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ABSTRACT
We present a new framework for testing the isotropy of the Universe using cosmic microwave
background data, building on the nested-sampling ANICOSMO code. Uniquely, we are able
to constrain the scalar, vector and tensor degrees of freedom alike; previous studies only
considered the vector mode (linked to vorticity). We employ Bianchi type VIIh cosmologies
to model the anisotropic Universe, from which other types may be obtained by taking suitable
limits. In a separate development, we improve the statistical analysis by including the effect
of Bianchi power in the high-�, as well as the low-�, likelihood. To understand the effect of
all these changes, we apply our new techniques to Wilkinson Microwave Anisotropy Probe
data. We find no evidence for anisotropy, constraining shear in the vector mode to (σ V/H)0 <

1.7 × 10−10 (95 per cent confidence level). For the first time, we place limits on the tensor
mode; unlike other modes, the tensor shear can grow from a near-isotropic early Universe.
The limit on this type of shear is (σT ,reg/H )0 < 2.4 × 10−7 (95 per cent confidence level).

Key words: gravitation – cosmic background radiation – cosmology: miscellaneous – early
Universe.

1 IN T RO D U C T I O N

The standard cosmological model assumes that space is homoge-
neous and isotropic on large scales. Observational data, particularly
measurements of the cosmic microwave background (CMB), allow
this assumption to be tested quantitatively. When homogeneity and
isotropy are assumed from the outset, the cosmological solutions to
Einstein’s field equations are described by Friedmann–Lemaı̂tre–
Robertson–Walker (FLRW) metrics. By relaxing the requirement
for isotropy, one is instead led to Bianchi metrics (Bianchi 1898;
Ellis & MacCallum 1969). The basis for testing isotropy is there-
fore to consider which of these backgrounds better describes our
Universe. In the limit that departure from isotropy is small, the ob-
served fluctuations in the CMB are well approximated by the sum
of a deterministic Bianchi template and the stochastic contribution
from the inflationary � cold dark matter (�CDM) cosmological
model.

Testing isotropy has received considerable attention since Wilkin-
son Microwave Anisotropy Probe (WMAP; Bennett et al. 2003)
full-sky maps became available. Jaffe et al. (2005) found a cor-
relation between WMAP temperature data and a pattern induced
by the Bianchi VIIh model; employing the new background also

�E-mail: daniela.saadeh.13@ucl.ac.uk

improved the fit to the temperature power spectrum (Jaffe et al.
2005; McEwen et al. 2006; Bridges et al. 2007), suggesting that the
Universe indeed departs from isotropy. However, the same authors
pointed out that the best-fitting Bianchi template is characterized by
cosmological parameters (for example a large negative curvature)
that are inconsistent with other available observations.

McEwen et al. (2013) subsequently introduced ANICOSMO, a tool
for robust statistical analysis of the effects of an anisotropic back-
ground on the CMB. This code has been employed for a num-
ber of studies of the type of Bianchi models considered by Jaffe
et al. (2005), most recently using Planck data (Planck Collaboration
XXVI 2014; Planck Collaboration XVIII 2015). In these analyses,
in which the parameters for the background and stochastic compo-
nents were required to be mutually consistent, no preference was
found for anisotropy. However, the tests only took into account two
out of a total five degrees of freedom of the Bianchi anisotropy,
and thus did not allow an upper limit to be placed on anisotropy in
general.

Pontzen & Challinor (2011) presented a systematic linearization,
from which the most general anisotropies that respect homogeneity
can be expressed as a set of non-interacting modes on an isotropic
background. To date, no statistical analysis is available for the addi-
tional degrees of freedom highlighted by this analysis, so that a true
test of universal isotropy is lacking. Some of the previously uncon-
strained modes are expected to be the most compatible with probes
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such as nucleosynthesis and CMB polarization, both of which are
particularly sensitive to early-time anisotropy (Pontzen 2009).

In this work, we create a framework for testing all modes simul-
taneously and validate it in the VIIh case. This requires a number
of changes to the previous approaches. We use the WMAP 9-yr
(Bennett et al. 2013) data set previously considered by McEwen
et al. (2013) so that we can isolate the impact of these changes on
the posterior distributions and the Bayesian evidence ratios with re-
spect to �CDM. The Planck analyses (Planck Collaboration XXVI
2014; Planck Collaboration XVIII 2015) did not include a high-�
likelihood, and hence do not provide a full setting for comparison.
In a future paper, we will extend the framework further to apply
the new methods to Planck data, including polarization which is
expected to be highly constraining (Pontzen & Challinor 2007).

The paper is structured as follows. We introduce our method in
Sections 2 and 3, where we respectively discuss how we model
anisotropy and the statistical analysis we perform to look for its
signatures. In Section 4, we present results from our analysis of
WMAP 9-yr data, and conclude in Section 5.

2 IMPLEMENTING ANISOTROPY

In this section, we describe the framework underlying ABSOLVE

(Anisotropic Boltzmann Solver), a Boltzmann-hierarchy code we
have developed to compute the deterministic CMB temperature
and polarization perturbations induced by a Bianchi background.
We first discuss how anisotropy is modelled within the code in
Section 2.1, before presenting the computational details of the cal-
culation in Section 2.2.

2.1 The anisotropy degrees of freedom

ABSOLVE can compute the anisotropy-induced perturbations for
Bianchi types1 I, V, VII0 and VIIh. These cosmologies are suffi-
cient to take into account all the open and flat Bianchi models that
are close to isotropy, and therefore compatible with observations
(Pontzen & Challinor 2011). The closed Bianchi type IX only in-
duces power at � = 2, making it difficult to constrain: it is therefore
currently not included.2 In this paper, we focus on the Bianchi type
VIIh, together with its flat limit VII0.

