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Medulloblastoma (MB) is the most common malignant pediatric brain tumor.

Despite great improvements in the therapeutic regimen, relapse and lep-

tomeningeal dissemination still pose great challenges to the long-term survival

of MB patients. Developing more effective strategies has become extremely

urgent. In recent years, a number of malignancies, including MB, have been

found to contain a subpopulation of cancer cells known as cancer stem cells

(CSCs), or tumor initiating ⁄propagating cells. The CSCs are thought to be largely

responsible for tumor initiation, maintenance, dissemination, and relapse; there-

fore, their pivotal roles have revealed them to be promising targets in MB ther-

apy. Our growing understanding of the major medulloblastoma molecular

subgroups and the derivation of some of these groups from specific stem or pro-

genitor cells adds additional layers to the CSC knowledge base. Herein we review

the current knowledge of MB stem cells, highlight the molecular mechanisms

relating to MB relapse and leptomeningeal dissemination, and incorporate these

with the need to develop more effective and accurate therapies for MB patients.

M edulloblastoma is a primitive neuroepithelial tumor
originating from the hindbrain and represents one of

the leading causes of pediatric tumor-related death.(1,2) The
2007 WHO classification defines four histological variants of
MB: classic, LCA, desmoplastic ⁄nodular, and MB with exten-
sive nodularity.(3) In 2010, several large-scale transcriptional
profiling studies led to a consensus that MB contains four
distinct major subgroups at the molecular level: Wnt, Shh,
Group 3, and Group 4.(4) Each differs with respect to demo-
graphics, histological phenotypes, somatic mutations, and
clinical outcomes.(4) Current clinical practice stratifies a high
risk group as follows: infants <3 years old, patients with a
post-surgical residual tumor >1.5 cm2, LMD at diagnosis, or
LCA histology.(5,6) Indeed, relapsed disease and LMD are
still major causes of poor outcomes.(6) With gradually
increasing understanding of MB at the pathological and
molecular levels, along with the continuous refinements in
clinical risk stratification, therapeutic regimens have immen-
sely improved, and the overall survival rate of MB patients
has increased from 20% to approximately 80% in the last
35 years.(6)

The molecular classification has provided key guidance in
the development of new targeted therapies. For example, vis-
modegib (GDC-0449), an Shh pathway inhibitor targeting
Smo, triggers the rapid regression of an MB patient’s
metastatic tumors, but it is soon followed by relapse due to
mutations in Smo causing therapeutic resistance.(7,8) Molecular
classification can also guide the reduced treatment of medul-
loblastoma patients with less aggressive disease. While aggres-
sive treatment strategies usually result in improved survival, it
is unfortunately at the cost of severely affecting the quality of
life of MB survivors. The devastating side-effects include cog-
nitive deficits, endocrine disorders, and increased incidence of
secondary cancers later in life.(2)

Recently, the intratumor heterogeneity revealed in malignan-
cies such as breast cancer(9) and glioblastoma(10) has offered
new insights into MB relapse. The spatial and temporal patterns
of genetic, phenotypic, and functional diversity enable cancer
cells to respond differently to targeted agents, with less sensitive
or even insensitive populations surviving and leading to tumor
relapse.(11) Among multiple theories proposed to interpret the
intratumor heterogeneity,(12) the CSC model established by
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studies of malignancies such as leukemia,(13) breast cancer,(14)

and brain tumors(15) is of intense interest. Cancer stem cells
show unlimited self-renewal and differentiation capacity, lead-
ing to phenotypically and functionally heterogeneous progenies
and fueling tumor initiation, maintenance, and progression.(12)

Additional layers of heterogeneity may come from clonal evolu-
tion and environmental differences within tumors, giving rise to
distinct subpopulations (Fig. 1).(16)

Cancer stem cells survive chemoradiotherapy and further
contribute to treatment failure through multiple drug resistance
mechanisms (i.e., the activation of pro-survival ⁄ anti-apoptosis
pathways).(17) Cancer stem cells have also been found to be
tightly associated with tumor dissemination through molecular
networks such as EMT, which increases the invasion and
motility of cancer cells, and confers them a stem-like property
essential for distant colonization.(18) Elucidating the molecular
mechanisms of MBSCs will definitely contribute to the discov-
ery of more efficient agents that will notably improve the sur-
vival rate and quality of life of MB patients.

