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Abstract 17 
 18 

Developments in microfabrication technology have enabled the production of neural electrode arrays 19 
with hundreds of closely-spaced recording sites, and electrodes with thousands of sites are currently 20 
under development. These probes in principle allow the simultaneous recording of very large numbers 21 
of neurons. However, use of this technology requires the development of techniques for decoding the 22 
spike times of the recorded neurons, from the raw data captured from the probes. Here, we present a 23 
set of novel tools to solve this problem, implemented in a suite of practical, user-friendly, open-source 24 
software. We validate these methods on data from the cortex, hippocampus, and thalamus of rat, 25 
mouse, macaque, and marmoset, demonstrating error rates as low as 5%.  26 

Introduction 27 

 28 
One of the most powerful techniques for neuronal population recording is extracellular 29 
electrophysiology using microfabricated electrode arrays1-3. Advances in microfabrication have 30 
continuously increased the number of recording sites available on neural probes, and the number of 31 
recordable neurons is further increased by having closely spaced recording sites. Indeed, while a single 32 
sharp electrode can provide good isolation of one or two neurons, placing as few as four recording sites 33 
together in a “tetrode” can reveal the firing patterns of 10-20 simultaneously recorded cells4-7. This 34 
increase is possible because each recorded neuron produces extracellular action potential waveforms 35 
(“spikes”) with a characteristic spatiotemporal profile across the recording sites8-10. The process of using 36 
these waveforms to decipher the firing times of the recorded neurons is known as “spike sorting”11, 12.  37 
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Spike sorting, as currently applied in nearly all labs using extracellular recordings, involves a manual 38 
operator. While some labs use a fully manual system, lower error rates can be achieved with a semi-39 
automated process8, consisting of four steps. First, spikes are detected, typically by high-pass filtering 40 
and thresholding. Second, each spike waveform is summarized by a compact “feature vector”, typically 41 
by principal component analysis. Third, these vectors are divided into groups corresponding to putative 42 
neurons using cluster analysis. Finally, the results are manually curated, to adjust any errors made by 43 
automatic algorithms13. This last step is necessary because although fully automatic spike sorting would 44 
be a powerful tool, the output of current algorithms cannot be accepted without human verification. A 45 
similar situation arises in many fields of data-intensive science: in electron microscopic connectomics, 46 
for example, automatic methods can only be used under the supervision of human operators14.  47 

For tetrode data this semi-automatic process performs well, reaching error rates of 5% or lower, as 48 
assessed by ground truth data obtained with simultaneous intracellular recording8. However, spike 49 
sorting methods developed for tetrodes do not work for a newer generation of larger electrode arrays15, 50 
16. This failure occurs for two reasons. First, the automated component can fail in high dimensions, for 51 
example due to the “curse of dimensionality” that affects cluster analysis in high-dimensional spaces17. 52 
Second and perhaps more critically, the process of manual curation -- while manageable with low-count 53 
probes -- cannot scale to the high-count case without software that guides the operator to only those 54 
decisions that cannot be made reliably by a computer. While many different methods for spike sorting 55 
have been proposed (e.g. refs. 18-24), no method has yet solved these problems robustly enough to be 56 
widely adopted by the experimental community.  57 

Here we describe a system for the spike sorting of high-channel count electrode data, implemented in a 58 
suite of freely available software. While the spike sorting problem has attracted considerable theoretical 59 
research, our goal was to produce a practical system that can be immediately used by working 60 
neurophysiologists. The ability to process large datasets (millions of spikes in hundreds of dimensions) in 61 
reasonable human and computer time was deemed essential; error rates comparable to those of 62 
commonly-used tetrode methods were deemed acceptable. We tested the software on data recorded 63 
from rat neocortex with 32-site shank electrodes, as well as data from other species and brain regions. 64 
While traditional methods performed extremely poorly on this data, the new algorithms gave close to 65 
theoretically optimal performance. The techniques and software have been developed in a community-66 
led manner, through extensive feedback from a user base of over 320 scientists in 50 neurophysiology 67 
labs. The software is downloadable and documented at http://cortexlab.net/tools, and is supported by a 68 
highly active user-group mailing list, klustaviewas@groups.google.com. 69 

Results 70 
Our spike sorting pipeline involves three steps: (1) spike detection and feature extraction, (2) cluster 71 
analysis, and (3) manual curation. We describe these steps in order. 72 

Spike Detection 73 
The first step of the pipeline is spike detection and feature extraction, implemented by the program 74 
SpikeDetekt. 75 

The primary difference between spike detection for high count silicon probes and for tetrodes is that 76 
temporally overlapping spikes are extremely common in the former. This phenomenon can be seen by 77 
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examining of a segment of raw data recorded with high count probes (Fig. 1). The spikes seen in these 78 
data are diverse, with some detected on only one or two channels, and others spanning large numbers 79 
of channels, as expected of pyramidal cells whose apical dendrites are aligned parallel to the shank25. In 80 
these data, simultaneous firing of multiple neurons is common. However, simultaneously firing neurons 81 
are usually detected on distinct sets of channels.  82 

To deal with the problem of temporally overlapping spikes, we therefore sought to detect spikes as local 83 
spatiotemporal events (Fig. 2). This step requires knowledge of the probe geometry, which is specified 84 
by the user in the form of an “adjacency graph” (Fig. 2a). We illustrate the spike detection process with 85 
reference to a small segment of data containing two temporally overlapping but spatially separated 86 
spikes (Fig. 2b).  87 

The first stage of the algorithm is high-pass filtering the raw data to remove the slow local field potential 88 
signal (Butterworth in forward-backward mode; Fig. 2c). Next, spikes are detected using a double-89 
threshold flood fill algorithm (Fig. 2d,e). Specifically, spikes are detected as spatiotemporally connected 90 
components, in which the filtered signal exceeds a “weak threshold” ߠ௪for every point, and in which at 91 
least one point exceeds a “strong threshold”	ߠ௦ (optimal values for these parameters were found to be 4 92 
and 2 times the standard deviation of the filtered signal, as described below). Two points are considered 93 
neighboring if they are on a single channel and separated by one time sample, or at a single timepoint 94 
on channels joined by the adjacency graph; this allows the algorithm to work with probes of any 95 
geometry, not just linear ones.  The dual-threshold approach avoids spurious detection of small noise 96 
events, since isolated islands in which only the weak threshold is exceeded are not retained. Conversely, 97 
spikes will not be erroneously split due to noise, as areas joined by weak threshold crossings are 98 
merged.  99 

