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Abstract
Breast radiology encompasses the full range of imaging modalities from 
routine imaging via x-ray mammography, magnetic resonance imaging and 
ultrasound (both two- and three-dimensional), to more recent technologies 
such as digital breast tomosynthesis, and dedicated breast imaging systems 
for positron emission mammography and ultrasound tomography. In addition 
new and experimental modalities, such as Photoacoustics, Near Infrared 
Spectroscopy and Electrical Impedance Tomography etc, are emerging. The 
breast is a highly deformable structure however, and this greatly complicates 
visual comparison of imaging modalities for the purposes of breast screening, 
cancer diagnosis (including image guided biopsy), tumour staging, treatment 
monitoring, surgical planning and simulation of the effects of surgery and 
wound healing etc.

Due primarily to the challenges posed by these gross, non-rigid deformations, 
development of automated methods which enable registration, and hence 
fusion, of information within and across breast imaging modalities, and 
between the images and the physical space of the breast during interventions, 
remains an active research field which has yet to translate suitable methods 
into clinical practice.

This review describes current research in the field of breast biomechanical 
modelling and identifies relevant publications where the resulting models have 
been incorporated into breast image registration and simulation algorithms. 
Despite these developments there remain a number of issues that limit clinical 
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application of biomechanical modelling. These include the accuracy of 
constitutive modelling, implementation of representative boundary conditions, 
failure to meet clinically acceptable levels of computational cost, challenges 
associated with automating patient-specific model generation (i.e. robust 
image segmentation and mesh generation) and the complexity of applying 
biomechanical modelling methods in routine clinical practice.

Keywords: breast cancer imaging, image registration, mathematical 
modelling, biomechanics, breast compression, multi-modality

(Some figures may appear in colour only in the online journal)

1.  Introduction

Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death 
in women worldwide. With more than 1.3 million women diagnosed each year, it is the sec-
ond most common cancer, after lung cancer, in men and women combined (Jemal et al 2010). 
Incidence and mortality rates vary internationally however (Ferlay et al 2013), with incidence 
rising whilst mortality exhibits a stable or negative trend in western countries, due to wide-
spread screening and improved treatment respectively, but mortality displaying an upward 
trajectory in Eastern Europe, Asia, Latin America and Africa (Jemal et al 2010). Whilst early 
detection remains a key factor in maximising probability of survival, the risk of overdiagnosis 
is also a concern (Marmot et al 2012). Prognostic grading of breast cancer, the importance of 
which has been known for more than 50 years (Bloom and Richardson 1957), has been thrown 
into sharp relief in recent years with the discovery of specific molecular sub-groups of breast 
cancer (Curtis et al 2012) and associated stroma (Farmer et al 2009) which exhibit a range 
of prognostic characteristics. These developments, together with advances in detection, diag-
nosis, staging, and treatment monitoring via radiological imaging, suggest that personalised 
stratification of breast cancer, with respect to treatment response and overall prognosis, may 
be possible if all the available imaging and histopathological information can be combined 
(de Abreu et al 2013).

Relating the appearance of the breast across the range of imaging modalities used in breast 
radiology; from routine imaging via x-ray mammography, MRI (with and without contrast) 
and ultrasound (both 2D and 3D); to those becoming available more recently such as digital 
breast tomosynthesis (DBT), and dedicated breast imaging systems for PET and tomographic 
ultrasound; is a challenging task due to the highly deformable nature of the breast. In each of 
these modalities the subject’s pose typically changes between one of either upright, prone or 
supine positions. In screening or diagnostic breast imaging, such as x-ray mammography and 
DBT, or invasive interventions, such as biopsy, the breast is immobilised between compres-
sion plates (Highnam and Brady 1999) and may be subject to interventional forces. During 
breast conserving surgery the patient is usually lying supine, possibility with the bed at an 
angle, with her arm extended. In an MRI acquisition the patient is usually lying in the prone 
position with the breast pendulous, however during an ultrasound acquisition or surgery, the 
patient lies in the supine position with the breast compressed due to gravity against the chest 
wall. During ultrasound the breast may be further subjected to compression forces due to 
pressure of the ultrasound probe. Tissue sampling by biopsy or fine needle aspiration would 
benefit from image guidance yet, for images acquired before the procedure, the breast is invar-
iably in a very different position to that during the intervention. The problem of breast defor-
mation is even more acute when pre-operative imaging is used to plan and guide lumpectomy 
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in breast conserving surgery, where it is critical that clear surgical margins are achieved, free 
from tumour spread.

Due to these large scale deformations there has been considerable interest in deformation 
modelling to capture the transformation of the breast between different imaging sessions and 
between imaging and biopsy or surgical resection. Many of these methods have focused on 
biomechanical modelling and how this computational tool can be utilised to create non-rigid 
image registration methods to solve the inter- and intra-modality correspondence problem as 
well as correspondence between images and the physical space of an intervention.

In this review we investigate current research in the field of breast biomechanical model-
ling and identify publications where the resulting models have been incorporated into breast 
image registration algorithms. We begin with an introduction to relevant concepts in the fields 
of non-rigid image registration and deformation modelling, placing particular emphasis on 
biomechanical modelling and finite element methods which have been widely applied in this 
field. Following this we review the state of the art in breast biomechanical modelling and soft 
tissue material characterisation, and perform a comprehensive survey of breast image registra-
tion methods, broken down by the specific breast deformation combinations addressed.

2.  An overview of non-rigid breast image registration

The goal of image registration is to calculate the correspondence between points in an image, 
I, and those in a fixed reference image or the physical space of an intervention, R. Registration 
algorithms typically consist of three components: (i) a transformation model, ( )θT x , to con-
strain the deformation between the images, or image and physical space, over the spatial 
domain, x, specified via a set of parameters, θ; (ii) a cost function, Ψ, to capture the similarity 
(or distance), D, between the images, and optionally regularise the result (λ);

[ ( ( )) ( )] ( ( ))λΨ = +θ θD I T x R x T x, ,

and (iii) an optimisation strategy to minimise the cost function: arg min ( )Ψθ  (Hill and 
Batchelor 2001, Modersitzki 2004). Whilst this classification is a gross simplification of the 
range of algorithms applied to the problem of medical image registration, it provides a conve-
nient context for the current discussion of breast image registration.

2.1.  Breast image registration topics

Breast image registration has been utilised for mammographic breast density measurement, 
e.g. Pereira et al (2010), and as an aid to computer aided detection of mammographic lesions, 
e.g. van Engeland et al (2003). It has been applied to MRI when estimating dynamic con-
trast enhancement (DCE), e.g. Rueckert et al (1999), and diffusion weighted imaging, e.g. 
Arlinghaus et al (2011), to eliminate the effects of patient motion of the breast. A confounding 
factor in DCE-MRI, from the point of view of registration, is the change in intensity over time 
generated by the contrast enhancement. This issue has been tackled by a number of authors 
who propose a variety of methods to separate this enhancement from the effects of patient 
motion (Ebrahimi and Martel 2009, Melbourne et al 2011a). The application to radiother-
apy planning was proposed by Alderliesten et al (2013), by computing the large deformation 
between prone pre-operative and supine planning scans.

Ultrasound imaging is a particularly challenging modality to align with itself or other 
modalities due to the directional nature of the received signal. For this reason a number of 
groups have investigated acquiring co-registered images by building dedicated multi-modality 
scanners combining, for instance, mammography and ultrasound for the purposes of biopsy 
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guidance e.g. Irwin et al (2008), Kapur et al (2004) and Kapur et al (2002). Despite the techni-
cal challenges, attempts have been made to compensate for patient motion during and between 
ultrasound scans, e.g. Boehler and Peitgen (2008), and compound image volumes using elas-
tic registration, e.g. Krucker et al (2002).

Multi-modality breast imaging has been achieved by combining medical imaging tech-
niques such as positron emission mammography and x-ray mammography, e.g. Bergman  
et al (1998). When these modalites are not co-registered at the point of acquisition, image 
registration has been used to fuse them. Examples include fusion of the functional information 
present in MRI with the x-ray attenuation representation of mammography, Behrenbruch et al 
(2003) and Krueger et al (2013), registration of MRI and ultrasound to guide biopsy, Causer  
et al (2008), and registration of MRI and PET-CT to aid breast tumour characterisation, 
Dmitriev et al (2013).

Image guided biopsy or fine needle aspiration procedures currently in routine clinical prac-
tice either rely on real-time imaging, such as ultrasound, in which the lesion is located directly 
in the frame of reference of the tissue sampling needle, or the breast is immobilised between 
imaging and tissue sampling, in for example MR guided biopsy, Orel et al (1994), or stereo-
tactic x-ray biopsy, Parker et al (1991). Accurate co-localisation of other imaging data enables 
much more effective use of the information they contain.