Medulloblastoma Cell-of-Origin versus MBSCs

The CSCs required for long-term neoplastic growth and xeno-
graft initiation are sometimes confused with the “cell-of-ori-

gin” from within specific tumors. The term “CSC” refers to
stem-like tumor cells containing multiple mutations, whereas
the “cell-of-origin” refers to a normal cell that undergoes an
initial transforming event.(19)

The cells of origin for human MBs are difficult to identify, as
the earliest steps of the neoplastic process occur in a “black
box.” However, the establishment of a series of GEM models of
MB provided important insights into the cellular origins of these
tumors (Fig. 2).(20) Granule neuron progenitors in the external
germinal layer on the surface of the developing cerebellum have
long been proposed as cells of origin for MB, and it is now
clear that Shh-driven MB arises from this group.(21,22) In con-
trast, the Wnt group is now thought to originate from progeni-
tors in the dorsal brainstem.(23) Group 3, which is the most
aggressive subgroup of MB and is characterized by high levels
of MYC amplification or overexpression, appears to derive from
cerebellar stem cells.(24,25) The origins of Group 4, the most
prevalent MB subgroup, remain unknown.(26,27)

Sorting and Identifying MBSCs

The last decade has produced great advances in sorting and
identifying MBSCs using markers, such as CD133 and CD15,

Fig. 1. Role of medulloblastoma stem cells
(MBSCs) in medulloblastoma (MB) heterogeneity
and relapse. MBSCs possess the ability to self-renew
while differentiating into phenotypical and
functional heterogeneous progenies. The possible
existence of MBSC subpopulations further
contributes to MB heterogeneity. When treated
with chemoradiotherapy, insensitive MB cells will
survive and lead to MB relapse. Meanwhile, the
transition between epithelial and mesenchymal
properties of MB cells through the epithelial–
mesenchymal transition (EMT) and mesenchymal–
epithelial transition (MET) programs also cause MB
relapse by endowing MB cells with stemness and
multidrug resistance features.

Fig. 2. Cells of origin of medulloblastomas (MBs)
and a summary of the related genetically
engineered mouse (GEM) models. The top panels
are adapted from the review by Rusert et al.(2) EGL,
external granular layer; GNP, granular neuropro-
genitor; RL, rhombic lip; SHH, Sonic Hedgehog; VZ,
ventricular zone; WNT, Wingless.
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and varying methods, such as flow cytometry, xenograft mod-
els, and lineage tracing.
In 2003, a CD133+ ⁄Nestin+ cell from human MB tissue was

first reported, which shows a marked capacity for proliferation,
self-renewal, and differentiation in vitro.(15) Further exploration
showed that, in an immunodeficient mouse, 100 CD133+ cells
were sufficient to produce a tumor resembling the original
human tumor, whereas 100 000 CD133� cells could not,(28)

indicating that CD133 serves as a marker of MBSCs. How-
ever, these findings were called into question by later reports
showing that tumor-initiating properties were also possessed
by CD133� MB cells.(29,30) These discrepancies suggest more
efforts need to be made to effectively single out MBSCs.
The GEM models established based on the molecular classifi-

cation of MB facilitated the identification of MBSCs. In 2009, a
tumor-propagating CD15+ cell was isolated from a Patched hap-
loinsufficient (Ptch+/�) MB model.(29) These cells were suggested
to represent progenitor-like cells as they did not display multilin-
eage differentiation or form neurospheres in stem-cell growth
conditions.(29) However, this was challenged by a study showing
that CD15+ MB cells from Ptch+/� mice can be propagated long
term in similar conditions while showing stem-like and tumor-
initiating capacity.(31) Recently, quiescent Sox2+ MB cells from
post-irradiated Ptch+/� mice were found to be tumorigenic.(32)