Anisotropy is characterized quantitatively by means of the shear
tensor σμν , which describes the deformation experienced by fluid
elements in the Universe during anisotropic expansion; the shear
scalar σ is defined by σ 2 ≡ σμνσ

μν/2. To model the evolution of
shear, we follow Pontzen & Challinor (2011) in decomposing the
anisotropic expansion into a set of five non-interacting modes on an
underlying isotropic (FLRW) background. Each mode corresponds
to a degree of freedom in the shear tensor. The deterministic pertur-
bations induced in the CMB transform like scalars (1 dof), vectors
(2 dof) or tensors (2 dof) under rotations around a preferred axis of
the Bianchi symmetry, and are labelled accordingly throughout this
work. In particular, we write the magnitude of the shear associated
with each component as σ S, σ V and σ T, respectively, by considering
their evolution independently; when all modes are combined one
may show that the total shear obeys σ 2 = σ 2

S + σ 2
V + σ 2

T . Currently,

1 Bianchi ‘types’ are subclasses into which Bianchi cosmologies are divided,
grouping the different, inequivalent, ways for a 3-space to be homogeneous.
Accessible reviews on Bianchi models may be found in Ellis, Maartens
& MacCallum (2012) and Wainwright & Ellis (1997); also see Pontzen &
Challinor (2011) for a different approach.
2 Bianchi I also only induces power in the quadrupole, but it arises as the
natural flat limit of Bianchi V.

published constraints on departures from isotropy use the approach
of Barrow, Juszkiewicz & Sonoda (1985) and consequently con-
sider only σ V, i.e. the two Bianchi VIIh vector modes (e.g. Jaffe
et al. 2005; McEwen et al. 2013; Planck Collaboration XXVI 2014;
Planck Collaboration XVIII 2015).

The evolution of anisotropy is dictated by the Einstein equations.
We assume the contents of the Universe can be described as a sum
of perfect fluids corresponding to radiation, matter and dark energy.
Under these assumptions, scalar and vector modes exhibit a fast de-
cay (σ V, σ S ∝ a−3, where a is the scalefactor), linking small levels
of anisotropy today to larger levels at recombination. Extrapolating
backwards to the big bang, eventually the shear becomes compara-
ble to the Hubble parameter, at which point the linear decomposition
of Pontzen & Challinor (2011) ceases to apply. We refer to such
behaviour in this paper as ‘irregular’, since it cannot be immediately
reconciled with a near-isotropic early-Universe implied by the in-
flationary scenario. The steep decay also gives rise to a high degree
of polarization in the CMB (Pontzen & Challinor 2007).

Solutions for the tensor modes can behave in this irregular way;
but there is also a growing solution (Collins & Hawking 1973) al-
lowing observable anisotropy to emerge from a near-isotropic early
Universe. We term this behaviour ‘regular’, since it can more easily
be fitted into the modern cosmological paradigm, although fine-
tuning of inflation is still required for shear to reach an observable
amplitude at the present day. Only the tensor degrees of freedom,
which have not been tested previously, can exhibit this behaviour.
Scalar and vector modes also possess a second solution, but it can
be removed by a coordinate transformation and therefore has no
physical effect.

The maps in Fig. 1 show, from upper left to lower right, CMB
anisotropies imprinted by scalar, irregular tensor, vector and regular
tensor modes.3 The inset panels show the polarization. For the case
of the vector and regular tensor modes, the Bianchi power spectra
are plotted underneath as solid and dashed curves, respectively.
Black, red and blue lines show temperature, E-mode and B-mode
polarization power spectra, respectively.

The magnitude of the shear in these cases has been chosen to
produce a similar rms temperature anisotropy amplitude of approx-
imately 75 μK. For the case of the vector modes a present-day
shear (normalized to the isotropic Hubble expansion rate H0 to
form a dimensionless quantity) of (σ V/H)0 � 10−9 is sufficient.
However, for the regular tensor modes, this amplitude must be con-
siderably higher, (σT ,reg/H )0 � 5 × 10−6, because the steep scaling
with redshift is absent. We can therefore immediately anticipate that
constraints on present-day anisotropy in regular tensor modes will
be considerably weaker than the corresponding constraints for the
vector modes.

Having decomposed the shear into (σ S/H)0, (σ V/H)0 and
(σ T/H)0, there are a number of further degrees of freedom to be
considered. First, the specific initial conditions for the tensor mode
are placed into either the decaying, irregular solution (in which case
we will refer to σ T, irr) or the growing, regular solution (σ T, reg). Ad-
ditionally, the Bianchi morphology is set by the matter and dark
energy densities today {�m, ��} and the parameter x, which reg-
ulates the scale over which the shear principal axes rotate in the
vector and tensor modes (see Collins & Hawking 1973; Barrow
et al. 1985 for a formal definition). The orientation relative to the
Galaxy is determined by three Euler angles, labelled α, β and γ .

3 For animations of the Bianchi pattern for varying cosmological parameters,
see http://zenodo.org/record/48654.
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Figure 1. Maps: example scalar, vector, regular and irregular tensor patterns
induced in the CMB temperature (upper panels) and polarization (lower
panels, E- and B-mode to the left and right) for (�m, ��, x) = (0.27, 0.7,
0.62). These maps were produced with the ABSOLVE code developed for this
analysis. Plot: vector and regular tensor power spectra for (�m, ��, x) =
(0.27, 0.7, 0.62) and (σV/H)0 = 1 × 10−9 (solid line), (σT ,reg/H )0 = 5 ×
10−6 (dashed line): significantly smaller values of the vector amplitude today
lead to comparable temperature signals, and larger polarization signals,
compared to that of the tensors.

There is then a further freedom to rotate the tensor shear contribu-
tion relative to that of the vectors by an angle γ VT; however, we will
not consider vector and tensor modes simultaneously in this work,
and this freedom therefore does not enter. Finally, Bianchi vector
and tensor modes have a handedness, so for these models parity
must also be specified. For reference, all the Bianchi parameters
employed in this work are summarized in Table 1.

2.2 Computational aspects

The deterministic contribution to the CMB is obtained by comput-
ing the Boltzmann equation for photons in the context of a given
Bianchi background: the complete set of equations can be found
in Pontzen & Challinor (2007), except for the shear evolution, de-
rived by Pontzen & Challinor (2011). Our code ABSOLVE is written
in PYTHON and CYTHON. Run times vary considerably across the pa-
rameter space, but typically take a few seconds on one 2.6 GHz
core.

The code starts by computing the recombination history using
RECFAST 1.34 (Seager, Sasselov & Scott 1999, 2000). The Boltzmann

4 http://www.astro.ubc.ca/people/scott/recfast.html

Table 1. Summary of the parameters defining the Bianchi morphology,
amplitude and orientation. The amplitudes are expressed in terms of the shear
scalar normalized to the Hubble parameter. In addition to the parameters
tabulated below, there is the discrete choice of handedness.

