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Abstract

This paper assesses the accuracy of decomposing income risk into permanent and

transitory components using income and consumption data. We develop a specific

approximation to the optimal consumption growth rule and use Monte Carlo evi-

dence to show that this approximation can provide a robust method for decomposing

income risk. The availability of asset data enables the use of a more accurate ap-

proximation allowing for partial self-insurance against permanent shocks. We show

that the use of data on median asset holdings corrects much of the error in the

simple approximation which assumes no self-insurance against permanent shocks.
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1 Introduction

Although the increase in income inequality over the last twenty five years in many modern

economies has been well documented, attention has more recently focussed on the extent

to which these increases were driven by the distribution of permanent or transitory shocks

to individual income processes (see Burkhauser and Poupore, 1997; Buchinsky and Hunt,

1999; Moffitt and Gottschalk, 2002; Meghir and Pistaferri, 2004). Cross sectional income

surveys alone cannot be used to make this distinction and even panel data cannot distin-

guish unexpected or uninsured events from predictable or insured ones. The combination

of consumption and income data can reveal much more (see Blundell and Preston, 1998;

Krueger and Perri, 2002). Under an assumption about intertemporal consumption choices

such data can identify the distribution of uninsured transitory and permanent shocks to

income.

This paper assesses the accuracy of identifying income risk using income and con-

sumption data. It develops a specific approximation to the optimal consumption growth

rule under CRRA preferences and shows that this approximation can provide an accurate

method for decomposing income risk. More precisely, the approximation separates the

variances of the permanent and transitory components of uninsured shocks to income.

This result formalises the empirical approach adopted in Blundell and Preston (1998).

Several papers have looked at the variance of permanent shocks in the US in the 1980s

(Moffitt and Gottschalk 1994, 2002, Meghir and Pistaferri 2004, Blundell, Pistaferri and

Preston 2004). All conclude that permanent variances rose in the early 1980s. There is

less agreement as to what happened subsequently though there is some evidence that it

may have fallen back1. The Monte Carlo exercises in this paper are motivated by the

sorts of numbers found in these papers.

The results in this paper show that a simple approximation to consumption behaviour

can be used to identify the source of income risk using data on consumption inequality.

The simplest approximation is based on individuals being unable to self-insure against per-

manent shocks but being able to insure fully against transitory shocks. This approxima-

tion implies that the cross-section variance of consumption will reflect only accumulated

1This view is supported in Meghir and Pistafferi (2002, p.10), Moffitt and Gottschalk (1994, p.12) and

Blundell, Pistaferri and Preston (2004, p.22).
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permanent shocks to income and further, the amount by which the cross-section variance

of income exceeds the variance of consumption can be attributed to growth in the transi-

tory variance. At a theoretical level, we show the order of the error of this approximation.

Through simulation of individuals choosing consumption in an economy with permanent

and transitory income shocks, we show that the approximation decomposes the income

risk fairly accurately and correctly identifies changes in risk over time.

Error in the approximation arises through underpredicting self-insurance against per-

manent shocks and overpredicting self-insurance against transitory shocks. This error

implies an underestimate of the actual risk to permanent income and an overestimate of

the change in the variance of transitory shocks. The approximation of the consumption

rule can be made more precise if more data is available to the econometrician. The avail-

ability of asset data enables the use of an approximation allowing for partial self-insurance

against permanent shocks. The importance of using this additional information depends

on the extent of self-insurance: if individuals are impatient, asset holdings are limited and

the simple approximation is accurate. Further, we show that using data on median asset

holdings corrects much of the error in the simple approximation and that using data on

individual asset holdings does not add much improvement beyond this.

An alternative to the approximation we develop would be to estimate the income

process structurally through dynamic programming. Such an approach requires estimates

of preference parameters whereas although our approximation assumes a CRRA functional

form, it does not require estimates of risk aversion or the discount rate. Further, the

approximation does not have to specifiy the complete environment facing the individual.

In section 2 we derive the approximations which relate consumption inequality to

income risk. Section 3 describes the environment we simulate and reports the results of

our Monte Carlo experiments. Section 4 concludes.
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2 The Evolution of Income and Consumption Vari-

ances

2.1 The income process

Consider an individual living for T periods. Until retirement at age R they work fixed

hours to earn an income which evolves stochastically according to a process with a

permanent-transitory decomposition. Specifically suppose log income in period t can

be written

ln yt = lnYt + ut t = 1, . . . , R

where Yt represents the permanent component of income and ut the transitory shock in

period t. The final T −R periods of life are spent in mandatory retirement with no labour

income.