After detection, spikes are temporally realigned to subsample resolution, to the center of mass of the 100 
spike’s suprathreshold components, weighted by a power parameter ݌	(see Methods). Visual inspection 101 
showed that spike times detected with this method correspond closely to those that would be assigned 102 
by a human operator (Fig. 2e).  103 

The waveforms of each spike are summarized by two vectors. First, a “feature vector” is found by 104 
principal component analysis of the realigned waveforms on each channel (3 principal components were 105 
kept for the current analysis). All channels are used in computing the feature vector; thus our two 106 
example spikes have similar feature vectors, as their central times are similar (Fig. 2f). Second, a “mask 107 
vector” is computed from the peak spike amplitude on each detected channel, rescaled and clipped so 108 
channels outside the connected component have mask 0, and channels with amplitude above ߠ௦ have 109 
mask 1. The mask vector allows temporally overlapping spikes to be clustered as separate cells. Indeed, 110 
although the feature vectors of our two example spikes were very similar, their mask vectors are 111 
completely different (Fig. 2g).  112 

Performance Validation and parameter optimization 113 
To quantify the performance and optimize the parameters of this algorithm requires “ground truth”: 114 
knowledge of when the recorded neurons actually fired.  We created a simulated ground truth dataset 115 
by repeatedly adding the spikes of a “donor cell” identified in one recording, to a second “acceptor” 116 
recording made with same probe; since the extracellular medium is a linear conductor26, addition of 117 
spike waveforms serves as a sufficient model for overlapping spikes. To evaluate the performance of the 118 
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system, we chose 10 donor cells with a variety of amplitudes and waveform distributions (Fig. 3a), using 119 
recordings from rat cortex with a 32-channel probe shank. To model the variability of waveforms 120 
produced by a single neuron due to phenomena such as bursting27-29, we scaled each spike to a random 121 
amplitude in a range that varied by a factor of 2 (see Methods). We refer to the spikes added to the 122 
acceptor dataset as “hybrid spikes”, and the result as a “hybrid dataset”. 123 

To evaluate spike detection performance, we used a heuristic criterion to identify which spikes detected 124 
by the algorithm corresponded to which hybrid spikes (see Methods). We measured performance as a 125 
function of three algorithm parameters (ߠ௪,  using four performance statistics.  126 ,(݌ ௦, andߠ

The first statistic was the fraction of hybrid spikes detected (Fig. 3b). This showed a strong dependence 127 
on the thresholds: values of ߠ௦ above 4 times standard deviation (4 SD) resulted in poor detection, 128 
particularly for low-amplitude cells. The dependence of performance on ߠ௪ was more complex: poor 129 
performance resulted not just from overly high values (>2.5 SD), but also overly low values (<2 SD). 130 
Examination of example errors (not shown) indicated that overly low values of ߠ௪ led to inappropriate 131 
merging of temporally overlapping but spatially separated spikes, while overly high values led to 132 
artificial splitting of single spikes.  133 

The second statistic was the total number of detection events (Fig. 3c). Because this includes noise 134 
events as well as true spikes of the hybrid and background cells, this number should be as small as 135 
possible provided the fraction correctly detected remains high. We found that this statistic most 136 
critically depended on the strong threshold, increasing markedly for values below 4SD. 137 

The third statistic was timing jitter: the standard deviation of the difference between the detected and 138 
actual times of each hybrid spike (Fig. 3d). Jitter was in all cases less than one sample, and improved for 139 
larger values of ߠ௦ and ߠ௪, indicating that spike times are best estimated from a minority of larger 140 
amplitude spikes. For all hybrid cells, jitter was worse for 1 > ݌; for low amplitude cells it showed a 141 
further worsening for 2 < ݌, reflecting noise introduced by overweighting of peak amplitude times.  142 

The final statistic was mask accuracy (Fig. 3e), which measures how closely the detected mask vectors 143 
match those expected from the ground truth (see Methods). This showed strongest dependence on ߠ௪ 144 
with a peak around 2 SD, and less pronounced dependence on ߠ௦ peaking around 5 SD. 145 

We conclude that close to optimal performance can be obtained using a strong threshold of 4 SD, a 146 
weak threshold of 2 SD and a power weight of 2. Furthermore, using these parameters yields around 147 
95% correctly detected spikes, and spike timing jitter of 0.5 samples. 148 

Cluster Analysis 149 
  150 
The second step of our spike sorting pipeline is automatic cluster analysis, implemented in the program 151 
KlustaKwik.  152 

For tetrode data, we previously found that cluster analysis using a mixture of Gaussians fit gave close to 153 
optimal performance8. This approach cannot be directly ported to high-channel-count data for two 154 
reasons. The first is the “curse of dimensionality”: in high dimensions, noise measured on the large 155 
number of uninformative channels will swamp signals measured on the smaller number of informative 156 
channels. Second, because temporally overlapping spikes have similar feature vectors (Fig. 2F), further 157 
information such as the mask vectors must be used to distinguish these spikes.  158 
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To solve this problem, we designed a novel method, the “masked EM algorithm”30. This algorithm fits 159 
the data as a mixture of Gaussians, but with each feature vector replaced by a virtual ensemble in which 160 
features with masks near zero are replaced by a noise distribution (see Methods). Channels with low 161 
mask values are thus “disenfranchised”, and do not contribute to cluster assignment; the probabilistic 162 
nature of this disenfranchisement means false clusters are not created when amplitudes cross an 163 
arbitrary threshold. The computational complexity of this algorithm is better than that of the traditional 164 
EM algorithm, scaling with the mean number of unmasked channels per spike (which does not increase 165 
for larger arrays), rather than the total number of channels.  166 