Interestingly, more than 80% of Sox2+ cells were also CD15+,
while Sox2+ cells formed a minority (<10%) of the CD15+ popu-
lation; these results indicated that MB relapse may actually be
propagated by a subset of CD15+ cells that are also Sox2+.(32)

Medulloblastoma stem cells identified in the more aggressive
Group 3 MB have rarely been reported. Recently, tumor-derived
neurosphere cell lines from a MYCN-driven Group 3 MB were
established.(33) These highly tumorigenic cells displayed fea-
tures of partially committed neural stem and progenitor cells
(i.e., upregulation of CD133, Nestin, and Musashi.(33) As MB
patients harboring stem-like tumor cells that display stemness
signatures are often characterized by poor prognoses,(15,28,34)

more research needs to be focused on identifying MBSCs in the
more aggressive MB subtypes, Group 3 and Group 4.
Additionally, MBSCs can also be sorted out by markers such

as CD271(35) and ABCG2 (marker of the SPs),(36) each repre-
senting a subpopulation efficient in tumor initiation or propa-
gation.

Regulation of MBSC Key Properties on MB Relapse and
LMD

Accumulating research on MBSCs indicates that the key prop-
erties related to MB relapse and LMD are stemness, therapeu-
tic resistance, invasion, and motility. The stemness property is
extremely vital, as it allows MBSCs to reproduce tumors in
both post-surgical residual disease and LMD.

Critical regulator candidates of MBSC stemness. Shh signaling
pathway. The Shh pathway is the major mitogenic regulator
that promotes granule neuron progenitor proliferation.(37)

Excessive activation of Shh pathways had been reported to
cause MB tumorigenesis.(37)

Unlike the CSCs in human leukemia, which are more quies-
cent than the “blasts” that make up the majority of the tumor,
brain CSCs seem to show higher proliferation than do non-
CSCs from the same tumor.(15,28) Consistent with this, when
the aforementioned CD15+ MBSCs were compared with those
of CD15� cells in Ptch+/� MB, CD15+ cells expressed
increased levels of Shh target genes Gli1 and CyclinD1, and
showed higher incorporation levels of thymidine in vitro and

BrdU in vivo.(29,32) This evidence suggests that the increased
proliferative capacity of CD15+ MBSCs is closely related with
increased Shh pathway activation.
The transcription factors Gli1 ⁄2 the main effectors of the

Shh pathway, have been reported to interact with stem-related
factors, such as Nanog,(38) MYCN,(39) and Bmi-1, in the self-
renewal regulation of MBSCs. The reprogramming factor
Nanog was found highly expressed in stem cells from postnatal
cerebellum and MB, and its specific cis-regulatory sequences
were direct targets of Gli1/2.(38) When the Shh pathway was
blocked by Smo-antagonist KAAD-cyclopamine, the expres-
sion of Nanog was reduced, and the self-renewal of MB neuro-
spheres was also significantly inhibited(38) (Fig. 3).
A member of the polycomb protein family, Bmi-1, is a key

regulator of stemness.(40) A direct feedback mechanism
between downregulators of bmi-1 and Shh signaling was found
in CD133+ MBSCs, indicating that bmi-1 and Shh are mutu-
ally indispensable in MBSC maintenance.(41) In addition, bmi-
1 was also found to promote the self-renewal and tumorigenic-
ity of CD15+ MBSCs in vivo through reciprocal promoter
occupancy with FoxG1.(42) Together, these findings suggest
that the Shh pathway plays a key role in regulating the self-
renewal and maintenance of MBSCs (Fig. 3).
MYC family. Group 3 MB is characterized by elevated

expression of MYC and LCA histopathology. Medulloblastoma
patients with MYC amplification have a particularly high risk
of relapse and the poorest prognosis of all MB patients.(2)

