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First paragraph 

Magnetic reconnection is a fundamental process in solar system and astrophysical 

plasmas through which stored magnetic energy associated with current sheets is 

converted into thermal, kinetic and wave energy. Magnetic reconnection also ought to be a 

key process involved in shedding internally-produced plasma from the giant 

magnetospheres at Jupiter and Saturn through topological reconfiguration of the magnetic 

field. Here we report the first encounter of the Cassini spacecraft with an ion diffusion 

region in Saturn’s magnetotail, and additional signatures of magnetic reconnection over 19 

hours. This directly reveals reconnection in fact can act for prolonged intervals (in excess 

of the planetary rotation period) and is a significant pathway for internal plasma loss at 
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Saturn, countering the view of reconnection as a transient method of internal plasma loss 

at Saturn. These results have application to understanding the rapidly rotating 

magnetosphere at Jupiter and also to other rapidly rotating astrophysical magnetospheres. 

Main 

Since the discovery of H2O plumes from the icy moon Enceladus it has become clear that 

the dominant source of plasma in Saturn’s magnetosphere is the ionisation of neutral 

molecules deep within the magnetosphere producing a plasma composed of H2O+, H3O+, 

OH+, collectively referred to as the water group, W+ (1-3). Some of this plasma is lost from 

the system by charge-exchange, the remaining plasma is transported radially outward. 

The radial transport is driven by the centrifugal interchange instability, which is analogous 

to the Rayleigh-Taylor instability with gravity replaced by the centrifugal force associated 

with the rapid rotation of the magnetosphere4. Magnetic reconnection is a process 

involving topological rearrangement of the magnetic field which results in the closure of 

magnetic flux opened at the dayside magnetopause, and also results in mass loss from 

the magnetosphere. In a time-averaged state the outward plasma transport rate should 

match the plasma loss rate through magnetotail reconnection, and the dayside 

reconnection rate should match that in the magnetotail. Observations of magnetotail 

reconnection thus provide a method to test the loss process for this internally-produced 

plasma, as well as the closure of magnetic flux opened at the magnetopause. 

Data from the Cassini spacecraft has only provided indirect evidence for magnetotail 

reconnection5,6,7,8 but the actual region where magnetic fields are merging, known as the 

diffusion region, has not been detected at Saturn, or Jupiter. The diffusion region has a 

two-scale structure with the larger ion diffusion region surrounding the smaller electron 

diffusion region. The ion diffusion region has been detected in observations in Earth’s 
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magnetotail9,10,11, Earth’s magnetosheath12, the solar wind, and at Mars13,14. The plasma 

loss rates inferred from these previous observations of magnetic reconnection at Saturn 

and Jupiter are an order of magnitude too small when compared to the known plasma 

production rates8,15,16. Here we report the first observations of an ion diffusion region in 

Saturn’s magnetotail. These direct observations show that reconnection can occur over 

prolonged intervals, almost an order of magnitude longer than the longest previously 

reported17. 

Figure 1 shows magnetic field and electron data for a six hour interval on 08 October 2006 

when Cassini was located in the post-midnight sector of Saturn’s magnetosphere around 

0130 Saturn Local Time, about 8º north of Saturn’s equatorial plane, and at a radial 

distance of 29 RS, where 1 RS=60268 km. As illustrated in Figure 2, the magnetic field in 

the tail is generally in a swept-back configuration as the result of outward plasma transport 

and angular momentum conservation. This effect is removed by rotating the data into a 

new right-handed coordinate system where the background magnetic field is in the X 

direction, and the Y direction is perpendicular to the plane of the swept-back magnetic field 

(details of the transformation are given in the Supplementary Material). At the beginning of 

the interval, Cassini was located above the magnetotail current sheet (Bx>0), crossing 

below (Bx<0) the centre of the current sheet between 03:30 UT – 03:40 UT. Bz is ordinarily 

expected to be negative. At 03:55 UT Bz reverses sign, which in fact corresponds to 

Cassini crossing the X-line from the tailward to the planetward side as shown in Figure 2. 

The quantity |Bz|/max(|Bx|) is an estimate of the reconnection rate and was found to be 

0.13±0.10 with a peak of 0.66 – hence consistent with fast reconnection13. 

On the tailward side of the X-line a very energetic (~10 keV/q) ion population is observed 

flowing tailward, and slightly duskward. This population is not a field-aligned ion beam and 

is convective (i.e. a has significant perpendicular velocity component). These ions are 
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moving with speeds of 1200 km s-1, a substantial fraction of the lobe Alfvén speed of 

~4000 km s-1 (19) and much larger than corotation speed (~150 km s-1), and are identified 

as the tailward jet from the X-line. On the planetward side of the X-line the field-of-view of 

CAPS does not cover the region where we would expect to see planetward ion beams. 

Later that day as Cassini leaves the diffusion region the plasma flow returns to near 

corotation, but with a tailward and northward component. Detailed analysis of these ion 

flow directions are presented in the Supplementary Material. 

Around the magnetic reconnection site ideal magnetohydrodynamics breaks down and 

charged particles become demagnetised from the magnetic field. Because of factor of 

~1800 in the mass difference between electrons and ions, the ions demagnetise over a 

large spatial region than electrons resulting in differential motion between ions and 

electrons. The resulting current system is known as the Hall current system and produces 

a characteristic quadrupolar magnetic field structure in the out-of-plane magnetic field, By 

(Figure 2). The red (blue) regions of Bx and By in Figure 1 indicate where the By 

component is expected to have a positive (negative) sign associated with this current 

system and this colour-coding is consistent with the Hall field. As expected, the strength of 

the Hall field perturbation peaks between the centre of the current sheet and the lobe. All 

four quadrants of the Hall field were measured by Cassini. As calculated in the 

Supplementary Material, the strength of the Hall field can be estimated by the quantity 

|By|/max(|Bx|) and the mean value of 0.18±0.15 is somewhat smaller than that observed in 

other environments although the peak of 0.83 is more consistent with the typical strength, 

~0.5, of the Hall field9,14. 