Morphology

�m Matter density
�� Dark energy density
x Rotation scale of shear principal axes

Signal amplitude
(σ S/H)0 Amplitude of scalar modes
(σV/H)0 Amplitude of vector modes
(σT ,reg/H )0 Amplitude of regular tensor modes
(σT ,irr/H )0 Amplitude of irregular tensor modes

Orientation
α, β, γ Euler angles defining the orientation of the Bianchi pattern

integration starts at redshift zstart = 1500 with zero initial Bianchi
power; the power quickly builds from the shear-induced temperature
quadrupole and scatters into the E-mode polarization quadrupole.
Anisotropies are subsequently advected to smaller scales and par-
tially converted into B-mode polarization due to free-streaming ef-
fects after recombination. We have checked for one example model5

that the Bianchi pattern is unchanged if integration is started sig-
nificantly earlier, at zstart = 1800 or zstart = 2000. This reflects the
structure of the Boltzmann equation, where anisotropy is built by the
shear tensor but damped by Thomson scattering through a viscous-
friction term proportional to anisotropy. A limit equilibrium exists
in this setting that is reached for any initial redshift sufficiently
above that of recombination. A possible future improvement to
ABSOLVE would be to include a more refined treatment of zstart that
fixes its value based on the model parameters (in particular, taking
into account the sensitivity of recombination to the baryon and dark
matter physical densities).

The maximum multipole used to characterize the Bianchi pattern,
�max, must be chosen carefully to avoid missing small-scale power.
We implemented a test that compares the power around a trial
�max with the power at the quadrupole; if this test fails, integration
is repeated up to a much larger multipole. Further details of this
procedure and its importance are given in Section 3.4; typical values
are �max = 200 as an initial guess and �max = 1000 subsequently.

We must also avoid edge effects that can propagate errors from
the hierarchy truncation. We found empirically that we needed to
extend the calculated hierarchy to �trunc = �max + 50 to obtain
converged results at �max. To prevent instabilities from developing,
we additionally apply a Fermi–Dirac damping of the form

D(�) = 1

exp [� − (�trunc − 10)] + 1
(1)

to the hierarchy,6 which damps the power at �trunc − 10 = �max +
40 to prevent advected power reflecting at the unphysical boundary.

5 {�bh
2 = 0.022, �ch

2 = 0.11, x = 0.5, �m = 0.27, �� =
0.7, (σS/H )0 = 1 × 10−9, (σV /H )0 = 1 × 10−9, (σT ,reg/H )0 =
1 × 10−6, (σT ,irr/H )0 = 1 × 10−7, γV T = 0}
6 Technically, we implement this by multiplying the advection coefficients
in equations (48), (52) and (53) of Pontzen & Challinor (2007) by D(�). The
chosen form for D(�) is heuristically motivated, rather than following from
any analytic approximation: we verified that it leads to convergence in all
the examined cases.
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Once our code has produced output in harmonic space, we use
HEALPY7 (Gòrski et al. 2005) to perform the required Euler rotations
and to produce maps when needed.

3 STAT I S T I C A L F R A M E WO R K

In this section, we introduce the statistical framework required for
constraining all possible modes of background anisotropy using
CMB data. We start with an overview in Section 3.1 before dis-
cussing the choice of priors in Section 3.2. Section 3.3 presents an
illustrative analysis as a guide to the interpretation of our results.
Finally, in Section 3.4 we show how the new analysis improves
constraints on the background anisotropy by employing informa-
tion from smaller scales (higher �) than considered in previous
analyses.

3.1 Analysis overview

In the models under study, stochastic �CDM fluctuations are su-
perimposed on a Bianchi background. In this setting, the observed
CMB data, d, are assumed to consist of a stochastic, Gaussian
�CDM component, s, a deterministic Bianchi component, b, and
Gaussian instrumental noise, n:

d = s(��CDM) + b(�B) + n. (2)

Here, ��CDM = {�bh2, �ch2, ��, �K, ns, As, τ} is a vector
of parameters from the standard �CDM framework: baryon and
dark matter physical densities �bh2 and �ch2 (where H0 = 100 h
km s−1 Mpc−1), dark energy and curvature densities �� and �K,
scalar spectral index and power amplitude ns and As, and optical
depth to reionization τ . �B is a vector of the Bianchi parameters
summarized in Table 1 (see Section 2.1). The partial overlap be-
tween �B and ��CDM is discussed in more detail in Section 3.2.

The likelihood function P (d|(�B, ��CDM), M) =
L (�B, ��CDM) takes the form of a Gaussian with mean b
set by the deterministic Bianchi template and covariance matrix C
set by the stochastic �CDM component and instrumental noise
properties

L(�B, ��CDM) ∝ 1√|C(��CDM)| exp
[−χ2(��CDM, �B)/2

]
, (3)

where

χ2(��CDM,�B) = [d − b(�B)]† C(��CDM)−1 [d − b(�B)] . (4)

The data and Bianchi template may be expressed in either pixel or
harmonic space.

Limits on anisotropy can be considered as either a parameter-
estimation or a model-comparison problem. In the former case, the
product of the prior and likelihood gives the posterior probabil-
ity density for different shear amplitudes. In the latter case, one
must compute and compare each model’s Bayesian evidence. The
Bayesian evidence is defined as the probability of obtaining the data
given a model M, integrating over all of M’s parameters �, i.e. the
marginal likelihood

E = P (d | M) =
∫

d� P (d | �, M) P (� | M). (5)

7 http://healpix.sourceforge.net

Here, P(� | M) is the a priori probability for � and P (d | �, M) is
the likelihood function. The evidence can be used to estimate the
relative probability of two models M1 and M2, given available data

P (M1 | d)

P (M2 | d)
= P (d | M1)

P (d | M2)

P (M1)

P (M2)
= E1

E2

P (M1)

P (M2)
. (6)

If, as assumed in this work, no a priori knowledge is available that
favours one model over the other (i.e. P(M1) = P(M2)), then the
probability ratio equals the evidence ratio: P (M1 | d)/P (M2 | d) =
E1/E2. The log-Bayes factor ln (E1/E2) will be used in Section 4
to assess the degree by which one model is favoured over the other.