The permanent component is assumed to follow a random walk

∆ lnYt = ηt + vt

where vt is a permanent shock and ηt is a trend common to the members of the cohort.

The process for income can therefore be written

∆ ln yt = ηt +∆ut + vt. (1)

We assume the shocks are orthogonal and unpredictable given prior information

E (ut|Yt−1, ut−1, vt−1) = E (vt|Yt−1, ut−1, vt−1)

= E (utvt|Yt−1, ut−1, vt−1) = 0.

This is a popular specification compatible with an MA(1) process for changes in log

income2.

We let νt = (vt, ut)
′ denote the vector of shocks.

2See Macurdy 1982, Abowd and Card 1989, Moffitt and Gottschalk 2002, Meghir and Pistaferri 2004

for examples of papers modelling the time series properties of individual earnings using longitudinal data.
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2.2 Consumption choice

Consumption and income are linked through the intertemporal budget constraint

T−t
∑

i=0

ct+i

(1 + r)i
+

AT+1

(1 + r)T−t
=

R−t
∑

i=0

yt+i

(1 + r)i
+ At (2)

where ct denotes consumption in period t, At is assets at beginning of period t, r is a

real interest rate, assumed for simplicity to be constant and T is length of lifetime. The

terminal condition that AT = 0 implies that individuals will not borrow more than the

discounted sum of the minimum income they will receive in each remaining period.

Suppose the household plans at age t to maximise expected remaining lifetime utility

Et

[

T−t
∑

i=0

U(ct+i)

(1 + δ)i

]

where δ is a subjective discount factor and U : R → R is a concave, three times continu-

ously differentiable utility function.

The solution to the consumer problem requires expected constancy of discounted

marginal utility λt+k across all future periods

U ′(ct+i) = λt+i

Etλt+i =

(

1 + δ

1 + r

)i

λt, i = 0, 1, . . . , T − t (3)

This is the familiar Euler condition for consumption over the life-cycle (see Hall 1978,

Attanasio and Weber 1993, for example).

We show in the appendix that

∆ ln ct = εt + Γt + O(Et−1εt
2)

where εt is an innovation term; Γt is the anticipated gradient to the consumption path

reflecting precautionary saving and intertemporal substitution, common within a cohort

if we assume CRRA preferences, and O(x) denotes a term with the property that

lim
x→0

O(x)/x <∞.
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The innovation εt is tied to the idiosyncratic income shocks ut and vt through the

lifetime budget constraint (2). We show below that we can approximate the relation

between these innovations through a formula

∆ ln ct = πt [vt + αtut] + Γt + O(‖νt‖
2) + O(Et−1‖νt‖

2) (4)

involving two additional parameters

• αt: an annuitisation factor capturing the importance of transitory shocks to lifetime

wealth relative to permanent shocks.

• πt: a self-insurance factor capturing the significance of asset holdings as a component

of current human and financial wealth.

To quantify the annuitisation factor, we need information on the time horizon and the

interest rate. To quantify the self-insurance factor we need information on current asset

holdings and on expected wage growth.

2.3 Variances

We assume that the variances of the shocks vt and ut are the same in any period for

all individuals in any cohort but that these variances are not constant over time. The

cross-sectional covariances of the shocks with previous periods’ incomes are assumed to

be zero. In this discussion we also assume that shocks are uncorrelated across individuals.

Define V (ut) to be the cross-section variance of transitory shocks in period t and

V (vt) to be the corresponding variance of permanent shocks. Let π̄t and V (πt) be the

cross section mean and variance of πt. Then the growth in the cross-section variance and

covariances of income and consumption take the form

Theorem 1 Assuming an income process (1) then

∆V(ln yt) = V(vt) + ∆V(ut)

∆V(ln ct) = (π̄t
2 +V(πt))V(vt) + (π̄t

2 +V(πt))α
2
tV(ut)

+ O(Et−1‖νt‖
3)

∆Cov(ln ct, ln yt) = π̄tV(vt) + ∆[π̄tαtV(ut)]

+ O(Et−1‖νt‖
3). (5)
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Proof: See appendix.