As shown in the Supplementary Material, further evidence for the detection of the ion 

diffusion region is found in the form of secondary tearing islands (small loop-like magnetic 

field structures) at 02:20-03:00 UT and 03:28-03:40 UT, cool electrons flowing in response 
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to the Hall current system, and hot electrons flowing out of the X-line. Taken together, the 

unambiguous conclusion is that Cassini encountered a tailward retreating X-line and ion 

diffusion region in Saturn’s magnetotail as sketched in Figure 2. As shown in the Methods, 

the ion diffusion region is >~0.1 RS (~6000 km) in size; the lower plasma density in the 

saturnian system means that the ion diffusion region is an order of magnitude larger than 

at Earth. Cassini spends over 150 minutes near the reconnection site, which although is 

longer than ~10 minutes at Earth, is not unexpected given the differing size of the diffusion 

region itself. 

In the Methods we have estimated that 0.34 GWb RS
-1 of magnetic flux is closed during 

this diffusion region encounter, where the dimensions include per unit length because the 

length of the X-line is unknown. Previous work assumes an upper limit of 90 RS (8) and 

hence 31 GWb of magnetic flux is closed. This is more than an order of magnitude greater 

than the largest estimates from indirect reconnection observations alone8. Our 

observations are entirely consistent with rates of flux closure inferred from auroral 

observations22,23.  Similarly, we estimate the mass lost during this diffusion region 

encounter to be 3×105 kg RS
-1 and hence 3×107 kg, three orders of magnitude larger than 

previous estimates17. Events of this magnitude every ~4-40 days are required to match a 

time-averaged mass loading rate of 100 kg/s, rather than every 7 minutes from previous 

estimates based on in direct observations16. Hence, these results demonstrate that 

magnetotail reconnection can close sufficient amounts of magnetic flux and act as a very 

significant mass loss mechanism. 

Additional indirect signatures of magnetic reconnection are also observed two hours after 

the X-line retreats tailward. Figure 3 shows five hours of electron fluxes and magnetometer 

data revealing a series of reconnection signatures in a spherical polar (Kronocentric radial-



7 

theta-phi, KRTP) coordinate system. Bipolar perturbations in the Bθ component indicate 

the passage of a plasmoid, a loop-like magnetic flux structure8. At 0605 UT a tailward 

moving plasmoid passes the spacecraft, sourced from an X-line planetward of the 

spacecraft. At 0705 and 0810 UT a sharp increase in Bθ to large positive values is 

indicative of a dipolarisation front, the compression of magnetic field lines around plasma 

moving rapidly towards the planet as the result of magnetic reconnection downtail from the 

spacecraft24. These two dipolarisation fronts indicate the presence of an X-line tailward of 

the spacecraft. Following the passage of the fronts the spacecraft is immersed in hot 

plasma, similar to that seen in Earth’s magnetotail25, and is a signature of the energy 

conversion in the reconnection process. After the final dipolarisation front passes Cassini, 

the spacecraft is located in a region of fluctuating magnetic fields similar to a chain of 

magnetic islands and is surrounded by energetic ~10 keV electrons26 which also display 

evidence of becoming more energetic with time. Ion flows with a planetward component 

are found throughout this hot plasma region with speeds in excess of ~1000 km s-1. 

Towards the end of the interval, between 15:00 and 17:25 UT, planetward flowing ions and 

electrons are found in a layer between the plasma sheet and the lobes, which are 

consistent with outflows from a more distant X-line27. The detailed particle analysis is 

presented in the Supplementary Material. 

These data are evidence for ongoing but time variable magnetic reconnection in the 

magnetotail at this local time over a period of 19 hours, covering almost two rotations of 

Saturn. Simulations of upstream solar wind conditions presented in the Supplementary 

Information show that the magnetosphere was strongly compressed just before the entry 

into the X-line, suggesting triggering of tail reconnection by a solar wind pressure pulse. 

As shown in the Supplementary Material, a weaker pressure pulse arrives on 09 October 

at 1400 UT when Cassini was located in the inner magnetosphere. Wave signatures 
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suggest that this triggered further reconnection. These observations stand in contrast to 

the much less frequent plasmoid observations that have previously been used to infer 

rates of magnetic reconnection in Saturn’s magnetotail. At this point it is not possible to 

determine whether this is a consequence of the magnitude of the solar wind pressure 

increase, or if this is simply a common event but rarely observed due to the orbit of Cassini 

and the spatial distribution/spatial size of diffusion regions. These results show that 

prolonged magnetotail reconnection can close sufficient magnetic flux and shed sufficient 

mass to explain the time-averaged driving of Saturn’s magnetosphere. 

Methods 

Magnetic flux closure and plasma evacuation 

Plasmoids have been estimated to close between 0.26 and 2.2 GWb of magnetic flux, by 

integrating the product of the Bθ component of the magnetic field and the tailward flow 

speed, with an assumption that the reconnection extended 90 RS across the whole tail8. 

Applying the same argument to the data in the ion diffusion region in figure 1 and a flow 

speed of 1200 km s-1, (based on the ion measurements), the reconnected flux is 0.34 

GWb RS
-1 or 31 GWb assuming the width of 90 RS This is more than an order of 

magnitude greater than the largest estimates based on plasmoid observations alone8. 

From changes in the size of Saturn’s main auroral oval, changes in open tail flux are 

typically 5 GWb over a 10-60 hour period21 but, occasionally, can be much higher (3.5 

GWb/hour) (22). These are consistent with our observations. 

By scaling the rate of flux closure by the mass per unit flux ~10-3 kg/Wb (20), we estimate 

that this releases 3×105 kg RS
-1 or 3×107 kg. Estimates of the mass lost per plasmoid can 

be made by combining typical tail plasma densities with an estimate for the plasmoid 

volume, to give 62×103 kg per plasmoid. Hence, ~200 plasmoids per day (one every ~7 
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minutes) are required to remove the plasma transported outwards from the inner 

magnetosphere16. Hence, our mass loss rate is three orders of magnitude larger. Events 

of this magnitude every ~4-40 days are required to match a time-averaged mass loading 

rate of 100 kg/s. 

Size of the ion diffusion region 

In two-fluid reconnection the size of the ion diffusion region is a multiple of the ion inertial 

length, c/ωi, where c is the speed of light in a vacuum and ωi is the ion plasma frequency 

given by (nZ2e2/ε0mi)1/2, where n is the ion number density, Z is the ion charge state, e is 

the fundamental charge, ε0 is the permittivity of free space, and mi is the ion mass. Using 

measurements of tail plasma at 30 RS with a plasma number density of 4 – 8×104 m-3 and 

composition of nW+/nH+~2 (20), the mean ion mass is 1.95×10-26 kg (~11.7mp) and the ion 

inertial length is 3000 – 4000 km (0.05 – 0.06 RS).  
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Figure 1: Interval encompassing an ion diffusion region in Saturn’s magnetotail as seen by 

the Cassini spacecraft. Panel (a) electron omnidirectional flux time-energy spectrogram in 

units of differential energy flux (eV m-2 sr-1 s-1 eV-1); (b-d) three components of the 

magnetic field in the X-line coordinate system, parts of the Bx and By traces in red (blue) 

show where the By component is expected to be positive (negative); (e) the field 

magnitude. 