In order to evaluate the probability distributions described above,
we have integrated ABSOLVE into the ANICOSMO package (McEwen
et al. 2013). ANICOSMO uses the nested sampler MULTINEST8 (Feroz &
Hobson 2008; Feroz, Hobson & Bridges 2009; Feroz et al. 2013)
to explore the parameter space of each model and hence efficiently
calculate its Bayesian evidence. At each sampled point, the theo-
retical mean of the CMB data is evaluated using ABSOLVE, and the
covariance (set by the stochastic �CDM fluctuations) is calculated
using power spectra produced by CAMB (Lewis, Challinor & Lasenby
2000).9

When applied to masked data, the likelihood (3) is difficult to
evaluate at high � since the mask becomes problematic in harmonic
space while the covariance becomes problematic in pixel space. It
is therefore necessary to adopt an approximate power-spectrum-
based likelihood at high � (typically � > 32; e.g. Hinshaw et al.
2007; Page et al. 2007). In previous versions of ANICOSMO, including
those used by the Planck Collaboration (Planck Collaboration XXVI
2014; Planck Collaboration XVIII 2015), only the low-� part of
the likelihood has been modified to take into account the Bianchi
template. This results in a good estimate of the overall likelihood
provided that the power in the Bianchi component is negligible
compared to the stochastic power in the high-� modes. However,
Bianchi models have two physical scales (a spiralling and curvature
scale controlled by x and �K, respectively); when either of these
is sufficiently small relative to the horizon, high-� power can be
significant; see Section 3.4.

For this reason, we complement the low-� likelihood (3) with an
approximate modification to the high-� likelihood using the summed
contributions of the Bianchi and �CDM power spectra. For fluctu-
ations around an anisotropic Bianchi background, the power spec-
trum does not provide lossless data compression, but in the limit
that the Bianchi signal is subdominant relative to the �CDM com-
ponent, the approximation is valid. See Appendix A for further
details.

In test runs on simulated maps (see Section 3.3), full-sky infor-
mation is available at all multipoles. In these cases, we use the like-
lihood function in equation (3) up to � = 400, without an additional
high-� component. The absence of a high-� likelihood constraining
the temperature power spectrum in the damping tail makes the re-
covered constraints on test �CDM parameters less stringent. This
is acceptable, since we only need to verify our ability to recover the
Bianchi template parameters.

3.2 Models

As described in Section 3.1, parameters related to density appear in
both �B and ��CDM. A physically meaningful analysis must have

8 http://ccpforge.cse.rl.ac.uk/gf/project/multinest/
9 http://camb.info/
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Table 2. Models tested in this work. The (d) superscript, where present,
refers to the phenomenological ‘decoupled’ models; physical ‘coupled’
models are indicated with (c). S, V, Treg and Tirr refer, respectively, to
Bianchi scalar, vector, regular and irregular tensor modes.

Notation Model

�CDM Pure �CDM, no Bianchi component
S(c) Bianchi VIIh/VII0 scalar modes, ‘coupled’ model
S(d) Bianchi VIIh/VII0 scalar modes, ‘decoupled’ model
V(c) Bianchi VIIh/VII0 vector modes, ‘coupled’ model
V(d) Bianchi VIIh/VII0 vector modes, ‘decoupled’ model
T(c)

reg Bianchi VIIh/VII0 regular tensor modes, ‘coupled’ model
T(d)

reg Bianchi VIIh/VII0 regular tensor modes, ‘decoupled’ model
T(c)

irr Bianchi VIIh/VII0 irregular tensor modes, ‘coupled’ model
T(d)

irr Bianchi VIIh/VII0 irregular tensor modes, ‘decoupled’ model

Table 3. Priors for all the model parameters, along with the search to which
they are applied. Where no indication is given, the stated prior is applied in
all cases: B(c), B(d) and pure �CDM. See also Section 3.2.

Parameter Prior range Prior type Models

�bh2 [0.005, 0.05] Uniform
�ch2 [0.05, 0.3] Uniform
�� [0, 0.99] Uniform
�K [10−5, 0.5] Uniform B(c)

�K 0 Fixed B(d) and �CDM
ns [0.9, 1.05] Uniform
As [1, 5] × 10−9 log-uniform
τ [0.082, 0.092] Uniform

�m [0, 0.99] Uniform B(d)

�� [0, 0.99] Uniform B(d)

x – – S
x [0.05, 2] Uniform V, Treg and Tirr

(σ S/H)0 [−10−8, 10−8] Uniform S
(σV/H)0 [10−12, 10−8] log-uniform V
(σT ,reg/H )0 [10−12,10−4] log-uniform Treg

(σT ,irr/H )0 [10−12,10−4] log-uniform Tirr

α [0◦, 360◦] Uniform B(c) and B(d)

β [0◦, 180◦] Sine-uniform B(c) and B(d)

γ – – S
γ [0◦, 360◦] Uniform V
γ [0◦, 180◦] Uniform Treg and Tirr

self-consistent matter and dark energy densities �m and �� when
calculating the background and stochastic perturbation contribu-
tions: such analyses are referred to as Bianchi ‘coupled’ runs in the
following, or B(c). Our upper limits on anisotropy will be derived
in these settings. However, to connect with the early analyses that
found evidence in favour of Bianchi cosmologies, we also test phe-
nomenological models in which the two components are allowed
to vary independently: these models are labelled as ‘decoupled’, or
B(d).

Table 2 lists the models considered in this work. We use a Bianchi
VIIh model and allow the curvature to approach zero such that
the VII0 models are also naturally included. We separately test
for the scalar (S), vector (V), regular (Treg) and irregular (Tirr)
tensor degrees of freedom in turn; the priors that we adopt for the
Bianchi and �CDM parameters are listed in Table 3. For (σ V/H)0,
(σT ,reg/H )0 and (σT ,irr/H )0, we adopt log-uniform priors so as to
avoid setting a preferred scale for these parameters. This choice
is not possible for (σ S/H)0, which can take negative values in our
parametrization: we adopt a uniform prior in this case.

Figure 2. Comparison of the prior on (σV/H)0 employed in this work (log-
uniform) with that implied by McEwen et al. (2013) in which a uniform prior
is taken over (ω/H)0, x and �K. The transformation between the spaces is
described by equation (7). The approximate range is comparable, but the
prior of McEwen et al. (2013) places considerable added emphasis on shear
values around (σV/H)0 � 10−9.