To evaluate the performance of this algorithm, we used the hybrid datasets described above. For each 167 
dataset, we identified the cluster containing most hybrid spikes and computed the false discovery rate 168 
(fraction of spikes in the cluster that were not hybrids), and the true positive rate (fraction of all hybrid 169 
spikes assigned to the cluster). To estimate the theoretical optimum performance that could be 170 
expected, we used the Best Ellipsoid Error Rate (BEER) measure8, which fits a quadratic decision 171 
boundary using ground truth data, and evaluates its performance with cross-validation, varying the 172 
parameters of the classifier to obtain an ROC curve showing optimal performance.  173 

The masked EM algorithm’s performance on an example hybrid dataset was close to the optimum 174 
estimated by the BEER measure  but the classical EM algorithm’s performance was poor, with error 175 
rates typically exceeding 50% (Fig. 4a). Across all hybrid datasets, we found no significant difference 176 
between the total error of the masked EM algorithm and theoretical optimal performance (p = 0.8, t-177 
test), but a significant difference between the performance of the Classical and Masked EM algorithms 178 
(p = 0.005, t-test; Fig. 4b). To ensure the poor performance of the classical EM algorithm did not simply 179 
reflect incorrect parameter choice, we reran it for multiple values of the penalty parameter (which 180 
determines the number of clusters found), but this could not improve Classical EM performance. This 181 
analysis also demonstrated that the error rates of the masked EM algorithm were largely independent 182 
of the penalty parameter; using a value corresponding to the Bayesian Information Criterion seems a 183 
good option for penalty choice, as it led to a reasonably small number of clusters without compromising 184 
error rates (Fig. 4c,d). 185 

We conclude that the performance of the Masked EM algorithm is close to optimal for this clustering 186 
problem, yielding false positive and false discovery rates both of the order 5%. 187 

Manual Curation 188 
The final step of the spike sorting pipeline is manual verification and adjustment of cluster assignments, 189 
which are implemented in the program KlustaViewa.  190 

Although semi-automatic clustering provides more consistency and lower error rates than fully manual 191 
spike sorting8, further manual corrections are typically required, such as merging of clusters split due to 192 
electrode drift, bursting, or other reasons27-29. These waveform shifts are hard to model and correct 193 
mathematically, but can usually be identified by inspection of waveforms, auto- and cross-correlograms, 194 
and cluster shapes. It is essential that this step be done with a minimum of human operator time, a 195 
particularly acute problem with the very large numbers of neurons recorded by large dense electrode 196 
arrays. Specifically, if ܰ clusters are produced automatically, it is impractical for a human operator to 197 
inspect all order ܰଶ potential merges.  198 
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We addressed this problem using a semi-automatic “Wizard,” that reduces the number of potential 199 
merges to order ܰ. The Wizard works by presenting the operator with pairs of potentially mergeable 200 
clusters, ordered by a measure of pairwise cluster similarity. Because the Wizard is used iteratively, this 201 
measure must be computable in a fraction of a second, even for datasets containing millions of spikes. 202 
Thus, only metrics based on summary statistics of each cluster, rather than individual points, are 203 
suitable. We evaluated several candidate similarity measures. The Kullback-Leibler divergence between 204 
two Gaussian distributions was unsuitable as it overweighted differences in covariance matrix relative to 205 
differences in the mean. However, good performance was obtained using a single step of the masked 206 
EM algorithm to compute the similarity of the mean of one cluster to each of the others (Fig. 5a). To 207 
verify the accuracy of this measure, we simulated automatic clustering errors by splitting the ground 208 
truth clusters in the hybrid datasets into two subclusters containing high and low amplitude spikes. In all 209 
cases, the similarity measure correctly identified the other half of the artificially split cluster (Fig. 5b).  210 

The manual stage can take several hours of operator time, and human error is lowest during the start of 211 
this period. The Wizard therefore iteratively presents the operator with decisions that can be made 212 
quickly, with the most important decisions presented first. The Wizard iterates through all clusters 213 
starting with the best currently unsorted spikes. The remaining clusters are ordered by similarity to the 214 
best unsorted cluster, and the decision of whether to merge, split, or delete each merge candidate is in 215 
turn made by the operator (Fig. 5c,d). Once satisfied that no more potential merges exist for the 216 
currently best unsorted cluster, the operator either accepts it as a well-isolated neuron, or rejects it as 217 
multiunit activity or noise, and the top-level iteration begins again.  218 

Although the Wizard guides the operator through the decision process, the operator at all times has free 219 
access to all data required to make rapid decisions, provided by KlustaViewa’s user-friendly and easily-220 
navigable graphical user interface (Figure 6). Using this software, the time taken for manual curation 221 
scales linearly with the number of clusters, with a scaling factor that varies between operators and is 222 
generally about 1 minute per cluster, regardless of probe size. This software therefore allows for 223 
thorough manual curation of a dense-array recording in a few hours.  224 

We assessed the performance of 8 human operators (5 experienced spike-sorters, 3 novices) using this 225 
system (Fig. 7a). First, we asked whether the operators would correctly fix a misclustering that was 226 
produced by the masked EM algorithm in simulation of electrode drift (described further below). All 227 
experienced operators, and all but one of the novices did this correctly. Second we asked how 228 
consistent the results of these operators would be on the same dataset (Fig. 7b-d). We separately 229 
assessed consistency on spikes that all operators had identified be in “good” clusters, on spikes that at 230 
least one operator had identified to be in a good cluster, and on all remaining spikes. Similarity was 231 
assessed with the Fowlkes-Mallows index31, which gives a score between 1 for complete agreement, and 232 0 for complete disagreement.  For all operators apart from one of the novices, consistency was 233 
extremely high for those spikes identified as good by at least one operator (Fig. 7e,f); nevertheless the 234 
judgement of whether a cluster should be considered well-isolated varied between operators (Fig. 7g). 235 
We conclude that experienced operators are likely to make accurate and consistent judgements on 236 
cluster merging identification, but that the judgement on which clusters to term “good” is inconsistent; 237 
we therefore recommend that quantitative metrics32, 33 be used to determine isolation quality. 238 
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Additional tests 239 
We used the system described above to answer several additional questions regarding the process of 240 
spike sorting, and the design of electrodes.  241 