 

Figure 2: Geometry of the X-line coordinate system and schematic of Cassini’s motion 

relative to the X-line. The red vectors show the original spherical polar coordinate system 

from the magnetometer data and the green vectors show the new X-line coordinate 

system which takes into account the swept-back configuration of the magnetic field. The 
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blue curve in the top two panels shows the orbit of Cassini around Saturn and in the 

bottom view we show the inferred motion of Cassini relative to the magnetic reconnection 

X-line. The pink and blue regions are the ion and electron diffusion regions9. 

 

Figure 3: Dipolarisation fronts (DF), plasmoid (P), and the restart of reconnection. Panel 

(a) electron omnidirectional flux time-energy spectrogram in units of differential energy flux 

(eV m-2 sr-1 s-1 eV-1); (b-d) three components of the magnetic field in spherical polar 

coordinates. The grey region indicates periods where the spacecraft is immersed in the 

plasma sheet.  
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Trajectory 

Figure S1 shows the trajectory of Cassini in Kronocentric Solar Magnetospheric (KSM) 

coordinates, where the X axis points from Saturn to the Sun, the X-Z plane contains the 

spin axis of Saturn, and Y points towards dusk. After periapsis with Saturn on 25 

September 2006, Cassini started its orbit (Revolution) 30 and moved out into the 

magnetotail via dusk reaching an apoapsis of 36.6 RS on 03 October 2006 at 1904 UT at a 

local time of 00h18m and latitude of 20.9º with the spacecraft moving towards the equator. 

At the start of the reconnection event at 0146 UT on 08 October 2006 (day of year 281) 

the spacecraft was at 29.0 RS, a latitude of 9.25º and local time 01h27m. The KSM 

coordinates at the start of the reconnection event was (-26.8, -10.6, -2.63) RS. From figure 

S1 we can see that the spacecraft was located slightly north of the warped 

magnetospheric current sheet as can also be seen in the observations (figure 1). 

Instrumentation 

Data in this study comes from the magnetometer, plasma spectrometer (CAPS), Radio 

and Plasma Wave Science (RPWS), and Magnetospheric Imaging Instrument (MIMI) 

instruments on the Cassini spacecraft. Upstream solar wind conditions are obtained from 

the ENLIL model1 and are discussed in more detail in the next section. 

Magnetometer data are taken from the fluxgate magnetometer instrument at a cadence of 

1s in a spherical polar coordinate system centred on the spacecraft (Kronographic Radial-

Theta-Phi, KRTP) which is based on the kronographic position of the spacecraft, where 

the radial vector, er, is oriented from the planet to the spacecraft, the polar vector, eθ,  

points in the direction of increasing co-latitude, and the azimuthal vector eφ completes the 

right-handed set and is oriented in a prograde direction around Saturn. 
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Plasma data are taken from the CAPS electron spectrometer (ELS) and ion mass 

spectrometer (IMS) which are electrostatic analysers but where IMS also has a time-of-

flight (TOF) section to determine the energy-resolved mass per charge ratio of the 

incoming ions with a mass/charge resolution of 12.5%. ELS detects electrons between 0.6 

and 28750 eV/e in 63 energy bins with a resolution of ΔE/E of 16.7%. The instantaneous 

field-of-view (FOV) is split into eight 20º×5.2º anodes providing a total 160º×5.2º 

instantaneous FOV. ELS sweeps this FOV every 2 s but these samples can be averaged 

on board to lower time and energy resolution. IMS detects positive ions between 1 and 

50280 eV/q in 63 energy bins with a resolution of ΔE/E of 16.7% and a cadence of 4 s. 

Similar to ELS, the instantaneous FOV is split into eight anodes each with an FOV of 

20º×8.3º providing a total instantaneous FOV of 160º×5.3º. The FOV of ELS and IMS are 

approximately boresighted. To improve the FOV the whole CAPS instrument is mounted 

on a rotating platform which sweeps the sky by around 1º/s, extending the FOV to ~2! sr 

with a period of ~3 minutes. The spacecraft was also rolling for part of the interval reported 

in this paper which improves the total field-of-view to almost 4π sr but complicates the 

analysis as described in the appropriate sections below. 

Radio data is provided by the RPWS instrument which includes three nearly orthogonal 

electric field antennae to detect AC electric fields between 1 Hz and 16 MHz and are 

particularly processed in this paper to analyse kilometric radio emissions2. 

Solar wind simulations and Cassini remote sensing 

observations 

Since there is no upstream monitor at Saturn models must be used to understand the 

upstream solar wind and interplanetary magnetic field (IMF) conditions while the 

spacecraft is inside the magnetosphere, as it was during this event. The MSWiM model is 
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a 1.5-d MHD propagation of solar wind conditions measured at 1 AU but is only usable 

near apparent opposition which occurred on 25 February 2006. During the October 2006 

time period Saturn is far from apparent opposition and so this model is not reliable. ENLIL 

is a 3D MHD simulation of the heliosphere1 which is available at the Community 

Coordinated Modeling Center (CCMC) at NASA Goddard Space Flight Center. This model 

is not hampered by the same opposition viewing effects as MSWiM. The model inner 

boundary condition is provided by coronal models, driven by observed magnetograms, 

and is placed at 21.5 or 30 solar radii depending on the coronal model. Although limited 

validation studies of ENLIL have been performed for the outer heliosphere near Saturn, 

uncertainties on the arrival times for stream interaction regions can be up to four days at 5 

AU, from a comparison of ENLIL results with Ulysses data3. In this work, version 2.7 of 

ENLIL was run with an inner boundary condition provided by the Wang-Sheely-Arge model 

for Carrington rotation 2048 and provided solar wind simulation results at Saturn’s position 

from 21 September to 24 October 2006. In order to properly compare the in situ Cassini 

data with the ENLIL results we use Cassini observations of auroral radio emissions 

(Saturn Kilometric Radiation, SKR), known to brighten in response to solar wind 

compress4,5. These observations are used to identify a time shift that can be applied to the 

ENLIL results. 