The expanded set of modes requires us to use a general
parametrization that uses shear, rather than vorticity, to control the
amplitude of anisotropy. Consequently our priors cannot be made
identical to those in previous work. The link between expansion-
normalized shear (σ V/H)0 and vorticity (ω/H)0 is provided by
the time-space component of the Einstein equations, which gives
(Barrow et al. 1985)

( ω

H

)
0

=
√

1 + x2 �K

√
1 + 9 x2 �K

6 x2 (1 − �K )

(σV

H

)
0

. (7)

In McEwen et al. (2013), the prior on (ω/H)0 is uniform over the
range [0, 10−9]. However, the appearance of parameters x and �K

in the relationship (7) shows that the implied prior on (σ V/H)0

is not uniform. By sampling points from the prior of McEwen
et al. (2013) and applying the mapping (7), we established that
the marginalized prior on log (σ V/H)0 in previous work is peaked
around (σ V/H)0 � 10−9; see Fig. 2. By contrast we assign equal
a priori probability to all the scales in the range [10−12, 10−8]. As
an example of the Bianchi signal strengths that are consequently
included in the search, the lower and upper limits of our prior range
correspond to rms temperature fluctuations of, respectively, 0.05
and 500 μK at x = 0.3.

The allowed ranges for (σT ,reg/H )0 and (σT ,irr/H )0 need to be
significantly wider than that on (σ S/H)0 and (σ V/H)0 because sim-
ilar values of S or V and Treg or Tirr at recombination correspond
to considerably larger values for the tensor shear amplitude today,
especially in the case of Treg: for the tensor cases, we allow values
as large as 10−4. Scalar modes possess rotational symmetry around
a preferred axis, which makes them insensitive to the parameters
x and γ ; they are consequently held fixed in the S runs. Similarly,
because of the spin-2 tensor symmetry, the γ angle is only required
to vary in the range [0◦, 180◦] in T runs, whereas it takes the full
range [0◦, 360◦] in V cases. The prior range for the optical depth to
reionization, τ , was chosen to match that of McEwen et al. (2013)
to ease comparison.
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Testing isotropy with the CMB 1807

Figure 3. An illustration of the strong geometric degeneracy in the Bianchi
parameter space. The triangle plot shows the recovered posterior distribution
for a mock map containing a stochastic �CDM and underlying deterministic
Bianchi pattern with �m = 0.31, �� = 0.69, x = 0.7 and (σV/H)0 = 0.7 ×
10−9. These input parameters are indicated by grey lines. The parameters are
recovered but are strongly broadened by the geometric degeneracy arising
from the projection of the Bianchi spiral on to the surface of last scattering.
The two inset maps correspond to models near the ends of the recovered
degeneracy as indicated by the dot (upper map) and triangle (lower map).
The overall orientation of the pattern is constrained as seen in the sharply
peaked marginalized posterior distributions of the Euler angles in the bottom
row.

3.3 Illustrative analysis

We applied the analysis outlined in Section 3.1 to several simulated
maps of the CMB sky containing a Bianchi signal to check that
the input parameters were recovered correctly. The mocks mimic
stochastic �CDM fluctuations on top of a Bianchi background and
were generated as follows: we computed the temperature power
spectrum given a set of cosmological parameters through CAMB and
obtained a realization of the corresponding Gaussian random field;
we then added the resulting fluctuations linearly to a map containing
a Bianchi template. The deterministic Bianchi contribution was
calculated using the code from Pontzen (2009) as a blind test of the
ABSOLVE implementation.10 We applied a Gaussian beam with full
width at half-maximum (FWHM) of 1◦ to the maps and assumed
instrumental noise to be negligible on the relevant scales. When
applying our modified version of ANICOSMO to these mocks, we
employed a likelihood function of the form in equation (3) up to
� = 400, with no supplementary high-� likelihood.

Fig. 3 shows the recovered constraints in an example decou-
pled test run on a mock CMB map containing a Bianchi vector

10 The Pontzen (2009) code is several times slower than ABSOLVE and its
design decisions concerning timestepping and high-� truncation are not
suited to a statistical search.

V(d) signal. The recovered posterior is consistent with the input
parameters, which are, respectively, �m = 0.31, �� = 0.69, x =
0.7 and (σ V/H)0 = 0.7 × 10−9. However, there is a strong degen-
eracy in the {�m, ��, x, σ/H} dimensions; this reflects how the
angular scale of the recovered pattern is approximately set by the
Bianchi spiralling scale projected on to the last scattering surface.
The inset temperature maps show how the input signal is mimicked
extremely well along this degeneracy line. As a consequence, the
marginalized posteriors on these parameters are broad. The ori-
entation of the pattern, defined by the Euler angles, is recovered
well, with sharply peaked Gaussians around the input values, with
the exception of γ which is biased by 2.3σ . We verified that the
cause of this bias was a slight net rotation between the Pontzen
(2009) maps which form the basis of the test and the ABSOLVE

maps for the same input values. Given the more careful numerical
choices described above, we believe the ABSOLVE results to be more
robust.

Improved constraints on the Bianchi parameters can be ob-
tained by employing complementary information to break the
degeneracy: this is the case in B(c) models, where �CDM fluc-
tuations strongly limit the range of allowed matter and dark en-
ergy densities {�m, ��}, thereby also tightening the constraints
on x and σ/H. Taking into account the CMB polarization in
addition to temperature would also partially break the model
degeneracy.

Our framework was additionally tested against mock S(d), V(c),
V(d), T(c)

reg and T(d)
irr maps.

3.4 The importance of small scales

As discussed in Section 3.1, one novel feature of our improved
framework is that it includes the effect of the Bianchi tempera-
ture fluctuations in the high-� part of the likelihood. While some
Bianchi models induce power that decays rapidly with � and is neg-
ligible for � > 32, there is a large part of our parameter space in
which the high-� corrections are significant. In particular, models
with low values of x or large negative curvatures have anisotropic
features on strongly sub-horizon scales which project on to
high �s.

Fig. 4 illustrates a case where neglecting high-� information
is inappropriate. The split map shows how the intense alter-
nating cold-and-hot spirals (lower-right portion) are lost when
� > 32 is ignored (upper-left portion). This is reflected in the
Bianchi power spectrum D� which peaks at � � 70. Without
the high-� information, models such as this will be inaccurately
characterized.