First, we used our simulated ground truth dataset to ask how spike sorting performance would change 242 
for different electrode designs. We considered two cases. In the first (“site thinning”; Supplementary 243 
Figs. 1 and 2), the electrode was made less dense by omitting alternating channels on both sides. We 244 
evaluated the performance of spike detection and clustering using the same hybrid spikes described 245 
earlier, but only on this subset of channels (the adjacency graph was modified to join any two channels 246 
that both connected to a missing channel). Spike detection was strongly impacted, with correct 247 
detection rates dropping to an average of below 80% (Supplementary Fig. 1). Clustering performance 248 
was also impacted, as assessed both by the theoretical optimum, and by the Masked EM algorithm. 249 
While some cells saw little decrease in clustering performance (typically those found on multiple 250 
channels), others were strongly impacted by both metrics (Supplementary Figure 2). We conclude that 251 
performance in rat cortex decreases substantially for site spacing larger the 40µm same-side site spacing 252 
of these test probes.  253 

Next, we simulated removing one side of the probe (Supplementary Figs. 3 and 4). Of the 10 hybrid cells 254 
analyzed, 6 were only detectable on one of the probe’s two sides, while the other 4 could be detected 255 
on both sides to a greater or lesser extent (Supplementary Table 1). The effect of side removal was 256 
different to that of site thinning. The performance of each unit’s “preferred side” was comparable to 257 
that of the full probe. However, for the 4 units that were visible on both sides of the probe, performance 258 
on the “unpreferred side” was substantially worse than performance on the full probe, as assessed both 259 
by theoretical optimum performance and the actual results of the masked EM algorithm.  We conclude 260 
that in staggered probes, the probe’s two sides function largely independently: the primary benefit of 261 
two-sided shanks is not to increase the isolation quality of a cell already well isolated on one side of the 262 
probe, but to record from a larger number of units. 263 

Next, we asked whether similar performance to that seen in neocortex could also be obtained in other 264 
brain structures and species. We first generated an additional 5 hybrid cells using 10-site recordings 265 
from rat CA1 (Supplementary Figs. 5 and 6). Good performance was again obtained; furthermore, the 266 
spike detection parameters found to be optimal in cortical data were also optimal in CA1 data. We then 267 
ran the same code on high-count data collected from a wider range of preparations: V1 of awake mouse 268 
and awake macaque monkey (Supplementary Figs. 7-9), and LGN thalamus of anesthetized marmoset 269 
(Supplementary Fig. 10). Additional confidence in the method was provided both by further analyses of 270 
hybrid data (Supplementary Fig. 11) and by the observation of sharp orientation-tuned responses 271 
(Supplementary Fig. 7c-l), including amongst cells of apparently similar waveforms that were 272 
nevertheless separated by the spike sorting procedure (Supplementary figure 7m). 273 

Next, we asked how well the system would deal with non-stationarity in spike amplitudes. Such non-274 
stationarity can occur both because of electrode drift, and also because of activity-related changes in 275 
spike amplitude such as after bursts or prolonged periods of firing27. Examination of data from acute 276 
recordings (where electrode drift is often stronger than with chronic probes), showed that the algorithm 277 
often tracked drift successfully, but in other cases split the spikes of a single drifty cell into multiple 278 
clusters requiring manual merging (Supplementary Fig. 12).  279 
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To simulate nonstationarity, we constructed 6 hybrid datasets in which spike amplitude drifted 280 
throughout the recording as a geometric random walk (Supplementary Fig. 13). Spike detection was 281 
hardly impacted by this nonstationarity (Supplementary Fig. 14). For clustering, only one of the 6 drifty 282 
hybrid datasets required manual curation, and once this was performed, accuracy of the masked EM 283 
algorithm was comparable to the theoretical optimum (Supplementary Fig. 15). A different type of 284 
nonstationarity, in which the hybrid cell simply stopped firing halfway through the recording, also had 285 
no effects on performance (p=0.75; two-sample t-test on total errors; Supplementary Fig. 16). As an 286 
important task is often to track cells between recordings made over multiple days – i.e. where drift 287 
occurs in non-recorded periods – we also asked whether the Wizard’s similarity metric might be used for 288 
this purpose. Although ground truth data was not available, a conservative criterion gave encouraging 289 
results, as indicated by the similarities of the autocorrelograms of the units associated to each other 290 
(Supplementary Fig. 17). 291 

A strategy sometimes used to deal with nonstationarity is to include time as an additional feature in the 292 
cluster analysis algorithm, in principle allowing the algorithm to track slow changes in amplitude. To our 293 
surprise, we found that this actually worsened clustering performance, which could not always be 294 
overcome by manual curation (Supplementary Fig. 15). We conclude that nonstationarity (at least of the 295 
type modelled here) does not present a serious problem to automatic sorting performance if time is not 296 
added as an additional feature, and if manual curation is performed when required.  297 

Discussion 298 
We have produced a software suite for spike sorting of data from large, dense electrode arrays. Analysis 299 
of simulated ground-truth data indicated that error rates of this approach are frequently of the order 300 
5%.  301 

A critical step in this system, and all others currently in wide use for in vivo data, is manual curation. 302 
Extracellular array recordings are subject to numerous sources of error including electrode drift, 303 
overlapping spikes, and the fact that neuronal spike waveforms are not constant, but change according 304 
to firing patterns including but not limited to bursting27-29. While most working neurophysiologists have 305 
a good understanding of these potential artifacts, formalizing this knowledge into a reliable 306 
mathematical model has proved challenging. Because spike sorting errors could lead to erroneous 307 
scientific conclusions29, it remains essential that a scientist is able to inspect the results produced by an 308 
automatic algorithm, then correct or discard its results. We found that experienced operators tended to 309 
make similar judgements during the manual curation process, but that their judgements of which units 310 
were well-isolated were subjective. Fortunately, quantitative criteria exist for assessing the quality of 311 
unit isolation32, 33, and we therefore recommend that these be used, rather than human judgements, 312 
when deciding which cells to include in further scientific analysis. 313 