Figure S2 contains a summary of Cassini radio and plasma wave observations and ENLIL 

solar wind simulations for the period covering the event. The unshifted ENLIL data is 

shown in blue and the shifted data (discussed below) is in black. The interval 

encompasses a corotating interaction region (CIR) where the pressure and magnetic field 

strength increase. Four crossings of the heliospheric current sheet (HCS) are identified 

from reversals in the BT component of the magnetic field in Radial-Tangential-Normal 

(RTN) coordinates. Such crossings are typically embedded within CIR compressions at 
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Saturn. The presence of a forward shock (FS) from an increase in the solar wind speed 

and a coincident increase in the dynamic pressure is also identified. 

Turning to the Cassini Radio and Plasma Wave (RPWS) data in figures S2a and S2b: prior 

to the event on 08 October the flux density displays periodic increases in flux as commonly 

found in Saturn’s magnetosphere2 and has a right-hand circular polarisation consistent 

with extraordinary mode emission from the northern hemisphere, as expected from 

Cassini’s northern latitude (figure S2c). These periodic emissions are found to occur at the 

expected phase for northern SKR emissions, labelled N at the top of figure S2a (6). 

The white arrows in figure S2a identify example enhancements in SKR flux density with 

associated low frequency extensions (LFE) and a right-hand circular polarisation (northern 

hemisphere emission). The physical significance of these LFEs has been linked to 

increased precipitation of particles into the auroral zone and growth/movement of the radio 

source to higher altitudes (and hence lower frequencies since the emission frequency is 

inversely proportional to magnetic field strength). For example, at 0800 UT on 29 

September, 1200 UT on 05 October and 2000 UT on 06 October, and occur at or near the 

expected phase for northern hemisphere emissions and are characteristic of internally-

triggered SKR enhancements controlled by magnetospheric rotational modulation7. 

Following these LFEs there are two long-lasting enhancements in SKR power on 08 

October for 15 hours and 11 October for 24 hours, more characteristic of an external solar 

wind control4. During these periods SKR is a very strong emission that lasts for more than 

one Saturn rotation, and does not have any correlation with northern or southern SKR 

phase6. The low frequency range (<10 kHz) displays intense SKR. The disappearance of 

SKR emissions around 2300 UT on 12 October is due to the spacecraft reaching Saturn 

periapsis (e.g., Figure S3) where SKR is not visible. The detached nature of the low 
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frequency SKR emissions may be produced by to a spatially separated (in longitude or 

latitude) source region with different regions producing the high- and low-frequency 

emissions. A more likely interpretation is that the gap is due to refractive effects, supported 

by the abrupt change in SKR polarisation near 70-80 kHz which is quite readily understood 

in terms of refraction. Unfortunately it was not possible to apply direction-finding 

techniques to this data interval to be more certain on the origin of the detached low-

frequency emissions. 

The first event originates from the northern hemisphere (right-hand circular polarisation) 

and the second from the southern hemisphere (left-hand circular polarisation). If these 

were the same event, but viewed from the northern, then the southern hemisphere, we 

might expect to see a change in polarisation at the equator. However, the northern 

hemisphere emission fades well before the spacecraft crosses the equator, and at a point 

where the latitude and local time are varying slowly. The near-equatorial spacecraft 

location during these two events discards strong visibility effects2. Hence, this is evidence 

for two periods of long-lasting SKR enhancement that are driven separately by external 

large-scale compressions of the magnetosphere. Therefore we associate these two 

periods of strong SKR emissions with external compressions of the magnetosphere. We 

shifted the ENLIL time-series by 5.3 days such that the first major SKR enhancement 

begins at the arrival of the first large pressure pulse in the ENLIL time-series. This was 

done by matching the rise in dynamic pressure with the rise in intensity of SKR emissions. 

Given the ~10 hour lag between the arrival of a solar wind dynamic pressure front and the 

increase in SKR emissions5 we assign an uncertainty of 0.5 days to this estimate (4.8-5.3 

days). In doing this, the second strong enhancement in SKR flux density matches the 

second pressure pulse in the ENLIL results thus providing supporting evidence that these 

enhancements in SKR are associated with externally-driven magnetospheric 
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compressions. We also note that the increase in solar wind dynamic pressure occurs at 

the forward shock (FS) and occurs approximately at the same time as the onset of the 

periodic LFEs and the onset of this activity might represent the arrival of the CIR at Saturn. 

Finally, the low frequency SKR emissions are accompanied by rising periodic narrow band 

emissions, mainly with opposite polarisation. These appear at frequencies around 5 kHz, 

so-called Saturnian Myriametric Radiation or n-SMR (8) and around 20 kHz, identified as 

narrowband SKR or n-SKR2. n-SMR are similar to continuum emissions from Earth’s 

plasmapause, and n-KOM emissions from the Io torus, which are known to be generated 

at density gradients8. These might be attributed to dynamics internal to the plasma disc but 

in this case there is evidence that they are triggered by increases in the solar wind 

dynamic pressure. Although the spacecraft is moving latitudinally, there is no correlation of 

the morphology of the emissions with the location of the spacecraft, and the emissions 

appear after the major magnetospheric compressions (figure S2g). Activity in n-SKR and 

n-SMR continues however until 17 October, which is a much longer period than the 4 – 5 

days previously reported8 and may reflect the strength of the external compression, or that 

the initial external trigger has resulted in a “cascade” of internally-driven responses. 

In summary, shifting the ENLIL time series by 4.8-5.3 days (to form the shifted time series 

in figure S2) we arrive at the following sequence of upstream events. Between 0000 UT 

and 1200 UT on 06 October a forward shock impacted Saturn and over the course of ~12 

hours the magnetosphere was slowly compressed from a subsolar magnetopause position 

of 25 RS to 17 RS representing a moderate compression due to the enhanced 

compressibility of Saturn’s magnetosphere compared to Earth9. A pressure pulse with a 

peak dynamic pressure of 0.23 nPa arrives between 1200 UT on 07 October and 0000 UT 

on 08 October compressing the magnetosphere over the next ~6 hours such that the 

magnetopause subsolar distance decreases to 14±2 RS, representing an extreme and 
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relatively rare compression. The pressure pulse begins to fade around 16 hours after it 

arrived falling back to a magnetopause subsolar distance of ~20 RS by the end of 08 

October. Between the middle of the day on 09 October and early on 10 October a smaller 

pressure pulse arrives producing a magnetopause standoff distance of 16±2 RS. 