Losing this information can equally cause false negatives and
false positives. In the case of a true Bianchi universe character-
ized by a tight spiral, the statistical search will underestimate the
likelihood around the correct parameters. Conversely, in the case
of a pure �CDM universe, the statistical search will overestimate
the likelihood of a tightly spiralling feature. In particular, the final
results of existing analyses must therefore spuriously favour low
values of x and overestimate the upper limit on (σ/H)0. Our inclu-
sion of the high-� information will produce tighter and more robust
limits on anisotropy.

For practical purposes, we still need to apply a truncation to
the Boltzmann hierarchy; since as x → 0 the power is advected
to arbitrarily high �, this generates a lower limit on the val-
ues of x we can meaningfully consider. We define �∗ to be the
minimum multipole at which the average power over the range
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Figure 4. The effects of neglecting the small scales in the treatment of the
Bianchi background. An ABSOLVE temperature map for the model {�m =
0.2, �� = 0, x = 0.2} was produced twice; first, using multipoles only to
�max = 32 (upper-left portion of map) and secondly, using multipoles up to
�max = 200 (lower-right portion of map). Most of the defining features in
the Bianchi pattern are lost with the � = 32 cut. The power spectra of the
model are illustrated, with the � = 32 cut highlighted with a vertical line,
reinforcing how significant information is discarded if higher multipoles are
not considered.

{�∗ − 10 < � ≤ �∗} is significantly smaller than the power at the
quadrupole according to the criterion11

1

10

�∗∑
�=�∗−10

C� <
1

100
C�=2. (8)

As discussed in Section 2.2, this test is performed after each inte-
gration. If �∗ exceeds �max = �trunc − 50, the entire integration is
repeated with a higher value of �max up to 1000. Higher values of
�max become extremely slow to evaluate so we designed our priors
to avoid models where �∗ exceeds 1000; specifically, we exclude
regions with x < 0.05. This final threshold was chosen after calcu-
lating �∗ across a grid of 27 000 (30 × 30 × 30) models spanning
the {�m, ��, x} unit cube at regular intervals. By this approach,
we also verified that �∗ rises towards small x and large negative
curvatures, as expected. We calculated that the implicit � = 32 cut
that has been applied previously mischaracterizes 16 per cent of the
total cube. Therefore, we expect significant changes to posteriors
when our high-� treatment is included.

11 We consider the average 1
10

∑�∗
�=�∗−10 C�, as opposed to the power

C�∗ at a single multipole, to reduce the impact of localized dips in the
power spectrum spuriously satisfying the constraint in equation (8) at lower
multipoles.

Table 4. Constraints on the Bianchi VIIh/VII0 anisotropy (95 per cent
confidence level).

Mode Parity 95 per cent confidence level

S(c) – −3.4 × 10−10 < (σ S/H)0 < 3.8 × 10−10

V(c) Left (σV/H)0 < 1.7 × 10−10

Right (σV/H)0 < 1.6 × 10−10

T(c)
reg Left (σT ,reg/H )0 < 2.4 × 10−7

Right (σT ,reg/H )0 < 2.2 × 10−7

T(c)
irr Left (σT ,irr/H )0 < 2.4 × 10−9

Right (σT ,irr/H )0 < 2.1 × 10−9

4 A PPLI CATI ON TO WMAP T E M P E R AT U R E
DATA

As a demonstration of the framework developed above, we analyse
the WMAP 9-yr temperature data using a combination of the internal
linear combination (ILC) map for large scales (Bennett et al. 2003)
(� ≤ 32) with the TT high-� likelihood12 (Bennett et al. 2013)
for small scales (� > 32). The combination is chosen because it
allows access to the full sky for the low-� modes while avoiding
the complex noise properties of the ILC on small scales (Hinshaw
et al. 2007). An earlier version of the ILC was the basis for finding
a correlation with a Bianchi VIIh template (Jaffe et al. 2005).

Following the approach described in Section 3.1, the low-� like-
lihood is specified by equation (3). For the ILC, we employ a Gaus-
sian beam with FWHM of 1◦ and assume that instrumental noise
and residual foreground contamination is negligible at � ≤ 32. The
calculation is performed in harmonic space and no masking is ap-
plied. The WMAP high-� likelihood code models noise and beams
internally.

All the results discussed in this section were obtained by applying
the priors listed in Table 3. The complete posterior distributions and
triangle plots are available from https://zenodo.org/record/48653.

This section is structured as follows. In Section 4.1, we present
the constraints we recover for the different anisotropy modes. In
Section 4.2, we compare the Bayesian evidence for Bianchi models
and �CDM. In Section 4.3, we discuss how our prior choices impact
on the calculations compared to previous work.

4.1 Constraints on anisotropy

We tested the full anisotropy freedom of the Bianchi VIIh/VII0 ex-
pansion using the WMAP 9-yr data. As described above, our analysis
considers the vector (vorticity) modes that have been studied previ-
ously, as well as new degrees of freedom that have not previously
been included. Table 4 summarizes the constraints we recover for
the amplitudes of scalar, vector, regular and irregular tensor modes,
as obtained when searching for B(c) models.

For left-parity V(c) modes, we obtain (σ V/H)0 < 1.7 × 10−10

(95 per cent confidence level). �m and �� peak around concor-
dance values, driven by the stochastic component. In Fig. 5 (left-
hand panel), we show how the Bianchi degree of freedom affecting
the morphology, x, is largely unconstrained, with only the tightest
spirals being marginally disfavoured. This suggests no overall pref-
erence by the data for specific Bianchi patterns; accordingly, the
Euler angles are also unconstrained (see right-hand panel of Fig. 5
for an example). Similar results hold for the right-parity V(c) runs.

12 http://lambda.gsfc.nasa.gov/product/map/dr5/likelihood_get.cfm
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Figure 5. Posterior distribution for the Bianchi x parameter (left-hand
panel) and one of the Euler angles α (right-hand panel) for V(c), T(c)

reg and

T(c)
irr in left-parity models (right-parity models give similar results). In all

cases the data do not strongly prefer any particular values, which reflect
the lack of evidence for anisotropy in the data. A comparable analysis of
the V(c) case (McEwen et al. 2013) resulted in posteriors rising towards
small x (tight spirals); the difference can be traced to our improved analysis
including high-� information.