The current performance of the system is sufficient for practical analysis of data produced by current, 314 
commercially-available silicon probes. Nevertheless, there remain areas for further improvement. The 315 
first of these concerns execution time. KlustaKwik is several orders of magnitude faster than standard 316 
mixture of Gaussians fitting; nevertheless, when running on large datasets, it can take hours or even 317 
days to complete on a standard single-core machine. Hardware acceleration such as GPUs34 or cloud 318 
computing35 may speed up this analysis stage, as may alternative cluster analysis algorithms that 319 
exclude the most computationally expensive step of covariance matrix estimation (e.g. Refs. 36, 37). Faster 320 
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versions of the code presented here, currently under development, are available at 321 
https://github.com/kwikteam/klustakwik2 and https://github.com/kwikteam/phy. A second opportunity 322 
for improvement regards the detection of spatiotemporally overlapping spikes. While the current 323 
algorithm can detect the majority of temporally overlapping spikes, which occur on distinct sets of 324 
channels, it cannot resolve spikes that overlap in both space and time. Template-matching algorithms 325 
have solved this problem in the case of in vitro retinal array data38, 39, but these data are much less noisy 326 
than in vivo brain recordings. While recent research suggests that certain forms of template matching 327 
may succeed at least for tetrode data in vivo18, 21, such methods are not at present widely applied to in 328 
vivo recordings, and numerous challenges need to be overcome, most critically regarding the manual 329 
curation step. The platform we have described here constitutes both a practical solution to today’s spike 330 
sorting challenges, and also a framework from which to develop solutions for future generations of 331 
electrodes containing thousands of channels. 332 
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algorithm performance. Rat data were recorded by A.G., M.B. and G.B.. Mouse data were recorded by 336 
A.S and M.C.. Marmoset data were recorded by S.S. The procedure for non-chronic laminar recordings 337 
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 438 

Figure Legends 439 

 440 
Figure 1: High-count silicon probe recording.  441 

(a), Layout of the 32-site electrode array used to collect test data. (b), Short segment of data recorded in 442 
rat neocortex with this array. Color of traces indicates recording from the corresponding colored site in 443 
(a). Black rectangles highlight action potential waveforms; note the frequent occurrence of temporally 444 
overlapping spikes on separate recording channels.  445 

 446 

Figure 2: Local spike detection algorithm. 447 

(a), Adjacency graph for the 32-channel probe. (b), Segment of raw data showing two simultaneous 448 
action potentials on spatially separated channels (scale bars indicate 0.5mV / 10 samples). (c), High-pass 449 
filtered data shown in pseudocolor format (units of standard deviation). Vertical lines on the colorbar 450 
indicate strong and weak thresholds, ߠ௦ and ߠ௪ (respectively 4 and 2 times standard deviation). (d), 451 
Gray-scale representation showing samples which cross the weak threshold (gray), and the strong 452 
threshold (white). (e), Results of two-threshold flood fill algorithm, showing connected components 453 
corresponding to the two spikes in orange and brown. Note that isolated weak threshold crossings 454 
resulting from noise are removed. White lines indicate alignment times of the two spikes. (f), 455 
Pseudocolor representation of feature vectors for the two detected spikes (top and bottom). Each set of 456 
three dots represents three principal components computed for the corresponding channel (arbitrary 457 
units). Note the similarity of the feature vectors for these two simultaneous spikes (top and bottom). (g), 458 
Mask vectors obtained for the two detected spikes (top and bottom; 0 represents completely masked, 1 459 
completely unmasked). Unlike the feature vectors, the mask vectors for the two spikes differ. Each set of 460 
three dots represents the three identical components of the mask vector for the corresponding channel.  461 

 462 

Figure 3: Evaluation of spike detection performance. 463 

(a), Waveforms of the 10 donor cells used to test spike detection performance, in order of increasing 464 
peak amplitude (left to right). (b), Fraction of correctly detected spikes as a function of strong threshold 465 ߠ௦ (left), weak threshold ߠ௪	(center), and power parameter ݌ (right). Colored lines indicate performance 466 
for the correspondingly colored donor cell waveform shown in A; black line indicates mean over all 467 
donor cells. (c-e), Dependence of the total number of detected events, timing jitter, and mask accuracy 468 
on the same three parameters.  469 

 470 

Figure 4: Evaluation of automatic clustering performance. 471 

(a), Receiver-Operating Characteristic (ROC) Curve showing the performance of the Masked EM 472 
algorithm (blue) and Classical EM algorithm (red) on one of the 10 hybrid datasets; each dot represents 473 
performance for a different value of the penalty parameter. The cyan curve shows a theoretical upper 474 
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bound for performance, the best ellipsoid error rate (BEER) measure obtained by cross-validated 475 
supervised learning. (b), Mean and standard error of the total error (false discovery plus false positive) 476 
over all 10 hybrid datasets for theoretical optimum (BEER measure), Masked EM and Classical EM 477 
algorithms. For each dataset and measure, the parameter setting leading to best performance was used. 478 
(c), Effect of varying the penalty parameter (as a multiple of the AIC penalty) on the total error for both 479 
algorithms. The dotted line indicates the parameter value corresponding to BIC. Note that the Masked 480 
EM algorithm performed well for all penalty values. (d), The number of clusters returned by the Masked 481 
EM algorithm as a function of the penalty parameter. 482 

 483 

Figure 5: The “Wizard” for computer-guided manual correction. 484 

(a), Illustration of the measure used to quantify cluster similarity. ݌௜௝  represents the posterior 485 
probability with which the EM algorithm would assign of the mean of cluster ݅ to cluster ݆. (b), To test 486 
this measure, the clusters corresponding to hybrid spikes were artificially cut into halves of high and low 487 
amplitude. In each case, the similarity measure identified the second half as the closest merge 488 
candidate. (c), The Wizard identifies the best unsorted cluster as the one with highest quality (top), and 489 
finds the closest match to it using the similarity matrix. (d), The Wizard algorithm. The best unsorted 490 
cluster and closest match are identified. The operator can choose merge the closest match into the best 491 
unsorted, ignore the closest match, or delete it by marking it as multiunit activity or noise; the wizard 492 
then presents the next closest match to the operator (blue arrows). After a sufficient number of 493 
matches have been presented, the operator can decide that no further potential matches could have 494 
come from the same neuron, and either accept the best unsorted cluster as a well-isolated neuron, or 495 
delete it as multiunit activity or noise. The wizard then finds the next best unsorted cluster to present to 496 
the operator (orange arrows).  497 