Rotation of the magnetic field data to remove the effect of 

sweepback 

The magnetic field at Saturn is swept-back into a lagging configuration over most local 

times produced by a combination of magnetopause currents and outward transport of 

internally produced plasma10, although the latter is thought to dominate the observed 

sweep-back. The effect of this sweep-back is to introduce an azimuthal component to the 

magnetic field (in spherical polar coordinates) which reverses in sense about the centre of 

the current sheet such that the azimuthal and radial components of the field have an anti-

phase relationship. Typically, Br>0 and Bφ<0 above the current sheet, and Br>0 and Bφ<0 

below the current sheet. In collisionless reconnection, separation of ions and electrons 

occurs as the ions demagnetise in the ion diffusion region but where the electrons remain 

frozen to the field and continue to inflow towards the X-line where they eventually 

demagnetise at the electron scale. This separation of ions and electrons produces a 

current system known as the Hall current and associated field (the Hall field)11. The Hall 

field has a quadrupolar structure with out-of-plane components. 

Figure S4 illustrates the relationship between the Hall field and the azimuthal field 

associated with sweep-back and highlights the fact that the presence of the Hall field may 

be masked by the swept-back configuration of the field. For example, on the planetward 

side of the X-line the Hall field has a negative out-of-plane component above the current 

sheet but the swept-back configuration also produces a negative out-of-plane component. 
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Hence, in the KRTP coordinate system it is hard to detect the presence of the Hall field. To 

clearly identify the Hall field we rotate the magnetic field data into an X-line coordinate 

system using the sweep-back angle of the field, defined as α=tan-1(Bφ/Br): 

!!
!!
!!

=
cos! 0 sin!
− sin! 0 cos!
0 −1 0

!!
!!
!!

  1 

 

This produces an X-line coordinate system where X points approximately tailward, Z points 

approximately northward, and Y completes the right-handed set pointing approximately 

dawnward. In the X-line frame the Hall field has components BH(x,z) in the y direction 

which when rotated by the sweep-back angle has components 

!!" ,!!" ,!!" = −!! sin! , 0,!! cos! . Hence, adding the fields due to azimuthal and 

radial currents we find, B !! ,!! ,!! = !!! tanh !!! − !! sin! ,!!!,!!! tanh
!!
! + !! cos!  

where we have simply modelled the radial and azimuthal currents with Harris current 

sheets. Applying this to our transformation (eq. 1) we obtain: 

!!
!!
!!

=
cos! 0 sin!
− sin! 0 cos!
0 −1 0

!!! tanh !!! − !! sin!
!!!

!!! tanh !!! + !! cos!
  2 

!!
!!
!!

=
!!! tanh !!! cos! − !! sin! cos! + !!! tanh

!!
! sin! + !! sin! cos!

−!!! tanh !!! sin! + !! sin! sin! + !!! tanh
!!
! cos! + !! cos! cos!

−!!!
 3 

which simplifies to: 
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!!
!!
!!

=
!!! tanh !!! cos! + !!! tanh

!!
! sin!

−!!! tanh !!! sin! + !!! tanh
!!
! cos! + !!

−!!!
  4 

Finally, we note that α=tan-1(Bφ/Br) and hence Br0 tanh(-z/D) sin(α) = Bφ0 tanh(-z/D) cos(α) 

so  

!!
!!
!!

=
!!! tanh !!! cos! + !!! tanh

!!
! sin!

!!
−!!!
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Hence, the Hall field is obtained from the By component of the X-line coordinate system. 

The sweep-back angle was measured from the magnetometer data between 08 Oct 2006 

0000 UT and 0100 UT and found to be equal to -25.87º±4.87º and so a value of -26º was 

adopted in this study. 

Electron pitch angle distributions near the X-line 

Figure S5 shows reconstructed pitch angle distributions (PAD) in each quadrant of the X-

line. CAPS/ELS has an instantaneous FOV of 160º×5.2º which is increased to ~160º×200º 

by a mechanical scanning platform. Each PAD is produced by combining fluxes measured 

over a single mechanical ~3 minute scan (actuation). Within this period ELS captures 

spectra at a cadence between 2 and 32 s but for this study the maximum sampling time 

was restricted to 8s to avoid undetectable aliasing of the PAD. These fluxes were 

background-subtracted and sorted into 10º wide pitch angle bins and shifted by the 

(positive) spacecraft potential to remove trapped spacecraft photoelectrons. The raw 

spectrograms and reconstructed PADs were checked for evidence of aliasing. 
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In general the PAD is incomplete due to the limited field of view of the instrument. 

However, four typical PADs were identified in each quadrant of the X-line. Electron PADs 

in ion diffusion regions in Earth’s magnetotail were found to consist of cool ~100 eV 

electrons flowing towards the X-line carrying the Hall current, and hotter >1 keV electrons 

flowing away from the X-line associated with acceleration near the X-line12. In Figure S5 

we can see that due to the restricted field of view, the orientation of the spacecraft, and 

changes in orientation of the magnetic field, only electrons flowing out of the X-line are 

visible on the tailward side of the X-line, and electrons flowing towards the X-line are 

visible on the planetward side of the X-line. The samples in figure S5 (moving anti-

clockwise around the figure) were captured at 0117 UT (above the current sheet and 

planetward of the X-line), 0242 UT (above the current sheet and tailward), 0341 UT (below 

and tailward), 0431 UT (below and planetward). We can see that the electrons flowing into 

the X-line are relatively cool with a peak energy near ~400 eV. The electrons flowing out of 

the X-line are hot about ~2 keV above the current sheet earlier in the interval at 0242 UT, 

and ~>10 keV below the current sheet later at 0341 UT. These are entirely consistent with 

hot electrons flowing out of the X-line and cooler electrons flow in towards the X-line and 

carrying the Hall current, similar to terrestrial observations12. 