Early in 2006, when co-overexpressed with a neuronal dif-
ferentiation repressor gene REST/NRSF, MYC was shown to
block the differentiation of NSCs derived from the external
germinal layer and cause MB formation.(43) Recently, JQ1, a
small molecule inhibitor uniquely targets BRD4 (a key media-
tor of MYC-driven transcription programs), could strongly
repress the expression of critical stem-related factors Sox2,
Nestin, and Nanog in MB cells.(44) Moreover, JQ1 strongly
suppressed the ability of these cells to form neurospheres
in vitro and tumors in vivo.(44) These results indicate that
MYC is tightly associated with MBSC stemness.
Another MYC family member, MYCN, was shown to be aber-

rantly amplified across MB subtypes.(45) Notably, Ahmad et al.
recently established a MYCN-driven MB displaying the large-
cell histopathology and expression profiles resembling Group 3
MB. Furthermore, CD133+ neurosphere cell lines were estab-
lished, the self-renewal and growth of which were highly depen-
dent on MYCN.(33) Specifically, the neurospheres showed
restricted growth and reduced Ki-67, Nestin, and CD133 after
48 h of MYCN withdrawal,(33) indicating that MYCN is critical
in the development and maintenance of aggressive MBSCs.
Notch signaling pathway. The Notch pathway is known for

its regulation of stem cells in both normal and cancerous brain
tissue. Hes1, the main effector of the Notch pathway, was
found upregulated exponentially in CD133+ MB cells. When it
was downregulated by Notch pathway c-secretase inhibitors,
the CD133+ MB cells and SP were largely reduced,(46) indicat-
ing that the Notch pathway plays an important role in MBSC
self-renewal. Furthermore, Notch signaling was shown to inter-
act with hypoxia-inducible factor-1a to maintain NSCs and
MBSCs in an undifferentiated status.(47) Particularly, stimulat-
ing Notch1 with Dll4 ligand under hypoxic conditions drives
the expansion of MB-derived CD133+ ⁄Nestin+ precursors,
while treating with c-secretase inhibitors promoted the neu-
ronal differentiation of these cells (Fig. 4).(47)

MicroRNA. MicroRNA, an endogenous, 19–25-nt long, non-
coding RNA, has been broadly shown to be involved in MB
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tumorigenesis and progression,(48) and its roles in MBSCs are
becoming gradually illuminated. For example, miR-199b-5p
was found to regulate the self-renewal of CD15+ and CD133+

MBSCs by interacting with Hes1 through reciprocal binding

on the promoter regions.(49,50) The famous stem-related miR-
34a also regulates MBSC maintenance by inhibiting the PI3K
⁄Akt ⁄PTEN pathway.(51) When miR-34a was overexpressed,
the proportion of active Akt decreased, and the subpopulations

Fig. 3. Regulation mechanisms of medulloblastoma stem cell key properties in relation to medulloblastoma relapse and leptomeningeal dissem-
ination. Akt, protein kinase B; EMT, epithelial–mesenchymal transition; FoxG1, Forkhead box 1; HIF-1a, hypoxia-inducible factor 1a; LRP, low-den-
sity lipoprotein receptor-related protein; mTOR, mammalian target of rapamycin; MYC, v-Myc avian myelocytomatosis viral oncogene homolog;
NCID, Notch1 intracellular domain; PI3K, phosphatidylinositol 3-kinase; PTEN, phosphatase and tensin homolog; Shh, Sonic Hedgehog; uPA,
urokinase-type plasminogen activator; uPAR, uPA receptor.

Fig. 4. Relationship between medulloblastoma
(MB) leptomeningeal dissemination, MB stem cells
(MBSCs), and epithelial–mesenchymal transition.
The epithelial–mesenchymal transition program
allows the epithelial MB cells to acquire a
mesenchymal phenotype with increased motility
and invasiveness, facilitating the initiation of MB
dissemination. Inversely, the mesenchymal–
epithelial transition (MET) program enables
mesenchymal MB cells to settle and self-renew,
leading to medulloblastoma leptomeningeal
dissemination and relapse. CSF, cerebrospinal fluid.