Figure 6: Screenshot of the KlustaViewa graphical user interface.  498 

In order to make the decisions presented by the Wizard, the operator has access to information 499 
including waveforms (center panel; gray waveforms correspond to masked channels), principal 500 
component features (top right), auto- and cross-correlograms (bottom right), and an automatically 501 
computed similarity metric for each pair of clusters (inset). To enable rapid navigation, all views are 502 
integrated; for example, clicking on a particular channel in the Waveform View will update other views 503 
to show the selected channels or clusters. 504 

Figure 7: Consistency of manual curation across operators.  505 

(a), Performance of 8 human operators (5 experts, 3 novices) on a “drifty” hybrid cell requiring manual 506 
curation (see supplementary figure 13b). A tick indicates correct merging of the split hybrid cell, a cross 507 
indicates this merge was not performed. (b-d), consistency of assignments of multiple operators over all 508 
cells in this dataset. Each submatrix shows the conditional probability of the first operator’s cluster 509 
assignments given the assignments of the second operator (color scale at bottom of (d)). (b), consistency 510 
of cluster assignments for spikes marked as well-isolated by all operators; (c), consistency of cluster 511 
assignments for spikes marked as well-isolated by at least one operator; (d), consistency of whether 512 
spikes were marked as well-isolated by different operators. (e-g): Operator consistency for the analyses 513 
of (b-d) was quantified using the Fowlkes-Mallows index, for which 1 represents complete agreement 514 
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and 0 complete disagreement. Note that while cluster assignments were highly consistent between all 515 
expert operators, the operators were often inconsistent in their judgements of which units were well-516 
isolated. 517 

Methods 518 
A supplementary Methods checklist is available. 519 

Test data 520 
To test the algorithm, we created simulated ground truth data using a method termed “hybrid 521 
datasets”. The primary raw data used to construct this ground truth (shown in the main text figures) 522 
consisted of two separate recordings from somatosensory cortex (−3.8 mm from bregma, 3 mm lateral 523 
to midline, 1mm depth) of sleeping adult rats, using silicon probes with 32 non-activated platinum-524 
plated recording sites of size 10x16 µm arranged in a staggered shank configuration (vertical spacing 20 525 
µm between adjacent sites on opposite sides of the shank, 40 µm between adjacent sites on the same side), 526 
mounted on a home-made microdrive. Ground and reference electrodes were stainless steel screws 527 
over the cerebellum. Data was continuously recorded wideband (1Hz-Nyquist), at a sampling rate of 20 528 
kHz. During the recording session, the signals were amplified (1000x), bandpass filtered (1 to 5000 Hz), 529 
and acquired continuously at 20 kHz on a 128-channel DataMax system (16-bit resolution; RC 530 
Electronics). All protocols were approved by the Institutional Animal Care and Use Committee of Rutgers 531 
University. 532 

To perform additional tests (supplementary figures 5-12), we analyzed data collected in additional brain 533 
structures and species. Data was collected from the septal third of hippocampal CA1 region in male rats 534 
using 10-site silicon probes using the same methods as above. All protocols were approved by the 535 
Institutional Animal Care and Use Committee of Rutgers University. To obtain recordings in mouse V1, 536 
mice were implanted with a custom-built head post and recording chamber (4 mm inner diameter) 537 
under isoflurane anesthesia. After several days acclimatization to head-fixation, animals were 538 
anesthetized under isoflurane and a ~1 mm craniotomy was performed over area V1 one day prior to 539 
the first recording (see Refs. 40, 41 for further details). Data were recorded with an acutely-inserted 32-540 
site Neuronexus Edge probe (20 micron spacing). Experiments were conducted according to the UK 541 
Animals (Scientific Procedures) Act, 1986 under personal and project licenses issued by the Home Office 542 
following ethical review. Non-chronic recordings were obtained from cortical area V1 of two awake, 543 
behaving, adult male rhesus monkeys (macaca mulatta) using Neuronexus Poly2 and custom-designed 544 
Edge (60 micron spacing) Vector probes. Animals were first implanted with scleral search coils and fit 545 
with a custom-built titanium head post and recording chamber (see Refs. 42, 43 for further details). 546 
Subsequently, a 2-3mm diameter trephination was performed through which daily penetrations would 547 
be made. Data were acquired as broad-band signals (0.5–16 kHz, sampled at 32 kHz), digitized at 24-bits 548 
using PXI-4498 cards (National Instruments, Austin, TX). All procedures were conducted in accordance 549 
with the ethical guidelines of the National Institutes of Health and were approved by the Baylor College 550 
of Medicine IACUC. To obtain recordings from dorsal lateral geniculate nucleus (LGN) of sufentanil-551 
anaesthetised adult male marmoset monkey (Callithrix jacchus), a craniotomy was made over the right 552 
LGN and a Neuronexus A16x2 probe (500µm probe separation, 50µm spacing between contact points 553 
on each shank) was lowered into LGN and allowed to settle for at least 30 minutes before recording. 554 
Data were band-pass filtered (0.3–5kHz, sampled at 24kHz), and digitized by a Tucker-Davis 555 



15 
 

Technologies RZ2 real time processor (see Ref. 44 for further details). All procedures were approved by 556 
the University of Sydney Animal Ethics Committee and conform to Australian National Health and 557 
Medical Research Council (NHMRC) policies on the use of animals in neuroscience research. 558 

