaged 

using a Zeiss LSM 710 laser scanning confocal microscopy imaging system, 

equipped with an argon ion laser and HeNe laser (LASOS Laserteknik GmbH, 

Carl Zeiss, UK) and linked to a Fujitsu Siemens computer with the Zen 2009 

version 5.5.0.451 software (Carl Zeiss, UK). (Red fluorescence excitation 

wavelength= 561 nm, blue fluorescence excitation wavelength = 405 nm). 

3.3.2.6 Statistical Analysis:  

Statistical significance was tested with one-way and two-way analysis of 

variance (ANOVA) using GraphPad Prism 5 statistical software. For multiple 

comparisons, Post-Hoc tests such as Bonferroni’s or Tukey’s were used.  

3.4 Results 

3.4.1 Preparation of paclitaxel formulation 

Paclitaxel – GCPh nanoparticles were formed by probe sonicating an ethanolic 

solution of paclitaxel with GCPh dispersed in water (Figure 3.1). GCPh self-

assembles to form micelles in an aqueous environment. The encapsulation of 

paclitaxel within the GCPh is facilitated due to hydrophobic interactions 

between the drug and the polymer self-assembly. The phenyl group of GCPh 

will interact with the aromatic rings of paclitaxel through - stacking, which is 

the strongest of the hydrophobic interactions and thus forms stable 
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nanoparticles with the drug. These polymeric nanoparticles will have the drug 

encapsulated in its molecular form, which might facilitate high dissolution rate 

and enhanced absorption. The sizes of these nanoparticles are in the range of 

183 ± 36 nm. Similarly, commercially available Taxol® formulation was prepared 

by dissolving paclitaxel in a mixture of ethanol and Cremaphor EL, a surfactant. 

The paclitaxel – Taxol® nanoparticles are formed when this solution is diluted 

with water, as the cremaphor EL molecules form self-assemblies in water, 

encapsulating paclitaxel in the process. But the size of the Taxol® nanoparticles 

(~ 10 nm) are very much smaller than the GCPh nanoparticles because the 

small molecular weight, amphiphilic cremaphor EL forms micelles while the 

GCPh forms amorphous drug loaded nanoparticles. 

 

Figure 3.1 TEM images of Paclitaxel formulations 

 a) GCPh nanoparticles and b) Taxol nanoparticles. Scale bar = 500 nm. 

3.4.2 Dissolution testing of oral formulations 

Dissolution of the paclitaxel formulations in SGF and SIF are given in Figure 

3.2. The dissolution of paclitaxel GCPh nanoparticles and Taxol® nanoparticles 

is very rapid in SGF owing to the small particle size and molecular form of the 

drug inside the nanoparticle. The dissolution of Taxol® nanoparticles is 

significantly slow in SIF when compared to that of the GCPh nanoparticles.  The 

a b 
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rapid dissolution of GCPh nanoparticles in both the simulated fluids might 

improve the in vivo absorption of the paclitaxel.  

 

Figure 3.2 Dissolution of Paclitaxel formulations  

a) SGF and b) SIF; Paclitaxel formulated as () GCPh nanoparticles; () 
Taxol® formulation. * Dissolution of Paclitaxel from Taxol® significantly different 
from that of GCPh nanoparticles in SIF (Two-way ANOVA, p < 0.001, n = 3).  

 

3.4.3 Pharmacokinetic studies of oral formulations 

Preliminary pharmacokinetic studies were carried out for both the formulations 

at three different doses; high (20 mg kg-1), medium (10 mg kg-1), and low (6.66 

mg kg-1). The formulations were also administered with and without verapamil 

for all the doses (Figure 3.3). These results highlight the importance of 

dissolution in the oral absorption of hydrophobic drugs, where dissolution of the 

drug in the physiological medium is the rate-limiting step for the absorption of 

these drugs. The absorption of paclitaxel from Taxol® and GCPh nanoparticles 

are similar which is strongly attributed to the rapid dissolution and molecular 

form of the drug being encapsulated within these nanoparticles (Figure 3.3a).  
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Figure 3.3 Plasma paclitaxel levels following the oral administration of 

paclitaxel formulations  

Paclitaxel dosed as () GCPh nanoparticles (-) verapamil; (☐) GCPh 
nanoparticles (+) verapamil; () Taxol® formulation (-) verapamil; () Taxol® 

formulation (+) verapamil at different doses of paclitaxel. (a) Taxol® and GCPh 
nanoparticles without verapamil at 20 mg kg-1. (b – f) Plasma paclitaxel levels 
following the oral administration of paclitaxel formulations with and without 
verapamil at various doses of paclitaxel as Taxol® at (b) 6.66 mg kg-1; (c) 10 mg 
kg-1; (d) 20 mg kg-1; GCPh nanoparticles at (e) 6.66 mg kg-1 and (f) 10 mg kg-1; 
Verapamil dose = 40 mg kg-1. ** PTX plasma levels of formulation with 
verapamil significantly different from the formulation without verapamil. * PTX 
plasma levels significantly different at that time point. (Two-way ANOVA with 
Tukey’s test p < 0.05, n = 4, error bars represent standard deviation). 
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Table 3.1 AUC of paclitaxel formulations at different doses 

 

Formulation 

 

Dose (mg kg-1) 

AUC0-4 h (ng h mL-1) 

without verapamil with verapamil 

Taxol® 

formulation 

6.66 633 1176 

10 1246 2502 

20 2284 2333 

GCPh 

nanoparticles 

6.66 467 544 

10 1023 1181 

       * These values are calculated from Figure 3.3 

To further explore the relationship between the dissolution and P-gp efflux of 

the Class IV drugs, different doses of paclitaxel were orally administered to 

mice in the presence and absence of Verapamil either as Taxol® (6.66 mg kg-1, 

10 mg kg-1 and 20 mg kg-1) or as GCPh nanoparticles (6.66 mg kg-1 and 10 mg 

kg-1). There was a dose dependent increase in the plasma concentration of 

paclitaxel when administered as nanoparticles. 

The presence of verapamil improved the paclitaxel absorption at the low and 

medium dose, while the verapamil had no effect on paclitaxel absorption at the 

highest dose of Taxol® (Figure 3.3 b-d, Table 3.1). This is due to the fact that 

the energy driven P-gp pumps are saturated when high concentrations of 

substrates are available for absorption. Hence the presence of a P-gp inhibitor 

had virtually no effect on the absorption of the drug, as the P-gp is already 

saturated with excess drug in solution. This saturation of P-gp by excess drug in 

solution has been previously reported in vitro18,171, but to our knowledge this is 

the first time that this phenomenon has been reported with mice models through 

oral route. Our findings stress the fact that, in vivo dissolution of the Class IV 

drug is the main factor affecting the absorption and enhancing the dissolution 

using suitable excipients would automatically increase the absorption by 

saturating the P-gp with excess drug in solution.  

Interestingly, the paclitaxel plasma levels show no significant difference with 

and without verapamil, when they are administered as GCPh nanoparticles at 
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all doses (Figure 3.3 e-f). This suggests that there is an alternative pathway for 

the absorption for Paclitaxel GCPh nanoparticles that do not involve the P-gp 

pump. To further explore this phenomenon, GCPh was covalently conjugated to 

Texas red, a fluorescent dye, orally administered to rats and the sections of 

small intestine were imaged using confocal microscopy. The confocal images 

show the presence of GCPh – Texas red (TR) conjugates in the vili (Figure 3.4). 

From the images, it can also be seen that the GCPh nanoparticles are 

mucoadhesive and are also transported to the basolateral side of the intestine 

to reach the systemic circulation via hepatic portal vein as indicated by the 

arrows. It is due to this particle uptake that the GCPh paclitaxel nanoparticles 

are able to bypass the P-gp efflux and thus no P-gp inhibitors are necessary. 

The GCPh nanoparticles are also mucoadhesive, which will further contribute to 

the enhanced/prolonged oral uptake of the encapsulated drugs. Thus, the new 

amphiphilic polymer GCPh, not only enhanced the oral absorption of paclitaxel 

but also by-passed the P-gp efflux due to alternative absorption mechanism, 

which needs to be clearly understood. Experiments were done to ensure the 

complete removal of free Texas red from the GCPh-Texas red conjugate 

(Figure 3.5) and thus the fluorescent signals seen on confocal microscope are 

those of the conjugate and not that of the free Texas red. 
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Figure 3.4 Confocal laser-scanning micrographs of rat intestinal tissue. 

The images were taken 2 hours after dosing with GCPh-Texas red conjugate 
(100 mg mL-1). The Texas red signal (red dots) can be seen lining the villi (a), 
inside the vili and also in the basolateral side of the villi (b,c) as indicated by the 
arrows. (d) Blank rat intestine for comparison. (scale bars = 10 µm). 

 

 

Figure 3.5 GPC-MALLS chromatograms to ensure purification of GCPh-TR 

The image shows the GPC-MALLS chromatogram of GCPh-TR conjugate 
before (thick line) and after (thin line) purification. The free Texas red peak at 
17 minutes disappears after the purification steps. 

 

3.5 Discussion: 

The oral absorption of certain BCS Class IV drugs is hampered by the activity of 

the P-gp efflux pumps in addition to poor solubility. Due to this fact, the BCS 

Class IV drugs are rarely administered orally. One strategy to overcome this 

obstacle is to enhance the dissolution of the drug to such an extent that the P-

gp pumps are saturated, which renders them ineffective. We have 

demonstrated this phenomenon using paclitaxel as a model drug, where 

paclitaxel was formulated as Taxol® or polymeric nanoparticles. In vitro the 

formulations displayed good dissolution in both SGF and SIF. Also, both the 

formulations had similar in vivo paclitaxel absorption profiles following oral 

administration in mice.  Co-administering the drug with a P-gp inhibitor 

increased the absorption of Taxol® at lower doses but made no difference at the 

highest dose. Poorly soluble paclitaxel formulations were also dosed (20 mg 

mL-1) with and with out verapamil but the absorption of the drug following the 

oral administration of these formulations were very poor (data not shown). This 

suggests that dissolution is the key factor dictating the absorption of 
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hydrophobic drugs and when the dissolution is poor, co-administration with a P-

gp inhibitor is not effective. Our results also suggests that the P-gp pumps may 

be saturated when higher levels of the drug are in solution, highlighting the 

importance of enhancing the dissolution for the oral delivery of BCS class IV 

drugs that are P-gp substrates. This is the first instance, where the dissolution 

dependent saturation of P-gp efflux for BCS Class IV drugs has been 

demonstrated in vivo. 

The saturation of P-gp efflux pump by excess substrate is a well-known 

phenomenon. In vitro saturation of the P-gp efflux pump has been reported for 

different substrates such as paclitaxel171, vinblastine214 and ex vivo saturation of 

the P-gp efflux pump was also demonstrated for digoxin using Ussing chamber 

techniques215. Even though dose dependent saturation of P-gp efflux by 

paclitaxel was reported in vivo, no correlation was made with the dissolution of 

the hydrophobic drug and the activity of the P-gp efflux pump. Our study 

emphasizes the fact that merely increasing the dose wouldn’t saturate the P-gp 

pump or increase drug absorption, if the dissolution of the drug is poor in the 

intestine. On the other hand we have proven that, using a dissolution enhancer 

and simultaneously increasing the dose would lead to P-gp saturation and 

maximize the drug absorption.  

We also developed a new polymeric amphiphile GCPh, which improved the oral 

absorption of paclitaxel. The CMC of this polymer was in the nanomolar range 

(Chapter 2), which is in the range for chitosan based amphiphiles123,186. This 

amphiphile formed nanoparticles when formulated with paclitaxel and the oral 

plasma levels of paclitaxel from these nanoparticles were similar to that of 

Taxol® nanoparticles with similar AUC values (Table 3.1), thus meeting our first 

criterion for success established earlier. However, co-administration with 

verapamil did not enhance the absorption of paclitaxel when given as GCPh 

nanoparticles. Ex vivo intestinal tissue imaging using fluorescent labels 

revealed that the GCPh nanoparticles are present within the villi, which might 

explain why P-gp efflux pump inhibitors have no effect when paclitaxel GCPh 

nanoparticles are administered orally. Verapamil only has an effect at a later 

time point (4 hours), which is when the GCPh nanoparticles are destabilized 
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and free paclitaxel is released in the intestinal lumen making the drug 

susceptible to P-gp efflux (Figure 3.3 e, f).  

The mechanism of action of GCPh nanoparticles include, improving drug 

solubility by stabilizing a molecular form of the drug, enhanced dissolution due 

to small size of the nanoparticles, mucoadhesion and nanoparticle uptake via 

transcellular and/or paracellular routes as demonstrated by ex-vivo fluorescent 

imaging studies (Figure 3.6). Additionally, nanoparticles are also transported to 

the basolateral side of the villi, which means the paclitaxel nanoparticles might 

reach the systemic circulation (provided the particles stay intact after first-pass 

liver metabolism), improving the efficacy of cancer treatment through selective 

tumour uptake due to EPR effect216. A combination of all these factors improved 

the absorption of paclitaxel and also by-passed the P-gp efflux, making GCPh 

an ideal vehicle for oral delivery of paclitaxel. The particle uptake of paclitaxel 

nanoparticles were previously reported by Mo et al.191 using N-octyl-O-sulphate 

chitosan (NOSC) micelles, which enhanced the oral uptake of paclitaxel by 

inhibiting its P-gp efflux and also by promoting the particulate absorption of 

paclitaxel loaded micelles. In this study, amphiphilic chitosan was prepared with 

octanol and sulphate pendent groups, which was then used to encapsulate 

paclitaxel. The oral absorption of paclitaxel was studies in the presence and 

absence of verapamil and compared to that of Taxol®. The bioavailability of 

paclitaxel was improved by 6-folds following the oral administration of N-octyl-

O-sulphate chitosan micelles when compared to that of Taxol® formulation. The 

enhanced oral bioavailability was mainly attributed to the absorption of drug 

loaded NOSC micelles, which inhibited the activity of the P-gp efflux pumps. 

While the absorption N-octly-O-sulphate chitosan micelles are facilitated by 

clathrin-mediated transcytosis, more work is needed to determine the nature of 

uptake of GCPh nanoparticles.  

Thus we were also able to meet our second criterion for success, which is to 

enhance the absorption of paclitaxel without the help of a P-gp efflux pump 

inhibitor to an AUC value of above 1000 ng.h mL-1. This was achieved in two 

different ways; either to improve the dissolution in order to saturate the energy 

driven P-gp efflux pumps or to use polymeric nanoparticles to exploit alternate 

drug absorption pathways by-passing the P-gp efflux pumps. 



Enhancing the bioavailability of BCS Class IV drugs using polymeric nanoparticles 

 

108 

 

3.6 Conclusion: 

Dissolution is the key factor controlling the oral absorption of most of the 

hydrophobic drugs. Improving the dissolution of P-gp substrate BCS Class IV 

drugs using suitable dissolution enhancers might enhance its oral absorption by 

saturating the P-gp as demonstrated with paclitaxel. A new polymeric 

amphiphile, GCPh enhanced the oral absorption of paclitaxel using a variety of 

mechanisms such as dissolution enhancement through particle size reduction, 

mucoadhesion, uptake of drug-loaded nanoparticles bypassing the P-gp efflux 

and transportation of these nanoparticles into the systemic circulation.  

 

 

Figure 3.6 The mechanism of uptake of paclitaxel nanoparticles as a) 

Taxol and b) GCPh  
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4 Oral delivery of CUDC-101 

4.1 Introduction 

CUDC-101 is a potent multi-target tumour inhibitor168,169 but it is a BCS class IV 

molecule and hence it is hard to deliver orally. Oral absorption of the drug is 

hampered by the physicochemical properties of the drug and physiology of the 

alimentary canal, as described in Section 1. Various strategies are proposed in 

the literature to overcome these barriers and the choice of these techniques 

mainly depends on the nature of the therapeutic in the study. This section 

covers the preliminary experiments carried out on CUDC-101 to identify the 

delivery issues associated with the oral delivery of this molecule. Results from 

these experiments, were used to design various strategies to address the 

identified delivery issues and a number of CUDC-101 formulations were 

developed based on this, which are all explained in detail in this section. 

4.1.1 CUDC - 101 polymeric nanoparticles 

Polymeric amphiphiles have both hydrophilic and hydrophobic moieties in their 

structure, which helps to encapsulate hydrophobic drugs and improve its 

aqueous solubility. GCPQ is a polymeric amphiphile that self-assembles into 

micelles in aqueous environment100. It has previously been shown to form 

nanoparticles with hydrophobic drugs, presumably by solubilizing the drug in its 

hydrophobic core and forming a colloidal suspension in water. This improves 

the aqueous dissolution of the drug and eventually enhances its oral uptake75. 

GCPQ nanoparticles have also been shown to be mucoadhesive and are also 

taken up by phagocytosis, which all contributes to the enhanced absorption of 

the drug217. Thus, it might be advantageous to formulate CUDC-101 as GCPQ 

nanoparticles. GCPh, a new polymeric amphiphile similar to GCPQ was also 

synthesized, which will also be tested with CUDC-101 to enhance its 

absorption. 

There are different ways to form nanoparticles with preformed polymeric 

amphiphiles218, such as co-solvent evaporation, solvent displacement, solvent 

diffusion, salting out etc. All these techniques require the use of organic 

solvents, which limits their application due to limited availability of safe organic 
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solvents. Also, preliminary experiments indicated that CUDC-101 has limited 

solubility in organic solvents, making it hard to form GCPQ – CUDC-101 

nanoparticles using conventional techniques. Two different approaches were 

proposed to make these nanoparticles; 1) to probe sonicate the drug with 

GCPQ and adding surfactants to stabilise the drug GCPQ colloidal suspension 

and 2) to add a solution of drug to an aqueous suspension of GCPQ. 

The idea behind adding a solution of drug to an aqueous suspension of GCPQ 

is similar to solvent displacement technique. The drug is poorly soluble in water 

and when a solution of drug is diluted with water it will precipitate (as observed 

during preliminary experiments). But a dispersion of amphiphilic polymer in 

water provides an opportunity for the precipitating drug molecules to partition 

inside the hydrophobic core of the amphiphile, as the core will have a 

favourable thermodynamic environment for the hydrophobic drug. This might 

create a suspension of drug in an aqueous environment, or in other words form 

the GCPQ-CUDC-101 nanoparticle. Similarly, probe sonication provides sheer 

and cavitation forces, which reduces the size of the drug crystals to nanoscale 

and provides an opportunity for GCPQ to encapsulate the hydrophobic drug 

due to hydrophobic interactions. The presence of a surfactant might reduce the 

interfacial tension between the drug nanocrystal and the surrounding medium 

thereby enhancing the diffusion of drug molecules that is important for particle 

size reduction. 

Preliminary experiments were done to narrow down on the choices of solvents, 

the characteristics of GCPQ and choices of surfactants to make nanoparticles. 

There are few variants of GCPQ, differing in the molecular weight of the 

polymer, hydrophobicity of the polymer dictated by percentage of palmitoylation; 

the protonated or deprotonated state of the primary amines in the polymer 

backbone. Experiments were done to determine which of these polymers were 

able to suspend high concentrations of the drug in water, and then surfactants 

were added to check if that affected the drug recovery. If any formulations were 

satisfactory then they were promoted for in vitro and in vivo experiments.  
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4.1.2 Gastro-retentive dosage form: 

Gastro-retentive dosage forms are those where the oral dosage forms are 

physically designed to escape or delay the gastric emptying, so that the 

formulation is retained in the stomach for longer period of time than usual108. 