In runs on V(d), the Bianchi sub-case for which early evidence
was found in the WMAP ILC map, we see a small preference in
the parameters controlling the morphology (weakened by the de-
generacy) and a sharper preference in the orientation, but, unlike
in previous work, we only recover upper limits on the shear am-
plitude even in the presence of this considerable extra freedom. In
Section 4.3, we discuss how the difference in our result can be traced
to the choice of priors.

For the case of V modes, it is possible to compute the universal
vorticity (ω/H)0 through equation (7). This allows constraints to
be placed on (ω/H)0 from x, �K and (σ V/H)0; we obtain (ω/H)0

< 1.6 × 10−10 (95 per cent confidence level). However, it must be
stressed that this limit depends not only on the amplitude of the
Bianchi signal, but also on the priors for x and �K.

The three remaining degrees of freedom are constrained for the
first time. Table 4 shows that the T(c)

reg mode (which we argued in
Section 2.1 to be the best-motivated scenario from the standpoint of
accommodating residual anisotropy within the standard cosmolog-
ical paradigm) is constrained at a level three orders of magnitude
weaker than V(c) modes. This results from the regular behaviour
which allows for relatively high levels of late-time anisotropy even
when the early universe was near-isotropic (see Section 2.1). For
the other tensor solution T(c)

irr , we obtain limits that are more closely
comparable to the V(c) case. In all tensor cases, as in the vec-
tor cases, we find that �m and �� remain sharply peaked around
concordance values and the Euler angles and Bianchi x parameter
display no strong preferences (Fig. 5); in other words, the data do
not support the existence of anisotropy in these modes.

The S(c) modes are constrained to −3.4 × 10−10 < (σ S/H)0

< 3.8 × 10−10 (95 per cent confidence level). Due to the scalar
symmetry, the parameter x has no effect and the orientation of the
scalar pattern only requires two Euler angles to be defined, as it is
rotationally invariant around a preferred axis; the data do not prefer
any particular values for these two angles. Once again, concordance
values are recovered for �m and ��. The upper limit on S(c) is
slightly less stringent than that on V(c) only because of the different
prior shape on (σ S/H)0 and (σ V/H)0.

In summary, for all modes considered, the marginalized posterior
distributions peak around the concordance values for the matter and
dark energy densities, with little difference between the S, V, Treg

and Tirr runs. The data do not display any significant preference

Table 5. Log-Bayes factor for different Bianchi+�CDM
models with respect to standard flat �CDM (posi-
tive/negative values favour/disfavour the addition of a
Bianchi component).

Mode Parity B(c) models B(d) models

S – −6.3 ± 0.2 − 2.0 ± 0.2
V Left −3.4 ± 0.2 − 0.1 ± 0.2

Right −3.3 ± 0.2 0.0 ± 0.2
Treg Left −3.0 ± 0.2 0.2 ± 0.2

Right −3.3 ± 0.2 0.1 ± 0.2
Tirr Left −3.5 ± 0.2 − 0.1 ± 0.2

Right −3.6 ± 0.2 0.1 ± 0.2

in the remaining parameters that control Bianchi morphology or
orientation. In the specific case of the x parameter, a distinct pref-
erence for low values has been found in previous work considering
the same data (McEwen et al. 2013), but is absent in our analysis
(Fig. 5). This is a consequence of our refined treatment of small
scales in the background modelling, which results in a more accu-
rate assessment of the relative probability of Bianchi models with
tightly wound spirals (Section 3.4).

4.2 Model comparison

Table 5 shows the log evidence ratios of all examined models with
respect to �CDM. The self-consistent B(c) models are all strongly
disfavoured compared to standard flat �CDM. In McEwen et al.
(2013), however, the Bianchi hypothesis had comparable evidence
to �CDM. This difference results from a combination of the im-
provements introduced in our method (particularly the treatment of
the small scales, Section 3.4) and the choice of the prior on (σ V/H)0

(Fig. 2; Section 3.2). The updated prior choice also affects the evi-
dence ratio for the V(d) decoupled model, removing the preference
found in McEwen et al. (2013) for the left parity over the right one.

S models stand out as they display a significantly smaller log-
Bayes factor than the other degrees of freedom; however, this is a
consequence of the uniform prior that we have to adopt for (σ S/H)0

(see Section 3.2). The smallest shear amplitudes are favoured by
the data but are given less weight by the uniform (rather than log-
uniform) prior, so the evidence values are pushed down. To verify
that this effect accounts for the apparent disfavouring of S models,
we calculated the log evidence ratio for V(c) and V(d) with a uniform
prior on (σ V/H)0 [0, 10−8]. The values become, respectively, −6.0
± 0.2 and −1.7 ± 0.2 for the left parity, confirming that the uniform
prior accounts for the down-weighting.

4.3 The effects of prior choices in searches for Bianchi
signatures

Fig. 6 shows the posterior distributions recovered for the Bianchi
parameters (σ V/H)0 and α in searches for V modes in the WMAP
ILC map, assuming the following prior choices:

(i) V(c), log-uniform prior on (σ V/H)0 (solid black line);
(ii) V(d), log-uniform prior on (σ V/H)0 (dotted green line);
(iii) V(d), uniform prior on (σ V/H)0 (dashed blue line).

The parameter (σ V/H)0 controls the amplitude of the Bianchi com-
ponent while α partially controls its orientation. The remaining Eu-
ler angles β, γ and the spiral parameter x exhibit similar behaviour
to α.
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Figure 6. The strong prior-dependence of Bianchi template correlations is
illustrated using posterior distributions on Euler angle α and shear (σV/H)0

for (black solid lines) coupled model with a log-uniform prior on (σV/H)0,
(green dotted lines) decoupled model with a uniform prior on (σV/H)0 and
(blue dashed lines) decoupled model with a uniform prior on (σV/H)0.
The last of these hints at the presence of anisotropy, since the position of
the anisotropic features (from α and the other Euler angles) begin to be
constrained and significant shear appears to be permitted. However, this
prior is the least motivated physically and statistically.

In the log-uniform coupled case (solid black line), we recover
the previously quoted upper limit on shear. On the linear scale
of Fig. 6, the posterior is very sharply peaked towards zero shear
(right-hand panel) and there is no preference for orientation (left-
hand panel). By decoupling the parameters (dotted green lines), we
find that a preference for a particular orientation begins to emerge,
in agreement with McEwen et al. (2013). However, we additionally
find that non-zero shear at the amplitude corresponding to the Jaffe
et al. (2005) template is only permitted once we also switch to
a uniform prior on (σ V/H)0 (dashed blue line). The strong prior-
dependence of the analysis shows that even in the case that the
parameters are allowed to decouple the data do not robustly support
the addition of a Bianchi signal.