© 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd
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of CD15+ and CD133+ cells were significantly reduced.(51)

Moreover, the tumorigenic properties of MBSCs can also be
strongly inhibited by miR-135a.(52) Together, these data sug-
gest that microRNAs may serve as powerful tools in eradicat-
ing MBSCs.

Therapeutic resistance regulation mechanisms of MBSCs. The
resistance characteristics possessed by CSCs, such as quies-
cence, activation of pro-survival ⁄ anti-apoptosis pathways, and
interaction with microenvironmental factors (i.e., hypoxia),(17)

constitute an additional level of mechanisms that lead to treat-
ment failure.
Targeting the Shh pathway seemed to be an effective way to

eradicate MBSCs. However, the results were disappointing.
Although vismodegib was found to be effective in eliminating
most proliferating MB cells, it also significantly increased the
frequency of quiescent Sox2+ MB cells in Ptch+/� MB mouse
models, strongly indicating that the quiescence feature can
serve as an efficacious defense mechanism for MBSCs in
resisting chemoradiotherapy.(32)

Another example is the activation of the PI3K ⁄Akt signaling
pathway, which promotes tumor cell survival by regulating
multiple apoptosis-related proteins (i.e., the Bcl-2 family).(53)

Hambardzumyan et al. discovered a Nestin+ MBSC in the
perivascular niche in different post-irradiated Shh-MB mouse
models that could re-enter the cell cycle (72 h after radiation)
through radiation-induced PTEN loss and the subsequent acti-
vation of the PI3K ⁄Akt pathway.(54) When pretreated with the
PI3K ⁄Akt inhibitor perifosine, Nestin+ MBSCs displayed
increased sensitivity to radiation-induced apoptosis,(54) indicat-
ing that activation of the PI3K ⁄Akt pathway helps Nestin+

MBSCs to survive radiotherapy.
The Wnt pathway may also play a role in the therapeutic

resistance of MBSCs. The LRPs are membrane co-receptors of
the Wnt ⁄b-catenin pathways(55) and have been shown to medi-
ate the resistance phenotypes of many malignancies.(56) Annabi
et al.(56) found that DAOY CD133+ MB cells mainly express
LRP5 ⁄8, whereas under nutrient derivation, these cells acquire
an increase of CD133+ cells expressing LRP1 ⁄ 1b ⁄ 5, indicating
that the LRP expression pattern mediates MBSC adaptation to
nutrient derivation.

Leptomeningeal dissemination of MB, EMT, and MBSCs. Lep-
tomeningeal dissemination, the metastatic spread of tumor cells
through the cerebrospinal fluid to the brain and spinal cord, is
a defining characteristic of MB and is associated with short
survival time for MB patients.(57) Recently, the characteristics
shared by CSCs and cancer cells in the EMT in many malig-
nancies provided new insights into the elusive mechanisms of
LMD.(58) The EMT program is a process characterized by the
repression of epithelial markers (i.e., E-cadherin), the acquisi-
tion of mesenchymal makers (i.e., vimentin, N-cadherin) and
the loss of cell adhesion. Together with its reverse process,
mesenchymal–epithelial transition, the EMT has been found to
play vital roles in tumor metastasis (Fig. 4).(59)

The nuclear translocation of b-catenin (Wnt pathway key
effector) was found to be induced by irradiation therapy in MB
cells.(60) Interestingly, in the nucleus, b-catenin was then found
to activate the EMT effector MMPs, such as MMP-9, and to pro-
mote MB invasion and migration.(60) The uPA ⁄uPAR complex,
which is a major regulator of ECM degradation,(61) has been
found to be activated by intermittent hypoxia and can induce the
activation of the EMT programs of MB cells.(61) It has been
reported that uPAR+ cells in small-cell lung cancer are multidrug
resistant and highly clonogenic and co-express CSC markers
CD44 and multidrug resistance protein 1 (MDR1).(62) Thus,

uPA ⁄uPAR may also be responsible for MB cell acquisition of
therapeutic resistance and stem-like properties.
In spite of these findings, it is critical to define the role of