Hybrid datasets 559 
To create the hybrid datasets, we first completed a full spike sorting of each dataset, including manual 560 
verification. Five clusters were chosen from each dataset, corresponding to neurons spanning the range 561 
of amplitudes and channel distributions observed in the data (Figure 3A). The mean unfiltered waveform 562 
of each neuron was computed, its mean was subtracted, and its value at each end was set to exactly 563 
zero by tapering with a Hamming function. These “donor waveforms” were added at prescribed times to 564 
the raw unfiltered data of the other “acceptor” recording. To simulate amplitude variability, we linearly 565 
scaled each added waveform by a random factor chosen from the range [√2/2, √2	] causing amplitudes 566 
to vary by a factor of two, which suffices to capture the variability typical of bursting neurons 27. The 567 
interspike intervals typical of bursting neurons were not simulated as this does not affect the spike 568 
detection or clustering process; instead, hybrid spikes were added regularly at rates in the range 2-4 569 
spikes per second. To ensure that the simulated data tested the ability of our software to realign spikes 570 
to subsample resolution, each added spike was shifted by a random subsample offset using cubic spline 571 
interpolation. For simulations of drifty cells, amplitude was as geometric random walk (i.e. the 572 
exponential of a Brownian random walk), which was then normalized so that the mean amplitude 573 
remained the same as its non-drifty counterpart. 574 

File format 575 
To implement the software, we designed an HDF5-based file format to store raw data, intermediate 576 
analysis results (such as extracted spike waveforms and feature vectors), as well as final data such as 577 
spike times and cluster assignments 45. The format makes use of HDF5 links to allow a single, small file 578 
(the “.kwik file”) containing all data required for scientific analysis (e.g. spike times, cluster assignments, 579 
unit isolation quality measures). Bulky raw data and intermediate processing steps such as feature 580 
vectors are stored in separate files (the “.kwd” and “.kwx” files). This “detachable” format is designed 581 
for data sharing applications, allowing users to download as much data as required for their needs. A full 582 
specification of the format can be found at https://phycortexlab.net/format. 583 

SpikeDetekt  584 
Spike detection was implemented by SpikeDetekt, a custom program written in Python 2.7 using the 585 
packages NumPy, SciPy, and PyTables.  586 

The first step of the program is to filter the raw voltage trace data to remove the low-frequency local 587 
field potential (LFP). This is achieved with a 3rd order Butterworth filter used in the forward-backward 588 
mode to ensure zero phase distortion. Filter parameters can be specified by the user; for the analyses 589 
described here we used a band-pass filter of 500 Hz to 0.95*Nyquist.  590 

The second step is threshold determination. Spike detection thresholds are specified as multiples of the 591 
standard deviation of the filtered signal; at the option of the user, a single threshold is used for all 592 
channels in order to avoid emphasizing noise from low-amplitude channels. To boost execution speed 593 
while minimizing the chance of biased estimates, the standard deviation is estimated from five data 594 
chunks of length 1 second each, picked randomly from throughout the recording. The standard 595 
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deviation is computed with a robust estimator, median(|ܸ|)/.6745, to avoid contamination by spike 596 
waveforms.  597 

The next step is spike detection. The spike detection code operates on consecutive chunks of data (1s 598 
length) for memory efficiency. Spatiotemporally connected regions of weak threshold crossing are 599 
detected using a non-recursive flood fill algorithm, with spatial continuity defined using a user-specified 600 
adjacency graph. Only connected components for which at least one point exceeds the strong threshold 601 
are kept for further analysis.  602 

Spike alignment is computed based on a scaled and clipped transformation of the filtered 603 
voltage	ܸ(ݐ, ܿ): 604 

,ݐ)߰ ܿ) = min ቆ−ܸ(ݐ, ܿ) − ௦ߠ௪ߠ − ௪ߠ , 1ቇ 

Note that ߰(ݐ, ܿ) can never be negative within a spike, as the floodfill algorithm only finds points for 605 
which	−ܸ(ݐ, ܿ) > ௌഥݐ ௪. The center time for each spike ܵ is computed as  606ߠ 	= 	∑ ,ݐ)߰	ݐ ܿ)௣(௧,௖)∈ௌ∑ ,ݐ)߰ ܿ)௣(௧,௖)∈ௌ  

where (ݐ, ܿ) ∈ ܵ denotes the set of times and channels, for all points assigned to this spike by the 607 
floodfill algorithm. If ݌ = 1, this formula measures the spike’s center of mass; if p = ∞, it measures the 608 
time of the spike peak. 609 

Spikes were realigned on ݐௌഥ  to subsample resolution using cubic spline interpolation (note that the 610 
center time will, in general, not be an integer number of samples). Feature vectors are computed for 611 
each channel separately by principal component analysis; the number of features per channel is a user 612 
settable parameter, with default value 3. Finally, mask vectors are computed for each spike ܵ as zero for 613 
channels not appearing in the connected component, and as the maximum scaled waveform for all 614 
channels inside the component: 615 ݉௖,ௌ = max௧:(௧,௖)∈ௌ ,ݐ)߰ ܿ) 
To evaluate the performance of SpikeDetekt, required identifying which detected spikes correspond to 616 
ground truth spikes. This was done with a dual criterion: the difference between the detected time and 617 
ground truth needed to be less than 2 samples, and the detected mask vector ܛܕ needed to have a 618 
similarity to the ground truth mask vector ۵ܕ of at least 0.8, defined by the mask similarity measure  619 ܁ܕ ⋅  	|۵ܕ||܁ܕ|۵ܕ
Note that mask similarity cannot exceed 1, by the Cauchy-Schwartz inequality. The validity of this 620 
criterion was verified by showing that detected spike timing jitter rapidly increased for similarity 621 
threshold for values less than 0.8, but was insensitive to threshold value above 0.8. Once the detected 622 
spikes corresponding to ground truth had been identified, the four measures in figure 3 were computed. 623 
This analysis used the Python library Joblib to prevent unnecessary recomputation. 624 
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KlustaKwik 625 
Automatic clustering was performed by KlustaKwik, a custom program written in C++. The first version 626 
of this program was designed for tetrode data, implemented a hard EM algorithm for maximum-627 
likelihood fitting of a mixture of arbitrary-covariance Gaussians, and was released in 2000 but not 628 
specifically described in a published manuscript. Here, we have implemented several modifications of 629 
this software to enable automatic sorting of high-count probe data. The program now implements a 630 
novel “masked EM algorithm” 30 designed for high-dimensional classification, as well as other features 631 
such as cache optimization resulting in a speed increase of over 10,000%.  632 