This means, the majority of drug release will happen in the stomach, which will 

be the desired site of action for most gastro-retentive dosage forms. From the 

preliminary experiments, the absorption of CUDC-101 was shown to be 

predominantly from stomach when administered as PEG400 solution or as 

Captisol inclusion complex. This absorption was observed only for 30 minutes, 

after which the formulation gradually percolated into the intestine where it 

precipitates and the absorption terminates. Based on this observation it was 

hypothesized that, if we can maintain the formulation in the stomach for a 

longer time frame then it is possible to maximize the absorption of CUDC-101. 

And hence possible ways of developing a gastro-retentive dosage form for 

CUDC-101 was explored.  

4.1.2.1 PEG/PEO gastro-retentive formulation: 

There are different types of gastro-retention mechanisms such as floating 

devices, sinking devices etc., but since CUDC-101 was soluble in high 

molecular weight PEG, which is capable of forming gels, it was decided to 

pursue with swelling dosage forms. Swelling dosage forms are those which 

increases in size upon contact with gastric fluid such that they cannot pass 

through the pylorus and thus remain in the stomach until they are eroded to a 

size small enough to pass through the pylorus108. High molecular weight PEG 

(> 20,000 Da) is called polyethylene oxide (PEO) and PEO (5,000,000 Da) 

exists as free flowing powder at room temperature. These PEO powder forms a 

gel in water and it was observed that when these powdery PEO are tightly 

packed, they swell to form a gelatinous solid. This would make an ideal depot, 

where the drug is solubilized within this gelatinous matrix that stays in the 

stomach for a longer duration and slowly releases the drug upon erosion. 

 

But the PEOs have high meting point, which makes it hard to solubilize CUDC-

101. Hence it was decided to use waxy 1000 – 3350 Da PEGs for solubilizing 
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the drug and to mix this solid drug solution in different proportions to PEO to 

form a swelling dosage form. PEG of 1000 – 3350 Da exist as waxy solids, 

which is also free flowing at room temperatures. Particularly, PEG 3350 Da 

melts around 70°C and also solubilize CUDC-101 at around 100 mg mL-1 

concentration, which makes it ideal for our purpose. Thus, a swelling dosage 

form was developed using these excipients and they were tested in vitro and in 

vivo to prove our hypothesis that it is possible to increase the absorption of 

CUDC-101 by prolonging the retention of the dosage form in the stomach. 

4.1.3 Liquid Chromatography-Mass Spectroscopy (LC-MS): 

Liquid Chromatography-Mass Spectrometry (LC-MS) is an analytical tool for 

quantification of very low concentration solutes180. The solutes are separated 

using a chromatographic column and fed into a Mass Spectrometer (MS), using 

a high-pressure pump. The solutes are then ionised in the MS from which they 

are separated based on their mass to charge ratio (m/z). These molecular ions 

are further subjected to ionisation (MS/MS) in order to produces daughter ions, 

which are monitored using Multiple Reaction Monitoring (MRM) channels and 

recorded as chromatograms. The area under the curve for a particular solute in 

the chromatogram is directly proportional to the concentration of the solute, 

which makes the quantification straightforward180. The main advantage of LC-

MS over RP-HPLC is the specificity and sensitivity of MS, which enables the 

detection of picogram concentrations of solute. The main limitations of LC-MS is 

that solutes of higher molecular weight are hard to quantify180.  

4.2 Aims and objectives 

The main of this chapter is to enhance the oral absorption of CUDC-101 using 

polymeric nanoparticles. The objectives are as follows: 

 Improve the dissolution of the drug in the gastro-intestinal tract. 

 Saturate the activity of P-gp efflux pumps by increasing the dissolution as 
observed with paclitaxel. 

 Form nanoparticles with GCPQ and GCPh, to achieve better absorption. 

 Explore other strategies to improve oral absorption, e.g. gastro-retention. 
The criteria of success for this project was established based on the objectives 
as follows: 

1. To develop a formulation that is stable in the at intestinal pH conditions. 
2. To achieve target dose of at least 50 mg kg-1. 
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3. To achieve a Cmax of 500 ng mL-1 CUDC-101 in plasma following the oral 
administration of the developed formulations. 

4.3 Materials and Methods 

4.3.1 Materials 

Chemical Purity Supplier 

Acetonitrile HPLC grade ≥ 99.5% 
Fisher Scientific 

(Loughborough, UK) 

Ethyl acetate  
Fluka Chemicals 

(Gillingham, UK) 

Hydrochloric acid 36.5-38% 

VWR BDH Prolabo 

(Fontenay-sous-Bois, 

France) 

Pancreatin ~100% 
Sigma-Aldrich 

(Gillingham, UK) 

Pepsin  
Sigma-Aldrich 

(Gillingham, UK) 

Phosphate buffer saline  
Sigma-Aldrich 

(Gillingham, UK) 

Potassium dihydrogen 

phosphate 
99.5 

Sigma-Aldrich 

(Gillingham, UK) 

Sodium chloride 99.50% 
Sigma-Aldrich 

(Gillingham, UK) 

Sodium hydroxide 98.90% 
Sigma-Aldrich 

(Gillingham, UK) 

Trifluoro acetic acid ≥ 99.5% 
Fluka Chemicals 

(Gillingham, UK) 

Water double deionised <18 ohm 
Millipore Synergy- 

Simpak1 
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Chemical Purity Supplier 

N-methyl-2-pyrrolidone  
Sigma-Aldrich 

(Gillingham, UK) 

Dimethyl sulfoxide  
Sigma-Aldrich 

(Gillingham, UK) 

CUDC-101 Batch no. 87889-08 Curis Inc. (MA, USA) 

 

Details of the GCPQ batches used in this chapter 

Batch name Pamitoylation (%) Quarternisation (%) Mw (Da) 

Q48 100413 KC* 18 5 10830 

Q48 101111 SR 18 9 9470 

Q24 050213 SR 18 6 16440 

Q2 090313 SR 11 11 48130 

Q2 150909 AL* 21 11 55460 

Q2 220213 SR 19 13 70130 

Q48 111111 SR 18 9 9640 

*GCPQ with deprotonated primary amines 

4.3.2 Methods used in preliminary experiments 

4.3.2.1 Dissolution studies in Simulated Gastric and Intestinal fluids: 

The Simulated Gastric Fluid (SGF) was prepared following the method 

described in European Pharmacopeia, 6th edition, 2008. Sodium chloride (2.0 g) 

and pepsin (3.2 g) were dissolved in hydrochloric acid (1 M, 80 mL) and volume 

made up to 1 L using distilled water (pH 1.2). Simulated Intestinal Fluid (SIF) 

was prepared following the method described in European Pharmacopeia, 6th 

edition, 2008. In distilled water (800 mL), Potassium dihydrogen phosphate (6.8 

g) and a solution of sodium hydroxide (0.2 M, 77 mL) were added.  Once 

dissolved, the pH of the solution was adjusted to 6.8 with NaOH (0.2 M) and the 

volume of the solution was made up to 1 L with distilled water. 
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The freeze-dried formulations containing CUDC-101 (5 mg mL-1) were placed in 

SGF/SIF (50 mL, preheated to 37C) and incubated on a water bath maintained 

at 37C with shaking (125 rpm). Samples (150 µL) were withdrawn at specific 

time points (0, 5, 10, 30, 60, 120 min) and replaced with the same volume of 

fresh dissolution medium. The withdrawn samples were centrifuged at 1000 g 

for 10 minutes and the supernatant was extracted as outlined below.  

Extraction was carried out by diluting the sample with thrice the volume of 

acetonitrile (HPLC grade), vortexing for 10 min and centrifuging at 10000 g at 

room temperature for 10 min (MSE Microcentaur, UK). The supernatant was 

then collected and analysed as such under RP-HPLC, using the method stated 

in section 4.3.6. All the experiments were carried out in triplicate and results are 

calculated by comparing the peak area of the drug with a standard curve.  

4.3.2.2 Stability in Simulated Gastric Fluid 

SGF aliquots (100 l) were pipetted in an eppendorf tube. The formulations (10 

l) were spiked in SGF to give a final concentration of 1 mg mL-1 drug (approx.) 

and were incubated on water bath set at 37C with shaking (125 rpm). Sample 

tubes were withdrawn at specific time points (0, 10, 30, 60, 120 min) and were 

extracted as follows.  

The samples were extracted with 900 L of methanol, vortexed for 10 minutes 

and centrifuged at 10,000 g for 10 minutes at room temperature (MSE 

Microcentaur, UK). The supernatant was carefully collected and analysed using 

RP-HPLC. The results were compared with a standard curve prepared and 

concentration of drug at each time point was calculated. If there is a decrease in 

concentration over time (compared with conc. at time 0), this was interpreted as 

drug degradation. All the experiments were done in triplicate. 

4.3.2.3 Stability in Rat Intestinal wash (IW) 

Four adult male Wistar rats (200 g in wt. approx.) were fasted for 12-16 h and 

euthanized by CO2 overdose. The portion of the small intestine from duodenum 

to ileum was excised and cut into small segments of 10 cm (approx.) length. 

With the help of a syringe, 10 mL of ice cold PBS (pH 6.8) was flushed through 

each of these segments. The whole volume thus collected were pooled together 
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and centrifuged at 1000 g for 10 minutes at 10C. The supernatant collected 

after this step is the Rat Intestinal Wash, which is stored at -20C and thawed at 

37C before use.  

IW aliquots (100 l) were pipetted in an eppendorf tube. The formulations (10 

l) were spiked in IW to give a final concentration of 1mg mL-1 drug (approx.) 

and were incubated on water bath set at 37C with shaking (125 rpm). Sample 

tubes were withdrawn at specific time points (0, 10, 30, 60, 120 min) and were 

extracted as follows.  

The samples were extracted with 900 L of methanol, vortexed for 10 minutes 

and centrifuged at 10000 g for 10 minutes at room temperature (MSE 

Microcentaur, UK). The supernatant was carefully collected and analysed using 

RP-HPLC. The results were compared with a standard curve prepared and 

concentration of drug at each time point was calculated. If there is a decrease in 

concentration over time (compared with conc. at time 0), this was interpreted as 

drug degradation. All the experiments were done in triplicate. 

4.3.2.4 Stability in Liver homogenate 

Adult male CD-1 mice (approx. 20 g in wt.) were euthanized by overdose of 

carbon dioxide. The liver of the animal was carefully excised and weighed. For 

100 mg of liver tissue, 150 L of 50 mM sucrose solution was added and the 

liver macerated thoroughly. This homogenate was stored at -20C and thawed 

at 37C before using for experiments. 

The formulations were diluted to 10 µg mL-1 concentration using milliQ water 

and the concentration was confirmed using RP-HPLC. Liver homogenate (150 

µL) were pipetted in an eppendorf tube and the formulations (15 L) were 

spiked in these fluids to give a final concentration of 1 g mL-1 (approx.). This 

mixture was incubated on water bath set at 37C with mild shaking (60 rpm). 

Tubes were withdrawn at specific time points (0, 10, 30, 60, 120 minutes) and 

were spiked with CUDC-101 internal standard (15 µL, 250 ng mL-1).  

The drug from the liver homogenate was then extracted by adding four times 

the sample volume of ethyl acetate. The vials were then vortexed for 10 

minutes, centrifuged at 1500 g for 15 minutes at room temperature and the 
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supernatant was transferred to a fresh 2 mL eppendorf. This step was repeated 

twice with the pellet and the clean supernatants from each sample pooled 

together. The ethyl acetate was then evaporated using a Speedvac (Thermo 

Fisher Scientific, Waltham, US.) connected to a vacuum pump (Edwards, 

Sussex, UK) at room temperature. Once the samples are dry, they were 

dissolved in 0.1% FA in acetonitrile (150 L) and analysed by LC-MS. 

Simultaneously, a standard curve was prepared by spiking the standard 

solutions in liver homogenate and analysed. Results were calculated with 

reference to the standard curve and if the drug concentrations at other time 

points were less than the initial, this was interpreted as drug metabolism by liver 

enzymes. Experiments were done in triplicate. 

4.3.2.5 Stability in Plasma 

Adult male CD-1 mice (approx. 20 g in wt.) were euthanized and the blood was 

immediately collected in a vacutainer coated with EDTA, by cardiac puncture 

method. The collected blood was stored on ice until centrifuging at 2000 g for 

10 minutes at 4C. The supernatant from this step is the plasma, which was 

carefully collected and stored at -20C. 

The CUDC-101 Captisol formulation (10 mg mL-1) was diluted to 10 μg mL-1 

concentration using milliQ water and the concentration was confirmed using 

RP-HPLC. Plasma (150 µL) were pipetted in an eppendorf tube and the 

Captisol formulation (15 µL) was spiked in the plasma to give a final 

concentration of 1 g mL-1 (approx.). in a separate experiment, the stability 

studies were carried out at 37 C with shaking at 125 rpm. Drug and metabolite 

standards (15 μL of 1 μg mL-1 concentration) were also spiked plasma aliquots 

(150 µL) to give a final concentration of 100 ng mL-1 and the stability studies 

were carried out in frozen conditions. 

Stability at 37C: The drug-plasma samples (150 l) were incubated in a water 

bath set at 37C with mild shaking (60 rpm). Tubes were withdrawn at specific 

time points (0, 10, 30, 60, 120 min) and the plasma samples were spiked with 

the internal standard (15 µL, 250 ng mL-1) and extracted as described below.  
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Stability on storage at -20C: The drug-plasma samples (150 l) were stored 

at -20C for a period of seven days and sample tubes were withdrawn at day0, 

day1, day4 and day7. The samples were spiked with the internal standard (15 

µL, 250 ng mL-1) and extracted as described below.  

Stability on storage at -80C: The plasma samples (150 l) were stored at -

80C for a period of seven days and sample tubes were withdrawn at day0, 

day1, day4 and day7. The plasma samples were then spiked with the internal 

standard (15 µL, 250 ng mL-1) and extracted as described below. 

Sample extraction: The samples were extracted with thrice the volume of 0.1% 

FA in ACN. The samples were vortexed for 40 minutes and centrifuged at 

10000 g for 10 minutes at room temperature (MSE Microcentaur, UK). The 

supernatant was carefully collected and analysed by LC-MS. A standard curve 

was simultaneously prepared by spiking the standards and internal standards in 

plasma. The standards were then extracted as before and analysed along with 

the samples. If the concentrations at other time points were different from initial 

time point, this was interpreted as drug degradation in plasma.  

Sample stability after extraction: A plasma standard curve was prepared, 

extracted and stored on the LC-MS auto sampler for a period of 7 days. The 

samples were then periodically analysed on days 0, 1, 4 and 7. The peak area 

ratio of the standards were compared with that of day 0 (control) and a CV 

value greater than 15% suggests drug degradation on storage after extraction 

with acetonitrile.  

4.3.2.6 Solubility in Aqueous/Non-aqueous solvents: 

CUDC 101 (50 mg) was added to amphiphilic/ non-aqueous liquid (1 mL), 

mixed thoroughly and the resulting suspension probe sonicated for 5 minutes 

(Soniprep 150, Sanyo, UK) at 25% of its output.  The resulting liquid was 

centrifuged (10,000g X 10 minutes, MSE Microcentaur, UK) to remove insoluble 

drug and the supernatant sampled (10 μL), diluted with methanol (990 μL) and 

analysed for drug content by RP-HPLC.  
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4.3.2.7 Solubility in Simulated Gastric Fluid 

SGF/IW (2 mL) were pipetted in an eppendorf tube and labelled appropriately. 

The CUDC-101 formulations (200 µL) were spiked in these fluids to give a final 

concentration of 1 mg mL-1 (approx.) and were incubated in a water bath set at 

37C with shaking (125 rpm). Samples (150 µL) were withdrawn at specific time 

points (0, 10, 30, 60, 120 min) and the samples were centrifuged at 1000 g for 

10 minutes at room temperature. The supernatant (100 l) was transferred to a 

fresh eppendorf tube and extracted as follows.  

The samples were extracted with in ACN (900 l), vortexed for 10 minutes, 

centrifuged at 10,000 g for 10 minutes at room temperature and the supernatant 

was analysed by RP-HPLC. A standard curve was simultaneously prepared in 

SGF/IW and analysed along with the samples. A control sample was also 

prepared by immediately extracting the sample after spiking with formulation, 

without the 1000 g centrifugation step. If the drug concentrations at other time 

points are drastically different from that of control it was interpreted as drug 

precipitation in the respective fluids.  

4.3.3 Methods used for nanoparticle formulation: 

4.3.3.1 Encapsulation studies with GCPQ: 

Different types of GCPQ (10 mg) with different characteristics (Table 4.7) were 

placed in a glass vial and CUDC-101 (1 mg) was added to each vials followed 

by water (1 mL) and the dispersion was probe sonicated for 5 minutes at 25 % 

of its maximum output. The resulting liquid was centrifuged (1,000 g for 10 

minutes) to remove insoluble drug and the supernatant (10 μL), which is the 

colloidal fraction was diluted with methanol (990 μL) and analysed for drug 

content by RP-HPLC.  

To find the effect of adding a co-surfactant on GCPQ – CUDC-101 

nanoparticles, Polysorbate 80 (Tween 80) was added to the mixture of CUDC-

101 (1 mg) and GCPQ (10 mg) at different percentages (0% - 10%, v/v in water) 

and probe sonicated for 5 minutes at a power intensity of 25 %. The resulting 

liquid was centrifuged (1,000 g for 10 minutes) to remove insoluble drug and the 

supernatant (10 μL) was diluted with methanol (990 μL) and analysed for drug 

content by RP-HPLC.  
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4.3.3.2 Preparation of GCPQ – CUDC-101 formulation 1: 

CUDC-101 (40 mg) was dissolved in Cremaphor RH (1 mL) using the probe 

sonication to get a clear solution. This solution (100 μL) was then added to 

GCPQ (15 mg, Q48 111111 SR) and the volume was made up to 0.8 mL using 

HCl (0.1 N) to obtain a clear yellow dispersion. 

4.3.3.3 Preparation of GCPQ – CUDC-101 formulation 2: 

CUDC 101 (10 mg) was dissolved in sodium hydroxide (0.2 M, 1 mL) containing 

PVP-K15 (0.16 %) by heating in a shaking water bath at 70C for 5 minutes. 

GCPQ (20 mg, Q48 111111 SR) was dispersed in hydrochloric acid (0.2 M, 1 

mL) by vortex mixing. To this GCPQ dispersion was added the warm alkaline 

solution (clear yellow in colour) of CUDC-101 and the resultant colloid 

suspension was vortexed for 10 seconds.  The pH of the resulting formulation 

was adjusted to a pH 6.8 if necessary.  

The GCPQ – CUDC-101 formulation 2 was also developed into a solid dosage 

form by freeze-drying the formulation. The solid dosage form was packed in to 

capsules (size 1 and size 9) and enteric coated with Eudragit L100-55 (10% 

w/v) dissolved in methanol219. To coat the capsules with Eudragit, the methanol 

solution of Eudragit L100-55 was poured in a petridish (10 mL). Capsules 

containing the formulations were fixed in a specially designed apparatus 

(Torpac Inc., USA) and dipped for few seconds in the Eudragit solution. The 

capsules were then left to dry on the apparatus, once dry the capsules are fixed 

on the opposite end, which is again dipped in Eudragit solution. This process is 

repeated twice to ensure uniform coated of the capsules.   