Image guided breast surgery is a particularly challenging task that has received limited 
attention, however preliminary research suggests that a biomechanical approach could be of 
benefit (Carter et al 2005, 2008).

2.2. Transformation models

Transformation models vary greatly in complexity and the range of deformations they attempt 
to capture. At the simplest level are rigid or affine transformation matrices, composed of 
combinations of translation, rotation, scaling and shear. With a maximum of twelve param-
eters (for a 3D affine transformation), they are commonly used to initialise a more complex 
non-rigid registration. However, despite their simplicity, affine transformations have found 
application in breast image registration, with reported accuracies for mammography regis-
tration of around 6 mm (Pereira et al 2010) or 8 mm (van Engeland et al 2003) and for MRI 
to x-ray registration of 13 mm (Mertzanidou et al 2012b). Arlinghaus et al (2011) applied 
affine registration to the alignment of DWI-MRI and reported a reduction in the variance of 
ADC measurements as a consequence. Nonetheless, feature based approaches have broad 
applicability to mammogram registration via breast specific coordinate systems that utilise 
landmarks such as the pectoral muscle boundary, nipple location and parabolic breast shape 
(Brandt et al 2011).

One of the earliest non-rigid breast image registration algorithms, which has also found 
wide application to other medical image registration problems, was that developed by 
Rueckert et al (1999). They used a free-form deformation model based on B-splines in which 
the coordinates of a set of control points were optimised to produce a smoothly varying defor-
mation. This method has also been adapted to register MRI and PET-CT (Dmitriev et al 2013). 
Application of this transformation model to mammogram registration has generated conflict-
ing results (Diez et al 2010, Pereira et al 2010). Closely related thin-plate splines (Bookstein 
1989) have also been used to model the compression deformation of the breast during x-ray 
mammography (Behrenbruch et al 2003).

The class of non-parametric, variational registration methods typically involves computing 
a dense displacement field, at points arranged in a regular grid superimposed on the images. 
This grid will generally be derived from the source or target image’s voxel matrix (or some 
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sub-sampling thereof) and results in a large number of unknowns: the number of grid points 
multiplied by the dimensionality of the images. Given the large number of unknowns, and 
to ensure that the optimisation is well-posed, these algorithms are frequently characterised 
by the regularisation employed i.e. diffusion, elastic (Fischer et al 1999), fluid (Crum et al 
2005), curvature (Modersitzki 2004) etc. Linear elastic registration has been used to register 
both DCE-MRI (Bruckner et al 2000) and follow-up MRI with images from a previous visit 
(Boehler et al 2010). A combination of diffusion and curvature regularisation has also been 
used to register DCE-MRI (Melbourne et al 2011b). Optical flow is a related method that has 
been applied to MRI motion correction (Froh et al 2006, Botella et al 2010). Constraining 
a registration transformation to be smoothly varying, to avoid folding and so-called non- 
diffeomorphisms, is an issue addressed by the div-curl transformation model adopted by Chu 
et al (2009) to register DCE-MRI. A recent approach applied to prone-supine registration of 
breast CT images uses a ‘dual-dynamic’ grid transformation model, specified over an irregular 
grid and incorporating an elastic regulariser, to tackle the problem of large deformations and 
disappearing structures (Alderliesten et al 2013).

The recent review of Boehler et al (2012) describes the range of breast image registration 
techniques in more detail. The current review focuses on biomechanical deformation models 
as a means of generating physically realistic and well-constrained deformations to address the 
fundamental challenge inherent in breast image registration problems: gross, non-rigid, soft-
tissue deformation of the breast.

3.  Breast biomechanical modelling

Biomechanical modelling and simulation of biological tissues has been the subject of intense 
research within the past three decades by various research groups. It has been investigated 
for various medical applications, such as surgical procedure training, pre-operative planning, 
diagnosis and clinical biopsy, image guided surgery and image registration, material param-
eter estimation etc.

For example, in surgical planning, biomechanical modelling could provide realistic and 
accurate evaluation of virtual biological tissue deformations, enabling potential outcomes of 
various surgical strategies, or alteratives that fall within the range of available surgical options, 
to be compared. The goal of surgical training simulators is to provide physicians with an 
integrated interface that can support force feedback through reliable biomechanical simula-
tion, in order to practice and plan surgical procedures of various medical tasks. For diagnosis 
and clinical biopsy, reliable and efficient simulation tools for tissue deformation and motion 
estimation, are of particular interest. For example, a biomechanical model could be used to 
define the three-dimensional location of a lesion or model its temporal evolution within the 
human body. To that end, modelling can be used standalone or in conjunction with imaging 
procedures for treatment purposes.

Likewise, biomechanical models can be used for image guided surgery and image registra-
tion to realistically warp pre-operative image data to match the surgical situation. This over-
comes the limitations inherent in acquiring pre-operative images in an alternative pose to that 
used in surgery and accounts for the fact that human organs shift and deform during surgery by 
updating images concurrent with surgery using physically realistic models. Moreover, model-
ling tools in conjuction with non-invasive imaging technologies (e.g. shear-wave elastography, 
dimensional time resolved 3D ultrasound) and in vivo experiments (e.g. identation measure-
ments, aspiration techniques) can be also used for tissue health monitoring and biomechanical 
material response characterization.
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In summary, soft tissue simulators aim to model living biological tissues to an appropriate 
level of accuracy with respect to physical, mechanical, and anatomical properties, to address 
the following tasks effectively:

	 •	modelling of patient-specific data;
	 •	representation of the internal structure of specific biological tissues and/or organs of 

interest;
	 •	prediction of the biomechanical behaviour and deformation of tissues and organs 

according to the relevant clinical conditions (e.g. multi-modal diagnosis, surgical plan-
ning and image guided biopsy);

	 •	computational efficiency to provide users with results in a timeframe that is compatible 
with the relevant clinical workflow.

Various physics based computational methodologies have been proposed for the pur-
poses of biomechanical modelling and soft tissue deformation simulation. The most common 
numerical procedures are based on linear or nonlinear biomechanical models, which include 
the mass-spring method (MSM) (Roose et al 2005, Chang et al 2010, Patete et al 2013), 
the mass-tensor method (MTM) (Cotin et al 2000, Picinbono et al 2003, Roose et al 2006), 
the point-associated finite-field approach (De et al 2006), the boundary element method 
(Greminger and Nelson 2003, James and Pai 2005), and the conventional finite element (FE) 
method (see cited papers in sections 3.1 and 3.2).

3.1.  Biomechanical constitutive models

The tissue composition and the macro-/micro-structure of the breast directly contributes to its 
mechanical behaviour, therefore accurate and realistic biomechanical modeling of the breast 
requires understanding of its anatomical characteristics. The adult female breast is predomi-
nately composed of glandular lobules, milk ducts, adipose, connective tissues, and skin (figure 1).  

Figure 1.  Adult female breast anatomy illustration.
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The glandular lobules and milk ducts—usually referred to as fibroglandular tissue—are sur-
rounded by dense connective tissues that maintain the breast integrity. Each breast is attached 
to the chest by the pectoral fascia over the pectoralis major muscles, while its shape is estab-
lished and maintained by the skin. The breast changes under hormonal influence and due to 
ageing. For example, the ductal and glandular structure increases in size during the monthly 
premenstrual phase—contrary to the postmenstrual phase—while adipose is being almost 
completely replaced by ductal and glandular tissue during pregnancy. After menopause, fibro-
glandular tissues shrink and fat becomes predominant. Evidently, due to these changes, breast 
tissue biomechanics are expected to change. For example, in vivo magnetic resonance elastog-
raphy (MRE) measurements have revealed that the distensibility of breast tissues in healthy 
volunteers depends on the menstrual cycle (Lorenzen et al 2003).

In general, experimental studies measuring mechanical properties of breast tissues have 
been mainly motivated by diagnostic requirements, i.e. identifying abnormal tissues by assess-
ing tissue stiffness/elasticity (Sarvazyan 1993, Sarvazyan et al 1995, Krouskop et al 1998,  
van Houten et al 2003, Sinkus et al 2005, Samani et al 2007, O’Hagan and Samani 2009, 
Parker et al 2011, Doyley 2012). A summary of the most commonly used constitutive models 
and the associated tissue properties proposed for the biomechanical description of female 
breast tissues is outlined in table 1.