Ion flows before and during the ion diffusion region encounter 

Ion flows throughout the interval are difficult to analyse due to a combination of spacecraft 

rolls, limited viewing, low signal to noise and aliasing of the distributions. Figure S6 shows 

a time-energy spectrogram of ion fluxes measured by CAPS/IMS, with the electron fluxes 

and magnetic field for reference. In this figure ion fluxes have been summed over a 32s 

internal duty cycle of the instrument (an A-cycle) to improve the signal-to-noise and 

visibility of ion beams as the instrument actuates across the sky – thus relatively narrow 
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ion beams appear as sharp gradients in the time-energy spectrogram. The “pulsing” in the 

background is correlated with the actuating motion of CAPS and is thought to be produced 

by a combination of CAPS actuating through a spatially asymmetrical background 

produced by radiation from Cassini’s radioisotope thermoelectric generators, and changes 

in the shielding of CAPS from this radiation as it actuates relative to the spacecraft 

platform and other instruments. 

In figure S6 the ion fluxes for particular time intervals are presented as a function of look 

direction around the spacecraft in order to identify the flow direction of the ions. They also 

enable us to identify what directions about the spacecraft are not visible to the CAPS 

detector. These are presented in OAS coordinates in a polar projection. The OAS 

coordinate system is a spacecraft-centred frame where S is a vector from the spacecraft to 

the planet, O is a vector which is obtained from S×(Ω×S) and A is a vector along S×O and 

completes the right-handed set. The panels in figure S7 are presented in polar coordinates 

where the polar angle θOAS is the angle between a look vector and S such that θOAS=0º 

represents a direction towards Saturn from Cassini, whereas 90º is perpendicular to the 

Cassini-Saturn line. The azimuthal angle φOAS is an angle around the S. Thus, each panel 

in figure S7 is drawn from the perspective of an observer on the spacecraft. The centre of 

the panel is looking at Saturn (θOAS=0º), the inner circle is θOAS=90º and the outer circle 

θOAS=180º. Hence, ion fluxes in the inner circle are coming from “in front” of the spacecraft, 

and between the outer and inner circles come from “behind” the spacecraft. Fluxes from 

the left-hand side of the panel have a component of the flow in a prograde (corotational) 

direction, and from the right-hand side have a component of the flow in an anti-corotational 

direction. Fluxes in the upper (lower) half of the panel are coming from above (below) and 

thus have a flow component directed downwards (upwards). The orange circle indicates 

the direction of the Sun and the green square shows the direction of corotation. 
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The ion fluxes in S6 show significant fluxes from 2000 UT on 07 October to 0020 UT on 08 

October with a decrease in flux from 2245 to 2330 UT which is correlated with a drop in 

the electron flux and an increase in the magnitudes of the Br and Bφ components of the 

magnetic field and the magnetic field strength. Throughout this period the field of view of 

IMS covers close to the corotation direction and so this drop in flux is consistent with the 

motion of the spacecraft into the near-lobe – although a rotation of the flow to more 

azimuthal direction and/or narrowing of the ion beam (faster flows and/or colder ions) 

cannot be ruled out. Figure S7a shows the ion flow directions from 20:08:18 to 20:11:45 

on 07 October and although CAPS does not fully capture the corotation direction, the flows 

are generally corotational. The ion distributions show clear evidence of two energy peaks, 

centred on ~300 eV/e and ~4000 eV/q, associated with H+ and W+ respectively, where the 

ratio in counts W+/H+= 0.72±0.06 from a fit to CAPS/IMS time-of-flight data. 

From 0242 to 0251 UT energetic ion fluxes are observed, coincident with Cassini entering 

the northern part of the plasma sheet from the near lobe-regions. Figures S7b-S7d show 

the directions of these fluxes. Although the fluxes are very weak, close to the signal-to-

noise threshold of IMS, the flow direction can be determined. At 0242-0245 (S7b) the ions 

are flowing in a tailward and slightly anti-corotational direction, then appear to be flowing 

tailward and slightly northward (S7c/S7d). The weakening in the fluxes in S7d is caused by 

the ions increasing to higher energies (as can be seen in figure S6). Generally, the typical 

ion energy is above ~2 keV/q and extends to the upper energy/charge range of the 

instrument. From the time-energy spectra there is some evidence in the beam in S7c for 

two ion peaks, one at ~8 keV/q and another at ~20 keV/q. From an analysis of the time-of-

flight data, the 8 keV/q beam is associated with H+ and the 20 keV/q beam with a species 

with mass/charge 2 (either He++ or H2
+). An 8 keV/q H+ ion has a flow speed of 1200 km s-

1. This is probably an upper limit to the speed due to the peak energy being due to a 
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combination of bulk and thermal kinetic energy. The ratio of the mass/charge=2 counts to 

H+ is 7±1. There are no W+ ions to within the error of the analysis, although a W+ ion 

moving at 1200 km s-1 has an energy/charge of 130 keV/q, well above the range of the 

CAPS/IMS sensor. The energetic ion detectors on Cassini are not orientated in a 

favourable direction to observe these ions at this time. 

The energy spectrum associated with S7d is found about 10 keV/q, which corresponds to 

a speed of <=1400 km s-1. Over the period in the region tailward of the X-line (0146-0355) 

the CAPS FOV is close to corotation (within ~10-20º) but no measurable fluxes are found 

in that direction. 

From 0354 to 0825 UT the spacecraft undergoes continuous rolling, with another small roll 

from 0940 to 1000 UT. Due to this rolling behaviour IMS scans rapidly across the sky and 

it is very difficult to determine the flow directions of the ions. Very narrow features are 

found in anodes 6/7 at 0401 UT and anodes 1/2 at 0410 UT but these are not visible in 

OAS plots. This of large-scale flow features is consistent with the planetward-looking FOV 

and expected planetward reconnection exhaust jets. Evidence for corotational, but slightly 

tailwards flow is found from 0445 UT onwards, but only sporadic samples (S7e and S7f) 

are available due to the spacecraft roll. After 0500 UT the spacecraft samples the 

corotation direction very infrequently, but very low ion fluxes are expected due to the low 

plasma density, as indicated by the electron measurements13. 

Hence, these observations show that in the tailward region of the diffusion region (as 

determined from the magnetometer data) CAPS observes a <~1200 km s-1 ion beam 

flowing tailward as expected). By plotting the peaks in ion flux with the look direction 

information we could determine the flow directions in KSM coordinates and we find the 
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following unit vectors for the three ion beams in figures S7b-S7d: (-0.95, -0.18, -0.27), (-

0.77, 0.57, -0.30), and (-0.96, -0.077, -0.28) hence showing an ion beam moving tailward. 

