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S U M M A R Y
Inversions for the full slip distribution of earthquakes provide detailed models of earthquake
sources, but stability and non-uniqueness of the inversions is a major concern. The problem
is underdetermined in any realistic setting, and significantly different slip distributions may
translate to fairly similar seismograms. In such circumstances, inverting for a single best model
may become overly dependent on the details of the procedure. Instead, we propose to perform
extended fault inversion trough falsification. We generate a representative set of heterogeneous
slipmaps, compute their forward predictions, and falsify inappropriate trial models that do not
reproduce the data within a reasonable level of mismodelling. The remainder of surviving trial
models forms our set of coequal solutions. The solution set may contain only members with
similar slip distributions, or else uncover some fundamental ambiguity such as, for example,
different patterns of main slip patches. For a feasibility study, we use teleseismic body wave
recordings from the 2012 September 5 Nicoya, Costa Rica earthquake, although the inversion
strategy can be applied to any type of seismic, geodetic or tsunami data for which we can handle
the forward problem. We generate 10 000 pseudo-random, heterogeneous slip distributions
assuming a von Karman autocorrelation function, keeping the rake angle, rupture velocity and
slip velocity function fixed. The slip distribution of the 2012 Nicoya earthquake turns out to be
relatively well constrained from 50 teleseismic waveforms. Two hundred fifty-two slip models
with normalized L1-fit within 5 per cent from the global minimum from our solution set. They
consistently show a single dominant slip patch around the hypocentre. Uncertainties are related
to the details of the slip maximum, including the amount of peak slip (2–3.5 m), as well as the
characteristics of peripheral slip below 1 m. Synthetic tests suggest that slip patterns such as
Nicoya may be a fortunate case, while it may be more difficult to unambiguously reconstruct
more distributed slip from teleseismic data.

Key words: Inverse theory; Controlled source seismology; Earthquake source observations;
Theoretical seismology.

I N T RO D U C T I O N

The propagation of earthquake rupture leaves a signature in elastic
waves and static displacement fields observed at the Earth’s surface.
In consequence, from appropriate seismic or geodetic observations
we may try to estimate properties of the seismic source such as
duration and extent of the rupture, the velocity of rupture propaga-
tion, and possibly the asymmetry or other non-uniformities of the
rupture. The most complete interpretation of finite fault effects is
provided by full kinematic slip inversion, aiming at resolving the
spatiotemporal distribution of slip along the fault. Extended, or fi-
nite fault slip inversion is typically based on the representation of the
seismic wavefield from a surface integral over the fault, evaluating

the product of the areal moment tensor density and the local spatial
derivatives of the Green’s function tensor (Aki & Richards 2002).
Most commonly, a plane, rectangular fault model is discretized into
a regular array of point sources or subfaults, and the inversion pro-
cess in its general form consists in determining the slip history at
each subsource (e.g. Festa & Zollo 2012). Results from full slip
inversion are useful for many aspects of seismology from character-
izing active faults to simulating (strong) ground motion, but most
importantly, they also provide invaluable information about what
typically happens during the earthquake source process.

Given the relevance of slip models, a major concern within the
community is the resolution and stability of the inversions. There are
numerous examples in the seismological literature where different
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inversion strategies, different assumptions and different parameter
choices sets have led to significantly different and sometimes con-
tradictory models for the same earthquake (see e.g. Weston et al.
2012 for a review). Ambiguity in extended fault inversion has been
documented since the early applications to recordings from the
1979 Imperial Valley, California earthquake (Olson & Apsel 1982;
Hartzell & Heaton 1983; Archuleta 1984). These studies show that
quite different slip histories could fit the waveform data satisfac-
torily, and establish the need to use stabilizing constraints such as
smoothness, minimum moment and positivity of the solution. An-
other already classic example for uncertainties in extended fault
inversion is the 1999 Izmit earthquake (Turkey), for which strik-
ingly different slip distributions have been proposed by different
groups (Yagi & Kikuchi 2000; Bouchon et al. 2002; Delouis et al.
2002; Sekiguchi & Iwata 2002). In the case of the Izmit earthquake,
the available data are probably insufficient to constrain the rupture
process (Beresnev 2003; Ide et al. 2005). But even exceptionally
well-recorded events such as the 2004 Parkfield earthquake show re-
markable variability in rupture models obtained from different data
subsets or different parameterizations (e.g. Custodio et al. 2005;
Hartzell et al. 2007).