4.3.3.4 Stability studies of GCPQ formulations: 

The pH of the GCPQ – CUDC-101 formulations was adjusted to neutral and the 

formulations were left undisturbed at room temperature. Samples (100 μL) were 

withdrawn at specific time points and centrifuged at 1,000 g for 10 minutes and 

the supernatant was analysed for drug content by RP-HPLC. Stability studies of 

the formulation were also carried out in SGF and IW by spiking a known 

concentration of CUDC-101 formulations in SGF or IW (to give 1 mg mL-1 

concentration of CUDC-101 in SGF/IW) and incubating at 37˚C with shaking at 

125 rpm. Samples (100 μL) were withdrawn at specific time points and 
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centrifuged at 1,000 g for 10 minutes and the supernatant was analysed for 

drug content by RP-HPLC. 

4.3.3.5 pH dependent stability studies: 

GCPQ – CUDC-101 formulation 2 (200 µL) was spiked in phosphate buffer (10 

mM, 0.8 mL) adjusted to various pH values ranging from 1.2 to 7.2 and 

incubated at 37˚C with shaking at 125 rpm. Samples (100 μL) were withdrawn 

at specific time points and centrifuged at 1,000 g for 10 minutes and the 

supernatant was analysed for drug content by RP-HPLC. 

4.3.3.6 Dissolution studies: 

The GCPQ – CUDC-101 formulation 2 (1 mL) was freeze-dried and to this dried 

cake SGF/SIF (5 mL respectively) was added and incubated at 37˚C with 

shaking at 125 rpm. The samples were withdrawn at predetermined time points 

and filtered using 0.8um filter and diluted in the methanol and analysed for drug 

content using RP-HPLC. 

4.3.4 Methods used for gastro-retentive dosage form 

4.3.4.1 Preparation of PEG-PEO capsules: 

PEG 3350 Da (PEG3350) was molten at 70°C and to this liquid PEG (1 mL) 

CUDC-101 (100 mg) was added and probe sonicated for 10 minutes at 30 % 

output to get a clear solution. This solution was allowed to cool and form a solid 

PEG3350 CUDC-101 solution. This solid solution was then ground to get a fine 

powder and this powder was then mixed with PEO (5,000,000 Da) at different 

proportions (1:1, 1:1.5, 1:2 w/w ratios) to get a homogeneous mixture. This 

mixture was then tightly packed in size 0 capsules and used for further 

experiments. 

4.3.4.2 Drug release experiments in SGF: 

The PEG3350 – PEO capsules with known amount of CUDC-101 were placed 

in SGF (50 mL) and placed in a shaking water bath (37°C, 125 rpm). Samples 

(200 μL) were withdrawn, filtered with 0.8 μm filters and the filtrate was 

analysed for drug content using RP-HPLC.  
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4.3.5 TEM imaging 

The CUDC-101 formulations were analysed under TEM (Philips 120FEI 

company, Netherlands). A drop of the formulation was dried on a copper TEM 

grid (300 mesh- Fomvar/ carbon coated) and stained with a drop of 1% uranyl 

acetate. Once dried, the samples were analysed under the TEM and the 

representative images were randomly photographed and documented. 

4.3.6 RP-HPLC analysis 

CUDC-101 was analyzed using an Agilent 1200 series quaternary pump, 

equipped with Agilent 1200 series degasser, auto sampler and an UV 

absorbance detector all supplied by Agilent technologies (Berkshire, UK). 

Samples were chromatographed over a reverse phase column: Onyx C18 

monolith column (100 x 4.6mm, 5m); a 10mm connector connected two such 

columns and a guard column (10 x 4.6mm, 5m), maintained at a constant 

temperature with an Agilent1200 series column heat exchanger and eluted by a 

gradient flow with Triflouroacetic acid (0.1% in water): acetonitrile (90:10) 

mobile phase at a flow rate of 2.0 mL min−1 at 35 °C as shown in Table 4.1. The 

peaks of CUDC-101 and its major metabolite were detected at 254 nm with a 

retention time of 12.9 min and 14.2 min respectively. The data was analysed 

using Agilent Chemstation software. Calibration curves for CUDC-101 and its 

major metabolite (r2 > 0.99) were obtained using various concentrations of 

standard solutions ranging from 1-to 200 μg mL−1. 

 

Table 4.1 RP-HPLC method for CUDC-101 

Time 

(min) 

0.1 % TFA in 
water (A) 

(%) 

Acetonitrile 

(B) 

(%) 

0 90 10 

3 85 15 

10 75 25 

20 15 85 
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Time 

(min) 

0.1 % TFA in 
water (A) 

(%) 

Acetonitrile 

(B) 

(%) 

20.2 90 10 

23.2 90 10 

 

4.3.7 LC-MS/MS analysis  

The LC-MS/MS analysis of CUDC-101 was carried out using an Agilent HP 

1260 infinity series LC system (Agilent technologies, Berkshire, UK) interfaced 

directly with a Triple Quad LC/MS 6460 mass spectrometer (Agilent 

technologies, Berkshire, UK). Samples were separated on a reverse phase C18 

Zorbax column (2.1 x 50mm, 5m) in a gradient mode with 0.1% Formic acid 

(FA) in water and 0.1% FA in acetonitrile as per Table 4.2. The mobile phase 

flow rate was 0.4 ml min-1 and the column was maintained at constant 

temperature of 25C. The injection volume was 10 l and the total run time for 

each sample was 6 min. The retention time for CUDC-101, its metabolite and 

the internal standard were 2.3 min, 2.6 min and 3.1 min respectively. The 

samples were ionized by electrospray ionization (ESI) in a positive ion mode. 

The electrospray parameters are as follows: electrospray capillary voltage 3.5 

kV, source temperature 90C and desolvation temperature 350C. Nitrogen was 

used in the ESI source and the gas flow was 600 L h-1. The collision energy was 

set for 25 eV and the detection of ions was performed in Multiple Reaction 

Monitoring (MRM) mode, following the ions as shown in Table 4.3. 

 

 
Table 4.2 LC-MS method for CUDC-101 

Time 

(min) 

0.1% FA in 

water (A) 

   (%) 

0.1% FA in 

Acetonitrile (B) 

(%) 

0.0 95 5 
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0.2 80 20 

4.00 5 95 

4.50 95 5 

6.00 95 5 

 

Table 4.3 Ions of the analytes monitored in LC-MS/MS 

Compound 
Molecular 

weight 

Molecular 

ion 

Daughter 

ion 

Drug 434.4 435.4 292.1 

Metabolite 419 420.6 292.4 

Internal Std 430 431.1 270.2 

 

4.3.8 Oral pharmacokinetic studies in mice 

All the experiments were performed under a Home Office license (Animal 

Scientific Procedures Act 1986, UK). Male CD-1 mice (Harlan, Oxon, UK) or 

MF-1 mice (Charles River, Harlow, UK) weighing around 20 g at the time of 

experiment were acclimatized for at least 5 days before the experiment, in the 

animal housing unit, maintained at an ambient temperature of 22C, relative 

humidity of 60% and an equal day-night cycle. The animals were fasted with 

access only to clean water for 12-16 hours before dosing. The CUDC-101 

formulations were dosed orally with the help of an oral gavage needle. The 

animals were incubated at room temperature and euthanized by CO2 overdose 

at specific time points. Blood samples were immediately collected in a 

vacutainer coated with EDTA by cardiac puncture and plasma was collected as 

described previously. The plasma collected was stored at -80C if necessary, 

but usually extracted immediately as follows. To the plasma (50 µL), CUDC-101 

internal standard (IS) was spiked (5 l, 250 ng mL-1) and extracted with thrice 

the volume of acetonitrile containing 0.1% FA. The samples were vortexed for 

40 minutes and the supernatant was collected after centrifuging at 10,000 g for 

10 minutes. The plasma extract was then analysed by LC-MS/MS along with a 



Enhancing the bioavailability of BCS Class IV drugs using polymeric nanoparticles 

 

126 

 

standard curve, which was prepared simultaneously in blank plasma. The 

concentration of CUDC-101 was then calculated from the results and a plasma 

concentration time curve was constructed. 

4.3.9 Oral pharmacokinetic studies in rats: 

All the experiments were performed under a Home Office license (Animal 

Scientific Procedures Act 1986, UK). Male Wistar rats (Charles River, Harlow, 

UK) weighing around 200 g at the time of experiment were acclimatized for at 

least 5 days before the experiment, in the animal housing unit, maintained at an 

ambient temperature of 22C, relative humidity of 60 % and an equal day-night 

cycle. The animals were fasted with access only to clean water for 12-16 hours 

before dosing. The enteric-coated or gastro-retentive capsules (size 9 or size 9 

el) containing a known concentration of CUDC-101 were orally given to rats with 

the help of an oral gavage (Torpac, NJ, USA). The animals were incubated at 

room temperature and blood samples were collected from tail vein at specific 

time points. The final blood sample was obtained by a cardiac puncture after 

killing the animal using a CO2 overdose. Blood samples were immediately 

collected in a vacutainer coated with EDTA and plasma was collected as 

previously described. The plasma collected was stored at -80C if necessary, 

but normally extracted immediately as follows. To the plasma (50 µL), CUDC-

101 internal standard (IS) was spiked (5 l, 250 ng mL-1) and extracted with 

thrice the volume of acetonitrile with 0.1% FA. The samples were vortexed for 

40 minutes and the supernatant was collected after centrifuging at 10000 g for 

10 minutes. The plasma extract was then analysed by LC-MS/MS along with a 

standard curve, which was prepared simultaneously in blank plasma. The 

concentration of CUDC-101 was then calculated from the results and a plasma 

concentration time curve was constructed. 

4.3.10 Statistical analysis 

Statistical significance was tested with one-way and two-way analysis of 

variance (ANOVA) using GraphPad Prism 5 statistical software. For multiple 

comparisons, Post-Hoc tests such Bonferroni’s or Tukey’s were used. In some 

cases, the statistical differences between two populations were compared using 

the Student’s t test (Microsoft excel). 
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4.4 Results 

4.4.1 Preliminary studies: 

In order to formulate a drug molecule and obtain its pharmacokinetic profile, we 

need to know the basic parameters such as its solubility in aqueous and non-

aqueous media, dissolution and solubility in digestive fluids, stability to 

endogenous enzymes, baseline oral pharmacokinetic (PK) profile and some 

information on how to handle the plasma samples obtained during PK 

experiments. Some of these preliminary experiments were done on CUDC-101 

Captisol formulation as supplied by Curis Inc. This section outlines these results 

and the results informed the design of CUDC-101 formulations.  

4.4.1.1 Solubility studies: 

The solubility of CUDC-101 in various solvents is given in Table 4.4 and Table 

4.5. From the results it can be seen that the water solubility of CUDC-101 is just 

0.03 mg mL-1. The drug is readily soluble in N-methyl-2-pyrrolidone (NMP), 

dimethylsulfoxide (DMSO) and soluble in PEG400. The drug’s solubility in these 

solvents may be improved by heating the samples at 70˚C or by prolonged 

probe sonication but the drug precipitates upon cooling. Also, too much of 

heating is detrimental to the drug, as unknown degradation products appear on 

HPLC chromatogram when samples are probe sonicated for longer duration 

(Figure 4.1). From thermo gravimetric analysis (Figure 4.2), the degradation 

point for drug was found to be 160˚C. Care should be taken, not to overheat the 

drug samples while trying to solubilise the drug. It was possible to achieve a 

saturated solution of CUDC-101 with the above-mentioned excipients without 

the degradation. The following table shows the solubility results for CUDC-101 

in various solvents. 

Table 4.4 Solubility of CUDC-101 in aqueous solvents 

Aqueous Medium pH CUDC 101 

Concentration  

(mg mL-1, mean ± s.d.) 

HCL (0.01M) 2.02 0.068 ± 0.0166  
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Aqueous Medium pH CUDC 101 

Concentration  

(mg mL-1, mean ± s.d.) 

HCL (0.1 M) 1.07 0.011 ± 0.0010 

HCL (1 M) 0.12 < 0.001 

Water 6.80 0.03 ± 0.01 

Phosphate buffered saline 7.22 < 0.001 

NaOH (0.01M) 12.02 0.029 ± 0.002 

NaOH (0.1 M) 12.89 6.634 ± 0.490 

NaOH (0.2 M) 12.98 50.01 ± 0.849 

NaOH (1M) 13.44 0.025 ± 0.002 

Table 4.5 Solubility of CUDC-101 in non-aqueous solvents 

Amphiphilic/ 

Non-Aqueous 

Liquid 

Chemical/ 

Monograph 

Description 

CUDC 101 

Solubility  

(mg mL-1, mean 

± s.d.) 

Comments 

Polysorbate 20  Poly(oxyethylene) 

sorbitan 

monooleate 

35.01 ± 2.121 Degradation 

products seen in 

the chromatogram 

Kolliphor RH40 Polyoxyl 40 

hydrogenated 

castor oil 

34.46 ± 3.601 Degradation 

products seen in 

the chromatogram 

PEG 400  Poly(ethylene 

glycol), molecular 

weight ~ 400 Da 

41.72 ± 0.552 Degradation 

products seen in 

the chromatogram 

(e.g. Figure 1) 

PEG 1000 Poly(ethylene 

glycol), molecular 

75.43 ± 6.395 No degradation 

products seen 
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Amphiphilic/ 

Non-Aqueous 

Liquid 

Chemical/ 

Monograph 

Description 

CUDC 101 

Solubility  

(mg mL-1, mean 

± s.d.) 

Comments 

weight ~ 1000 Da 

PEG 3350 Poly(ethylene 

glycol), molecular 

weight ~ 3350 Da 

90.64 ± 7.916 No degradation 

products seen 

Tetraglycol Poly(ethylene 

glycol), molecular 

weight ~ 200 Da 

19.1 ± 3.43 No degradation 

products seen 

DMSO Dimethyl 

sulfoxide 

129.87 ± 5.596 No degradation 

products seen 

NMP N-methyl-2-

pyrrolidone 

151.91 ± 4.481 No degradation 

products seen 

 

 

Figure 4.1 HPLC chromatogram of CUDC-101 as PEG400 solution. 

A super-saturated solution (50 mg mL-1, green chromatogram) of CUDC-101 in 
PEG400, showed degradation products (indicated by arrows) of CUDC-101, as 
the drug is exposed to high temperatures due to excessive probe sonication. At 
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lower concentration (< 40 mg mL-1, red, blue and pink chromatograms), the 
drug easily goes into solution and hence doesn’t require intense sonication, so 
no degradation products appear on the chromatogram. 

 

 

Figure 4.2 TGA analyses on CUDC-101 

Thermo gravimetric analysis showing the degradation temperature for CUDC-
101. 

 

4.4.1.2 Dissolution and solubility studies in SGF/SIF/IW: 

The dissolution of neat CUDC-101 is very poor in both SGF and SIF as shown 

in Figure 4.3 and Figure 4.4. The dissolution of CUDC-101 as its Captisol 

formulation was much better in SGF but very poor in SIF. This is due to the fact 

that the drug has slightly better solubility in acidic pH when compared with 

neutral pH. This is also further confirmed by the solubility studies in SGF and 

IW, where a solution of drug (1 mg mL-1) remains as a solution in SGF at pH ~ 

2, while it immediately precipitates (concentration drops immediately from 1 mg 

mL-1 to 0.2 mg mL-1) in IW at pH 6.8 (Figure 4.5 and Figure 4.6). 

4.4.1.3 Stability in Simulated Gastric Fluid and Intestinal Wash 

Stability studies were carried out in different body fluids to check for enzymatic 

degradation of CUDC-101. The Captisol formulation and PEG400 CUDC-101 

solution were both tested for possible degradation in SGF and IW (Figure 4.7 

and Figure 4.8). From the graph it is clear that the initial drug level is maintained 
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throughout the experiment. The level of the drug’s major metabolite is also 

negligible. Thus the question of drug degradation in both stomach and intestinal 

fluid is ruled out. 

 

Figure 4.3 Dissolution of CUDC-101 in SGF 

 a) Expressed as concentration and b) percentage drug in colloidal fraction. 
Neat drug has very poor dissolution in SGF while the molecular form of drug 
stays in solution in SGF (n = 3). 

 

Figure 4.4 Dissolution of CUDC-101 in SIF 

a) expressed as concentration and b) percentage drug in colloidal fraction. Neat 
drug has very poor dissolution in SIF and the molecular form of drug also 
precipitates as evident from low drug levels (n = 3). 
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Figure 4.5 Solubility of CUDC-101 solution in SGF 

a) Expressed as concentration and b) percentage drug in colloidal fraction of 
SGF. A known concentration of CUDC-101 as either 30 % Captisol or PEG400 
solution was spiked in 1 mL of SGF and change in drug concentration was 
monitored over time. Any change in drug concentration was interpreted as 
precipitation of drug in SGF (n = 3). 

 

 

Figure 4.6 Precipitation of CUDC-101 solutions in rat intestinal wash 

a) Expressed as concentration and b) percentage drug in colloidal fraction of 
IW. A known concentration of CUDC-101 as either 30 % Captisol or PEG400 
solution was spiked in 1 mL of SIF and change in drug concentration was 
monitored over time. Any change in drug concentration was interpreted as 
precipitation of drug in IW (n = 3). 
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Figure 4.7 Stability of CUDC-101 in SGF 

a) Expressed as concentration and b) percentage drug in the whole SGF. A 
known concentration of CUDC-101 as either 30 % Captisol or PEG400 solution 
was spiked SGF and change in drug concentration was analysed at particular 
time point. Any change in drug concentration was interpreted as degradation of 
the drug SGF. Results indicate that CUDC-101 is not degraded in SGF (n = 3). 

 

 

Figure 4.8 Stability of CUDC-101 in rat intestinal wash 

a) Expressed as concentration and b) percentage drug in the whole rat 
intestinal wash. A known concentration of CUDC-101 as either 30 % Captisol or 
PEG400 solution was spiked SIF and change in drug concentration was 
analysed at particular time point. Any change in drug concentration was 
interpreted as degradation of the drug SIF. Results indicate that CUDC-101 is 
not degraded in SIF (n = 3). 
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4.4.1.4 Stability in Liver homogenate 

The degradation experiments carried out in liver homogenate revealed a 

significant decrease in drug level of up to 40% in first 30 min and a massive 

80% after 4 hours (Figure 4.9). The metabolite level also increases gradually 

over this 4 hours period, indicating a significant metabolic activity of liver 

enzymes on the drug. Both the formulations followed exactly the same pattern 

of degradation. Since CUDC-101 is a P-gp substrate, it is also a substrate for 

CYP340 family of metabolic enzymes220, which explains this scale of 

degradation. The degradation of CUDC-101 in the liver might cause a 

substantial reduction in the drug’s bioavailability.  

 

Figure 4.9 Stability of CUDC-101 in rat liver homogenate 

A known concentration of CUDC-101 as a solution of DMSO was incubated in 
rat liver homogenate at 37 °C. Results indicate that the liver enzymes 
extensively metabolize CUDC-101 as the drug level () drops rapidly while the 
metabolite level () increases (n = 3).  

 

4.4.1.5 Stability in Plasma 

4.4.1.5.1 Plasma stability at 37C 

The drug was spiked in plasma and incubated at 37C for a period of 2 hours. 
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increase in metabolite levels during the course of the experiment. This 

degradation of drug in plasma might also play an important role in limiting the 

bioavailability51.  