Flux ropes and secondary islands 

Plasmoids, with a loop-like or fluxrope structure, are a common signature in planetary 

magnetotails14,15 and can be found either travelling planetward or tailward. They can also 

be seen adjacent to an X-line as a “secondary island” produced as a result of instabilities 

that set in once reconnection has commenced16, usually in the presence of a significant 

guide field (perpendicular to the plane of the X-line). The signature of a plasmoid passing 

over the spacecraft is a bipolar feature in Bz with deflection in the Bx component in the X-

line coordinate system. If the plasmoid has an axial field then it is often termed a flux rope 

and By will show a maximum closest to the centre of the flux rope axis. 

By searching for these perturbations in Bz and Bx O-lines have been found in the tailward 

region of the X-line. Figure S8 shows two periods in the tailward region of the X-line where 

O-lines have been found. The heavy vertical lines show the passage of the O-line – but 

not necessarily through the exact centre of the structure. No evidence for flux rope-type 

signatures are found in these data. The presence of plasmoids close to the X-line is 

indicative of secondary islands. 

Reconnection rate and Hall field strength 

The ratio of the Hall field (By) to the field in the current sheet (Bx) is a dimensionless 

estimate of the strength of the Hall field. Estimates of the dimensionless strength of the 

Hall field at Mars show peak values ranging between 0.29 and 0.76 but typically ~0.5 (15). 

These amplitudes were found to be comparable in size to the dimensionless amplitude of 

the Hall field at Earth with average values of 0.39±0.16 (45).  



17 

Similarly the ratio between the normal field (Bz) and the main field (Bx) is an estimate of the 

reconnection rate. For Mars, values ranging between 0.072 and 0.335 with an average of 

0.16 and standard deviation of 0.09 have been reported, indicating that reconnection was 

in the regime of fast reconnection17. These values were slightly higher than at Earth but 

were perhaps the result of a bias towards intense events in the Mars data set. 

Figure S9 shows estimates of the strength of the Hall field, |By|/max(|Bx|), and the 

reconnection rate |Bz|/max(|Bx|) for the diffusion region encounter described in this paper. 

The mean value of the Hall field (figure S9e) was 0.18±0.15, although the peak of 0.83 is 

much higher, compatible with the upper end of the published range17,18. The reconnection 

rate (figure S9f) was found to be 0.13±0.10 with a peak of 0.66 – hence demonstrating fast 

reconnection – and is similar to martian and terrestrial values. 

Reconnection restart 

Sporadically from 0605 UT and onward from 0640 UT on 08 October there is evidence 

that reconnection restarts or that a fresh part of the plasma sheet moves over the 

spacecraft and another X-line forms. The spacecraft is located in the southern extreme of 

the current sheet (steady Br<0) and apparently on closed field lines (typically Bθ>0). The 

plasma sheet electrons are hotter than typical19, with energies between 300 eV and 1 keV. 

Around 0610 UT a tailward moving plasmoid is observed from a positive-negative bipolar 

signature in Bθ (figure 3) suggesting a reconnection X-line has formed planetward of the 

spacecraft. From 0640 to 0700 UT hot electrons are observed with an energy of ~ 1 – 10 

keV. At 0710 UT a dipolarisation front passes the spacecraft as noted by the peak in |B| 

and appearance of hot >1 keV electrons. Another front passes the spacecraft at ~0810 UT. 

These dipolarisation front passages are interspersed with intervals in the plasma sheet 

suggesting that a section of the plasma sheet tailward of the spacecraft is reconnecting 
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and Cassini is sporadically immersed in the exhaust from that X-line. After the 

dipolarisation front at 0810 UT the spacecraft is immersed in hot electrons that increase in 

energy with time. Additional smaller-scale positive-negative bipolar Bθ structures are seen 

in this hot exhaust region suggesting the presence of multiple small-scale dipolarisation 

fronts20. 

Figure S10 shows ion and electron time-energy spectrograms during these dipolarisation 

fronts. As noted in section 6, from 0354 to 0825 UT the spacecraft is continuously rolling, 

with another small roll from 0940 to 1000 UT. Due to this rolling behaviour IMS scans 

rapidly across the sky and it is very difficult to determine the flow directions of the ions. No 

significant ion fluxes are observed during the passage of the tailward plasmoid at 0640 UT 

even though the IMS field-of-view is sufficient to observe tailward flows. During the 

dipolarisation front at 0710 UT the field-of-view could have seen inward flows from the 

dawn sector but not from the near-corotation direction. 

Significant fluxes are observed between ~0730 and ~0800 UT. Figure S11 shows ion 

fluxes organised in OAS coordinates.  Figures S11a and S11b show ion fluxes from the 

end of the energetic electron interval after the first dipolarisation front and the entry into 

the plasma sheet region around ~0730 UT. Figure S11a shows ion fluxes whilst still in the 

energetic electron region. The IMS field-of-view does not fully capture these ions but 

assuming IMS captures the edge of the ion beam they appear to be moving inwards and 

from the duskward direction. Figure S11b shows the next slice and where flows appear 

from the corotation direction. The nominal plasma sheet during this region has ratios of 

total counts of various species, W+/H+=13±3 and (m/q=2)/H+=12±1, showing a plasma 

sheet dominated by heavy ions. 
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No significant ion fluxes are observed between 0800 UT and ~1100 UT, but the IMS 

viewing is biased to seeing outflows, hence this is not unexpected since the spacecraft is 

embedded in heated plasma on closed field lines and so we might expect inflows. Figure 

S12 shows the ion and electron fluxes for the remainder of the dynamical effects on 08 

October. Ion fluxes as a function of the field-of-view are in figures S11c-S11i. At 1115 UT 

(figure S12c) ions >~5 keV/q (speed ~1000 km/s for H+ ions) are observed moving 

northward, planetward and dawnward consistent with a location in this energised region on 

closed field lines connected to the exhaust from a reconnection site. Shortly after that (at 

~1130) the spacecraft enters the plasma sheet with ~200 eV electrons and ions flowing in 

the corotation direction (and slightly upward) (figure S12d). The spacecraft re-enters the 

hot exhaust region around 1240 UT and no significant ion fluxes are seen until 1332 UT 

despite IMS seeing the whole sky due to spacecraft rolls – although the non-detection of 

ions might be a combination of flow energies exceeding the energy range of IMS and the 

flux of ions being below the sensitivity threshold for IMS13. At 1332 UT ions are seen just 

at the edge of the field of view of IMS and suggest inward flow possibly with a downward 

and dawnward component (figure S11e), again consistent with the location of the 

spacecraft in the hot exhaust region. Shortly after at 1336 UT the ion flows are more 

corotational but still with an inward component (figure S11f). Between ~1530 and 1730 the 

spacecraft is located in the southern lobe, and energetic electron boundary layers are 

seen near the boundary between the lobe and the plasmasheet. In the boundary layers, 

ions are found flowing along the magnetic field with pitch angles of 0º (figures S11g and 

S11h) towards the planet. These boundary layers are on closed field lines, as indicated by 

the presence of an energetic electron population flowing towards the planet with a pitch 

angle of 0º, with a counterstreaming component as far as can be seen in the antiparallel 
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direction (figure S13). Finally, the interval ends with a return to the plasma sheet and 

corotational ion flow (figure S11i). 
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Figures and captions 
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Figure S1: Trajectory of Cassini in KSM during the event in this paper (highlighted in blue). 