MYC or MYCN in the more malignant MB subtypes, Group 3
and Group 4, the metastasis rates of which are up to 45% and
40%, respectively.(2)

Approaches for Eradicating MBSCs

Cancer stem cells can be eliminated through a plethora of
methods, such as blocking pro-survival ⁄ anti-apoptosis path-
ways, targeting the mechanisms maintaining quiescence, or
disrupting CSC interaction with the microenvironment.(63,64)

The molecular classification of MB has undoubtedly helped
develop therapeutic strategies for targeting unique signaling
pathways, specific oncogenes, or tumor suppressor genes aber-
rantly regulated in specific MB subtypes. However, many of
these targeted therapies poorly eliminate MBSCs.(32,33)

To date, most studies aiming to eradicate MBSCs have
focused on targeting specific signaling pathways. The preceding
sections have discussed that when the Notch pathway was
blocked by c-secretase inhibitors, miR-199b-5p, or exposure to
20% oxygen concentration, the fractions of stem-like CD133+,
CD15+ MB cells and SPs were significantly reduced. Inhibiting
the PI3K ⁄Akt pathway also seems to be effective in removing
MBSCs in some contexts. Apart from the aforementioned peri-
fosine, GDC-0941, which is another highly specific PI3K inhibi-
tor, could significantly reduce the stem-like CD133+ MB
subpopulations as well as their clonogenicity.(65) More impor-
tantly, it strongly delayed tumor growth of a mouse that ortho-
topically received the most aggressive Group 3 MB
xenograft.(65)

In addition, the STAT3 pathway was found to be enhanced in
CD133+ MB cells, and the STAT3 inhibitors, cucurbitacin I or
celecoxib, can strongly inhibit the stem-like properties of
CD133+ MBSCs, as well as improve the chemoradiosensitivity
of, and survival time, with CD133+ MBSCs xenografts.(66,67)

Taken together, these data showed that developing agents target-
ing these pathways is promising for the elimination of MBSCs.

Conclusion and Perspectives

Given the pivotal role of stem-like tumor cells in MB relapse
and LMD, improved treatment strategies combining traditional
and MBSC-targeted therapies may be required to significantly
improve the survival time and quality of life of MB patients.
However, despite great efforts and multiple encouraging discov-
eries, the current knowledge of MBSCs is still not sufficient and
the optimal clinical application of MBSC-targeted agents awaits
future groundbreaking work. Goals to achieve include: (i) find-
ing more reliable MBSC markers and gaining a comprehensive
knowledge of the discrepancies between MBSCs and NSCs ⁄neu-
ral progenitor cells to develop agents that uniquely target
MBSCs; (ii) investigating MBSC subclones and the essential
molecular mechanisms they share, or with which they interact;
and (iii) understanding further CSC plasticity and the possibility
that stemness can reflect a transient state rather than a metastable
state, although the flux of non-CSCs into the CSC compartment
appears relatively low.(68)
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Abbreviations

Akt protein kinase B
CSC cancer stem cell
EMT epithelial–mesenchymal transition
GEM genetically engineered mouse
LCA large cell/anaplastic
LMD leptomeningeal dissemination

LRP low-density lipoprotein receptor-related protein
MB medulloblastoma
MBSC medulloblastoma stem cell
miR microRNA
MYC v-Myc avian myelocytomatosis viral oncogene homolog
MYCN v-Myc avian myelocytomatosis viral oncogene

neuroblastoma-derived homolog
NSC neural stem cell
PI3K phosphatidylinositol 3-kinase
PTEN phosphatase and tensin homolog
Shh Sonic Hedgehog
Smo Smoothen
SP side population
STAT3 signal transducer and activator of transcription 3
uPA urokinase-type plasminogen activator
uPAR urokinase-type plasminogen activator receptor
Wnt Wingless
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