4.4.1.5.2 Plasma stability on storage at -20C 

The samples were stored at -20C for a period of 7 days and periodically 

analysed for drug content (Figure 4.11). There was a clear drop in drug level 

(80% drop) within a day when the samples were stored at -20C but the 

metabolite level remains the same even for seven days. This might be due to 

non-specific binding of hydrophobic drug to plasma proteins at -20C.   

 

 

Figure 4.10 Stability of CUDC-101 in plasma 

A known concentration of CUDC-101 as a solution of DMSO was incubated in 
neat plasma at 37 °C. Results indicate that the CUDC-101 is slightly degraded 
in plasma as the drug level () drops gradually while the metabolite level () 
increases slightly (n = 3). 
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Figure 4.11 Storage stability of CUDC-101 in plasma at -20°C 

A known concentration of CUDC-101 and CUDC-101 M1 as DMSO solution 
was spiked in neat plasma. Changes in the drug and metabolite levels were 
monitored over a period of time and the drug level dropped significantly within a 
day while on storage at -20 °C, while the metabolite level remained constant (n 
= 3). 

 

4.4.1.5.3 Plasma Stability on storage at -80C 

The samples were stored at -80C for a period of 7 days and periodically 

analysed for drug content (Figure 4.12). There was no significant change in 

drug levels during the course of this experiment, suggesting that the drug is 

stable when stored at -80C. 

4.4.1.5.4 Stability of plasma extracted sample at room temperature 

Freshly prepared plasma standards were extracted with ACN and were left at 

room temperature for 7 days and drug contents were analysed periodically. The 

CV value calculated from the mean and SD values (Table 4.6) suggests that the 

drug and metabolite samples were stable for at least 7 days (A CV value less 

than 20% for lower limit of quantification (LoQ) and 15% for other concentration 

is considered as stable221). According to the data, there was a slight change in 

drug concentration at 10 ng ml-1 standards (CV of 22%) and this is mainly due 

to the samples run on day 7.  This suggests that the plasma samples are stable 

for at least 4 days when left on the auto sampler, once extracted with ACN, 

which gives us sufficient time to analyse the samples with LC-MS.  
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Table 4.6 Storage stability of CUDC-101 plasma extraction samples (n = 3) 

Samples 

ng/ml 

Drug peak area ratio Metabolite peak area ratio 

Mean SD CV % Mean SD CV % 

Std 10 0.075 0.017 22.440 0.132 0.010 7.770 

Std 20 0.131 0.0184 13.985 0.264 0.017 6.477 

Std 40 0.273 0.027 10.156 0.534 0.035 6.565 

Std 200 1.498 0.084 5.623 2.463 0.083 3.374 

Std 400 2.720 0.348 12.796 4.411 0.382 8.674 

  

 

Figure 4.12 Storage stability of CUDC-101 in plasma at -80°C 

A known concentration of CUDC-101 and CUDC-101 M1 as DMSO solution 
was spiked in neat plasma. Changes in the drug and metabolite levels were 
monitored over a period of time and the both their concentration remained 
stable on storage at -80 °C for a period of 7 days (n = 3). 
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samples must be stored due to unavoidable situations, they should be stored at 
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least for 4 days), giving us a good deal of time to finish the analysis. 
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4.4.1.6 Oral pharmacokinetic studies 

The oral pharmacokinetic (PK) profile of CUDC-101 Captisol formulation and 

PEG400 solution is shown in Figure 4.13. Drug absorption is seen only at the 

early time point (Tmax 0.25h) and drug levels drop to negligible amounts at 

subsequent time points. This might be due to the fact that the drug is poorly 

soluble at intestinal pH as demonstrated by the in vitro experiments. High drug 

levels only at early time point also suggests that the drug is absorbed from the 

gastric epithelium222, where the drug is in solution.  

The metabolite level also followed the same trend as that of the drug level - 

high at early point (Tmax) and negligible after 2 hours - implying there was no 

drug available for the liver to metabolise. The metabolite to drug ratio was 0.52 

and 1.14 at the initial time point for Captisol and PEG400 formulation 

respectively, demonstrating high hepatic metabolism as predicted from the in 

vitro results. From the preliminary PK experiment, it is inferred that, the 

precipitation of drug at intestinal pH might be a major reason for poor oral 

absorption of CUDC-101. Our formulation strategy was then focused on 

stabilising the drug against precipitation at the pH of 6.8. 

 

Figure 4.13 Preliminary oral pharmacokinetic experiment of CUDC-101 

Mice plasma levels of; a) CUDC-101 and b) CUDC-101 M1 following the oral 
administration of CUDC-101 as 30 % Captisol and PEG400 solutions. Drug 
absorption happens only for initial 30 minutes. (Dose – 100 mg kg-1; n = 4). 
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Since CUDC-101 is also a P-gp substrate (Curis own data), oral absorption 

studies were also conducted in mice in the presence of a P-gp inhibitor 

Verapamil. Verapamil prevents the P-gp efflux of other drugs due to its strong 

affinity to P-gp48 as a P-gp substrate. So in the presence of verapamil, the 

absorption of CUDC-101 should be increased. This is confirmed by our results 

(Figure 4.14 and Figure 4.15), where at initial time points we do see some 

increase in CUDC-101 uptake but at later time points (2 hours) the drug levels 

were below the limit of detection. This is again due to the fact that the drug 

precipitates at intestinal pH and is therefore unavailable for absorption. 

Paclitaxel (formulated as Taxol), a BCS class IV drug was used as a positive 

control for this experiment, where we can see enhanced absorption of the drug 

in the presence of verapamil even at later time points (Figure 3.3). This is 

because unlike CUDC-101, paclitaxel formulated as Taxol has high dissolution 

and better solubility in both SGF and SIF and thus has a prolonged window of 

absorption. We also observed that at a higher dose of paclitaxel verapamil 

made no difference to the drug’s absorption, because of dose-dependent 

saturation of the activity of the P-gp efflux pumps with excess substrate171. 

From these results, we understand that poor solubility of CUDC-101, particularly 

around neutral pH is the major factor limiting its oral absorption. Extensive 

metabolism in liver may also affect the drug’s overall bioavailability. P-gp efflux 

is another important factor affecting the drug’s absorption but from our 

experiment with paclitaxel, we learnt that it is possible to saturate the P-gp 

pumps by a combination of enhanced dissolution and increasing the dosage of 

the substrate drug. Thus, improving the dissolution at intestinal pH will be the 

major focus in oral formulation development of CUDC-101. 
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Figure 4.14 Oral absorption of CUDC-101 in the presence of verapamil 

Verapamil improves the absorption of CUDC-101 only at initial time points when 
the drug is in solution. * = p < 0.05 and significantly different from Captisol – 
CUDC 101 without verapamil. (Verapamil dose = 100 mg kg-1; n = 4). Statistics 
used - Two-way ANOVA with Bonferroni’s test. 

 

 

Figure 4.15 Plasma levels of CUDC-101 M1 following the oral 

administration of CUDC-101 with verapamil 

Plasma levels of CUDC-101 M1 follow the same trend as that of the drug level. 
* = p < 0.05 and significantly different from Captisol – CUDC 101 without 
verapamil. Statistics used - Two-way ANOVA with Bonferroni’s test (n = 4). 

*
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4.4.1.7 Inferences from preliminary studies 

Drug upon ingestion is mixed thoroughly in the stomach (chyme), where it is 

exposed to harsh acidic conditions alongside with proteolytic enzymes223. The 

maximum residential time for the chyme in stomach is around 2 hours after 

which it is emptied into the small intestine. Once in the gut, the pH around the 

drug increases to mild alkaline due to the action of secretions from bile and 

pancreas223. The drug is then absorbed into the blood stream through microvilli 

and directly transported to liver. While passing through the liver, the drug is 

metabolised by various classes of liver enzymes and what remains then 

reaches the systemic circulation. While in the plasma, the drug might get 

recognized by plasma proteins as a foreign entity, which then binds the drug 

and transports it to kidney for excretion223.  

For a hydrophobic drug to reach the systemic circulation, it has to remain in 

solution while in the digestive tract, survive P-gp efflux and liver metabolism. pH 

variations in the digestive tract and the physiochemical properties of the drug 

sometimes make the oral absorption of the drug very challenging. Formulation 

strategies are followed to overcome these challenges and it is very important to 

identify the key issues limiting the absorption of the drug. Thus, preliminary 

experiments were carried out on CUDC-101 to identify the key issues, so that a 

systematic approach to formulation design may be followed.  

Through the solubility experiments we have learnt the following: the drug has 

poor solubility at neutral pH, a solution of the drug is soluble in SGF but 

immediate precipitation of the drug occurs in SIF. DMSO, NMP, PEG400, 

PEG1000, PEG3350, 0.2 N NaOH are the possible solvents for CUDC-101. In 

vivo experiments demonstrated that the precipitation of drug at intestinal pH, P-

gp efflux and liver metabolism are all reason for poor oral bioavailability of the 

CUDC-101.  

Stability studies in plasma on storage and extraction gave information on 

storage of samples following the in vivo pharmacokinetic experiments. Samples 

degrade extensively when stored at -20C and are stable for at least seven 
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days at -80C. The samples are stable for at least 4 days, when stored on LC-

MS auto sampler (after extraction with ACN).   

From our preliminary experiments we found that the absorption of CUDC-101 is 

very poor after gastric emptying, where pH changes in the small intestine cause 

the drug to precipitate. From our experiments with Taxol, we also found that 

increasing the dissolution of the drug and increasing its dose saturates the P-gp 

pumps. Based on these observations, it was decided that the main formulation 

strategy would be to prevent the precipitation of CUDC-101 around neutral pH. 

This in turn will increase the solubility and dissolution of the drug in SIF/IW. The 

P-gp pumps can then be saturated by increasing the dose of the drug or co-

administration with P-gp inhibitors, eventually improving the absorption of 

CUDC-101. Some CUDC-101 formulations were thus developed, which are 

discussed in detail in the following segment. 

4.4.2 CUDC-101 – GCPQ nanoparticles 

4.4.2.1 Encapsulation of CUDC-101 with GCPQ: 

CUDC-101 was added to GCPQ with different characteristics, as shown in 

Table 4.7 and probe sonicated to form GCPQ – CUDC-101 nanoparticles. The 

encapsulation of CUDC-101 in different variants of GCPQ is given in Figure 

4.16. There is an increasing trend in concentration of drug recovered as the 

molecular weight and palmitoylation of the GCPQ increases. High molecular 

weight polymer has a longer chain length, which results in complex chain 

entanglement forming interlinked clusters of micelles. Increase in palmitoylation 

will increase the hydrophobicity of the polymer, providing more hydrophobic 

pockets for the drug to solubilise. Moreover, increase in hydrophobicity and 

molecular weight will also reduce the CMC of the polymer, forming highly stable 

micelles in the aqueous environment. Thus a polymer with both these 

characteristics create a perfect mesh for the drug molecules to be trapped and 

encapsulated. Also, the protonated version of the polymer had slightly more 

drug encapsulated than the deprotonated version. This might be due to the pH 

differences between the protonated (pH ~ 3) and deprotonated polymer (pH ~ 

6) in water, as CUDC-101 has slightly better solubility in acidic environment. 
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Table 4.7 Characteristics of GCPQ used for encapsulation studies 

 Batch name 
Pamitoylation 

(%) 

Quarternisation 

(%) 

Mw 

(Da) 

Polymer 1 Q48 100413 KC* 18 5 10830 

Polymer 2 Q48 101111 SR 18 9 9470 

Polymer 3 Q24 050213 SR 18 6 16440 

Polymer 4 Q2 090313 SR 11 11 48130 

Polymer 5 Q2 150909 AL* 21 11 55460 

Polymer 6 Q2 220213 SR 19 13 70130 

*Deprotonated primary amines 

 

Figure 4.16 CUDC-101 encapsulation by GCPQ 

Expressed as concentration of drug (a) and percentage of drug (b) in colloidal 
fraction. CUDC-101 (1 mg mL-1 in water) was probe sonicated with various 
GCPQ polymers (10 mg mL-1) and drug concentration was measured in 
colloidal fraction immediately (n = 3). 

 

Polymer 1 Polymer 2 Polymer 3 Polymer 4 Polymer 5 Polymer 6
0

50

100

150

200

250

300

350

400

C
o

n
c
e

n
tr

a
ti
o

n
 (

g
 m

L
-1

)

CUDC-101 in colloidal fraction

Polymer 1 Polymer 2 Polymer 3 Polymer 4 Polymer 5 Polymer 6
0

10

20

30

40

P
e

rc
e

n
t 
re

c
o

v
e

ry
 i
n

 c
o

ll
o

id
a

l 
fr

a
c
ti
o

n
 (

%
)

CUDC-101 in colloidal fraction

a b



Enhancing the bioavailability of BCS Class IV drugs using polymeric nanoparticles 

 

144 

 

 

Figure 4.17 CUDC-101 encapsulation by GCPQ in the presence of 

Tween80 

a) Encapsulation of CUDC-101 by GCPQ polymer 2 in the presence of Tween 
80. Increasing the concentration of Tween 80 increases the encapsulation 
efficiency. b) Encapsulation of CUDC-101 by various GCPQ polymers with 10 
% Tween 80. Presence of Tween 80 eliminates the variation in encapsulation 
efficiency caused by differences in characteristics of GCPQ. CUDC-101 
concentration 1 mg mL-1 in water; GCPQ concentration 10 mg mL-1 (n = 3). 

 

 

There were no differences in the encapsulation of CUDC-101 between the high 

and low molecular weights of GCPQ when a co-surfactant was added. From 

Figure 4.17 after adding 10% Polysorbate 80 (Tween 80), the recovery of 

CUDC-101 in colloidal fraction was 100%. Reducing the concentration of Tween 

80 reduced the drug recovery clearly showing a trend. The surfactant might 

reduce the interfacial tension aiding in encapsulation but it should also be noted 

that the surfactant is also capable of solubilizing CUDC-101, which in turn will 

increase the recovery of drug in colloidal fraction. Using Cremaphor RH40 

instead of Tween 80 also yielded the same result and thus GCPQ formulation 1 

was developed using Cremaphor RH40, as the drug has slightly better solubility 

in Cremaphor RH40 in comparison with Tween 80.  TEM image of this 

formulation revealed the presence of nanometer sized droplets and micellar 

structures of GCPQ in the background (Figure 4.18a).  
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CUDC-101 nanoparticles (Figure 4.18b). The CUDC-101 solutions of PEG400, 

DMSO and 0.2 M NaOH were used for this purpose and all these solution 

formed nanoparticles with GCPQ but the stability of the nanoparticles with 

PEG400 and DMSO was very poor, with drug precipitating within 30 minutes of 

the preparation. Whereas, the nanoparticles formed by mixing 0.2 M NaOH to 

GCPQ in water had a stability of around 2 hours at pH 6.8. The stability of the 

nanoparticles was further increase by adding the crystal growth inhibitor 

polyvinylpyrrolidone (PVP K 15, 0.08% in final volume) and this was eventually 

developed into GCPQ formulation 2, wherein the 0.2 M NaOH solution of the 

drug is neutralised by a 0.2 M HCl dispersion of GCPQ. The advantage with this 

formulation is that it can be easily freeze dried and developed into a solid 

dosage form, as there are no organic solvents or involatile surfactants involved 

but disadvantage being salt produced as a by-product might cause side-effects 

in patients.  

 

Figure 4.18 TEM images of GCPQ - CUDC-101 formulations 

TEM images of a) GCPQ formulation 1 (no vesicular structures visible) and b) 
GCPQ formulation 2  (GCPQ – CUDC-101 nanoparticles are observed). 

 

4.4.2.2 In vitro results: 

The stability of GCPQ formulation 1 and 2 were much better than that of 

Captisol formulation in IW (Figure 4.19). The GCPQ formulations were stable in 

IW for at least 4 hours, while Captisol formulation precipitated within 10 minutes 

a b
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and thus our aim of producing a stable formulation in intestinal fluids was 

achieved. But the stability of these GCPQ formulations in SGF was poor in 

comparison with that of Captisol formulation. GCPQ formulation 1 had a better 

SGF stability than that of GCPQ formulation 2. The presence of salt in SGF 

might cause salting out effect on GCPQ but the effect of pH on the stability of 

formulation cannot be ignored as shown in Figure 4.20. As seen from the figure 

the stability of GCPQ formulation 2 gets better with increase in pH and the main 

reason for this might be the physicochemical property of CUDC-101 under 

these pH conditions. The poor stability in SGF might be due to protonation of 

GCPQ at acidic pH, which reduces the hydrophobicity of the polymer, leading to 

drug precipitation.  

Swapping GCPQ with GCPh in formulation 2 also resulted in nanoparticles but 

did not contribute much to improve the stability of the formulation in SGF, so 

does increasing the ratio of drug to GCPQ from 1:3 to 1:10 (Figure 4.21). Since 

GCPQ formulation 2 can be freeze dried, it was proposed to enteric coat this 

formulation in order to overcome its poor stability in SGF. Figure 4.22 shows the 

dissolution pattern of enteric-coated GCPQ formulation 2 capsules in SGF and 

SIF. The enteric-coating was intact in SGF and therefore no drug was released 

from these capsules. In SIF the enteric-coating of the capsule with GCPQ 

formulation 2 gets dissolved, thus exposing the formulation to the dissolution 

medium. The formulation had a desirable release profile in SIF and these 

enteric-coated GCPQ nanoparticles might have a better in vivo pharmacokinetic 

release profile. Thus one of our criterions for success was achieved, which was 

to develop a CUDC-101 formulation that is stable under intestinal pH conditions. 

This would help to stabilise the drug in its molecular form which is essential for 

absorption. 
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Figure 4.19 Stability of GCPQ - CUDC-101 formulation in dissolution 

medium 

Stability of CUDC-101 formulations in a) SGF and b) IW. The Captisol 
formulation has better stability in SGF while the GCPQ formulations have better 
stability in IW. Concentration of CUDC-101 in SGF/IW at the beginning of the 
study was 1 mg mL-1 (n = 3). 

 

 

Figure 4.20 Stability of GCPQ formulation 2 at different pH 

Freshly made CUDC-101 – GCPQ formulation 2 (200 μL) was spiked in 
phosphate buffer (10 mM, 800 μL) at different pH conditions. The colloidal 
stability of the CUDC-101 – GCPQ nanoparticles were monitored at various 
time points. Results indicate that the formulation has poor stability at low pH 
conditions, which improves with increase in pH. Final concentration of CUDC-
101 = 1 mg mL-1; GCPQ = 2 mg mL-1 of phosphate buffer (n = 3). 
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Figure 4.21 Stability of CUDC-101 nanoparticles in SGF with GCPh/GCPQ 

Stability of CUDC-101 formulations with GCPh () and GCPQ () at drug to 
polymer ratio of 1:5. Increasing the polymer concentration or using GCPh didn’t 
improve the stability of the nanoparticles in SGF. Initial concentration of CUDC-
101 = 1 mg mL-1 (n = 3). 

 

4.4.2.3 In vivo results: 

In vivo, the oral absorption of CUDC-101 from both the GCPQ formulations was 

poor. Though the in vitro stability of GCPQ formulation 1 was satisfactory, the 

formulation’s in vivo pharmacokinetics was very poor Figure 4.23. CUDC-101 

metabolite levels were also very low, indicating that the drug absorption was 

negligible. Various factors such has the pH differences in the stomach, 

presence of food, salt etc. could affect the in vivo stability of the nanoparticles in 

the formulation. One or a combination of all these factors could result in drug 

precipitation, which eventually leads to poor oral absorption.  