Permanent inequality (V(vt)) or growth in uncertainty (∆V(ut)) both result in growth

of income inequality. Observing the cross-section distribution of income cannot, on its

own, distinguish these. Taking income inequality together with consumption inequality

and sufficient information on πt and αt we are able, however, to use the life-cycle model to

separate the growth in permanent inequality from the growth in transitory uncertainty.

From these expressions we can approximately identify the growth in the transitory

variance and the level of the permanent variances from the growth in consumption and

income variances. The approximation used can take differing degrees of accuracy depend-

ing on the information available and assumptions made about πt and αt.

1. Particularly simple forms follow by allowing π̄t ' 1, V(πt) ' 0 and αt ' 0, implying

no self-insurance and a long horizon. Such an approximation might be attractive if

we lack information on assets. Specifically

∆V(ln ct) ' V(vt) (6)

∆Cov(ln ct, ln yt) ' V(vt)

so that the within cohort growth in the variance of consumption identifies the vari-

ance of permanent shocks. This has the implication that the growth should always

be positive, as noted, for example, by Deaton and Paxson (1994). The difference

between the growth in the within cohort variances of income and consumption then

identifies the growth in the variance of transitory shocks through the first equa-

tion in (5). The evolution of the covariance should follow that of the consumption

variance and this provides one testable overidentifying restriction per period of the

data.

2. If we have information on mean or median asset levels and mean or median incomes

by age (but lack further information on the distribution) and are prepared to postu-

late an expected future path of increments to permanent income ηt then we might

be prepared to approximate π̄t by its value at mean (or median) income and assets,
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say π̃t, and take an approximation setting V(πt) ' 0 so that

∆V(ln ct) ' π̃t
2V(vt) + π̃t

2α2
tV(ut)

∆Cov(ln ct, ln yt) ' π̃tV(vt) + ∆[π̃tαtV(ut)] (7)

3. With information on the distribution of assets we might calculate π̄t and V(πt) and

make full use of all terms in (5).

Cross section variances and covariances of log income and consumption can be esti-

mated by corresponding sample moments with precision given by standard formulae. The

underlying variances of the shocks can then be inferred by minimum distance estimation

using (5) after choosing or estimating values for π̄t, V(πt) and αt, the minimised distance

providing a χ2 test of the overidentifying restrictions.

3 Monte-Carlo

3.1 Model and Calibration

Transitory and permanent shocks to log income are assumed log-normally distributed and

truncated below.

ln yt = lnYt + ut , ut ∼ N
(

0, σ2
ut

)

(8)

lnYt = ηt + lnYt−1 + vt , vt ∼ N
(

0, σ2
vt

)

(9)

ηt = −
∆σ2

ut
+ σ2

vt

2
(10)

Transitory shocks are assumed to be i.i.d. within period with variance growing at a de-

terministic rate. In certain simulations permanent shocks are also i.i.d. within period

with constant variance. We also consider adding stochastic volatility to the model. In

such cases the permanent variance follows a two-state, first-order Markov process with

the transition probability between alternative variances, σ2
v,L and σ2

v,H , given by β.

σ2
v,L σ2

v,H

σ2
v,L 1− β β

σ2
v,H β 1− β
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Utility is of the constant elasticity of substitution form,

U(ct) =
γ

1 + γ
c
1+1/γ
t . (11)

Parameter values consistent across simulations are given in Table 1.

Table 1: Parameter Values

Parameter Value Parameter Value Parameter Value

γ -0.667 T 50 A0 0

r 0.015 R 40 AT+1 0

3.2 Results

The aim of the Monte Carlo exercise is to show the accuracy of estimation of the vari-

ances by approximation. In particular, we want to show the accuracy of estimates of the

permanent variance and of changes in the transitory variance. We consider six sets of

values for the variances, shown in Table 2. Experiments 1 and 2 have constant permanent

variance. Experiments 3, 4, 5 and 6 have stochastic volatility. For these later four exper-

iments, consumers believe that the permanent variance has an ex-ante probability β of

changing in each t. In the simulations, the variance actually switches only once and this

happens in period S, which we assume is common across all individuals. In other words,

the distribution of idiosyncratic shocks is subject to a common shock.3 The difference

between experiments 3, 4, 5 and 6 is in the degree of impatience. In the base case sub-

jective discount rate δ = 0.02, whereas in the next two it takes higher and lower values of

δ = 0.04 and 0.01 and in the fourth we take a mixed population with half at 0.02 and a

quarter each at 0.04 and 0.01.