Panel (a) shows the trajectory projected into the X-Y plane and (b) the X-Z plane. The 

model current sheet location is shown in panel (b) and a model magnetopause in both 

panels. 
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Figure S2: Cassini radio and plasma wave observations and ENLIL solar wind simulation 

results showing the inferred upstream solar wind conditions during the event: (a) electric 

field flux density measured by the Cassini/RPWS instrument and scaled to 1 AU distance, 
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grey “S” and white vertical lines indicates when SKR emissions from the southern 

hemisphere should be detected based on the SLS4 system; (b) electric field circular 

polarisation measured by the Cassini/RPWS instrument (white indicates emissions from 

the northern hemisphere, black from the south), grey and white vertical lines indicates 

when SKR emissions from the northern hemisphere should be detected based on the 

SLS4 system; (c) solar wind speed from ENLIL; (d) solar wind dynamic pressure from 

ENLIL; (e) interplanetary magnetic field strength from ENLIL; (f) inferred subsolar position 

of the magnetopause based on the ENLIL dynamic pressure and a model magnetopause9; 

(g-i) magnetic field in the RTN coordinate system from ENLIL. The vertical dashed black 

lines indicate HCS crossings. The grey vertical bars indicate the reconnection regions in 

Figure 3 of the main manuscript. In each ENLIL panel the blue curves show the original 

ENLIL data, black shows the ENLIL data which has been shifted in time by 5.3 days to 

match the enhancements in the measured SKR flux, as discussed in the SOM text. 
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Figure S3: Cassini orbital parameters used to interpret Cassini radio and plasma wave 

observations: (a) latitude, (b) local time and (c) radial distance of Cassini. 

 

 

Figure S4: Schematic diagram showing the reconnecting current sheet with the ion (pink) 

and electron (blue) diffusion regions11, inflow and outflow jets, and the orientation of the 

Hall field and magnetic field associated with the sweep-back of the magnetic field. 
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Figure S5: Electron pitch angle distributions in each quadrant of the X-line. Because of 

changes in orientation of the spacecraft and the magnetic field, combined with the 160º×5º 

instantaneous field of view of the ELS analyser, the pitch angle coverage is generally 

incomplete with pitch angles of only 0º or 180º covered by the instrument field of view. The 

colour scale shows the measured differential energy flux in units of eV m-2 s-1 sr-1 eV-1. 
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Figure S6: Ion fluxes measured by CAPS/IMS with electron fluxes and magnetic field data 

for reference. Panels (b-g) show ion fluxes from anodes 2-7 of CAPS/IMS on a linear 

colour scale from 100 to 1000 counts/32s (summed over a 32s instrument duty cycle). 

There are no measurable fluxes below 100 eV/q. The arrows at the top of each panel 

indicate the times of the OAS plots presented in figure S8. 
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Figure S7: Ion fluxes presented as a function of look direction in OAS coordinates. Red 

and blue symbols show 0º and 180º pitch angle directions, orange circles show the Sun 

direction, and green square shows the corotation direction. Saturn is in the centre of each 

panel. 
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Figure S8: Small plasmoids observed in magnetometer data on the tailward side of the X-

line. Panels (a-d) show magnetometer data from 0215 – 0300 UT and panels (e-h) show 
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data from 0320-0345 UT on 08 October. Both sets of data are presented in the X-line 

coordinate system. The bold vertical lines indicate the passage of small plasmoids, the 

shaded grey regions indicate post-plasmoid plasma sheets. Note the different time scales 

and y-axis scales in each plot 

 

 

Figure S9: Reconnection rate and Hall field strength estimates near the diffusion region. 

Panels (a-d) show the measured magnetic field in the X-line coordinate system, panel (e) 
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shows the strength of the Hall field expressed as the dimensionless ratio |By|/max(|Bx|) and 

panel (f) shows a dimensionless proxy for the rate of reconnection given by as the 

dimensionless ratio |Bz|/max(|Bx|). 

 

 

Figure S10: Electron, ion and magnetic field observations during re-encounter or restart of 

reconnection. Panel (a) shows a CAPS/ELS time-energy spectrogram of omni-directional 
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flux averaged over a CAPS actuation cycle. Panels (b-d) show time-energy spectrograms 

of ion flux averaged over 32s from anodes 2-4 of CAPS/IMS (the anodes showing the 

highest flux). Panels (e) and (f) show the magnetic field components and field magnitude. 

The arrows at the top of each panel indicate the times of the OAS plots presented in figure 

S11. 
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Figure S11: Ion fluxes presented as a function of look direction in OAS coordinates 

corresponding to times in figures S9 and S11. Red and blue symbols show 0º and 180º 

pitch angle directions, orange circles show the Sun direction, and green square shows the 

corotation direction. Saturn is in the centre of each panel. 
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Figure S12: Electron, ion and magnetic field observations during re-encounter or restart of 

reconnection. Panel (a) shows a CAPS/ELS time-energy spectrogram of omni-directional 

flux averaged over a CAPS actuation cycle. Panels (b-e) show time-energy spectrograms 

of ion flux averaged over 32s from anodes 2-5 of CAPS/IMS (the anodes showing the 
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highest flux). Panels (f) and (g) show the magnetic field components and field magnitude. 

The arrows at the top of each panel indicate the times of the OAS plots presented in figure 

S11. 

 

 

Figure S13: Electron pitch angle distributions near the lobe showing electrons forming a 

beam flowing parallel to the magnetic field (0º pitch angle) near the lobe/plasma sheet 

boundary (a and c), in the lobe (b), and returning to a bidirectional ~100 eV population in 

the plasma sheet. 