On the other hand, enteric-coated capsules of GCPQ formulation 2 could not be 

administered to rats at desired dose, due to practical constraints in oral dosing. 

Restrictions by the Home Office limit the number of capsules that can be given 

to rats. Hence, approximately only two-fifth of the desired dose (~ 21 mg kg-1) 

could be given to each rat but the presence of P-gp pumps and high metabolic 

activity means that the absorption was very poor (Figure 4.24). A Captisol 
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overcome the P-gp efflux and liver metabolism. Thus it was not possible to 

study the pharmacokinetics of GCPQ formulation 2 in rat models due to dosing 

constraints. 

 

Figure 4.22 Dissolution of enteric-coated GCPQ formulation 2 in SGF and 

SIF 

CUDC-101 – GCPQ formulation 2 () was freeze-dried and enteric coated in a 
capsule. Freeze-dried CUDC-101 Captisol formulation () was also packed in a 
capsule. The capsules were incubated in 5 mL of SGF and the dissolution of 
CUDC-101 from both these formulations was monitored. After 2 hours, the 
enteric-coated capsule containing GCPQ formulation 2 and new CUDC-101 
Captisol capsules were transferred to 5 mL SIF in separate containers and the 
dissolution of CUDC-101 was monitored. The release of CUDC-101 from GCPQ 
formulation 2 was negligible due to the protective enteric coating, while CUDC-
101 from Captisol had good dissolution. When transferred to SIF, the GCPQ 
formulation had good dissolution as the enteric coating fades away but the 
Captisol formulation had poor dissolution due to the precipitation of CUDC-101 
from Captisol around the pH of 6.8. Initial concentration of CUDC-101 = 1 mg 
mL-1 of dissolution medium (n = 3). 
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Figure 4.23 Oral PK results of GCPQ formulation 1 

Mice plasma levels following the oral delivery of CUDC-101 – GCPQ 
formulation 1 containing CUDC-101 (5 mg mL-1), GCPQ (19 mg mL-1, Q48 
111111 SR), Cremaphor RH (125 μL mL-1). Dose 50 mg kg-1; (n = 5). 

 

 

Figure 4.24 Oral PK results of enteric-coated GCPQ formulation 2 

Rat plasma levels following the oral administration of capsules containing 
CUDC-101 – GCPQ formulations 2 and CUDC-101 – Captisol formulation; a) 
plasma drug levels and b) plasma metabolite levels (Dose of CUDC-101 = 20 
mg kg-1; n = 3-4). 
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4.4.3 Gastro-retentive dosage form: 

4.4.3.1 In vitro release testing: 

The PEG3350 (PEG) CUDC-101 solution was mixed to PEO5000000 (PEO) in 

different ratios and the release of CUDC-101 from this formulation was 

measured in SGF. The release of the drug from these capsules were 

proportional to the amount of PEO in the formulation, wherein 1:1 (PEG:PEO 

w/w ratio) mixture gradually released the entire drug load in 4 hours, while 1:1.5 

and 1:2 ratios had very slow release profile as shown in Figure 4.25. The 

formulation without PEO released the entire drug load within 30 minutes 

demonstrating the importance of PEO in the formulation. The presence of very 

high molecular weight PEO in the formulation creates a viscous hydrophilic 

environment, which gelates the outer layer. Inside this gelatinous layer are the 

trapped PEG3350 and air molecules, which make the dosage form, float. 

Gradually, the dosage form is completely hydrated and the PEO molecules that 

are packed inside the gelatinous layer start to swell, creating a porous 

gelatinous floating matrix. As the outer gelatinous layer erodes, it exposes the 

trapped PEG3350, which then releases the solubilised CUDC-101 into the 

surrounding medium. The erosion is faster when there are less PEO molecules 

and so does the rate of drug release.  

While slow and gradual drug release is preferred for most of the therapeutics, it 

may not be advantageous for CUDC-101 oral uptake due to P-gp efflux. Our 

aim is to saturate the P-gp pumps with excess drug and a slow release 

formulation might not serve this purpose. Nevertheless, it might be informative 

to run a PK experiment so, PEG3350:PEO 1:1 formulation with relatively faster 

drug release was selected for this purpose. 
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Figure 4.25 In vitro drug release profile of gastro-retentive dosage form in 

SGF 

Release of CUDC-101 from PEG:PEO gastro retentive dosage forms at 
different ratios of PEO to PEG3350 solid solution of CUDC-101. A solid solution 
of CUDC-101 in PEG3350 (100 mg mL-1) was mixed with PEO at the following 
PEG3350 to PEO ratios; 1:0, 1:1, 1:1.5 and 1:2. Concentration of CUDC-101 in 
10 mg of these formulations was calculated using RP-HPLC and a known 
volume of this mixture were tightly packed in a size 0 capsule. The capsules (n 
= 3) were suspended in SGF (50mL) and drug release was monitored over 
time. 

 

4.4.3.2 In vivo studies: 

Dosing restrictions by the Home Office means that only 17 mg kg-1 against the 

intended dose of 50 mg kg-1 was given to the rats. Low dose and other reasons 

such has slow release, P-gp efflux and liver metabolism, the concentration of 

the drug in plasma was negligible at all the time points, except at 4 hours 

(Figure 4.26). At 4 hours, we observe some drug level, which is similar to that of 

the Captisol – CUDC-101 formulation at an equivalent dose. The metabolite 
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metabolism, where low concentrations of the drug are completely metabolised 

by the liver. The presence of metabolite in plasma at 4 hours is encouraging as 

this proves that the gastro-retentive dosage forms can prolong the absorption of 

CUDC-101. The Tmax for drug and metabolite for the gastro-retentive dosage 

form is at 4 hours, while the Tmax for the Captisol formulation is at 30 minutes. 

This might serve as a proof of concept for our gastro-retention hypothesis but 

the plasma drug levels are just around 15 ng mL-1, which is close to the limit of 

quantification. Yet it might help to prove our hypothesis with confidence if this 

formulation is dosed to large animal models, where we can give the desired 

dose without any constraints. 

Even though we were able to develop stable formulations in both SGF and SIF 

(success criteria 1), the target plasma concentration of 500 ng mL-1 CUDC-101 

couldn’t be achieved (success criteria 3). This might be due to a combination of 

factors such as not able to achieve the target dose (success criteria 2), P-gp 

pump efflux and high first-pass metabolism.   

4.5 Discussion: 

The oral absorption of CUDC-101 is generally poor and highly variable. The 

main reason for this poor pharmacokinetics is a combination of poor solubility, 

P-gp efflux and high first-pass metabolism. Preliminary experiments with the 

already available Captisol – CUDC-101 formulation yielded valuable information 

on the drug’s oral pharmacokinetic behaviour. Our experiments on P-gp efflux 

with Paclitaxel (Chapter 3) established a relationship between the drug’s in vivo 

dissolution and its P-gp efflux, where enhancing the dissolution of the drug 

overwhelmed its P-gp efflux. Based on all these information, it was concluded 

that the solubility/dissolution is the key factor in dictating a drug’s absorption 

and developing a gut soluble formulation is the first step towards enhancing the 

drug’s oral bioavailability. After few preliminary experiments, CUDC-101 

formulations were rationally designed with improved dissolution in the form of 

GCPQ nanoparticles and gastro-retentive dosage form.  
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Figure 4.26 PK profile of CUDC-101 gastro-retentive dosage form 

Plasma levels of a) CUDC-101 and b) CUDC-101 M1 following the oral 
administration of CUDC-101 gastro-retentive dosage form (PEG:PEO 1:1 
capsules) and liquid CUDC-101 Captisol formulation at 17 mg kg-1 (n = 4). ** 
CUDC-101 plasma levels of PEG:PEO formulation significantly different from 
that of Captisol formulation. * CUDC-101 plasma levels significantly different at 
that time point. (Two-way repeated measures ANOVA with Bonferroni’s test p < 
0.05). 

 

GCPQ, a polymeric amphiphile has been previously shown to improve the 

dissolution and oral bioavailability of hydrophobic drugs75,177. Hence, a 

polymeric nanoparticle formulation for CUDC-101 was developed with GCPQ. 

The encapsulation of CUDC-101 by GCPQ was dependent on the molecular 

weight and palmitoylation level of the polymer (Figure 4.16). This is because the 

hydrophobicity of the polymer increases with increase in palmitoylation. Also 

high hydrophobicity coupled with longer chain length provides an entangled 

network of hydrophobic pockets, which provides a thermodynamically 

favourable environment for the interaction of hydrophobic drugs. Similar results 

have been noted in other polymeric amphiphiles such as PLGA155, poly-L-lysine 

– cholate graft polymer224, poly(ε-caprolactone)225 etc, where increasing the 

hydrophobicity of the polymer improved its encapsulation efficiency. In general 

the drug loading in polymeric amphiphiles are affected by polymer 

characteristics226, compatibility between the hydrophobic drug and polymer’s 

hydrophobic units227 and also by the physicochemical properties of the drug228. 

Addition of other excipients will also have a profound effect on the 

0 1 2 3 4 5 6 7 8 9

0

10

20

30

40

50

60

70

80

C
U

D
C

-1
0

1
 M

1
 p

la
s
m

a
 c

o
n

c
e

n
tr

a
ti
o

n
 (

n
g

 m
L-1
)

Time (h)

Captisol

PEG:PEO capsules

0 1 2 3 4 5 6 7 8 9

-5

0

5

10

15

20

25

C
U

D
C

-1
0

1
 p

la
s
m

a
 c

o
n

c
e

n
tr

a
ti
o

n
 (

n
g

 m
L-1
)

Time (h)

a b

* 
** 



Enhancing the bioavailability of BCS Class IV drugs using polymeric nanoparticles 

 

155 

 

encapsulation of CUDC-101 by GCPQ. When added with Tween80, the 

encapsulation of CUDC-101 was increased to 100 % irrespective of the polymer 

characteristics (Figure 4.17). This might be due to the solubilising effect the 

surfactant might have on CUDC-101 and also due to the surface-active 

properties of Tween80 that helps better dispersion of the drug in the aqueous 

environment. Similar results were observed in nimsulide – PLGA nanoparticle, 

where addition of surfactants such as vitamin E-TPGS and poly(vinyl alcohol) 

increased the encapsulation efficiency of the PLGA system up to 90 %229.  

The GCPQ – CUDC-101 nanoparticles that were developed was tested for in 

vitro stability in bio relevant mediums. The formulation displayed good stability 

in SIF, which was indeed a major milestone for CUDC-101 considering its 

extremely hydrophobic nature. But, the stability of these nanoparticles were 

poor in SGF, where the drug precipitated up on exposure to low pH conditions. 

This poor stability affected the in vivo absorption of CUDC-101 (Figure 4.23). 

GCPQ nanoparticles were previously used to enhance the oral uptake of few 

hydrophobic drugs75,177. The Cmax of cyclosporine A, a BCS Class IV drug, was 

enhanced 5-folds by using GCPQ nanoparticles when compared to that of the 

free drug75. The enhancement of cyclosporine A uptake was mainly attributed to 

the increased aqueous dissolution of the drug when formulated as GCPQ 

nanoparticles along with the mucoadhesive properties of GCPQ75. 

The poor absorption of GCPQ – CUDC-101 nanoparticles were due to poor 

stability of the formulation in SGF. Hence the nanoparticles were freeze-dried 

and the solid dosage form was enteric-coated to avoid the release of the 

nanoparticles in the stomach. Similar studies were done with 5-fluorouracil – 

chitosan nanoparticles, which were freeze-dried and coated with Eudragit S-

100230. The enteric coating was done to prevent the degradation of drug in the 

stomach and also to target the drug release to the large intestine, as the drug is 

used to treat colorectal cancer230.  Similar studies are found in the literature with 

several other polymeric nanoparticles, which were also enteric coated to 

prevent the release of the drug in the gastric environment231,232. The enteric-

coated GCPQ – CUDC-101 nanoparticle had the desired in vitro stability but 

failed in vivo in rat models due to inadequate drug concentration in the final 

dosage forms. The freeze-dried nanoparticles were manually filled in size 9 
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capsules, which were then coated with Eudragit L100-55, thrice. Two such 

capsules were orally dosed to rats but the maximum dose that was possible to 

achieve was 20 mg kg-1 of CUDC-101, which is not enough to overcome the P-

gp efflux or liver metabolism. There are several studies confirming the validity of 

enteric-coated size 9 capsules233,234 used in our experiment. But some authors 

also suggest manually reducing the size of enteric-coated size 9 capsules in 

order to facilitate gastric emptying235.  But since we could not find any capsule 

matter in the stomach after the ‘post-mortem’ following the oral administration of 

enteric-coated capsules filled with GCPQ formulation 2, it is safe to assume that 

the capsules reached the small intestine. Thus the poor oral absorption of 

CUDC-101 from this formulation is mainly due to very low dose of the active 

ingredient in the dosage form.  

Another strategy to improve the oral absorption of CUDC-101 was to develop a 

gastro-retentive dosage form. The idea stems from the observation of 

preliminary results (Figure 4.13), where the drug absorption happens only when 

the formulation is in the stomach. Thus if we prolong the retention of the 

formulation in stomach, it will lead to improved absorption of CUDC-101. Hence, 

a PEG3350:PEO swelling/floating device was designed for the delivery of 

CUDC-101. The release rate of CUDC-101 from this formulation was dependent 

on the concentration of PEO in the dosage form (Figure 4.25). Similar 

observations were made by Prajapati et.al, where the release of domperidone, 

a hydrophobic drug, was controlled by the amount of PEO in the floating 

matrix236. The drug release in this formulation is mainly due to the erosion of the 

gelatinous PEO and the PEO also contributes to the swelling and floatation of 

the formulation. The plasma CUDC-101 levels in rats following the oral 

administration of PEG3350:PEO formulation was significantly better than that of 

the Captisol formulation of similar dose. Even though the results are significant, 

the maximum plasma concentration of CUDC-101 is just under 15 ng mL-1, 

which is too little to produce a pharmacodynamic effect. This is mainly because 

CUDC-101 was not dosed at sufficient concentration to overcome the P-gp 

efflux and liver metabolism. The formulation was packed in ‘size 9 extra long 

capsules’, containing just 4 mg of CUDC-101. Only one such capsule can be 

dosed to a rat due to ethical considerations, which limits the final dose of 
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CUDC-101 to just 17 mg kg-1 per rat (approx. weight 200 g). The Cmax and AUC 

of CUDC-101, from the PEG3350:PEO dosage form can be increased if the 

pharmacokinetic experiments are done in larger animal models, in which the 

dose of CUDC-101 can be increased due to large stomach volumes. 

Gastroretention is a successful strategy for drug delivery if a) the drug’s 

targeted site of action is stomach, b) the drug is specifically absorbed in the 

upper gastrointestinal tract or c) the drug degrades in the colonic 

environment237. There are several drugs that are marketed as gastroretentive 

dosage forms such as Valrelease®, Cifran OD®, Topalkan® etc for different 

disease conditions. When considering an anti-cancer drug, Shishu et.al, 

developed a floating dosage form for 5-fluorouracil to target stomach 

papilloma238. The floating dosage form of 5-fluorouracil prevented the incidence 

of tumour by 74 % when compared to that of the conventional tablets (24 %)238. 

Though the concept of gastroretention is not new, this is the first instance to our 

knowledge where a gastroretentive dosage form for a BCS Class IV anticancer 

agent was developed. As of now, a satisfactory proof of concept couldn’t be 

established for both the gastro-retentive dosage form and enteric-coated GCPQ 

– CUDC-101 nanoparticles. But these formulations may perform well when tried 

at 50 mg kg-1 in large animal models such as dogs.  

4.6 Conclusion 

The oral delivery of CUDC-101 could not be achieved due to its poor solubility, 

P-gp efflux and extensive liver metabolism. Extensive research is still needed to 

search for suitable dissolution enhancers, which could potentially aid in the oral 

absorption of CUDC-101. 
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5  Subcutaneous delivery of CUDC-101 

5.1 Introduction: 

CUDC-101 is a clinical stage compound and a potent multi-target tumour 

growth inhibitor169. In the clinical trials the compound is administered 

intravenously for period of 1 hour, five days a week. This would affect the 

patient life style and an alternative treatment regime is necessary. Earlier 

attempts to improve the oral absorption of CUDC-101 were not successful 

owing to the extremely hydrophobic nature of the drug along with high first-pass 

metabolism and P-gp efflux (Chapter 4). Thus parenteral delivery options for 

CUDC-101 were considered as it will eliminate the first-pass effect and the gut 

solubility issues associated with the oral route. Of all the parenteral routes, the 

subcutaneous route of drug administration is attractive, as it requires less skill 

for drug administration in comparison with the intravenous route. There are 

fewer barriers for subcutaneous absorption unlike the oral route and thus it is 

easier to achieve a better bioavailability. Hence, it might be informative to try the 

GCPQ – CUDC-101 nanoparticles developed so far via the subcutaneous 

route. 

But the GCPQ – CUDC-101 nanoparticles developed for oral delivery should be 

optimized for certain parameters to be given subcutaneously.  The most 

important parameter is that the formulation should include the active ingredient 

at a therapeutically effective dose. The recommend dose for CUDC-101 in the 

clinic is 500 mg per day and the maximum volume for subcutaneous injection 

according to FDA is just 2 mL but 5 mL injections can be given if co-

administered with the enzyme hyaluronidase239. This means the maximum dose 

that can be given with the current GCPQ – CUDC-101 formulation (5 mg mL-1 

CUDC-101) is just around 25 mg, which is 20 times less than the recommended 

dose. Also the subcutaneous injections should be isotonic and thus it might be 

necessary to adjust the tonicity of the formulation. Hence the current GCPQ – 

CUDC-101 formulation (used in Chapter 4) should be optimized for 

subcutaneous injection. 

An ideal subcutaneous dosage form should be easy to inject causing less 

discomfort to the patients, safe, sterile and more importantly should have a 
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therapeutic effect. GCPQ is an amphiphilic polymer with a good in vivo safety 

profile and preliminary experiments suggested it has ideal viscoelastic 

properties for subcutaneous injections240. The viscosity of the GCPQ 

suspension is controlled by the molecular weight and the hydrophobicity of the 

polymer. Thus the GCPQ nanoparticles may be optimized for controlled drug 

release by modifying the hydrophobicity (palmitoylation) of the polymer, where a 

hydrophobic polymer would have a strong interaction with the drug and will 

have a controlled release profile in comparison with a low palmitoylation 

polymer. This can be tested by formulating CUDC-101 in GCPQ with different 

levels of palmitoylation and checking for the subcutaneous drug absorption 

profile in animal models. On the other hand, high levels of palmitoylation and 

molecular weight of the GCPQ might increase the viscosity of the formulation, 

which practically may not be feasible for the subcutaneous injection process. 

Thus it is necessary to find the ideal levels of palmitoylation and molecular 

weight in GCPQ to make a successful subcutaneous dosage form using GCPQ. 