For each experiment, we simulate consumption, earnings and asset paths for 50,000

individuals. To obtain estimates of the variance for each period, we draw random cross

3In solving the model for a particular individual, it is irrelevant whether a particular shock is idiosyn-

cratic or common because the model is partial equilibrium.
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sectional samples of 2000 individuals for each period from age 10 to 30. For the cases

where there is a jump change in the variance at S = 20, this provides 9 years before the

jump and 9 years after. We repeat this process 1000 times to provide information on the

properties of the estimators.

As discussed above, we consider three approximations of differing subtlety. The sim-

plest approximation, based on (6) and labelled uncorrected, would be accurate if it were

not possible to insure at all against permanent shocks. In practice, individuals can use

savings to partially insure against permanent shocks because individuals have finite hori-

zons. We might therefore expect the accuracy of this simple approximation to depend

on the cost of saving, which is explored by varying the discount rate. If we also have

information on asset holdings, then the approximation can be corrected to take account

of the amount of self-insurance through saving and we would not expect differences in the

cost of saving to affect the accuracy of the corrected estimates.

The quality of the correction depends on the quality of information about assets. In

one set of estimates, based on (7) and labelled corrected at median, we calculate πt at

sample median values of assets and incomes assuming known ηt and r. In another set,

based on (5) and labelled fully corrected, we use the true means and variances of π, π̄t

and V (πt) as calculated from the full 50,0000 simulated cases.

In Figures 1 and 2 we compare means of the corrected and uncorrected estimates of

the permanent variances for the six experiments. A three year moving average has been

applied to smooth the time series variation in the estimates. In Table 3 we report average

values across the nine year periods which come before and after jumps in the variance in

the stochastic jump case.

Note firstly that the uncorrected estimates consistently underestimate the permanent

variance and do so increasingly severely as age increases. This is because throughout these

simulations π̄t is consistently below unity and falling with age as can be seen for four of

the cases in Figure 3. Furthermore the value of π̄t is lower the more patient individuals are

and therefore the more inclined to accumulate assets, hence the approximation is better

if consumers are more impatient as is evident from comparisons within Figure 24.

4Carroll (1997) finds that households hold only small buffer stocks of saving until about age 50 (and

then accumulate substantial retirement savings). This low level of asset holdings suggests individuals
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Table 2: Experiment Parameter Values

Expt No Description δ ∆σ2
ut

σ2
vt

β S

1 Constant low var 0.02 0.01 0.005 0.0

2 Constant high var 0.02 0.01 0.015 0.0

3 Stochastic volatility 0.02 0.01 0.015 → 0.005 0.05 20

4 Impatience 0.04 0.01 0.015 → 0.005 0.05 20

5 Patience 0.01 0.01 0.015 → 0.005 0.05 20

6 Heterogeneity mixed 0.01 0.015 → 0.005 0.05 20

Table 3: Estimated and True Permanent Variances

Expt No Period 10-19 Period 20-29

Uncorrected Corrected Corrected Truth Uncorrected Corrected Corrected Truth

at median fully at median fully

1 0.00404
(0.00032)

0.00480
(0.00047)

0.00489
(0.00048)

0.0050 0.00327
(0.00050)

0.00481
(0.000109)

0.00491
(0.00109)

0.0050

2 0.00950
(0.00084)

0.01390
(0.00132)

0.01422
(0.00135)

0.0150 0.00610
(0.00125)

0.01395
(0.00279)

0.01447
(0.00287)

0.0150

3 0.00987
(0.00086)

0.01385
(0.00134)

0.01413
(0.00137)

0.0150 0.00299
(0.00116)

0.00460
(0.00242)

0.00473
(0.00248)

0.0050

4 0.01270
(0.00101)

0.01423
(0.00126)

0.01442
(0.00129)

0.0150 0.00425
(0.00136)

0.00460
(0.00216)

0.00467
(0.00221)

0.0050

5 0.00871
(0.00080)

0.01374
(0.00139)

0.01403
(0.00141)

0.0150 0.00252
(0.00108)

0.00450
(0.00256)

0.00467
(0.00261)

0.0050

6 0.00941
(0.00091)

0.01376
(0.00139)