3.1.1.  Ex vivo biomechanical properties.  Mechanical properties of ex vivo breast tissues have 
previously been measured through tension and compression experiments. Uniaxial com-
pression experiments of 150 ex vivo specimens of healthy, cancerous and fibroadenomatous  
tissues showed that fibroadenomas are four times stiffer than normal tissues, and cancerous 
tissues are as much as seven times stiffer than normal ones (Sarvazyan et al 1995). Recogniz-
ing the potential effect of strain level, Krouskop et al (1998) measured the elastic moduli of 
142 ex vivo small samples of healthy and pathological breast tissues at two different strain  
levels: low-strain level (5%–15%) and high-strain level (20%–30%). With low frequency sinu-
soidal loads imposed by a circular indenter, experiments were performed on breast tissue 
slices, which were assumed to be in a semi-infinite elastic solid domain, so as to evaluate 
Young’s modulus of elasticity. Krouskop and his colleagues observed that the elastic modulus 
of fat tissue is constant over the strain range, while elastic moduli of the other tissue groups 
(glandular tissue, fibrous tissue, ductal carcinoma, invasive and infiltrating ductal carcinoma) 
are strain dependent. Adipose gave the lowest modulus measurements, while fibrous tissues 
were one to two orders of magnitude stiffer than fat. Glandular tissue had an elastic modulus 
similar to that of fat at low-strain levels but one order of magnitude stiffer at a higher-strain 
level. Carcinomas were stiffer than the other tissues at the higher-strain level; intra-ductal  
in situ carcinomas were similar to fat at the low-strain level and much stiffer than glandular 
tissues at the high-strain level. Furthermore, infiltrating ductal carcinoma was much stiffer 
than any of the other breast tissues, giving twice the stiffness of fibrous tissue at the high-
strain level. Thus, the dependence of modulus of elasticity on the two strain levels reveals the 
nonlinear elastic behaviour of breast tissues.

Wellman et al (1999) experimentally measured Young’s modulus of ex vivo breast tis-
sues. They found a significant difference in the stiffness distribution, and an increased rate of 
change of stiffness with strain, between cancerous and benign breast tissues. Infiltrating ductal 
cancer was more than ten times as stiff as normal fat tissue and two and a half times as stiff as 
glandular tissue at 1% strain, and more than seventy times as stiff as normal fat tissue and five 
times as stiff as glandular tissue at 15% strain. However, fat tissue only showed a three-fold 
increase in stiffness from 1% to 15% strain regimes.
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Since ex vivo breast tissue specimens tend to be small and no analytical expressions are cur-
rently available to directly extract the elastic modulus, E, from force-displacement measure-
ments, finite element (FE) based inverse analysis methods have been proposed to estimate E 
through indentation testing on small tissue specimens (Samani et al 2003, Samani and Plewes 
2007). The developed methods have been used to extract elasticity measurements of 169 ex 
vivo breast tissues and tumours. Under small deformation conditions, Young’s modulus of 
normal breast fat and fibroglandular tissues was found nearly equivalent (around 3 kPa), while 
fibroadenomas are approximately twice as stiff as in fibrocystic disease. Malignant tumours 
exhibited a three to six fold increased stiffness with high-grade, invasive, ductal carcinoma 
exhibiting up to a thirteen fold increase in stiffness compared to fibroglandular tissue. Along 
these lines, Samani and Plewes (2004) reported an inverse problem, FE solution strategy 

Figure 2.  Unloaded (or gravity-free) configuration, numerical prediction of a subject-
specific breast geometry, using an inverse problem analysis approach (Vavourakis 
et al 2015). (a) Arrow vectors illustrating the displacement magnitude distribution 
predictions of the inverse analysis. (b) Superposition of the prone (transparent orange) 
and the gravity-free (blue surface grid) breast geometry.

Figure 3.  FE models for breast plate compression deformation analysis (reproduced 
with permission from Han et al (2012)). (a) Before compression. (b) After compression.
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to extract the hyperelastic parameters of ex vivo breast tissues through indentation testings. 
Based on the data of ex vivo compression experiments published in the literature, Young’s 
modulus of adipose varied from 0.5 kPa to 25 kPa and in glandular tissue from 2 kPa to  
66 kPa (Gefen and Dilmoney 2007).

3.1.2.  In vivo biomechanical properties.  Mechanical properties of in vivo breast tissues have 
primarily been measured with elasticity imaging techniques, such as, sono-elastography, mag-
netic resonance elastography, shear wave elasticity imaging and mechanical imaging (Parker 
et al 2011, Sarvazyan et al 2011, Doyley 2012). Elasticity parameters of in vivo breast tissues 
were extracted from displacement/strain fields based on inverse problem solution techniques 
(Doyley 2012), or from shear-wave velocity measurements. These experimental methods were 
typically performed with breast tissues subjected to small deformations, whereas in Han et al 
(2003) the possibility of using clinical ultrasound probes as indenters for large deformation 
measurements was demonstrated.

In an early study involving six healthy volunteers and six patients with malignancies 
(McKnight et al 2002), experimental evidence of the mean shear modulus measured from MRE 
showed that breast carcinoma was 4.2 times as stiff as surrounding breast tissues. Similarly, 
Lorenzen et al (2002) used MRE procedures to assess the viscoelastic properties of breast 
tumours and surrounding tissues in a clinical study involving fifteen patients with malignant 
breast tumours, five patients with benign breast tumours and fifteen healthy volunteers. They 
found that in general, malignant invasive tumours (median 15.9 kPa) were significantly stiffer 
than benign lesions (7 kPa). However, an overlap in the elasticity ranges of soft malignant 
tumours and stiff benign lesions was observed, hence obscuring tissue differentiation through 
MRE mapping. However, the results of fifteen patients reported in Sinkus et al (2005) showed 
that there was a good separation between breast cancer and benign fibroadenoma when meas-
uring the shear modulus through MRE. More recently, Athanasiou et al (2010) employed a 
supersonic shear imaging technique to quantitatively assess the correlation between the stiff-
ness of breast lesions and pathologic results in a study of 46 women with 48 breast lesions  
(28 benign, 20 malignant). The stiffness of malignant lesions (146.6 kPa) was found to be 
higher than benign ones (45.3 kPa).

Besides pathological breast tissues, elastic parameters of normal breast tissues were also 
investigated with elasticity imaging techniques (McKnight et al 2002, van Houten et al 2003, 
Sinkus et al 2005, Tanter et al 2008). The results revealed that gland/fibroglandular tissues 
were stiffer than fat, and elastic moduli of in vivo breast tissues measured from elasticity 
imaging techniques have relatively good correlations with those measured through ex vivo 
mechanical testing procedures (Krouskop et al 1998, Wellman et al 1999). Recently, Gamage 
et al (2011) proposed a non-invasive in vivo material parameter identification technique, 
where multiple gravity loading deformation modes were used in combination with nonlin-
ear optimization techniques and finite element modelling. Their approach was validated by  
performing tests on a two-layer heterogeneous silicone gel phantom geometry. Although they 
demonstrated that three gravity loading orientations were sufficient to identify the heterogene-
ous constitutive parameters and maximize model predictability, their modelling was based on 
a rather simple constitutive material description.

The methods for characterizing the mechanical properties of healthy and pathological 
breast tissues have been reviewed above. Based on these methods, both ex vivo and in vivo 
estimations of breast tissue elastic properties have been reported in the literature. Nonetheless, 
this existing data is insufficient for high fidelity biomechanical simulations, i.e. very accurate 
numerical predictions. This is because in vivo measurements were typically limited to small-
strain experiments, and mechanical properties of ex vivo samples are likely to differ from  
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in vivo tissues, e.g. due to fixing of tissue samples, stress relaxation effects, etc. Moreover,  
it is generally accepted that the mechanical properties of living tissues vary widely across the 
population and over time for an individual. However, these data, and their relative values, are 
still useful for quantitative biomechanical analyses and could be used as an initial estimate 
for material parameter optimization in patient-specific biomechanical modelling (Rajagopal 
et al 2008, Han et al 2012), and in in vivo estimation of breast tissue elastic constants (Lago 
et al 2015). In contrast to breast tissues, experimental studies of in vivo and in vitro human 
skin have been more extensive. Mechanical measurement methods and mechanical properties 
of human skin can be found in the cited papers (Edward and Marks 1995, Elsner et al 2001, 
Pierre and Philippe 2004, Hendriks 2005, Geerligs 2006, Groves et al 2013).