5.1.1 Western blotting: 

Western blotting is an analytical technique used to detect the presence of a 

particular protein from a complex mixture of samples. For example, 

oncogenesis is often associated with the expression or suppression of certain 

proteins in the system, which are termed as ‘biomarkers’241. Detecting these 

biomarkers in the system might be useful for the diagnosis of cancer or even for 

assessing the prognosis of a treatment241. Western blotting uses a multitude of 

techniques to detect a protein of interest242. Initially, the proteins are separated 

based on size using gel electrophoresis techniques, then transferred to a solid 

support (blotting) and finally the blot with the total protein is probed for the 

presence of a particular protein using antibodies. The antibody detection is 

similar to ELISA, where a primary antibody, which is specially designed for the 

target protein, marks the protein of interest. Once the unbound proteins are 

washed from the blot, a secondary antibody, which is specific for the primary 

antibody is used to label the protein of interest. The secondary antibody is also 

labelled with an enzyme, usually horseradish peroxidase (HRP), whose activity 

can be monitored using a chemiluminescence substrate, which reveals the 

presence of the protein of interest242.   
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5.2 Aim: 

The aim of this section is to develop GCPQ – CUDC-101 nanoparticles into a 

clinically relevant subcutaneous dosage form. The objectives are to 

 Determine the rheological properties of GCPQ. 

 Optimize the existing GCPQ – CUDC-101 nanoparticles to obtain an 
isotonic formulation capable of delivering the 500 mg per day dose of 
CUDC-101  

 Test the new formulation for its in vivo activity. 
 
The criteria for success for this project was established based on the objectives 
as follows: 

1. To get an aqueous concentration of CUDC-101 at around 50 mg mL-1. 
2. To get a CUDC-101 formulation with a shelf life of minimum 3 months. 
3. To get a stable plasma exposure of CUDC-101 for at least 6 hours 

following subcutaneous injection. 
 

5.3 Materials and Methods: 

5.3.1 Materials 

Chemical Comments Supplier 

Bovine hyaluronidase 600 IU mg-1 Sigma Aldrich 

(Gillingham, UK) 

L – glutamine 200 mM solution Sigma Aldrich 

(Gillingham, UK) 

Sodium Pyruvate 100 mM solution Sigma Aldrich 

(Gillingham, UK) 

Dulbecco’s Modified 

Eagle’s Medium 

 Sigma Aldrich 

(Gillingham, UK) 

Trypsin - EDTA 0.25 % trypsin – 1 mM 

EDTA 

Sigma Aldrich 

(Gillingham, UK) 
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Chemical Comments Supplier 

Fetal Bovine Serum  5 % Sigma Aldrich 

(Gillingham, UK) 

Tissue Protein 

extraction buffer - 

TPER 

 Thermo Fisher 

Scientific 

(Loughborough, UK) 

Protease/ Phosphatase 

inhibitor cocktail  

 Thermo Fisher 

Scientific 

(Loughborough, UK) 

LDS sample buffer pH 8.4 Life Technologies 

(Loughborough, UK) 

Dithiothreitol  Life Technologies 

(Loughborough, UK) 

NuPAGE® Novax® bis-

tris gels 

 Thermo Fisher 

Scientific 

(Loughborough, UK) 

NuPAGE® MOPS SDS 

running buffer 

 Thermo Fisher 

Scientific 

(Loughborough, UK) 

Novex® nitrocellulose 

membrane 

 Thermo Fisher 

Scientific 

(Loughborough, UK) 

 

5.3.2 Methods: 

5.3.2.1 Viscosity measurements 

The viscosities of the GCPQ polymer suspension (60 mg mL-1 to 90 mg mL-1) in 

water were measured with a shear rheometer (Bohlin Gemini HR nano, Malvern 

Instruments Ltd., Worcestershire, U.K.)  The cone-plate geometry was used for 

the measurements (cone diameter = 40 mm and cone angle = 4o).  
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5.3.2.2 DLS size & zeta potential measurements 

The viscous GCPQ formulations were diluted ten times in NaCl (10 mM) before 

the size or zetapotential measurements were carried out using the Malvern 

Zetasizer Nano ZS ZEN3600 (Malvern Instruments Ltd, UK).  The diluted 

formulations were dispersed into low volume dispersible cuvettes and the size 

distribution graphs were recorded using dynamic light scattering technique.  

To measure the zetapotential, the formulations were dispersed into a zetacell 

and the electrical potential difference between the electrodes was measured 

using the ‘Zeta’ module in the instrument. Before measuring the samples the 

calibration of the instrument was tested with standard solutions supplied by the 

manufacturer. 

5.3.2.3 X-ray Diffraction (XRD) analysis 

XRD patterns of the freeze-dried GCPQ – CUDC-101 and reference materials 

were obtained using a Miniflex 600 (Rigaku, Japan). Powdered formulations 

were filled in to an hollow aluminium sample holder and the X-ray diffraction 

patterns were recorded in the 2-θ range 4 – 60° at a speed of 5° per min (step = 

0.02°).  

5.3.2.4 Preparation of formulation: 

5.3.2.4.1 Prototype GCPQ subcutaneous formulation 1: 

CUDC 101 (50 mg) was dissolved in a solution of polyvinylpyrollidone (1% w/v, 

PVPK30) in sodium hydroxide (0.2 M, 5 mL) by heating in a shaking water bath 

at 70C for 5 minutes.  Quaternary ammonium palmitoyl glycol chitosan (GCPQ, 

100 mg, Lot Number = GCPQ48070313VL, mole% palmitoyl groups = 14%, 

mole% quaternary ammonium groups = 26%) was dispersed in hydrochloric 

acid (0.2 M, 5 mL) by bath sonication. To this GCPQ dispersion was added the 

warm alkaline solution (clear yellow in colour) of CUDC 101 and the resultant 

colloid suspension was vortexed for 10 seconds.  The pH of the resulting 

formulation was adjusted to pH = 6.8 by drop wise addition of sodium hydroxide 

solution (1 M). The freshly prepared formulation was frozen by liquid nitrogen 

the frozen formulation freeze-dried (over a 24-hour period). The freeze-dried 
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cake was then reconstituted to 2 mL in volume by the addition of water and bath 

sonication. 

5.3.2.4.2 Prototype GCPQ subcutaneous formulation 2 and 3: 

CUDC 101 (50 mg) was dissolved in sodium hydroxide (0.2 M, 5 mL) by heating 

in a shaking water bath at 70C for 5 minutes.  Quaternary ammonium palmitoyl 

glycol chitosan (GCPQ, 100 mg (formulation 2) or 50 mg (formulation 3), Lot 

Number = GCPQ48 240114SR, mole% palmitoyl groups = 5%, mole% 

quaternary ammonium groups = 5%) was dispersed in water (5 mL) by shaking. 

To this GCPQ suspension dextran (100 mg, 6000 Da) was added as a 

cryoprotectant. To this GCPQ dispersion was added the warm alkaline solution 

(clear yellow in colour) of CUDC 101 and the resultant colloid suspension was 

vortexed for 10 seconds.  The pH of the resulting formulation was adjusted to 

pH ~ 6.8. The freshly prepared formulation was imaged by transmission 

electron microscopy, frozen by liquid nitrogen and the frozen formulation freeze-

dried (over a 24-hour period). The freeze-dried cake was then reconstituted to 2 

mL in volume (in case of GCPQ formulation 2) or 1 mL in volume (in case of 

GCPQ formulation 3) by the addition of water and shaking. 

5.3.2.4.3 Optimized GCPQ subcutaneous formulation 3 

CUDC-101 (50 mg) dissolved in NaOH (0.2 M, 1 mL) by heating at 70°C. 

GCPQ48 240114SR (50 mg) and Dextran (100 mg, 6 kDa) was dispersed in 

water (9 mL) by shaking and the warm solution of drug is then added to the 

GCPQ suspension. The pH of the formulation was adjusted to ~7 if necessary 

and the formulation was freeze-dried. The freeze-dried GCPQ formulation 3 

was reconstituted by simply shaking in Bovine hyaluronidase (1 mL, 0.3 mg mL-

1 in water) to give 50 mg mL-1 of CUDC-101. 

5.3.2.5 Stability of GCPQ formulations: 

The stability of the GCPQ – CUDC-101 nanoparticles were measured in terms 

of its ability to suspend CUDC-101 in colloidal fraction. The freeze-dried GCPQ 

formulations were dispersed in water left undisturbed at room temperature. The 

samples (100 μL) were withdrawn at specific time points and centrifuged at 

1000 g for 10 min, the colloidal fraction (supernatant) was collected and 

analysed for drug content. Storage stability was carried out on GCPQ 
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formulation 3 to determine the optimum storage temperature for the GCPQ 

nanoparticles. For this, the freeze-dried formulation was stored at room 

temperature, 40°C and 4°C for up to 3 months and samples withdrawn at 

predetermined time points, dispersed in water and the colloidal fraction was 

analysed as before at different time points for drug content. The nanoparticles 

were also characterized for changes in size using DLS, morphology using TEM 

and physical form using powder-XRD.  

5.3.2.6 Pharmacokinetic studies: 

Male Wistar rats were acclimatized for at least five days before the experiment, 

in the animal housing unit, maintained at an ambient temperature of 22C, 

relative humidity of 60 % and equal day-night cycle. The animals were given 

free access to food and water throughout the experiment. The CUDC-101 

formulation was then injected into the rats (50 mg kg-1 dosage), under the 

subcutaneous layer above the thigh. Blood samples were collected from the 

rats at predetermined time points through tail-vein bleeding and at the end of 

the experiment the rats were euthanised and blood was collected through 

cardiac puncture.  

5.3.2.7 Pharmacodynamic studies: 

Female athymic nude mice (CD-1 nu/nu) at age 6-8 weeks were obtained from 

Charles River laboratories.  They were housed in the Animal Facility in 

ventilated micro-isolator cages in a controlled climate, fed irradiated laboratory 

rodent diet ad libitum and provided sterilized water.  All housing and supplies for 

nude mice were sterilized by autoclaving before use.  Mice were inspected daily 

including weekends/holidays and all animal procedures were performed under 

sterile conditions within a biosafety cabinet (for injections) or laminar flow hood 

(for animal husbandry and non-invasive procedures).  All the experiments were 

carried out in accordance with the Home Office regulatory guidelines. 

5.3.2.7.1 Tumour implantation  

Before initiation of the animal study, A431 (epidermoid carcinoma) cells were 

obtained from ATCC (American Type Culture Collection). Studies were carried 

out under biosafety level 2 (BL-2) conditions. Cryopreserved cells were thawed 

in a 37 °C water bath and cultured in Dulbecco’s modified Eagle’s medium plus 
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10 % Fetal Bovine Serum (FBS) supplemented with sodium pyruvate and L-

glutamine, in a tissue culture incubator at 5 % CO2. When the cells in culture 

reached about 70 – 90 % confluency, they were harvested by treatment with 

trypsin-EDTA (0.25 % Trypsin, 1 mM EDTA) and washed with phosphate buffer 

saline (PBS). Finally, the cells were diluted in serum free medium and mixed 

with an equal volume of Matrigel for implantation. After a seven-day 

acclimatization period, 5 million A431 cells per animal suspended in 0.1 ml 

medium were injected subcutaneously in the right hind flank region of the 

mouse using a syringe with a 26G hypodermic needle, taking care to avoid 

blood vessels. Successful implantation was indicated by the formation of a 

round, raised mass under the skin. The implanted mice were monitored for 

general health and tumour development daily. As the tumour develops, its 

progress was measured using a Vernier caliper. From the size measurements, 

the tumour volume was calculated using the formula (length x width2)/2. 

5.3.2.7.2 Study groups  

Tumours were detectable about a week following implantation. Tumour size 

was measured with a caliper. When A431 tumour sizes reached an average of 

approximately 7±1 mm in diameter, animals with acceptable tumour size and 

shape were randomly assigned into three groups of 5-6 animals each to either 

the vehicle control, low dose (60 mg kg-1), medium dose (90 mg kg-1) or high 

dose (120 mg kg-1) of GCPQ subcutaneous formulation 3.  

The formulations were dosed subcutaneously around the scruff region of the 

animal everyday and the tumour sizes and mouse body weights were monitored 

every other day.  Studies were continued until either a) the predetermined end 

date indicated in the study design (50 days) or b) the onset of health problems, 

whichever occurred first. In addition, the following tumor-related parameters 

warranted provision of euthanasia: (1) tumor size exceeding 12 mm in diameter 

(2) loss of 15 % of starting body weight (3) appearance for necrotic lesions in 

the tumour.  

5.3.2.7.3 Western blotting: 

Tumour samples from the control animals and treatment group were excised 

after euthanasia and frozen in liquid nitrogen and stored at -80 °C until further 

experiments. The frozen tumours were ground into fine powder (200 mg) and 
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added the tissue extraction buffer (T-PER, 600 μL) supplemented with 

protease/phosphatase inhibitor cocktail (6 μL) and EDTA (0.5 M, 6 μL).  This 

mixture was homogenized until a uniform suspension is obtained (~ 1 min, on 

ice) and then the samples were centrifuged at 13,000 rpm for 10 min at 4 °C. 

The supernatant was then transferred to a clean vial and the protein content of 

the samples was estimated using the bicinchoninic acid assay (BCA).  

Samples (30 μg) were mixed with LDS sample buffer (5 µL), dithiothreitol (DTT, 

2 µL) and water to make up the volume to 20 μL. Denatured samples (20 μL) 

were loaded onto 4 – 12 % NuPAGE® Novax® bis-tris gels (Life Technologies, 

UK) and subjected to electrophoresis in NuPAGE® MOPS SDS running buffer in 

the Novex® Minicell apparatus (Invitrogen, USA), according to the 

manufacturer's instructions. Protein standards (MagicMark XP Western 

standard) were included in the gel following the similar method of preparation 

for samples. Proteins were transferred to Novex® nitrocellulose membrane 

using the Novex® Xcell II blot module (Invitrogen, USA) for 1.5 h at 30 V. 

Western blots were probed for expression of actin (mouse monoclonal), a 

house keeping protein and Acetylated-Histone 3 (Ac-H3, rabbit polyclonal), all 

steps being carried out at room temperature, with gentle shaking. After 60 min 

in blocking buffer (5% BSA in PBS), blots were incubated for 3 h with the 

following optimal dilutions of primary antibodies in blocking buffer: 1 in 1000 for 

rabbit anti-human Ac-H3 (Abcam, USA) and 1 in 2000 for rabbit anti-human 

Actin (Cell Signalling Technologies, USA). After thorough washing in PBS 

containing 1 % Tween 20 (wash buffer), blots were incubated for 1.5 h in a 1 in 

6000 dilution of the second antibody in wash buffer, horseradish peroxidase 

(HRP)-conjugated anti-rabbit IgG (Cell signaling technologies, USA) for anti-Ac-

H3 and HRP-conjugated goat anti-mouse IgG (Life technologies, UK) for anti-

actin. Blots were developed by the SuperSignal™ West Pico Chemiluminescent 

substrate using the method described by the manufacturer (Thermo Scientific, 

USA).  
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5.4 Results and discussion: 

5.4.1 Viscosity studies: 

The viscosity of GCPQ suspensions as a function of shear rate was measured 

using a rheometer. GCPQ with different characteristics (Table 5.1) was used for 

this purpose. As the concentration of the GCPQ increases, the viscosity of the 

suspension increases (Figure 5.1). Hydrophobicity and molecular weight of the 

polymer also has a bearing on the viscosity, where increase in both these 

parameters increased the viscosity of the suspension. From the data it is clear 

that GCPQ forms viscous suspensions, which behave like Newtonian fluids at 

low concentrations (≤ 70 mg mL-1). A Newtonian fluid is the one in which the 

viscosity is not affected by the shear rate. However, at higher concentrations (≥ 

80 mg mL-1), the viscosity of the GCPQ suspensions decreases as the shear 

rate increases, which is due to the transient nature of the chain entanglement 

and the inter-linked networks (Figure 5.1). This phenomenon is called shear 

thinning, which is advantages for subcutaneous injection, as even high 

concentrations of GCPQ suspensions can be easily dispensed from the syringe 

by applying pressure because the viscosity of the suspensions will decrease 

with increase in pressure.  

The effect of palmitoylation and molecular weight of the polymer on viscosity is 

evident. The polymers were grouped as mildly hydrophobic (mole% 

palmitoylation 5-15 %), moderately hydrophobic (mole % palmitoylation 15-25 

%) and highly hydrophobic (mole % palmitoylation > 25 %) based on the degree 

of palmitoylation. The polymer molecular weight had a profound effect on 

viscosity as the increase in Mw increased the viscosity approximately 50 folds at 

higher polymer concentrations (comparing Figure 5.1 i and ii). This is because; 

increase in Mw means longer chain length, which forms a more complex 

micellar network that increases the viscosity. On the other hand, for a similar 

Mw, viscosity values for moderate and highly hydrophobic polymers were similar 

(Figure 5.1 i and iii), while the viscosity values for mildly hydrophobic polymer 

was very low (Figure 5.1 iv). There seems to be a critical hydrophobicity value 

above which the viscosity of GCPQ micellar dispersion increases and any 

further increase in hydrophobicity does not affect the viscosity drastically.   
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Table 5.1 Characteristics of GCPQ used for viscosity measurement 

 

Palmitoylation 

% 

Quaternization 

% 

Mw 

(kDa) 

Mn 

(kDa) 
Mw/Mn 

Q48 111111 

SR 
18 11 9.47 8.67 1.09 

Q24 250414 

AI 
23 6.3 13.13 11.03 1.19 

Q48 080612 

SR 
31 7 8.63 5.95 1.45 

Q48 150812 

SR 
6 11 9.75 9.2 1.06 

 

5.4.2 Optimization of GCPQ – CUDC-101 nanoparticles 

5.4.2.1 Optimize for concentration 

As mentioned earlier the recommended dose for CUDC-101 in the clinic is 500 

mg per day and it only possible to achieve 25 mg per day with the current 

GCPQ – CUDC-101 formulation as the concentration of drug in the formulation 

is just 5 mg mL-1. Thus it is necessary to increase the concentration of CUDC-

101 in the formulation to at least 50 mg mL-1 so that the 500 mg per day dose 

can be subcutaneously injected as 5 mL injections of 250 mg active ingredient 

twice a day. 

The easiest way to increase the concentration of the drug in the GCPQ – 

CUDC-101 formulation is to freeze dry and reconstitute the formulation in less 

volume of water. But this will also increase the concentration of GCPQ in the 

formulation, which will increase the viscosity affecting the ease of reconstitution 

after freeze-drying. From the viscosity studies we know that use of high 

palmitoylation would increase the viscosity of the GCPQ suspension drastically 

(Figure 5.1). Hence, prototype GCPQ formulation 2 and 3 were developed with 

a low palmitoylation GCPQ at different concentrations in an attempt to minimize 

the viscosity and to ease the reconstitution after freeze-drying in order to obtain 

a maximum drug concentration in the formulation. 
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Figure 5.1 Viscosity of GCPQ with different characteristics 

Viscosity of GCPQ with different characteristics as a function of shear rate: 0.06 
g mL-1 (), 0.07 g mL-1 (), 0.08 g mL-1 () and 0.09 g mL-1 ()]; (i) Q48 
111111SR (intermediate hydrophobicity, low Mw); (ii) Q24 250414AI 
(intermediate viscosity, high Mw) ; (iii) Q48 080612 SR (high hydrophobicity, low 
Mw); (iv) Q48 150812 SR (low hydrophobicity, low Mw); (n = 3) 
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Table 5.2 Optimization of GCPQ formulation to increase the concentration 

Prototype 

GCPQ 

subcutaneous 

formulation 

Before freeze drying 

P% Q% 

After freeze drying 

CUDC-

101/mL 
GCPQ/mL 

CUDC-

101/mL 
GCPQ/mL 

Formulation 1 5 mg 10 mg 14 % 26 % 25 mg 50 mg 

Formulation 2 5 mg 10 mg 5 % 5 % 25 mg 50 mg 

Formulation 3 5 mg 5 mg 5 % 5 % 50 mg 50 mg 

Molecular weight of GCPQ used in all these formulations is 10 kDa. 