0.01361
(0.00135)

0.0150 0.00345
(0.00118)

0.00488
(0.00245)

0.00547
(0.00238)

0.0050
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Table 4: Tests of Overidentifying Restrictions

All tests χ2
19

Expt No Uncorr Corrected Corrected

at median fully

1 85.429
p=0.000

18.162
p=0.537

18.081
p=0.541

2 263.608
p=0.000

19.251
p=0.489

18.576
p=0.519

3 124.579
p=0.000

19.532
p=0.478

19.155
p=0.494

4 52.282
p=0.006

18.342
p=0.531

18.217
p=0.537

5 161.345
p=0.000

20.025
p=0.456

19.561
p=0.476

6 159.218
p=0.000

26.823
p=0.219

27.623
p=0.201

Nonetheless broad differences between simulations with different values of the variance

V(vt) are clearly picked up. The drop in the variance in the cases with stochastic volatility

is plainly identified on average, particularly when there is some aggregation over years

either side of the jump, as can be seen in Table 3.

Correction for self-insurance possibilities, even only using sample median assets and

incomes, secures a considerable improvement in estimates with the means across Monte

Carlo replications very close to the true values in the simulations and no evident deterio-

ration in quality with age.

Table 4 reports mean values across simulations of the χ2 tests of overidentifying re-

strictions calculated with each set of estimates. While the equality of changes in variances

and covariances implied by (6) is on average emphatically rejected, the approximate re-

strictions implied by (7) and (5) are contrastingly comfortably accepted.

are impatient and there is limited self-insurance against permanent shocks. Therefore, the closer the

economy is to the buffer stock model, the closer our simple approximation will be to identifying the true

decomposition of permanent and transitory shocks.
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Figure 4 shows that the transitory variances are picked up with a high degree of

accuracy in corrected and uncorrected estimates.

4 Conclusions

Increases in income inequality may reflect the variance of permanent shocks or increases

in the variability of transitory shocks. The differing sources of risk have very different im-

plications for welfare. In this paper, we show that simple approximations to consumption

rules can be used to decompose income variability into its components. In assessing the

accuracy of this decomposition we show that it is able to map accurately the evolution of

transitory and permanent variances of income shocks.
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A.1 Appendix: Proof of Theorem 1

The approximation in section 2.3 uses the Euler equation to relate consumption growth

to innovations. These innovations are related to income shocks through an approxima-

tion to the budget constraint. The validity of the approximation depends on the order

of the error in approximations to the Euler equation and to the budget constraint. The

aim of this appendix is firstly to show how the approximation relating consumption vari-

ance to income variance is derived and secondly to show the order of the error of this

approximation.

A.1.1 Approximating the Euler Equation

We begin by calculating the error in approximating the Euler equation.

By (3)

EtU
′(ct+1) = U ′(ct)

(

1 + δ

1 + r

)

= U ′(ct + Γt+1) (12)

for some Γt. If preferences are CRRA then Γt+1 does not depend on ct and is common to

all households.

By exact Taylor expansion of marginal utility in t+ 1 around ct +Γt+1, there exists a

c̃ between ct + Γt+1 and ct+1 such that

U ′(ct+1) = U ′(ct + Γt+1)

[

1 +
1

γ(ct + Γt+1)
[∆ ln ct+1 − Γt+1] (13)

+
1

2
β(c̃, ct + Γt+1)[∆ ln ct+1 − Γt+1]

2

]

where γ(c) ≡ U ′(c)/cU ′′(c) < 0 and β(c̃, c) ≡ [c̃2U ′′′(c̃) + c̃U ′′(c̃)] /U ′(c).

Taking expectations of (14)

EtU
′(ct+1) = U ′(ct + Γt+1)

[

1 +
1

γ(ct + Γt+1)
Et[∆ ln ct+1 − Γt+1] (14)

+
1

2
Et

{

β(c̃, ct + Γt+1)[∆ ln ct+1 − Γt+1]
2
}

]

Substituting for EtU
′(ct+1) from (12),

1

γ(ct + Γt+1)
Et[∆ ln ct+1 − Γt+1] +

1

2
Et

{

β(c̃, ct + Γt+1)[∆ ln ct+1 − Γt+1]
2
}

= 0
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and thus

∆ ln ct+1 = Γt+1 −
γ(ct + Γt+1)

2
Et

{

β(c̃, ct + Γ + t+ 1)[∆ ln ct+1 − Γt+1]
2
}

+ εt+1 (15)

where the consumption innovation εt+1 satisfies Etεt+1 = 0. As Etε
2
t+1 → 0, β(c̃, ct+Γt+1)

tends to a constant and therefore by Slutsky’s theorem

∆ ln ct+1 = εt+1 + Γt+1 + O(Et|εt+1|
2) (16)

The log of consumption therefore follows a martingale process with common drift.