3.1.3.  Constitutive models of breast tissues.  In general, biological soft tissues, and more 
precisely breast tissues, are observed to exhibit nonlinear, anisotropic and time-dependent 
mechanical response (Han et al 2003). However, in Krouskop et al (1998) and Wellman  
et al (1999), it was found that viscous effects were negligible when the mechanical loads are 
applied within short time scales. To model the mechanical response of breast tissues to applied 
loadings, various material constitutive models have been used, i.e. linear or nonlinear elastic 
relationships, depending on deformation magnitude and the purpose of specific applications. 
Amongst these, hyperelastic (or Green-elastic) material descriptions are most commonly used 
in breast biomechanical modelling (Bakic 2000, Tanner et al 2006), as shown also in table 1. 
For hyperelastic materials, the constitutive relationship is derived from a strain-energy func-
tion (Malvern 1977). Particular forms of the strain-energy potential include the polynomial 
form and its variations (the reduced polynomial form, the Neohookean form, the Mooney–
Rivlin and the Yeoh form), the Ogden, the Arruda–Boyce, and the Van der Waals model 
(Ogden 1984, Holzapfel 2000). Anisotropic linear elastic models and anistropic hyperelastic 
models have also been used to describe the anisotropic elastic behaviour due to the existence 
of Cooper’s ligaments (Han et al 2012).

The published experimental data of ex vivo breast tissues have been used to determine 
model parameters of the material constitutive models. For example, Azar et al (2001) fit-
ted the experimental curves of Wellman et al (1999) in order to determine the modulus of  
elasticity of glandular tissues, in which it is described as an exponential function of strain. 
Yin et al (2004) used corresponding moduli of fibroglandular and adipose tissues measured 
by Krouskop et al (1998) to define two parameter Mooney–Rivlin type hyperelastic models 
for adipose tissue and for fibroglandular tissue. Furthermore, Pathmanathan et al (2008) used 
a second-order polynomial hyperelastic model to describe fibroglandular and adipose tissues, 
while the model parameters were experimentally determined by Samani and Plewes (2004), 
and an incompressible exponential hyperelastic material law for skin was employed (Veronda 
and Westmann 1970).

3.2.  ‘State-of-the-art’ in breast biomechanics

3.2.1.  Breast deformation modelling.  To date, various numerical procedures have been  
proposed to model the biomechanics of adult female breast and simulate breast deforma-
tion during mammography screening, MR guided biopsy techniques and image registration. 
Amongst the pioneering works in patient-specific finite element (FE) modelling of breast 
tissue deformations was that of Samani et al (2001). They proposed two hexahedral mesh 
generation methods: one that was voxel based where FE meshing is accomplished by down-
sampling MR images, and a surface-based meshing procedure by transfinite interpolation 
(Knupp and Steinberg 1993). In a numerical example, they presented hexahedral meshes of a 
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breast from MR images with the two meshing techniques and demonstrated breast deforma-
tion under plate compression explicitly modelled as a contact problem. Elastic moduli of fat 
and fibroglandular tissues were experimentally fitted to polynomial functions of strain, while 
skin was considered to be elastic and modelled using membrane elements. Although their 
numerical scheme performed well, the authors mentioned that more reliable material proper-
ties are required to validate their results quantitatively and increase the accuracy of their model.

Motivated by the requirement to estimate the location and extent of a tumour during mam-
mographic compression associated with needle biopsy, Azar et al (2001) and Azar et al (2002) 
proposed an FE-based methodology to model breast deformations and predict the tumour 
position during plate compression. Three-dimensional hexahedral FE meshes were generated 
from multiple two-dimensional slice contours. The breast was deformed using virtual com-
pression plates by applying displacements to the surface nodes. To reduce the total computa-
tional time, the large deformation compression was divided into a number of small increments 
using small-strain considerations. Non-constant Young’s modulus, as a function of the strain 
tensor, was used for modelling the nonlinear behaviour of fat and glandular tissues while the 
presence of skin was neglected. Compression simulations of three patient-specific breasts 
produced reasonable lesion estimation results.

In the works of Ruiter et al (2002) and Ruiter (2003), a method for automatic registration of 
x-ray mammograms and MR volumes of the female breast was developed using a biomechani-
cal model of the breast. This study used the commercial finite element platform ANSYS for 
the mammographic compression simulation of MR reconstructed volumes of the undeformed 
breast. In Ruiter et al (2002), different tissue models (i.e. inhomogenous nonlinear, homoge-
nous nonlinear, and homogenous linear models) for the breast tissues and boundary conditions 
(BCs) were considered in a parametric modelling study. They observed that the inhomog-
enous nonlinear material model assumption is the least accurate, while the rest perform quite 
similarly, although their simulations were confined to less than 25% breast compression.  
In their analyses the authors assumed identical material parameters for the lesion and the healthy 
breast tissues, although it is known that some carcinomas are an order of magnitude stiffer.

Rajagopal et al (2004) reported a biomechanical modelling framework of patient-specific 
geometries of the breast anatomy. They formulated a semi-automatic procedure to generate 
patient-specific finite element grids from magnetic resonance images, while they utilized a 
Total Langrangian formulation in order to numerically solve the equilibrium equations. The 
FE solution procedure was validated experimentally on silicon gel samples subjected to natu-
ral gravitational loading. Additionally, they attempted to investigate the material assumptions 
for soft tissues (i.e. isotropy, homogeneity and incompressibility) made in the literature at 
that time.

In del Palomar et al (2008), an FE-based approach to construct models that could be 
employed to predict patient-specific breast shape after lumpectomy interventions was pre-
sented. To achieve this, computed tomography images were used to reconstruct the shape 
of the breast. In their model, they didn’t differentiate fatty from fibroglandular tissues; thus, 
breast tissues were assumed to be a region of homogeneous material by assigning average 
material properties for the breast tissues. Two patients were chosen in order to adjust the mate-
rial properties and to further validate their FE model. A woman with a high proportion of fat 
tissue was considered and the material constants were fitted using several landmarks located 
on the patient’s breast. Then, these material constants were used for the breast deformation 
analysis of the second patient with a different proportion of fat/fibroglandular tissue, and the 
final shape of the breast was compared with 3D scanner images of the patient in standing 
position. Their numerical results demonstrated the efficiency of their model to predict breast 
deformations at various positions of the patient with reasonable accuracy.
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Chung et al (2008a) developed a biomechanical model of the breast to simulate com-
pression during mammographic screening. MR images of the uncompressed breast were  
segmented into skin and pectoral muscle, in order to reconstruct the Hermite element grid of 
a 36-year old volunteer’s breast geometry using a nonlinear geometric fitting process; while 
special numerical treatment was applied to the FE model to account for contact. Their model 
was reported to reliably reproduce the compressive deformation of the breast during mam-
mography (up to 32% compression). The accuracy was assessed by comparing the predicted 
surface data and the locations of three internal features within the compressed breast, which 
has been further tested and validated through experimental evidence on soft gel phantoms.  
In this regard, the FE predictions of the surface deformation yielded a root-mean-square error 
of 1.5 mm, while the Euclidean error in evaluating the locations of three internal landmarks 
ranged between 4 and 6.5 mm. Furthermore, the FE numerical framework of the above men-
tioned authors was later refined to account for frictional contact mechanics when model-
ling the interaction between the breast skin and compression plates (Chung et al 2008b).  
In this work, the authors investigated two frictional contact formulations based on Coulomb’s 
frictional law, while the simulation results were compared with experiments on a silicon gel 
phantom. Both numerical approaches produced similar accuracy results of the breast surface 
deformation (root-mean-square errors were less than 3 mm approximately for both cranio-
caudal and mediolateral compression).

In the same year, Pathmanathan et al (2008) proposed a FE numerical procedure to model 
breast deformation during cranio-caudal and mediolateral-oblique mammographic screen-
ing. Their breast model was constructed from MR images, where fibroglandular tissues were 
segmented from adipose tissues into their model, while the skin was also accounted in their 
analysis. Nonlinear constitutive relations were used for the biomechanical description of 
breast tissues and the skin (Samani and Plewes 2004). The numerical procedure involved two 
consecutive steps: a backward analysis in order to evaluate the zero-gravity configuration of 
the breast, followed by a forward analysis of breast deformation due to the compression pads. 
In the latter analysis step, the interaction between breast skin and compression pads assumed 
zero friction. Their approach, nonetheless, differs from the previous works in the fact that 
it recovers the undeformed configuration of the breast. However, as the authors argue, their 
numerical scheme was not validated using clinical data and they raised a concern about the 
material parameters utilized in their analysis.

In the work of Tanner et al (2011), individual-specific breast compression computer simu-
lations of eight female volunteers were investigated with particular emphasis on breast tissue 
material parameters specification. The realism of mammography simulations was evalu-
ated by comparing the breast shapes of simulated and real mammograms. In the numerical 
simulations, the performance of isotropic and transverse isotropic material models to predict 
the displacement of internal landmarks was compared. The mean displacement error of sev-
eral landmarks was observed to reduce for isotropic materials after optimizing the material 
parameters with respect to breast surface alignment and image similarity. However, when the 
authors specified transverse isotropic breast tissues (with an increased stiffness in the anterior- 
posterior direction), they obtained more realistic mammogram simulations from MR images. 
They also observed that the amount of anisotropy had a significant impact on the numerical 
predictions, whereas homogeneous material models under-performed significantly.