5 C O N C L U S I O N S

We have presented a new framework to search for departures from
background isotropy in CMB data. Our approach extends the ANI-
COSMO tool in two ways. First, we implemented a new Boltzmann
hierarchy solution (ABSOLVE) to calculate CMB temperature and po-
larization patterns arising from anisotropy in the background; this
allows a much wider variety of solutions to be probed and in future
will allow for the inclusion of CMB polarization data in a coher-
ent way. The wider variety of modes in the new solutions requires
us to adopt shear, rather than vorticity, as the primary parameter.
Secondly, we improved the statistical approach; in particular, we in-
clude the previously neglected effects of the anisotropic background
on modes at � > 32.

As a test of the new approach and to compare with previous
results, we searched for departures from isotropy in WMAP tem-
perature data. In doing so, we included three hitherto unconstrained
anisotropy modes, including the regular tensor solution which (un-
like other modes) is compatible with exiting inflation in a highly
isotropic state. Our setup focuses on Bianchi type VIIh and is easily
applicable to other types since these are found by allowing the VIIh

parameters to limit to boundary values; in this work, we specifically
included VII0 models which are obtained as �K → 0.

We find no evidence for anisotropic expansion from WMAP data
and place upper limits on present-day shear, as reported in Table 4.

Our constraints on vector modes (linked to vorticity) are tighter than
those presented in prior work by a factor of 5, which we showed to be
due to a combination of different priors and our improved treatment
of small-scale power. Scalar modes are constrained for the first time
at a similar level. However, the first constraint on tensor shear – and
in particular the regular solution to the tensor anisotropy – is much
weaker than the constraint we are able to obtain on the other modes.
We showed that this difference arises from the different dynamical
nature of the solutions.

In the near future, we plan to extend this framework to allow
for analysis of CMB polarization data in addition to temperature.
This is expected to further tighten limits on the anisotropy of the
Universe (Pontzen & Challinor 2007).
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APPENDIX A : A PPROX IMATIONS IN THE
H I G H -� L I K E L I H O O D

In this Appendix, we discuss how we have incorporated a correc-
tion for the background Bianchi power in high-� likelihoods. For
motivation and an overview, see Section 3. In brief, at � > 32 we in-
corporate the Bianchi power by calculating the sky-averaged equiv-
alent power spectrum CB

� and adding it to the isotropic stochastic
power C�CDM

� before passing to a standard high-� likelihood.
To understand why this produces a reasonable approximation to

the true likelihood, let the measured CMB fractional temperature
be expanded in complex spherical harmonics as

�T

T
(ϑ, ϕ) =

�max∑
�=0

d�mY�m(ϑ, ϕ), (A1)

and similarly for the Bianchi template(
�T

T

)(B)

(ϑ, ϕ) =
�max∑
�=0

b�mY�m(ϑ, ϕ). (A2)

We furthermore define the data and Bianchi power spectra Ĉ�

and CB
� as

Ĉ� ≡
∑�

m=−� d∗
�md�m

2� + 1
, (A3)

C
(B)
� ≡

∑�
m=−� b∗

�mb�m

2� + 1
, (A4)

note that, unlike in the �CDM case, the Bianchi power spectrum
does not provide lossless data compression (which is to say that the
true likelihood cannot be expressed purely in terms of C

(B)
� ).

The probability of obtaining the data set d = {d�m, 2 ≤ � ≤ �max}
given the model, M, is

P (d|b, C
(�CDM)
� , M) ≡

�max∏
�=2

L(�)
exact, (A5)

with

L(�)
exact ≡ 2�(

2πC
(�CDM)
�

) 2�+1
2

× exp

{
− (d�0 − b�0)2 + 2

∑�
m=1 |d�m − b�m|2

2C
(�CDM)
�

}
, (A6)

which is the explicit form of equation (3) for complex spherical-
harmonic coefficients.

A typical high-� likelihood code assumes a pure �CDM sky,
which in the limit of a full-sky approximation may be written as

P (d|C(�CDM)
� , �CDM) ≡

�max∏
�=2

L(�)
�CDM, (A7)

with

L(�)
�CDM ≡ 2�

(2πC�)
2�+1

2

exp

{
−2� + 1

2

Ĉ�

C�

}
(A8)

and where C� is the input theoretical power spectrum. Our treatment
of high multipoles amounts to setting C� = C

(B)
� + C

(�CDM)
� . We

regard the resulting likelihood as an approximation to equation (3);
it may be written as

P (d|C(B)
� , C

(�CDM)
� , M) ≡

�max∏
�=2

L(�)
approx, (A9)

with

L(�)
approx ≡ 2�[

2π
(
C

(B)
� + C

(�CDM)
�

)] 2�+1
2

× exp

{
−2� + 1

2

Ĉ�

C
(B)
� + C

(�CDM)
�

}
. (A10)

To assess the validity of the approximation, we consider the variance
of the quantity

ε(�) ≡ L(�)
exact − L(�)

approx

L(�)
exact

, (A11)

which has mean zero by the normalization of the likelihoods. If
C

(B)
� > C�CDM

� , then var(ε(�)) can be shown to be infinite (i.e. the
approximation can be arbitrarily wrong). However, this is generally
not the case, since the Bianchi C�s tend to be much smaller than the
�CDM C�s. For CB

� < C�CDM
� , we have

var
(
ε(�)

) =
〈(

L(�)
approx

L(�)
exact

)2〉
− 1 =

[ (
C�CDM

�

)2(
C�CDM

�

)2 − (
CB

�

)2

] 2�+1
2

× exp

{
(2� + 1)CB

�

C�CDM
� − CB

�

}
− 1, (A12)

where the angular brackets indicate averaging over all the realiza-
tions.

In the limit C
(B)
� � C�CDM

� , we obtain

var(ε(�)) ≈ (2� + 1)
CB

�

C�CDM
�

, (A13)

which is first order in C
(B)
� /C�CDM

� . Models such that C(B)
� > C�CDM

�

for some � are excluded during the sampling as they fall outside the
range within which this approximation is valid – they constitute,
however, a small fraction of the number of explored models.
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