A.1.2 Approximating the Lifetime Budget Constraint

The second step in the approximation is relating income risk to consumption variability.

In order to make this link between the consumption innovation εt+1 and the permanent

and transitory shocks to the income process, we loglinearise the intertemporal budget

constraint using a general Taylor series approximation (extending the idea in Campbell

1993).

Define a function F : RN → R by F (ξ) = ln
∑

i exp ξi. By exact Taylor expansion

around an arbitrary point ξ0 ∈ RN

F (ξ) = ln
N
∑

i=0

exp ξ0
i +

N
∑

i=0

exp ξ0
i

∑N
j=0 exp ξ

0
j

(ξi − ξ0
i ) (17)

+
1

2

N
∑

i=0

N
∑

j=0

∂2F (ξ̃)

∂ξi∂ξj
(ξi − ξ0

i )(ξj − ξ0
j )

where ξ̃ lies between ξ and ξ0. The use of ξ̃ is to make the expansion exact. The coefficients

in the remainder term are given by

∂2F (ξ̃)

∂ξi∂ξj
=

exp ξ̃i
∑

j exp ξ̃j
(δij −

exp ξ̃i
∑

j exp ξ̃j
),

where δij denotes the Kronecker delta. These coefficients are bounded because 0 <

exp ξ̃i/
∑

j exp ξ̃j < 1.
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Hence, taking expectations of (17) subject to information set I

EI [F (ξ)] = ln
N
∑

i=0

exp ξ0
i +

N
∑

i=0

exp ξ0
i

∑N
j=0 exp ξ

0
j

(EIξi − ξ0
i ) (18)

+
1

2

N
∑

i=0

N
∑

j=0

EI

(

∂2F (ξ̃)

∂ξi∂ξj
(ξi − ξ0

i )(ξj − ξ0
j )

)

We apply this expansion firstly to the expected present value of consumption,
∑T−t

i=0 ct+i(1+

r)−i. Let N = T − t and let

ξi = ln ct+i − i ln(1 + r) (19)

ξ0
i = Et−1 ln ct+i − i ln(1 + r), i = 0, . . . , N.

Then, substituting equation (19) into equation (18) and noting only the order of magni-

tude for the remainder term,

EI

[

ln
T−t
∑

i=0

ct+i

(1 + r)i

]

= ln
T−t
∑

i=0

exp[Et−1 ln ct+i − i ln(1 + r)]

+
T−t
∑

i=0

θt+i [EI ln ct+i − Et−1 ln ct+i]

+ O(EI‖ε
T
t ‖

2) (20)

where

θt+i =
exp ξ0

i
∑N

j=0 exp ξ
0
j

=
exp[Et−1 ln ct+i − i ln(1 + r)]

∑T−t
j=0 exp[Et−1 ln ct+j − j ln(1 + r)]

,

and εTt denotes the vector of future consumption innovations (εt, εt+1, . . . , εT )
′.The term

θt+i can be seen as an annuitisation factor for consumption.

We now apply the expansion (18) to the expected present value of resources,
∑R−t

i=0 (1+

r)−iyt+i + At − AT+1(1 + r)−(T−t) Let N = R + 1− t and let

ξi = ln yt+i − i ln(1 + r)

ξ0
i = Et−1 ln yt+i − i ln(1 + r) i = 0, . . . , N − 1 (21)

ξN = ln[At − AT+1(1 + r)−(T−t)]

ξ0
N = Et−1 ln[At − AT+1(1 + r)−(T−t)]

18



Then, substituting equation (21) into equation (18), and again noting only the order of

magnitude for the remainder term,

EI ln

(

R−t
∑

i=0

yt+i

(1 + r)i
+ At −

AT+1

(1 + r)T−t

)

= ln

[

R−t
∑

i=0

exp[Et−1 ln yt+i − i ln(1 + r)] + expEt−1 ln[At −
AT+1

(1 + r)T−t
]