Subsequently, Han et al (2012) proposed an integrated biomechanical modelling frame-
work for surgical simulations, supported by a fast graphics processing unit based explicit 
nonlinear FE solver. Patient-specific FE model generation was accomplished using a semi-
automatic segmentation method for tissue classification and a fully automated FE grid genera-
tion. The main contribution of this work was the development of an optimization algorithm 
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for the numerical determination of breast tissues’ material parameters through FE simula-
tions. The optimized deformation prediction was obtained by iteratively updating the material 
parameters, to maximize the geometry similarity (i.e. via the location of various landmarks) 
between the FE predicted breast shape and the experimentally acquired MRI scans. Their 
numerical methodology was validated and tested through breast compression simulations for 
five patient-specific cases, and their results revealed that both the heterogeneity and the anisot-
ropy of soft tissues are essential in predicting accurate large breast deformations under plate 
compression, despite the fact that the skin wasn’t explicitly modelled in their analyses.

Costa (2012) proposed an interesting alternative numerical approach for large deformation 
analysis of soft tissues. Breast tissue bulk was modelled as an incompressible fluid medium, 
while a dense network of distensible elastic fibers connecting the surface (boundary) vertices 
was also considered. The deformed state of the mesh was computed by taking the quasi-static 
equilibrium of the internal forces, due to fluid pressure and fiber tension, with external forces 
acting in an area associated with each superficial vertex node. In this approach, as opposed to 
the MSM, the mass is distributed in the entire object by the fluid density. The author argues 
that the proposed methodology can easily incorporate anisotropic and nonlinear behaviour 
of soft tissues, and performs independently of the mesh resolution. However, this approach 
is limited in modelling objects filled with fluids and no dynamic simulations could be per-
formed. Costa also attempted to simulate breast deformation during mammography, while his 
methodology was validated through an ex vivo compression experimentation on bovine liver.

Recently, Kuhlmann et al (2013) presented a breast biomechanical model to predict soft  
tissue deformation during imaging. Their numerical method was founded on a coupled Eulerian-
Lagrangian FE approach that, as argued by the authors, would allow for a more adequate  
representation of very large deformations experienced by soft living tissues. The internal 
tissues of the breast were represented as an Eulerian material and enclosed by a Lagrange-
membrane representation for the skin. Nonlinear constitutive relations were adopted from the 
literature for mechanically describing the breast tissues and the skin. MR images were utilized 
for generating patient-specific breast geometries. The authors validated their model by compar-
ing the numerical results with experimental laser-scan measurements of a subject through a 
microwave breast imaging system. Furthermore, they simulated cranio-caudal mammographic 
compression using two rigid plates. However, as reported in their paper, although this numeri-
cal approach provides significant improvements for stable, large deformation simulations even 
for highly incompressible materials, the computational time cost is remarkably high due to the 
mesh resolution requirements, when compared to pure biomechanical models.

Patete et al (2013) developed and validated a three-dimensional female breast deforma-
tion model that was based on MSM for computer assisted breast surgery. MR scans of a 
patient—for breast biopsy preparatory analysis—were acquired using two different datasets: 
the uncompressed breast, and the compressed breast due to lateral single breast compression. 
The acquired images were segmented using a semi-automatic procedure, and then a tetrahe-
dral based grid representing the skin, fat and glandular tissues was generated. Tissue model-
ling was performed through a two-step algorithm. First, an iterative approximation algorithm 
was implemented in order to estimate the springs’ rest length and evaluate their stiffness 
due to the inherent gravitational loading on the uncompressed breast grid. Subsequently, the 
resulting spring parameters were used to carry out the final deformation simulation and hence 
recover the original deformed breast grid. Numerical results revealed that the applied gravity 
force was compensated by the internal elastic forces of the springs’ network, thus leading to 
maximum relative distance error between the two configurations of less than half a millim-
eter. However, it was reported by the authors that further investigation on a larger dataset is 
required to assess the accuracy and robustness of the model to predict breast deformations.
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3.2.2.  Predicting the undeformed breast shape.  As discussed in section  1, conventional 
image acquisition and analysis techniques are unable to fully and accurately predict large 
breast deformations at various positions of the patient. A prerequisite of this approach, how-
ever, is to assess the loading state of the individual-specific breast geometry in order to ensure 
the validity and correctness of the mathematical modelling procedures. This is especially 
true for prone MRI, which delivers good soft tissue contrast and is hence a very good basis 
for a three-dimensional biomechanical model, but shows the breast in a freely pendulous 
position with gravity pulling the tissues in the anterior direction. Thus, it is vital to evaluate 
breast tissue pre-stressing due to the in vivo conditions (i.e. gravity) and accurately predict the 
unloaded (i.e. gravity-free) configuration of an individual-specific breast geometry. This sec-
tion attempts to review the relevant research into this topic.

Rajagopal et al (2007) reported a pure Lagrangian iterative scheme that numerically evalu-
ates the unloaded configuration of a solid body. The proposed formulation is founded on a 
standard forward finite deformation approach, where the only unknown for the problem is 
the undeformed (or reference) configuration (as opposed to the deformed state in conven-
tional forward analysis). In this approach, an estimated undeformed state is perturbed and the 
residual of the unbalanced forces is evaluated repeatedly until convergence is achieved. The 
authors validated their FE methodology with an analytical solution and verified their predic-
tions with experimental results on phantom geometries.

Similarly, Carter et al (2008) proposed an iterative FE methodology to evaluate the unloaded 
shape of individual-specific breast geometries. Initially, an estimate of the reference state is 
assumed having zero internal stresses and applying gravity in the anterior direction. Then, in 
the posterior direction, gravity is re-applied to the reference state model, and the nodes’ spatial 
location is compared between the deformed reference model and the supine model. This pro-
cess is repeated until the difference between the two configurations falls below a predefined 
tolerance. This method was later refined by Eiben et al (2013), in which an initial guess of the 
zero-gravity state is established by inverting the direction of gravity and relaxing the stresses 
on each breast model. The corresponding configurations are then re-loaded, and an iterative 
procedure is followed where the estimated zero-gravity configuration is updated. The update 
is performed by pulling the difference vector between the original loaded model and the re-
loaded model into the unloaded configuration and adding a scaled version of this vector to the 
node position in the unloaded configuration. The iterative process ends when convergence is 
met between the original breast (prone or supine) model and the estimated gravity-free model. 
Eder et al (2014) proposed a similar iterative approach to predict the unloaded configuration 
from a prone breast MRI but instead of using the displacement vectors directly to update the 
zero gravity state estimate, they applied the reaction forces that arise when the re-loaded con-
figuration is displaced to the real loaded MRI configuration. These forces are then used in the 
unloaded configuration to calculate the corresponding node update.

Eiben et al (2014) assessed the performance and accuracy of three algorithms for recovering 
the unloaded state of patient-specific breast geometries. These algorithms were the simple inver-
sion of the direction of gravity, an inverse finite deformation approach (Govindjee and Mihalic 
1996) and a fixed-point type iterative approach (Eiben et al 2013). They showed that the simple 
inversion of the direction of gravity does not provide high accuracy estimates for the unloaded 
breast shape especially for larger breast volumes. The iterative approach on the other hand 
generated results comparable to those produced with the inverse finite deformation approach. 
Furthermore a sensitivity analysis study using a phantom geometry, having as known the 
ground-truth unloaded breast configuration and tissue properties, was carried out. They reported 
that the simple inversion of gravity approach is more sensitive than the ‘pure’ inverse analysis 
methodologies with respect to the material parameters assumed in biomechanical modelling.
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More recently, Vavourakis et al (2015) proposed a generalized mixed FE formulation for the 
evaluation of the unloaded configuration of biological soft tissues and organs, which exhibit 
incompressible behaviour under finite deformations (figure 2). In their study, in vivo patient- 
specific geometries—acquired through medical imaging—were utilised in simulating the 
recovery of the pressure-free configuration of human aortas and the gravity-free shape of the 
female breast; where as far as breast unloaded shape is concerned, they considered in their 
analysis the spatial-varying structure of the organ and the biomechanics of the skin. 