From the results (Table 5.2) it can be seen that the target concentration of 50 

mg mL-1 CUDC-101 can be achieved only with GCPQ formulation 3 with low 

palmitoylation and low concentration of GCPQ.  The formulations with high 

palmitoylation and high concentrations of GCPQ are hard to reconstitute in less 

volume of water and thus only half the concentration of CUDC-101 could be 

achieved for formulations 1 and 2 (25 mg mL-1). Dextran (1 %, 6 kDa) was 

added as a cryo-protectant to the formulations before freeze-drying to ensure 

that the integrity of the nanoparticles is not broken during the freeze-drying 

process (Figure 5.2). Dextran (6 kDa) was chosen as a cryo-protectant because 

it is a non-reducing sugar and high molecular weight means less number of 

molecules to contribute towards osmotic potential (tonicity).  

5.4.2.2 Tonicity adjustment: 

With the prototype GCPQ formulations it was possible to improve the 

concentration of CUDC-101 from 5 mg mL-1 to 25 - 50 mg mL-1. But these 

formulations carry hypertonic concentrations (~ 5 %) of sodium chloride, which 

is above the FDA permissible limit (FDA limit for subcutaneous suspension is 

1.23 %). Thus it is necessary to reduce the salt content of the formulation and 

this can be achieved by the following approaches; a) use different solvent for 

the drug instead of NaOH and b) modify the protocol of the original formulation 

to reduce the salt generated as by-product.  
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Figure 5.2 TEM images for GCPQ formulation a) before and b) after 

freeze-drying 

The appearances of the nanoparticles are similar before and after freeze-drying 

suggesting that freeze-drying doesn’t affect the structural integrity of the 

nanoparticles. Although the size of the nanoparticles seem slightly bigger after freeze-

drying. 

 

5.4.2.2.1 DMSO as solvent:  

During our initial solvent screen for CUDC-101, the only aqueous solvent 

identified was the concentrated aqueous solutions of sodium hydroxide. PEG, 

DMSO and NMP were the other non-aqueous solvents identified, which could 

be potentially used to make GCPQ – CUDC-101 nanoparticles. Out of these 

formulations, PEG is non-volatile thus cannot be freeze-dried and NMP has low 

vapour pressure and is toxic, which means only DMSO can be used to make 

nanoparticles. 

Thus it was decided to use DMSO to make GCPQ – CUDC-101 nanoparticles 

in order to reduce the salt content of the formulation. The GCPQ – CUDC-101 

nanoparticles were prepared from DMSO as follows: 

CUDC-101 (100 mg) was dissolved in DMSO (1 mL) by heating at 50°C in a 

water bath. The GCPQ48 240114SR (5 mg, 5% palmitoylation) was dispersed 

in water (0.9 mL) and to this dispersion the drug DMSO solution (100 μL) was 

added. The volume of DMSO in the formulation and the concentration of CUDC-

101 in DMSO were kept as minimum as possible, because high amounts of 

both these factors affected the stability of the formulation. The formulation thus 

a b 
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prepared was immediately frozen, as the stability of the formulation was poor (< 

30 min). The frozen formulation was then freeze-dried for 48 hours by heating 

the shelves containing the formulation to 37°C. Once dried, the freeze-dried 

formulation was then reconstituted in water to give a final concentration of 

CUDC-101 to be 50 mg mL-1. 

The reconstituted formulation was measured for drug content and the results 

are given in the Table 5.3. The formulation was not reproducible as seen from 

the high variability in the drug content. This variability might be due to the poor 

stability of the freshly made nanoparticles and also due to some inconsistencies 

in the sublimation of DMSO during freeze-drying. The sublimation of DMSO 

causes the formulation to slightly melt sometimes, which might affect the quality 

of the final formulation. Thus the idea of using DMSO to prepare GCPQ – 

CUDC-101 nanoparticles was dropped. 

Table 5.3 Concentration of CUDC-101 in DMSO formulation 

 

Measured 
concentration (mg 

mL-1) 

Theoretical 
concentration (mg 

mL-1) 

Trial 1 26.3 

50 Trial 2 43.6 

Trial 3 30.92 

 

5.4.2.2.2 NaOH solvent revaluation:  

Another approach to reduce the salt content was to modify the current GCPQ –

CUDC-101 nanoparticle, in terms of the volume of NaOH used in the 

formulation. Initially, the concentration of CUDC-101 in 0.2 M NaOH used to 

make the nanoparticles was 10 mg mL-1. This was then mixed to an equal 

volume of GCPQ suspension in 0.2 M HCl, which forms nanoparticles but also 

produces 0.2 M NaCl as by-product. The concentration NaCl further increases 

when this formulation is freeze-dried and reconstituted in less volume of water. 

The possible ways to reduce the salt formation are a) lower the molarity of 

NaOH solution – it was not feasible as the drug precipitated on any attempts to 

lower the molarity; b) using a different acid instead of HCl – this will create a 

different salt as a by-product, for example using acetic acid instead of HCl 
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would produce sodium acetate, which would still contribute towards osmolality; 

c) reducing the volume of NaOH used – this would also reduce the 

concentration of the drug in the final volume, which will in turn increase the 

dose volume; d) increasing the concentration of CUDC-101 in 0.2 M NaOH – 

this is possible as the solubility of CUDC-101 in 0.2 M NaOH was found to be 

increasing upon heating. 

The concentration of CUDC-101 in 0.2 M NaOH was increased to 50 mg mL-1 

by heating at 70°C and 100 μL of this formulation was added to GCPQ 

suspension to form nanoparticles. This formulation was then freeze-dried and 

reconstituted in relevant volume of water to get 50 mg mL-1 CUDC-101. By this 

way, the final concentration of NaCl in the formulation was reduced to 1.1%, 

which is within the FDA limit and close to isotonic (466 mOsm). Thus the new 

GCPQ – CUDC-101 nanoparticles were made as follows: CUDC-101 (50 mg) 

dissolved in NaOH (0.2 M, 1 mL) by heating at 70°C. GCPQ48 240114SR (50 

mg, 5 % palmitoylation) and Dextran (100 mg, 6 kDa) was dispersed in water (9 

mL) by shaking and the warm solution of drug is then added to the GCPQ 

suspension. The pH of the formulation was adjusted to ~7 if necessary and the 

formulation was freeze-dried. The freeze-dried powder was then reconstituted in 

water (1 mL) to give 50 mg mL-1 of CUDC-101 in the formulation with 

reproducible results (Table 5.4).  

 

Table 5.4 Concentration of CUDC-101 in GCPQ formulation 

5.4.2.3 Sterilization of the formulation: 

A GCPQ – CUDC-101 nanoparticle developed thus far has an acceptable 

amount of tonicity and the formulation has 50 mg mL-1 of active ingredient. By 

adding dextran as cryoprotectant, the ease of reconstitution of the formulation 

has also been improved. Next, the formulation has to be optimized for a 

 

Measured 
concentration (mg mL-

1) 

Theoretical 
concentration (mg 

mL-1) 

Trial 1 50.52 

50 Trial 2 50.94 

Trial 3 49.06 
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sterilization protocol. Autoclaving is the cheap and cost effective way of 

sterilization in the pharmaceutical industry and thus the GCPQ – CUDC-101 

nanoparticles were autoclaved for 20 minutes. Unfortunately, the formulation 

caramelized after autoclaving and it was impossible to reconstitute the 

caramelized solid in water (Figure 5.3). Thus autoclaving is not a feasible 

method of sterilization for this formulation. The other cost effective way for 

sterilization is filtration. Filtration with 0.22 μm pore sized filters has been 

proven effective against most of the microorganisms and through our previous 

experiments, it is known that a GCPQ suspension can be effectively filtered 

without any loss of the polymer to the 0.22 μm filter membranes (internal report 

generated by Charles River).  

 

Figure 5.3 Appearance of GCPQ formulation after sterilization by the 

autoclave 

The GCPQ formulation appears caramelized after autoclaving and hence 
alternative method for sterilization is necessary for GCPQ formulation. 

 

But the solution of 50 mg mL-1 CUDC-101 in 0.2 M NaOH is stable only for a 

short while as the drug precipitates upon cooling. Thus experiments were 

conducted to check if it was possible to recover the whole concentration of 

CUDC-101 from 0.2 M NaOH solution after filtration using 0.22 μm pore sized 

filters. For this, a 50 mg mL-1 solution of drug in NaOH was freshly prepared 

and the drug content was measured before and after filtration using 0.22 μm 

syringe filters. The remaining unfiltered solution was left on the bench for up to 

1 hour and drug content measured after filtration using RP-HPLC.  
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From the results (Table 5.5), it can be seen that some drug was lost after 1 

hour, which means the drug solution should be filtered as soon as possible to 

make the nanoparticles. More importantly, sterile conditions should be 

maintained throughout the manufacturing processes once the nanoparticles are 

made. 

Table 5.5 CUDC-101 concentration after filtration 

Time 
(h) 

Filtration      
(n = 3) 

Concentration 
(mg mL-1) 

0 
Before  50.01 ± 0.85 

After  51.37 ± 1.77 

1 After 41.70 ± 17.57 

 

5.4.3 Colloidal stability studies: 

The colloidal stability of the three GCPQ – CUDC-101 subcutaneous 

formulations were assessed before freeze-drying and the results are given in 

(Figure 5.4a). From the results it is clear that the colloidal stability is affected by 

the characteristics of GCPQ used in the formulation, where the GCPQ 

formulation 1 (14 % palmitoylation) had better stability in comparison with 

GCPQ formulation 2 (5 % palmitoylation). Similarly lowering the concentration 

of GCPQ also affected the colloidal stability, wherein GCPQ formulation 2 (1:2 

drug:GCPQ ratio) had better stability than GCPQ formulation 3 (1:1 drug:GCPQ 

ratio). So, GCPQ formulation 3, which is more clinically relevant, has poor 

colloidal stability. 
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Figure 5.4 Colloidal stability of GCPQ – CUDC-101 nanoparticles 

Colloidal stability of a) GCPQ formulation with different characteristics; b) 
GCPQ formulation 3 with the enzyme hyaluronidase. The stability of the 
formulation decreases with decrease in both the concentration and 
palmitoylation of GCPQ. The colloidal stability of the formulation also 
decreases in the presence of hyaluronidase (n = 3).  
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The colloidal stability of the GCPQ formulation 3 was also assessed in the 

presence of the enzyme hyaluronidase. The freeze-dried formulation 3 was 

reconstituted with water (to get 50 mg mL-1 of CUDC-101) containing 

hyaluronidase (0.3 mg mL-1), mixed by gentle shaking and left at room 

temperature to assess the colloidal stability. Presence of the enzyme affected 

the stability of the nanoparticles, where GCPQ formulation 3 without the 

enzyme was stable for six hours while the one with enzyme was stable for just 4 

hours (Figure 5.4b). The difference in stability might be due to interactions 

between the enzyme and the GCPQ nanoparticles. The hyaluronidase enzyme 

is made up of number of amino acids and it might be possible that the 

negatively charged amino acids might interact with the positively charged 

quaternary ammonium group of GCPQ. The GCPQ – CUDC-101 nanoparticles 

in the presence of hyaluronidase appear dark under the TEM while the 

formulation without the enzyme is pale (Figure 5.5). This suggests that the 

GCPQ nanoparticles are coated with hyaluronidase, as hydrophilic surfaces 

appear dark under negative staining of TEM.  

 

Figure 5.5 TEM images of GCPQ formulation a) without and b) with 

hyaluronidase 

The surfaces of the nanoparticles appear dark in the presence of the enzyme 
suggesting that surface coating of nanoparticles in possible. 

 

a
b



Enhancing the bioavailability of BCS Class IV drugs using polymeric nanoparticles 

 

177 

 

To further confirm that the nanoparticles are surface coated, the zeta potential 

of the formulation was measured in the presence and absence of the enzyme 

hyaluronidase. Zeta potential results further confirm that the GCPQ 

nanoparticles are surface coated as the zeta potential of the formulation with 

the enzyme drops to 0 mV, while the zeta potential of the formulation without 

the enzyme is +18 mV (Table 5.6). The charge distribution graph (Figure 5.6) 

reveals that only one charge population group is present in the formulations, 

which provides solid evidence that the GCPQ nanoparticles are surface coated 

with the enzyme hyaluronidase. Thus, novel surface coated GCPQ 

nanoparticles are developed for the delivery of CUDC-101.  

 

Figure 5.6 Zeta potential distribution of GCPQ nanoparticles 

The charge distribution graph shows a single sharp peak for the formulation 
with hyaluronidase (green peak) and also for the formulation without the 
enzyme (red peak). 

 

Table 5.6 Zeta potential of the GCPQ formulations (n = 3) 

 
Size (nm) Polydispersity Zeta (mV) 

Formulation 3 194.6  6.02 0.143  0.02 18.4  1.53 

Formulation 3 + 
hyaluronidase 

175.9  4.56 0.155  0.01 -0.15  0.19 

 

5.4.4 Long-term stability studies: 

The preliminary stability studies on the freeze-dried prototype GCPQ 

formulation 2 were carried out at three different temperatures (room 
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temperature, 4°C and 40°C). The freeze-dried formulations stored at different 

temperatures were reconstituted at the concentration of 5 mg mL-1 CUDC-101 

and the colloidal stability was assessed at room temperature. Based on the 

preliminary results, storage stability of the freeze-dried optimized formulation 3 

was carried out at room temperature after reconstituting the formulation at a 

working concentration of 50 mg mL-1 CUDC-101. 

From the preliminary stability data, the formulations stored at room temperature 

was stable for up to two months, while the stability of the formulations stored at 

4°C gradually decreases after a month (Figure 5.7). The formulation stored at 

40°C caked completely after a week and was very hard to reconstitute in water 

and hence withdrawn from the study. The poor stability of the formulation at 

40°C is mainly due to the presence of moisture, which partially wets the 

nanoparticle and might cause drug precipitation. Similar reasons might account 

for poor stability of formulations stored at 4°C, as there is chance for 

condensation of water vapour at such low temperatures, which might gradually 

disrupt the colloidal stability of the particles. Apart from that there were no 

differences in the morphology or size of the nanoparticles stored at RT and 4°C 

(Figure 5.8). Thus from this preliminary storage experiment, it can be concluded 

that it is safer to store the freeze-dried nanoparticles at room temperature 

devoid of moisture.  

Figure 5.7 Colloidal stability of Freeze-dried CUDC-101 GCPQ 

nanoparticles 

Freeze-dried CUDC-101 – GCPQ formulation 2 stored at a) room temperature 
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and b) 4°C, containing CUDC 101 (5 mg mL-1), GCPQ (10 mg mL-1), (n = 3). 

 

Based on the observations from the preliminary stability studies, the freeze-

dried GCPQ subcutaneous formulation 3 was stored only at room temperature 

and 3 month long stability experiment was carried out at 50 mg mL-1 CUDC-101 

concentration. The colloidal stability of the formulation was similar for over a 3-

month period (Figure 5.9). 

 

Figure 5.8 TEM images of CUDC-101 - GCPQ nanoparticles stored at 

different temperatures 

Transmission electron micrographs of CUDC 101 – GCPQ Formulation 3: a) 
freshly prepared CUDC 101 – GCPQ containing CUDC 101 (5 mg mL-1), 
GCPQ (10 mg mL-1), b) Freeze dried and reconstituted CUDC 101 – GCPQ 
stored at room temperature for 4 weeks and reconstituted to contain CUDC 
101 (5 mg mL-1), GCPQ (10 mg mL-1), c) Freeze dried and reconstituted 
CUDC 101 – GCPQ stored at 4˚C for 4 weeks and reconstituted to contain 
CUDC 101 (5 mg mL-1), GCPQ (10 mg mL-1).  Size bars = 500 nm.  

 

a b c
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The size distribution using the DLS also suggests that the size of the 
reconstituted nanoparticles remains similar for a period of 90 days ( 

Table 5.7). The crystal structure of CUDC-101 in GCPQ formulation can be 

deduced using powder-XRD (Figure 5.10). CUDC-101 on its own has sharp 

crystalline peaks, while the physical mixture of the drug and GCPQ still shows 

some crystalline peaks. But diffraction pattern of the GCPQ – CUDC-101 

formulation 3 shows a halo, suggesting that CUDC-101 is in amorphous form 

when formulated as GCPQ nanoparticles. This might be advantageous as 

amorphous form of the drug has better solubility when compared with the 

crystal forms and thus might have better absorption. The physical form of the 

formulation doesn’t change for a period of 3 months, suggesting that the GCPQ 

– CUDC-101 formulation 3 is stable for at least 3 months when stored at room 

temperature.  

 

Figure 5.9 Long-term storage stability of CUDC-101 - GCPQ formulation 3 

Colloidal stability of CUDC 101 – GCPQ Formulation 3 containing CUDC 101 
(50 mg mL-1), GCPQ (50 mg mL-1) stored at room temperature. No 
hyaluronidase enzyme added (n = 3). 
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Figure 5.10 Long-term storage stability - XRD spectrum 

The freeze-dried CUDC-101 – GCPQ formulation 3 remains in amorphous form 
for at least 90 days when stored at room temperature. The peaks around 32° 
and 46° in Day 90 samples corresponds to that of sodium chloride crystals 
formed as by-product.  

 
Table 5.7 Long-term storage stability for CUDC-101 – GCPQ formulation 3 

- DLS size measurements 

 
Size (nm) PD 

 

Mean 

(n = 3)  
S.D 

Mean 

(n = 3) 
SD 

Month 0 124.2 6.039 0.075 0.022 

Month 1 103.1 6.403 0.135 0.063 

Month 2 102 2.136 0.133 0.044 

Month 3 101.1 2.127 0.091 0.011 

5.4.5  In vivo studies: 

5.4.5.1 Pharmacokinetic (PK) studies: 

The in vivo subcutaneous drug absorption profiles of the three GCPQ 

formulations are given in  

Figure 5.11. The absorption of CUDC-101 from GCPQ formulation 1 is very 

stable; with approximately 200 ng mL-1 drug plasma level maintained for the at 
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least 8 hours. The drug absorption from GCPQ formulation 2 and 3 are lower 

than GCPQ formulation 1 and Table 5.8 clearly shows the difference in the AUC 

value of all the three GCPQ formulations. The drug plasma AUC of GCPQ 

formulation 1 was twice better than that of GCPQ formulation 2, which was in 

turn twice better than GCPQ formulation 3. The PK profile shows very good 

correlation with the in vitro colloidal stability results, where poor colloidal stability 

translates into poor drug absorption and vice versa. The colloidal stability in turn 

is dependent on the concentration and hydrophobicity of the GCPQ used in the 

formulation. Thus it can be inferred that the concentration and palmitoylation of 

the GCPQ plays an important role in improving the subcutaneous absorption of 

CUDC-101.  