The masked EM algorithm takes as input both feature vectors and mask vectors. It works by fitting a 633 
mixture of Gaussians to a virtual dataset in which each feature vector is replaced by a probability 634 
distribution: 635 

ቊ	~	෤௡,ௌݔ ௡,ௌݔ prob			݉௡,ௌ	ܰ(ߥ௡, (ௌଶߪ prob		1 − ݉௡,ௌ	 
Here, ݔ௡,ௌ represents the ݊th component of the feature vector for spike ܵ; ݉௡,ௌ represents the ݊th 636 
component of the mask vector for spike ܵ; and ܰ(ߥ௡,  ௌଶ) denotes a univariate Gaussian distribution 637ߪ
with mean and variance equal to those of the subthreshold noise distribution of the ݊th feature. 638 

The masked EM algorithm consists of alternation of an “E step” in which each spike is assigned to the 639 
cluster for which it has highest posterior probability, and an “M step” in which the means and 640 
covariances of each cluster are estimated. We have derived analytic formulas for the expectation of the 641 
cluster assignment probability used in the E-step, and the cluster mean and variance used in the M step, 642 
over the virtual probability distribution ݔ෤௡,௜ 30. Thus, explicit sampling from the virtual distribution does 643 
not need to be performed; furthermore, these expectations can be computed much faster than those of 644 
the full EM algorithm as they scale with the square of the number of unmasked features, rather than the 645 
square of the total number of features.  646 

KlustaKwik automatically determines the number of clusters that best fit the data, determined using a 647 
penalty function that encodes a preference for fits with smaller numbers of clusters. We have found a 648 
modification of the Bayesian Information Criterion to deal with masked data works well in practice 30. 649 
Because the algorithm allows for dynamic splitting and merging of clusters during the fitting process, a 650 
search for the optimal number of clusters can be achieved in a single run of the algorithm. We have 651 
found that starting the algorithm from an initial clustering determined heuristically from the mask 652 
vectors avoids the problem of local maxima, and allows good results to be obtained from a single run.  653 

KlustaViewa  654 
Manual correction of automatic clustering is performed with KlustaViewa, a custom program written in 655 
Python 2.7. The manual stage requires interactive visualization of very large numbers of data points, for 656 
which existing libraries such as matplotlib were not suitable. We therefore designed a new Python 657 
library for rapid interactive data visualization named Galry 46. Galry leverages the computational power 658 
of modern graphics processing units 34 through the OpenGL graphics library 47. High performance is 659 
achieved by porting most visualization computations to the GPU using custom shaders, and by 660 
minimizing the number of OpenGL API calls through batch rendering techniques. 661 
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To ensure rapid adoption by the experimental community, we designed KlustaViewa’s user interface by 662 
the integrating novel features necessary for high-count probes into a user interface as similar as possible 663 
to existing manual spike sorting environments such as Klusters 13. In addition to data views familiar from 664 
previous spike sorting systems (such as waveform, auto- and cross-correlograms, and similarity matrix), 665 
we implemented several new features. The most important of these is the Wizard (described in the 666 
main text), that automatically leads the user through the manual verification and merging process, while 667 
always allowing the user free access to all of the views familiar from standard spike sorting systems. In 668 
addition, a number of enhancements were designed specifically to make the sorting of high-count probe 669 
data tractable. These include features to allow display of masking information; rapid and automatic 670 
display of the channels relevant to selected clusters; transient color brushing 48; and automatic 671 
downsampling to ensure low latency display when dealing with very large datasets. 672 

The Wizard is based on a metric of similarity for each pair of clusters. This was computed by running a 673 
single step from the EM algorithm to compute the posterior probability for assigning the mean of cluster 674 ݅ to cluster ݆: 675 ݌௜௝ = ;௝ߤ|௜ߤ)௝ܰݓ ∑(௝ܥ ௞௞ݓ ;௞ߤ|௜ߤ)	  		(௞ܥ
Here ݓ௝  represents the weight of cluster ݆ (i.e. the fraction of points already assigned to this cluster); ߤ௝  676 
and ܥ௝  represent its mean and covariance as computed by the M-step of the masked EM algorithm. The 677 
quality of each cluster ݆ was defined as the diagonal element ݌௝௝, i.e. the posterior probability for 678 
classifying cluster ݆’s mean as coming from cluster ݆	itself. A high value for ݌௝௝  therefore indicates that 679 
cluster ݆	has no close neighbors.  680 

The difference between two clusterings ܥ,  clusters, respectively, and 681		ᇱܭ and ܭ consisting of ,′ܥ
confusion matrix entries, ݊௞௞ᇲ  where measured using the Fowlkes-Mallows31 index, ඥ ଵܹ ଶܹ, where: 682 

ଵܹ(ܥ, (ᇱܥ = 	∑ ݊௞௞ᇲ(݊௞௞ᇲ − 1)/2௞,௞ᇱ∑ ݊௞(݊௞ − 1)/2௞ , ଶܹ(ܥ, (ᇱܥ = 	∑ ݊௞௞ᇲ(݊௞௞ᇲ − 1)/2௞,௞ᇱ∑ ݊′௞ᇱ(݊′௞ᇱ − 1)/2௞ᇱ 	 ݊௞ᇱ = 	∑ ݊௞௞ᇲ௞ ,			݊′௞ᇱ = 	∑ ݊௞௞ᇲ௞ᇱ , , ݇ = 1,… , ,ܭ ݇ᇱ = 1, … , 	 .ᇱܭ ଵܹ  is the probability that a pair of 683 
points which are in the same cluster under the clustering ܥ is also in the same cluster in ܥ′. ଶܹ is the 684 
same with the two clusterings interchanged. The Fowlkes-Mallows index symmetrizes these two 685 
asymmetric quantities by taking their geometric mean.  686 
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