]

+ πt

R−t
∑

i=0

αt+i [EI ln yt+i − Et−1 ln yt+i]

+ (1− πt)

[

EI ln(At −
AT+1

(1 + r)T−t
)− Et−1 ln(At −

AT+1

(1 + r)T−t
)

]

+ O(Et−1‖ν
R
t ‖

2) (22)

where

αt+i =
exp[Et−1 ln yt+i − i ln(1 + r)]

∑R−t
j=0 exp[Et−1 ln yt+j − j ln(1 + r)]

can be seen as an annuitisation factor for income and

πt = 1−
exp ξ0

N
∑N

j=0 exp ξ
0
j

=

∑R−t
i=0 exp[Et−1 ln yt+j − j ln(1 + r)]

∑R−t
i=0 exp[Et−1 ln yt+j − j ln(1 + r)] + expEt−1 ln[At − AT+1/(1 + r)T−t]

is (roughly) the share of expected future labor income in current human and finan-

cial wealth (net of terminal assets) and νRt denotes the vector of future income shocks

(ν ′t, ν
′
t+1, . . . , ν

′
R)
′.

We are able to equate equation (20) and (22) because the realised budget must balance,

and so the expectation of the log budget constraint must also hold. We use (20) and (22),

taking differences between expectations at the start of the period, before the shocks are

realised, and at the end of the period, after the shocks are realised. This gives

εt + O(ε2
t ) + O(Et−1ε

2
t ) = πt(vt + αtut) + O(‖νt‖

2) + O(Et−1‖νt‖
2)

where the left hand side is the innovation to the expected present value of consumption

and the right hand side is the innovation to the expected present value of income. Squaring
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the two sides, equating expectations and eliminating terms which become negligible as

Et−1ε
2
t → 0 shows that terms which are O(Et−1ε

2
t ) are O(Et−1‖νt‖

2). Squaring again and

equating then shows that terms which are O(ε2
t ) are O(‖νt‖

2) + O(Et−1‖νt‖
2). Thus

εt = πt(vt + αtut) + O(‖νt‖
2) + O(Et−1‖νt‖

2)

and

∆ ln ct = Γt + πt(vt + αtut) + O(‖νt‖
2) + O(Et−1‖νt‖

2) (23)

which is equation (4) in the text.

A.1.3 Cross Section Variances

We assume that the variances of the shocks vt and ut are the same in any period for all

individuals in any cohort, that shocks are uncorrelated across individuals and that the

cross-sectional covariances of the shocks with previous periods’ incomes are zero.

Using equation (23) and the equation driving the income process (1) and noting that

Γt is common within a cohort, the growth in the cross-section variance and covariances

of income and consumption can now be seen to take the form5

∆V(ln yt) = V(vt) + ∆V(ut)

∆V(ln ct) = (π̄t
2 +V(πt))V(vt) + (π̄t

2 +V(πt))α
2
tV(ut)

+ O(Et−1‖νt‖
3)

∆Cov(ln ct, ln yt) = π̄tV(vt) + ∆[π̄tαtV(ut)]

+ O(Et−1‖νt‖
3)

using the formula of Goodman (1960) for variance of a product of uncorrelated variables.

5Note that Cov(ln yt−1, ut−1) = V(ut−1) and Cov(ln ct−1, ut−1) = π̄tαtV(ut−1).
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Age

 True V(v)  Est V(v) (uncorr)
 Est V(v) (full corr)  Est V(v) (corr at md)

Low permanent variance

30 35 40 45 50
0

.005

.01

.015

.02

High permanent variance

30 35 40 45 50

Figure 1: Permanent variance estimates
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Age

 True V(v)  Est V(v) (uncorr)
 Est V(v) (full corr)  Est V(v) (corr at md)
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.02
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Patient
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.005
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.02

Heterogeneity
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Figure 2: Permanent variance estimates
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Age

 Stochastic jump  Impatient
 Patient  Heterogeneity

30 35 40 45 50

.2

.4

.6

.8

1

Figure 3: Variation of π̄t
2 with age
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Age

 True DVar(u)  Est DV(u) (uncorr)
 Est DV(u) (full corr)  Est DV(u) (corr at md)
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30 35 40 45 50
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.005

.01

.015
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High permanent variance
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Figure 4: Transitory variance estimates
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