GCPQ formulation 3 was also co-administered with the enzyme hyaluronidase 

and the AUC of CUDC-101 form the GCPQ formulation 3 with hyaluronidase is 

twice better than that of GCPQ formulation 3 without the enzyme (AUC similar 

to GCPQ formulation 2). This is because the enzyme hyaluronidase breaks 

down the hyaluron barrier in the subcutaneous layer 239, which speeds up the 

absorption of GCPQ – CUDC-101 nanoparticles improving the plasma AUC.  

Another important effect of subcutaneous administration of CUDC-101 is that 

the metabolite levels are very low (Figure 5.12). The metabolite levels are much 

lower when compared to that of oral PK results, which is mainly because the 

subcutaneous route avoids the first-pass metabolism by the liver.  The GCPQ – 

CUDC-101 nanoparticles that failed to improve the oral drug absorption was 

successful through subcutaneous route for three reasons; mainly, better stability 

of the nanoparticles around the subcutaneous pH, absence of intense P-gp 

efflux and finally the evasion of first-pass metabolism. Thus, the optimized 

GCPQ – CUDC-101 nanoparticles can be potentially used as subcutaneous 

injections for cancer treatment.  
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Figure 5.11 Pharmacokinetics of CUDC-101 - GCPQ formulations – drug 

levels 

Plasma drug levels following the subcutaneous administration of CUDC-101 – 
GCPQ formulations (n = 4).  

 

 

 

Table 5.8 Pharmacokinetics of CUDC-101 - GCPQ formulations - drug AUC 

 

Palmitoylation 

level 

AUC0-24 h 

(ng h mL-1) 

Duration of drug 

release (h) (final 

plasma conc.) 

Conc.of 

GCPQ 

Formulation 

1 
Medium 2441 ± 660* 8 (127 ng mL-1) 

High 
Formulation 

2 

Low 

1232 ± 167* 7 (40 ng mL-1) 

Formulation 

3 
667 ± 322* 4 (60 ng mL-1) 

Low Formulation 

3 

+ enzyme 

1259 ± 

287** 
4 (143 ng mL-1) 
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* = p < 0.005, significantly different from other formulations using One-way 

ANOVA with Tukey’s test. ** = p < 0.05 significantly different from formulation 3 

using un-paired T-test (n = 4). 

5.4.5.2 Pharmacodynamic (PD) results: 

From the PK studies, it was observed that the GCPQ – CUDC-101 

nanoparticles had desirable subcutaneous absorption profile. Though the 

absorption of CUDC-101 from GCPQ formulation 1 was better than the other 

formulations, it is GCPQ formulation 3 that is clinically relevant, so the PD 

studies were carried on GCPQ formulation 3 coated with hyaluronidase. 

Athymic nude mice were implanted with human A431 tumour xenograft, dosed 

regularly with GCPQ formulation 3 with hyaluronidase at different doses and 

monitored for tumour size and animal weight changes. Based on this 

information, tumour survival curve was constructed (Figure 5.13) and from the 

results it is clear that the lifespan of the animals that receive the treatment is 

significantly higher (p < 0.001) than the control group. While all the control 

group animals had to be euthanized by 15 days, three mice from the treatment 

group survived for at least 50 days after the treatment had commenced.  

 

Figure 5.12 Pharmacokinetics of CUDC-101 - GCPQ formulations – 

metabolite levels 

Plasma CUDC-101 metabolite levels following the subcutaneous administration 
of CUDC-101 – GCPQ formulations (n = 4).  
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Also there are differences among the treatment group receiving different doses, 

where survival of the mice that received the lowest dose (60 mg kg-1) was 

lesser than the animals that received higher doses. On the other hand, the body 

weight of the mice that received the highest dose (120 mg kg-1) dropped below 

the permissible limit (body weight change ≥ 15 %), which is a sign for dose 

limited toxicity. The animals that were treated with the medium dose (90 mg kg-

1) had high median survival rate (43 days). 

 

Table 5.9 Median survival determined from Figure 5.13 

Treatment Control 60 mg kg-1 90 mg kg-1 120 mg kg-1 

Median survival 

(days) 
15 18.5 43 24 

 

 

 

Figure 5.13 Tumour bearing mice survival plot following the daily injection 

of GCPQ formulation 3 with hyaluronidase. 

Statistics used – Mantel-Cox test; Survival curves are significant from one 
another; (p < 0.0001); (n = 5 – 6). 

 

0 20 40 60
0

50

100

days

P
e

rc
e

n
t 
s

u
rv

iv
a

l

control

60 mg/kg

90 mg/kg

120 mg/kg



Enhancing the bioavailability of BCS Class IV drugs using polymeric nanoparticles 

 

186 

 

The prolonged survival rate of for the 90 mg kg-1 treatment group may also be 

due to the relatively small tumour size at the beginning of the treatment. There 

is a high likelihood that the effect of 90 mg kg-1 treatment is at least in part due 

to the relatively smaller tumour volume at the beginning of the treatment. 

CUDC-101 is a multi-target tumour growth inhibitor, inhibiting human epidermal 

growth factor (EGFR) receptor kinases and histone deacetlyases (HDAC) 

168,169. Due to its HDAC inhibition activity, the molecule increases the production 

of acetylated histone protein 3 (Ac-H3), which plays an important role in 

regulating cellular functions. This HDAC inhibition activity of CUDC-101 in 

GCPQ formulation 3 + hyaluronidase was monitored in tumour bearing mice 

using western blotting (Figure 5.15). From the results it can be seen that even 

the lowest dose of the formulation (60 mg kg-1) inhibits the HDACs and 

increases the concentration of Ac-H3 within the tumour cells whereas in the 

control mice, which received just the vehicle there was no expression of Ac-H3. 

The up regulation of Ac-H3 (along with the inhibition of EGFR receptor kinases) 

slows down the tumour growth, which eventually prolongs the life span of the 

tumour bearing mice. 

 

Figure 5.14 Starting tumour volume of the mice on the day of first 

injection. 

The starting tumour volume of 90 mg kg-1 treatment group is much smaller 
than the other treatment group (p < 0.05), which might be contributing to the 
effect of the treatment (n = 5 – 6). 
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Figure 5.15 Western blot of tumour samples treated with the optimized 

GCPQ formulation 3. 

Levels of acetylated Histone H3 is elevated following the treatment with GCPQ 
– CUDC-101 nanoparticles at 60 mg kg dose in comparison with the control. 

 

5.5 Discussion: 

Subcutaneous administration of nanoparticles are previously reported in the 

literature on a number of occasions243–247. In a recently published article, PLGA 

– polyvinyl alcohol nanoparticles were used to encapsulate heparin, an anti-

coagulant243. When injected subcutaneously these nanoparticles prolonged the 

release of heparin for up to 10 days, while a solution of heparin was absorbed 

within 24 hours. When it comes to subcutaneous delivery of anti-cancer agents, 

there are already nine drugs in the market248. Thus neither the concept of 

subcutaneous nanoparticle injections nor subcutaneous cancer therapy is new. 

But this project has explored a new avenue for GCPQ to prolong the drug 

release following subcutaneous injections. More importantly this project also 

aims to develop a clinically relevant subcutaneous dosage form for CUDC-101, 

which might open up new treatment options for cancer patients. 

GCPQ nanoparticles were previously shown to enhance the absorption of 

hydrophobic drugs through oral and ocular routes75,176,177. Here we have shown 

that GCPQ nanoparticles are capable of improving the absorption of a 

hydrophobic drug when given subcutaneously. The duration of subcutaneous 

absorption was directly proportional to the stability of GCPQ-CUDC-101 

nanoparticles, which in turn was dependent on the hydrophobicity and 

concentration of the polymer.  
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The stability of the drug-polymer complex depends on the hydrophobic 

interactions between the drug and the polymer’s hydrophobic core. Stronger the 

hydrophobic interaction, longer the colloidal stability and vice versa. High 

palmitoylation percentages in GCPQ as well as high concentrations of GCPQ 

itself would give rise to strong hydrophobic interactions with the drug. Hence the 

colloidal stability of Formulation 1 was much better than that of other 

formulations, which had high palmitoylation percentage as well as high polymer 

content, providing more sites for hydrophobic interactions with the drug. The 

colloidal stability also depends on the concentration of the nanoparticles, as the 

colloidal particles undergo collision due to Brownian motion, which increases 

the chances of drug interactions and leads to precipitation.  

While the freshly made GCPQ – CUDC-101 nanoparticles are stable for just a 

period of 8 hours, GCPQ nanoparticles with CyclosporinA (CsA) were stable for 

a period of 6 months75. This difference is mainly due to the intrinsic nature of 

the drug forming the nanoparticle complexes and also structural differences in a 

molecule can cause stearic hindrance which might affect the interaction 

between the drug and the hydrophobic core of GCPQ91. The freeze-dried 

GCPQ – CUDC-101 nanoparticles were stable for at least 3 months which is 

similar to what is reported for GCPQ – CsA nanoparticles75.   

The in vivo subcutaneous absorption of GCPQ – CUDC-101 formulations 

follows a pattern similar to that of the in vitro colloidal stability data. From the 

results, it is clear that the polymer hydrophobicity and polymer concentration 

plays an important role in prolonging the duration of subcutaneous release. 

Similar observations were made with the copolymer PLGA, where increasing 

the hydrophobicity of PLGA helped in prolonging the release PLGA-risperidone 

implants in rats249. The presence of surface coated hyaluronidase in 

Formulation 3 also enhanced the drug uptake. Hyaluronidase was long used in 

the clinic to break the hyaluronic barrier of the skin and human recombinant 

hyaluronidase (Hylenex) has been approved by FDA to be used in conjunction 

with Trastuzumab to enhance the uptake of the antibody subcutaneously239. In 

another study, hyaluronidase immobilized on silica nanoparticles (SiNP) were 

used as adjuvant to deliver carboplatin to A375 cells250 and in both these cases 

hyaluronidase was not coated to the active ingredient. In another study, 
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hyaluronidase was encapsulated within the matrix of chitosan nanoparticles 

along with 5-flurouracil to improve the drug uptake through cancer cells251. So, 

to our knowledge this is the first instance of using hyaluronidase coated, drug-

loaded nanoparticle for the treatment of cancer via subcutaneous route. 

The hyaluronidase coated GCPQ – CUDC-101 nanoparticles also prolonged 

the life span of human A431 xenograft bearing mice by 28 days when 

compared with the control at 90 mg kg-1 dose. The group that received 120 mg 

kg-1 dose, which is also the MTD for CUDC-101 in mice, showed signs of 

toxicity and thus had many mice removed from the treatment reducing its 

median survival days. The differences in the effects of treatment might also be 

due to relatively small tumour size at the starting of 90 mg kg-1 treatment group 

when compared with other treatment groups. This is particularly true for CUDC-

101 as the drug’s potential mechanism of action is by inhibition of EGFR and 

HDAC inhibition169. The HDAC inhibition down-regulates HIF, which has a 

main role in angiogenesis. But in case of well-established tumours, the blood 

vessels are already in place and the formation of new blood vessels is limited to 

the periphery of the tumour. When these tumours are treated with CUDC-101 it 

interferes with angiogenesis in the periphery of the tumour which may severe 

the blood supply to the core of the tumour, which leads to the development of 

necrotic lesions as observed in few mice.  

EGFR inhibition is also linked to VEGF expression which plays another 

important role in angiogenesis252. Hence later stage tumours already have 

minimum angiogenic activity, the use of CUDC-101, an anti-angiogenic anti-

proliferative compound is rendered less effective. Thus the new subcutaneous 

treatment regime for cancer using hyaluronidase coated GCPQ – CUDC-101 

nanoparticles will be more effective if the treatment is started during the early 

stages of tumour development. 

5.6 Conclusion: 

The aim of this section was to develop a clinically relevant formulation for 

CUDC-101 using GCPQ. GCPQ is known to form viscous dispersions with 

hydrophobic drugs and the viscosity of these dispersions depends on the 

concentration, the hydrophobicity and the molecular weight of the GCPQ. 
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Based on the viscosity measurement, low molecular weight GCPQ with low – 

medium palmitoylation percentages were used at the concentration 50 mg mL-1 

to make nanoparticles with CUDC-101. By making these nanoparticles we were 

able to achieve the target concentration of 50 mg mL-1 CUDC-101, thus meeting 

our first criterion of success. The nanoparticles made were optimized for 

subcutaneous injection, where the formulation had desired concentration of 

drug, acceptable tonicity and a storage stability of at least three months, 

meeting our second criterion for success.  

The colloidal stability of the GCPQ – CUDC-101 nanoparticles depends on the 

concentration and palmitoylation of the GCPQ, where the nanoparticles made 

with a higher concentration and higher palmitoylation GCPQ had a better 

colloidal stability. The subcutaneous drug absorption of CUDC-101 from these 

GCPQ formulations was a reflection of the colloidal stability data, where the 

formulation with better colloidal stability had better drug absorption and vice 

versa. The subcutaneous absorption of CUDC-101 was steady and prolonged 

for duration of more than 6 hours, thus meeting our third criterion for success. 

The addition of hyaluronidase to the formulation resulted in surface coated 

nanoparticles, which further enhanced the subcutaneous absorption of the drug.  

By meeting all of our three criteria for success, we were able to develop a 

subcutaneous formulation with a significant pharmacodynamic activity. Tumour 

treatment with these surface coated GCPQ – CUDC-101 nanoparticles bought 

in a desirable pharmacodynamic effect, where the life span of human xenograft 

tumour bearing mice models were prolonged significantly from that of the 

control. Elevated levels of Ac-H3 in the tumours of the treatment group was 

documented from Western blotting, which further demonstrates that the GCPQ 

subcutaneous formulations are pharmacodynamically active.   

The optimized GCPQ formulation 3 with hyaluronidase aims to deliver CUDC-

101 as twice a day doses of 5 mL each, thereby achieving the current clinical 

dose of 500 mg active ingredient per day. The formulation is clinically relevant 

for the following reasons; has desired concentration of active ingredient in the 

final dosage form, has a long shelf life, easy to administer, has desired tonicity, 

can be mass produced and manufactured under sterile conditions and more 

importantly has desired pharmacokinetic and pharmacodynamics profiles. Thus, 
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a clinically relevant CUDC-101 formulation was developed for subcutaneous 

injection using GCPQ, which might be therapeutically beneficial to the patients 

in the clinic. 
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6 Conclusion and future work: 

6.1 Conclusion: 

The discovery of hydrophobic new chemical entities has been escalated in 

recent years due to advancements in combinatorial chemistry and high 

throughput screening. The oral bioavailability of these NCEs is severely affected 

by their poor water solubility and sometimes due to the P-gp efflux. Parenteral 

route of drug delivery overcomes most of the physicochemical and biological 

barriers but results in poor patient compliance. New technologies are needed to 

improve the oral absorption of hydrophobic drugs in order to bring new drugs to 

the market or to increase the treatment options for a marketed drug.  

Polymeric amphiphiles are used in drug delivery, because they are capable of 

improving the absorption and also deliver hydrophobic drugs to a specified 

target253. These amphiphiles are made from natural or synthetic sources but are 

usually engineered to be biocompatible or biodegradable. Ample publications 

have been made on use of the polymeric amphiphiles in drug delivery155,191,240 

but more and more such amphiphiles are needed due to the diversity of 

therapeutic compounds that are hard to formulate74.  

In this project, a new amphiphile was synthesized by conjugating pendant 

phenoxy acetic acid ring to glycol chitosan (GCPh). This polymer self-

assembled at extremely low concentrations (CMC ~ 0.3 μM) and enhanced the 

oral uptake of paclitaxel through a variety of mechanisms, such as; a) improving 

the aqueous dissolution by forming nanoparticles with the drug b) 

mucoadhesion of drug loaded paclitaxel-GCPh nanoparticles and c) the 

absorption of paclitaxel was P-gp independent due to the uptake of paclitaxel-

GCPh nanoparticles through the enterocytes. Thus this new polymer maybe 

used to improve the absorption of other hydrophobic drugs.  

Another important finding of this project is that, an important link between drug 

dissolution and P-gp efflux was established using paclitaxel formulated as 

Taxol®. It was found that improving the dissolution of the formulation saturated 

the activity of the P-gp efflux pumps. This might mean that future formulation 

strategies to improve the oral delivery of BCS Class IV drugs can be directed 
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towards improving their rate of dissolution rather than adding excipients to 

inhibit the P-gp efflux pumps.  

Oral delivery of CUDC-101, a BCS Class IV anti-cancer agent was attempted in 

the form of GCPQ nanoparticles or gastro-retentive dosage forms. But the pre-

clinical proof of concept for these formulations could not be achieved through 

my experiments. Hence attempts were made to deliver the GCPQ nanoparticles 

through the subcutaneous route. For this purpose a pre-clinical formulation 

containing hyaluronidase enzyme coated GCPQ – CUDC-101 nanoparticles 

were developed, which increased the life span of tumour bearing mice by 28 

days.  

This the first instance were nanoparticles were surface coated with 

hyaluronidase enzymes and the advantage of this coating is that it increases 

the chances of intact nanoparticles to be absorbed and reach the tumour. The 

formulation was optimised for further clinical trials and in future, a self-

administrable subcutaneous dosage form could be potentially tested at the 

clinical level for the GCPQ – CUDC-101 nanoparticles.  

6.2 Future work: 

The new polymer GCPh should be evaluated for its safety profile. 

Hemocompatability studies and toxicity studies could be carried out to 

determine the maximum tolerable dose for GCPh. Additionally, the polymer 

should be tested for its role in promoting transcellular transport and mechanistic 

studies should be carried out to determine if the drug loaded nanoparticles are 

taken up through phagocytosis.  Also, the paclitaxel-loaded GCPh nanoparticles 

could be tested for its in vivo anti-tumour activity in human xenograft mice 

models. Our experiment with ex vivo confocal microscopy suggested that GCPh 

nanoparticles might be reaching the systemic circulation intact. This needs to be 

further probed and the mechanism by which this occurs requires in-depth 

understanding. If this is true then the drug-loaded nanoparticles might 

specifically get trapped in the tumour tissue due to EPR effect, which might 

result in improved therapeutic index. The distribution of these nanoparticles in 

different organs could also be studied, which would lead to better understanding 

on the fate of GCPh nanoparticles upon ingestion.  
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To improve the oral absorption of CUDC-101, other formulation strategies such 

as liposomes or other micellar systems could be experimented. The choice of 

formulation strategies for CUDC-101 is limited by its extremely poor solubility 

not just in aqueous environment but also in organic solvents. CUDC-101 – 

GCPQ nanoparticles showed acceptable stability at neutral pH conditions. Thus 

enteric-coated capsules containing the dried CUDC-101 – GCPQ nanoparticles 

should be tested in larger animal models such as dogs, in which high drug 

doses are possible when compared to rats. Similar studies in higher mammals 

could also be done for the gastro-retentive dosage form, as the desired dosage 

for CUDC-101 could not be achieved in the experiments using rats. 

 The subcutaneous dosage form for CUDC-101 offers an alternative delivery 

option to the oral delivery of the drug. Studies could be carried out on this 

formulation to determine if the CUDC-101 – GCPQ nanoparticles are taken up 

via the lymphatic route, as this could be useful to treat tumour metastasis. Also, 

studies should be carried out to assess the distribution GCPQ nanoparticles in 

the tissues such as liver, spleen, kidneys and tumour, so as to understand the 

toxicity, bio distribution and elimination of the CUDC-101 – GCPQ 

nanoparticles.  
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