4.  Biomechanically informed breast image registration for multi-modality 
imaging and image guided interventions

In this section  we review the state-of-the-art in biomechanically informed breast image  
registration. These methods are categorised according to the specific transformations 
addressed, which in turn correspond to one or more clinical applications. Section 4.1 intro-
duces prone to prone image registration for the purposes of aligning (a) the temporal frames 
of a dynamic contrast enhanced MR sequence and (b) MRI and PET images, both of which 
are acquired in the prone position. For completeness we include a discussion of the valida-
tion of prone-prone breast image registration algorithms (section 4.2) in which the methods 
discussed, whilst not utilising biomechanical transformations directly in their methods, were 
however validated using biomechanical simulations. In section 4.3 prone to supine breast reg-
istration is considered. This covers registration of prone MRI to supine US, CT or MRI. CT 
is routinely used in radiotherapy planning and relating this image to the pre-operative MRI 
(if available) would help direct the radiotherapy dose to the most critical regions within the 
breast. Whilst not currently standard clinical practice, an additional supine MRI acquisition is 
proposed, in the context of surgical planning, as a means of providing a pre-operative estimate 
of the initial breast position at the start of surgery. Finally section 4.4 reviews methods devel-
oped to address applications in which the breast was imaged with and without compression. 
This equates to registration of MRI or Ultrasound Computed Tomography (USCT), in which 
the breast is imaged prone and freely pendulous, to x-ray mammography, in which the breast 
is immobilised via compression between parallel plates.

4.1.  Prone to prone breast image registration

The fact that the magnitude of the deformation expected in the prone-to-prone registration 
problem is relatively small might explain why few biomechanical approaches exist to inform 
this type of registration problem. Roose et al (2008) for example investigate how boundary 
conditions can be applied to a biomechanical mass-tensor model in order to obtain the align-
ment of prone MR images. Displacement boundary conditions applied on the skin surface 
are an obvious choice to push the model into the position of potential alignment. The interior 
of the breast in this case would be deformed, completely determined by the potential energy 
minimisation or relaxation of the breast tissue. Pure displacement boundary conditions are in 
general, however, problematic, as they require a point to point correspondence to be estab-
lished in advance. This correspondence is difficult to establish between two surfaces as it is 
mostly unstructured. In Roose et al (2008) three different types of boundary conditions are 
proposed: i) sliding surface contact, ii) image intensity guided surface matching, and iii) com-
bined surface attraction and image intensity guided matching. The results look best for the 
last approach which allows sliding of the surface but is driven by image intensities. A registra-
tion accuracy is given only in terms of an improvement in image similarities. However they 
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clearly show that the biomechanically guided alignment procedure results in significantly less 
volume changes, compared to free form deformation registration, and therefore offers a more 
plausible solution.

Image registration between MRI and PET is inherently difficult since both modalities cap-
ture fundamentally different biochemical and physical tissue properties. In particular, registra-
tion algorithms have to account for the sparse, locally confined information of PET images. 
One approach to align highly different image information is to use a known commonality such 
as skin fiducial markers which are visible in both modalities. Based on this additional informa-
tion Coman et al (2004), Unlu et al (2005) and Krol et al (2006) proposed a method whereby 
first corresponding markers are detected and from this sparsely distributed displacement  
vectors are calculated. To generate the deformation vector field which aligns the MRI with the 
PET image, the breast is segmented from the MR image and a finite element mesh is gener-
ated to discretise the domain. Three displacement components are regarded as three separate 
local temperatures which are imposed on the surface of the model. To interpolate the displace-
ments across the whole domain, the Steady State Heat Transfer problem is solved. The authors 
highlight that no biomechanical model is required for this kind of registration. Subsequent 
work from this group (Unlu et al 2010) proposed an optional extension by incorporating the 
CT images from combined PET/CT acquisitions, if these are available. The CT image is in 
this case used to perform additional iterative surface matching between the MRI and the CT.

PET/CT acquisitions provide a desirable combination of imaging modalities as CT images—
being acquired in the same patient position and imaging session as the PET images—provide 
essential information for the PET image reconstruction in terms of attenuation correction. 
Thus it is logical for image registration techniques to use the anatomically more informative 
CT images, in place of the PET images, to solve the PET-MR registration task.

Dmitriev et al (2013) overcome the highly different nature of DCE-MRI and PET images 
by using CT images as an intermediate modality. They fuse DCE-MRI and PET/CT images 
by multi-scale registration of the T1 weighted pre-contrast image of the DCE-MR image and 
the anatomical CT image. During both acquisitions the patient position is kept as similar as 
possible, i.e. prone. The PET image is assumed to be registered to the CT image as both are 
captured at the same time. They report that 94.2% of the 140 breast images from 70 patients 
were aligned with an error of less than 4 mm. The target registration error was evaluated by 
using five corresponding, manually picked landmarks within each breast. The authors employ 
a conventional B-spline transformation and list the lack of a biomechanical model as a limita-
tion of their approach.

4.2.  Validation of prone to prone breast image registration

Quantitative evaluation of image registration algorithms requires a known ground truth defor-
mation which an algorithm aims to recover. This ground truth deformation can be provided 
via a set of spatially distributed landmarks or as a dense deformation vector field. Tanner et al 
(2007) chose biomechanical simulations to generate known deformations in order to quantify 
the performance of the well known B-spline registration algorithm proposed by Rueckert et al 
(1999) for dynamic contrast enhanced MR images. Intensity changes in the dynamic contrast 
series caused by the contrast agent are likely to be removed by intensity based image registra-
tion algorithms and thus constraints such as volume preservation are required. Hence, Tanner 
and her colleagues selected ten pre- and post-contrast image pairs from different patients 
which did not show any displacement of the tissue between the acquisition time points. The 
images were manually segmented into fat, fibroglandular and cancerous tissue and the breast 
region was discretised using second order tetrahedral elements. These elements were assigned 
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with isotropic, linear elastic material properties according to the segmentation. Displacement 
boundary conditions were developed and imposed to simulate different types of motion with 
two amplitudes of 5 mm and 10 mm.

Hill et al (2009) followed a similar approach to examine the effect of motion on the evalu-
ation of DCE-MRI enhancement characteristics. To this end, a patient-specific heterogeneous 
model was built. They observed a relationship between the maximum enhancement value from 
the DCE series, with the different tissue types (fat, fibroglandular and lesion) and used a linear 
mapping to convert maximum enhancement into Young’s modulus (Hill et al 2008). Thus an 
explicit segmentation step is only required for the gross shape of the breast. They derived dis-
placement boundary conditions from a dataset with visible movement at the breast-pectoralis 
interface and imposed this motion onto a different dataset, and corresponding model, where 
no motion was apparent. They conclude that small motion artefacts can influence the enhance-
ment curve of a lesion significantly and thus image alignment of the contrast series should be 
performed in order to avoid misleading results.

4.3.  Prone to supine breast image registration

This section reviews the methods developed to address prone to supine breast image registra-
tion; in particular, prone MRI to supine US, CT or MRI.

Prone-to-supine breast image registration is a particularly challenging task due to the large 
deformations which occur due to the change in the direction of gravity. Pure intensity based 
image registration algorithms are likely to fail as the initial overlap is too small to drive the 
registration in the correct direction. Thus biomechanical models have been used in registration 
strategies to incorporate the direction of gravity reversal as prior knowledge.

Early work by Carter et al (2008) aimed to make pre-surgical information from prone dynamic 
contrast enhanced Magnetic-Resonance-Imaging (DCE-MRI) available for image guided sur-
gery. In a surgical setting, the facility to perform imaging is limited. Three dimensional surfaces 
from stereoscopic reconstruction techniques can be captured relatively easily as they are based 
on optical systems which only require an unobstructed view of the patient’s chest. The main lim-
itation of this modality however is that it provides surface information only. Carter et al (2008) 
thus follow a two step approach of (1) aligning prone and supine breast MR images of the same 
patient, where the latter image acts as an intermediate which is an addition to current standard 
clinical practice and (2) by aligning the supine MRI with the reconstructed chest surface.

As discussed in section 3.2.2 a number of authors have addressed the issue of comput-
ing the unloaded shape of the breast when developing prone to supine registration methods 
because pre-stresses in either pose of the breast are generally unknown (Rajagopal et al 2007, 
Carter et al 2008, Eiben et al 2013).

All biomechanical models and corresponding simulations will—to some extent—be inac-
curate due to limited knowledge about the exact in vivo tissue response to loading, among 
other factors. The alignment accuracy achieved by simulation alone can be improved by inten-
sity based image registration. Carter et al (2008) used a fluid registration approach whereas 
Lee et al (2010) incorporated a B-Spline registration scheme.

Eiben et al (2013) also used a B-Spline registration and showed that the registration can also 
be performed in the unloaded zero-gravity frame, claiming that this method is advantageous, 
especially for larger breasts, as folding is reduced in the virtual unloaded state. In this approach 
it is necessary to build a biomechanical model from the prone and the supine position.

Similarly, prone images are deformed into the supine position by Han et al (2014) by using FE 
simulations and a subsequent image registration step. While the pre-stresses from gravity are not 
taken into account, motion of the breast tissue along the chest wall is permitted by using frictionless 
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boundary conditions. The approach further refines previous approaches since the material proper-
ties of the biomechanical model as well as the direction of gravity is optimised at the same time, 
where the optimisation criterion is the similarity measure of the final registration step.

In this work, the computational cost was relatively high (in the range of 3–4 h), despite the 
use of a high performance GPU-based FE solver. This is clearly incompatible with real-time/
fast clinical applications.

The target information in all publications referenced in this section so far were spatially 
resolved images. In the current clinical work-flow however, supine images, to which a prone 
MRI could be deformed, are not usually acquired. In the context of surgical guidance, advances 
in affordable surface scanning techniques could potentially provide alternative target informa-
tion to deform prone images into the supine position. Preliminary work by Lago et al (2012) 
imposed boundary conditions from simulated range data mimicking the depth field from a 
time-of-flight camera. Unfortunately no quantitative evaluation of this technique is included 
and results are only presented on the level of visual quality.

In addition to significant effort and much progress in the field of prone-to-supine image 
registration of the breast, and related biomechanical modelling, recent research has also  
considered options to avoid the large scale deformation registration problem by acquiring a 
pre-surgical contrast enhanced MRI in the supine position (Siegler et al 2012, 2011). However, 
it remains to be seen if the supine breast acquisition is accepted in clinical diagnostic imaging.

4.4.  Image registration of the breast under compression

In this section we review breast image registration developments in which biomechanical model-
ling has been used to capture large deformations caused by compression of the breast, such as that 
observed in mammography (figure 3). For this purpose, patient-specific breast models have been 
developed and plate compression simulations performed to predict the deformed breast shape.

Methods that use a simplified generic breast model have also been proposed. For the CC 
to MLO compression (Kita et al 2001) proposed the use of quadratic equations to model the 
deformation of each curve within the breast from the compressed to the uncompressed state, 
while (van Schie et al 2011) used a semi-spherical model. A population Statistical Deformation 
Model (SDM) (Tanner et al 2009) was used for multimodal registration and finally a volume-
preserving affine (Mertzanidou et al 2012a) and an ellipsoidal SDM (Mertzanidou et al 2011) 
were employed for MRI to x-ray registration.

We first review patient-specific breast compression modelling approaches and then refer in 
more detail to the utility of FE modelling within an MRI to x-ray mammography registration 
framework.

4.4.1.  Patient-specific breast modelling for plate compression simulations.  A number of 
approaches to FE modelling of the breast for plate compression simulation have been pro-
posed for a range of applications:

	 •	prediction of 3D deformations (Samani et al 2001, Pathmanathan et al 2004, Chung et al 
2008b, Tanner et al 2011, Han et al 2012),

	 •	breast MRI to x-ray registration (Ruiter et al 2006, Mertzanidou et al 2012a, Hopp et al 
2013a, Lee et al 2013),

	 •	the validation of x-ray mammography registration algorithms (Hipwell et al 2007),
	 •	biomechanical software phantom compressions for evaluation of tomosynthesis image 

processing and reconstruction algorithms (Ruiter et al 2008, Bakic et al 2011, Pokrajac  
et al 2012),
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	 •	ultrasound CT to x-ray mammography registration (Hopp et al 2012b), and
	 •	validation of mammographic density methods (Alonzo-Proulx et al 2010).

In this section, we review the various patient-specific modelling techniques, in the context 
of image registration, according to the biomechanical modelling components presented in sec-
tion 1. Sensitivity analysis of the various modelling parameters with respect to compression 
simulations has been performed using a three-dimensional breast phantom (Hsu et al 2011) 
and real patient data (Mertzanidou et al 2014).

Geometry and meshing.  As discussed previously, the geometry of a biomechanical breast 
model is frequently defined using MRI. The first step when building a biomechanical model 
therefore consists of segmenting the breast volume from the image in order to extract the 
surface and the volumetric mesh. This can be a challenging segmentation task, due to the 
poorly-defined boundary between the breast tissue and the pectoral muscle. Therefore, authors 
often used either manual or interactive approaches (Samani et al 2001, Tanner et al 2011, Han  
et al 2012, Mertzanidou et al 2014). However, automated approaches have also been proposed 
(Ruiter et al 2006, Hopp et al 2013a, Lee et al 2013, Solves-Llorens et al 2014).

The choice of the optimal number of nodes and elements in the volumetric mesh is an open 
research topic. Fine meshes, with a large number of nodes and elements, have the advantage 
of representing the breast anatomy and shape more accurately, but have the disadvantage 
of requiring longer computational times by the FE solver. Also, large deformations, such as 
mammographic compression, can cause element topology problems when applied to very fine 
meshes, especially in cases where folding is present. Folding can occur, particularly for large 
breasts, due to contact with the MRI breast coil or in cases where the subject is clothed during 
scanning.

In the literature authors have proposed a wide range of values for mesh node density, from 
very fine to very coarse meshes, but no experimental study has determined the optimal value 
for this application. When modelling breast plate compressions, the number of elements used 
varied from a few hundred (Ruiter et al 2006, Chung et al 2008b, Lee et al 2013), to several 
thousand (Mertzanidou et al 2014, Pathmanathan et al 2004) and finally tens of thousands 
(Samani et al 2001, Tanner et al 2011, Han et al 2012, Hopp et al 2013a, 2013b, Solves-
Llorens et al 2014). The majority of FE analyses have been performed on tetrahedral meshes, 
however hexahedral meshes have been proposed by Chung et al (2008b), Lee et al (2013), 
Pathmanathan et al (2004) and Ruiter et al (2006).

Material properties.  When modelling large breast compressions authors have chiefly pro-
posed non-linear material models, as linear elastic models are considered less accurate for 
large deformations. More specifically, a hyperelastic, (nearly) incompressible material was 
proposed by Chung et al (2008b), Han et al (2012), Hopp et al (2013a), (2013b), Lee et al 
(2013), Mertzanidou et al (2014), Ruiter et al (2006), Samani et al (2001) and Solves-Llorens 
et al (2014). Linear elastic models where used by Tanner et al (2011) and Alonzo-Proulx et al 
(2010), however in the experiments described by Tanner et al (2011), the displacements of all 
the surface nodes were known and constrained. Therefore for this particular application the 
effect of the material model is expected to have less influence on the results.

In Alonzo-Proulx et al (2010), Han et al (2012), Ruiter et al (2006), Samani et al (2001), 
Solves-Llorens et al (2014) and Tanner et al (2011) three different tissue classes were used: 
fibro-glandular, fat and skin, whereas Chung et al (2008b), Hopp et al (2012b, 2013a), 
Mertzanidou et al (2014) adopted a single homogeneous tissue type and Hopp et al (2013b) 
vary Young’s modulus across the breast according to the speed of sound measured using 
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ultrasound CT. The experimental work of Ruiter (2003) showed no significant effect on the 
results when different tissue models were used. The work of Ruiter et al (2006) and Tanner 
et al (2011) reported an anisotropic behaviour of the breast when applying mammographic 
compressions, with a reduced elongation in the anterior-posterior direction and an increased 
expansion in the medial-lateral direction, for a CC-view compression. This was incorporated 
into the modelling performed by Han et al (2012), Mertzanidou et al (2014) and Tanner  
et al (2011).

In most approaches the material parameters of the breast tissue were taken from the litera-
ture on studies of ex vivo tissue samples, however a patient-specific in vivo parameter estima-
tion method was proposed in Han et al (2012) and Mertzanidou et al (2014).

Compression simulation and boundary conditions.  The plate compression that occurs in 
mammography has been modelled in the literature, primarily using two different techniques. 
The first involves applying displacements to the surface nodes of the breast mesh in the com-
pression direction (Ruiter et al 2006, Hipwell et al 2007). The compression plates and their 
interaction with the breast are not explicitly modelled in this case, but it is assumed that the 
displacements applied on the surface nodes have the same effect. It was reported by Ruiter 
(2003) that this technique leads to artifacts on the breast surface (breast swelling) around the 
nodes that are adjacent to the ones that the displacements are applied to. An alternative method 
is to explicitly model the interaction between the contact plates and the breast tissue using 
either a friction (Alonzo-Proulx et al 2010, Hopp et al 2013a, Lee et al 2013) or a friction-
less model (Pathmanathan et al 2004, Chung et al 2008b, Han et al 2012, Hopp et al 2012b, 
Mertzanidou et al 2014).

The behaviour of the breast tissue under compression is influenced by the presence of the 
pectoral muscle. This was modelled in the literature either by constraining the nodes close 
to the pectoral muscle to be fixed (Samani et al 2001, Chung et al 2008b, Hopp et al 2012b, 
2013a), or by allowing them to slide along the chest wall (Alonzo-Proulx et al 2010, Tanner  
et al 2011, Han et al 2012, Lee et al 2013, Mertzanidou et al 2014, Solves-Llorens et al 2014). 
Although the surface of the pectoral muscle can be extracted from the MRI, for simplicity 
this has sometimes been neglected (Hopp et al 2013a) or has been approximated as a plane 
(Mertzanidou et al 2014, Solves-Llorens et al 2014).

4.4.2.  MRI to x-ray mammography registration.  A patient-specific FE modelling approach 
was first used as part of an MRI to x-ray registration framework by Ruiter et al (2006) and 
Ruiter (2003). This implementation used the breast outline for alignment rather than, for 
instance, the intensities in the two images. The registration was performed in two stages: in 
the first step a plate compression was applied and in the second a breast outline alignment 
was achieved by applying additional displacements on the surface nodes of the breast model. 
Hopp et al (2013a) extended this approach by introducing an additional step in which the 
rotation of the breast about the anterior-posterior axis was estimated using an intensity-based 
optimisation. Similarly, another FEM-based approach with a contact model was proposed 
(Lee et al 2013) which also employed an iterative intensity-based registration framework. 
However, this was limited to a 2D rigid-body registration of the simulated projection to the 
x-ray mammogram. Similarly, Solves-Llorens et al (2014) followed an approach that also 
used a single breast compression of the MRI, and then employed a 2D registration between the 
simulated projection image and the real mammogram. Finally, Mertzanidou et al (2014) pro-
posed an intensity-based registration, where both pose and FEM parameters were optimised 
in the same framework, and multiple FEM-based simulations were tested at each iteration of 
the optimisation.
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Regarding validation, quantitative results on clinical cases showed initially a mean error 
of 4.3 mm on six cases (Ruiter et al 2006). A more recent semi-automated implementation of 
the same approach had a mean error of 11.8 mm, on CC-view mammograms only, of eleven 
patients (Hopp et al 2012a). Finally, in the latest automated implementation (Hopp et al 
2013a), where the results were improved by optimising the roll angle using intensity-based 
registration, the mean error was 13.2 mm on CC-view only mammograms of a substantial 78 
patients. The FEM-based technique followed by a 2D rigid intensity-based registration of Lee 
et al (2013) was tested on both CC- and MLO-view mammograms of six patients and gave 
a mean error of 19 mm. The method followed by Solves-Llorens et al (2014) reported errors 
of 4.5 mm in fourteen datasets. It is worth noting that for this method a two-dimensional, 
non-rigid transformation was employed to warp the simulated projection image to match 
the real mammogram, which may introduce physically non-realistic deformations. Finally,  
a simultaneous optimisation of pose and FEM parameters (Mertzanidou et al 2014) produced 
a mean error of 11.3 mm when tested using CC- and MLO-view mammograms of ten patients. 
Of note is that this value is only marginally lower than the value of 12 mm obtained using 
the same data registered via a volume-preserving affine transformation. The latter was previ-
ously validated on 113 CC and MLO mammograms and a median error of 13 mm obtained 
(Mertzanidou et al 2012a).

Direct comparison between these methodologies is problematic, due to the different data-
sets used and variations in the features used for validation. Of note is the additional challenge 
associated with registering MLO- versus CC-view mammograms. Registration of the former 
is often more challenging, due to greater uncertainties regarding the positioning of the breast 
before compression and also the effect of the pectoral muscle on the compression simulation.

Given the 3D-to-2D nature of this registration task, an accuracy approaching that of the 
MR voxel resolution of one to two millimetres may be unrealistic, however the above results 
suggest that the combined benefits of a physically realistic biomechanical transformation, 
robust optimisation framework, appropriate cost function and accurate MRI to x-ray simula-
tion have yet to be fully realised for this application.

4.4.3.  Ultrasound computed tomography to x-ray mammography registration.  Hopp et al  
(2012a) and Hopp et al (2013a) applied a similar approach to that used for MRI/x-ray  
mammography alignment to Ultrasound Computed Tomography (USCT) to mammography 
registration (Hopp et al 2010, 2012b, Hopp et al 2013b). Initially, using a homogeneous model 
and manual estimation of the rotation in 2D of the projected volume, a mean Euclidean distance 
between corresponding lesion centers in 2D of 7.3 mm was reported using four data sets (Hopp 
et al 2010). In a subsequent study, estimation of this 2D rotation was automated and a number 
of similarity measures compared for this purpose (Hopp et al 2012b). Gradient correlation was 
found to reduce the error in a data set of thirteen subjects from 15.8 to 10.4 mm but this configu-
ration was not applied to an independent test set. In their most recent work (Hopp et al 2013b), 
Young’s modulus was computed from the USCT speed of sound distribution across the breast 
and each element of the biomechanical model assigned the value for its corresponding region 
using four squared or exponential relationships between the speed of sound and Young’s modu-
lus. Compared to the mean error of 12.2 mm obtained for five data sets using a homogeneous 
model, the error using each of the heterogeneous models varied between 11.8 and 13.1 mm.

5.  Conclusion and outlook

Biomechanically informed breast image registration methods have been developed for a  
number of applications, namely:
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	 •	registration of prone MRI (Roose et al 2008),
	 •	registration of prone MRI to PET (Coman et al 2004, Unlu et al 2005, Krol et al 2006) or 

PET/CT (Unlu et al 2010, Dmitriev et al 2013),
	 •	registration of prone MRI to supine MRI (Carter et al 2008, Lee et al 2010, Eiben et al 

2013, Han et al 2014),
	 •	registration of prone MRI to supine surgical surface/depth data (Carter et al 2008, Lago 

et al 2012),
	 •	MRI to x-ray registration (Ruiter 2003, Ruiter et al 2006, Mertzanidou et al 2011, Hopp 

et al 2013a, Lee et al 2013, Mertzanidou et al 2014, Solves-Llorens et al 2014), and
	 •	registration of ultrasound CT and x-ray mammography (Hopp et al 2010, 2012b, Hopp  

et al 2013b).

Biomechanical modelling has also been used to validate more conventional breast image 
registration methods (see for example the papers of Tanner et al (2007) and Hill et al (2009)). 
Despite these developments there remain a number of issues that limit clinical applications 
of biomechanical modelling, e.g. the accuracy of biomechanical modelling, failure to meet 
clinically acceptable levels of computational cost and time, and the complexity of applying 
patient-specific biomechanical modelling methods to routine clinical practice. These still need 
to be addressed.

In many cases the perceived benefit of ensuring ‘physically plausible’ deformations offered 
by biomechanical models is not bourne out by the reported registration accuracy. This sug-
gests that the state-of-the-art in mathematical modelling techniques adopted by current studies 
lack the sophistication required to capture the biomechanical complexities of highly deform-
able breast tissue. A case in point is MRI to x-ray registration (section 4.4) in which a number 
of groups have developed a range of methods, none of which has been able to demonstrate an 
accuracy of less than 10 mm on a sizeable dataset. The quality of the biomechanical modelling 
is undoubtedly at least partially responsible for this disappointing performance, however the 
extent to which other factors, such as the optimisation strategy, cost function and boundary 
constraints etc are also complicit, is as yet unclear. The required accuracy of these methods 
is obviously application dependent but a suitable goal would be significantly greater than the 
size of the lesion of interest (or margin for surgical applications), and ideally approaching the 
resolution of the specific imaging modality involved.

Obtaining accurate material properties is an on-going research topic in tissue engineering 
and constitutive modelling. More exact properties could be provided, however, by in vivo 
measurements offered by emerging techniques such as magnetic resonance elastography  
(section 3.1). Additionally, boundary conditions on the chest wall are typically specified from 
a limited set of extreme, and hence crude, constraints, i.e. fixed boundary conditions or free-
sliding interfaces (e.g. section 4.4.1). Interaction of the breast and skin surface with mammo-
graphic compression plates is an outstanding modelling issue and the introduction of tilting 
paddles has implications for patient comfort and benefit which should be investigated.

The computational cost of obtaining numerical solutions is high. Therefore extremely scal-
able algorithmic implementations are required to ensure completion of the computations in 
useable timeframes. Whilst progress has been made in developing fast solvers (Taylor et al 
2008, Johnsen et al 2015), such explicit dynamic methods are not universally appropriate for 
all applications. This becomes increasingly critical when high-fidelity breast model discreti-
sation is required, for instance in real-time utilisation of surgical simulators and in iterative 
registration methods.

Finally, the construction of individual-specific biomechanical models is challenging to 
automate. Intervention from an experienced technical user is typically required to ensure, for 
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instance, the correctness and integrity of a discretised breast geometry. This issue needs to 
be addressed to enable computational methods to be introduced into routine clinical practice 
(section 3.2).
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