Such examples highlight the non-uniqueness of the inversion,
which may be aggravated by the incomplete and relatively sparse
sampling of the wavefield at the earth surface, noise and other
measurement errors, and our incomplete knowledge of earth’s in-
ternal structure, linking to imperfect Green’s functions (e.g. Co-
hee & Beroza 1994; Sekiguchi et al. 2000; Graves & Wald 2001;
Ferreira et al. 2011). The challenge is that information on the spa-
tial heterogeneity of slip and rupture propagation comes packaged
in rather subtle features of the waveforms. Discrepancies between
the data and the forward model predictions should be small in or-
der to support that we used adequate data and forward modelling.
On the other hand, appropriate fits alone do not guarantee that the
inverted slip model is a useful approximation to the actual rup-
ture pattern. A first important coordinated effort to understand the
limitations in extended slip inversion has been the SPICE blind
test, where different approaches have been applied in a controlled
environment, with overall discouraging initial results with respect
to their capability to recover the target slip distribution (Mai et al.
2007; Shao & Ji 2012). Ongoing efforts in earthquake source model
validation such as the source inversion validation (SIV) project,
http://equake-rc.info/sivdb/wiki/ are continuing to actively address
these issues.

From the above, it is clear that great care with uncertainties needs
to be taken when performing extended fault source inversions, up
to the point that we should probably depart from the traditional
view of optimization approaches as tools to produce one single best
model (Tarantola & Valette 1982; Tarantola 2006). Basically, the
key question with any slip model is whether a substantially differ-
ent slipmap, or several of them, would explain the recorded data
as well. This consciousness has led to numerous recent attempts
to estimate uncertainties. Several authors have conducted multiple
fault inversions for different parameter settings and data selections,
presenting multiple source models, or the mean and standard devia-
tion from an ensemble of possible models (e.g. Custodio et al. 2005;
Stich et al. 2005; Liu et al. 2006; Hartzell et al. 2007; Gallovič &
Zahradnı́k 2012). On the other hand, in nonlinear search schemes, a
large number of potential slip models are tested during the random
walk, so they are intrinsically well suited for exploring uncertainties
(e.g. Peyrat & Olsen 2004; Piatanesi & Lorito 2007; Piatanesi et al.
2007). Finally, the ensembles of models from a global search can
be corrected for the irregular sampling of the model space, leading

to formal uncertainties from a Bayesian appraisal of the problem,
where the likelihood for the different model parameters is quanti-
fied in an a posterior probability density function (e.g. Fukuda &
Johnson 2008; Monelli & Mai 2008; Fichtner & Tkalcic 2010; Min-
son et al. 2013). Fully nonlinear Bayesian approaches can also show
whether the available data can constrain the rupture process, lead-
ing to narrow marginal probability density functions for appropriate
data (Minson et al. 2014).

E X T E N D E D S O U RC E I N V E R S I O N
T H RO U G H FA L S I F I C AT I O N

Since the non-uniqueness of source inversion tends to manifest in
the existence of different slip models with comparable level of fit,
low misfit for any given model is of limited significance. The more
significant observation is the failure of a given source model to fit
the observations within a typical and acceptable level of mismod-
elling, meaning that this particular model has to be wrong. This
asymmetry lends itself to a treatment of the extended source inverse
problem from a Popperian viewpoint of scientific logic (Popper
1934; Tarantola 2006): A tested slip model cannot be considered
verified because of its good performance, but it can be considered
falsified if it performs badly. In the latter case, the falsified source
model can be cancelled from the ensemble of possible models. Here
we apply an Popperian inversion strategy that involves the genera-
tion of a representative set of slip distributions, comparison of the
corresponding forward predictions to the recorded data, and the
generation of the solution to the inverse problem as an assembly of
all those trial models that have not been falsified on account of unac-
ceptable fits. This approach is different from Bayesian approaches
as it replaces the gradual evaluation of model performance in terms
of probabilities by logic falsification of inappropriate rupture mod-
els, and uses the ensemble of all possible slip models instead of
the posterior probability density function of the model parameters.
We introduce our approach as an alternative to Bayesian inversions
since it can be kept simpler due to its non-positivistic focus and it
avoids the intrinsic difficulties with interpreting complex probabil-
ity distributions in many dimensions (Tarantola 2006).

Working with the ensemble of possible source models provides
more direct access to ambiguities and uncertainties of the inversion,
compared to probability solutions where the display of uncertainties
becomes a problem. In particular, the most accessible representation
through marginal probability densities provides single parameter er-
rors, which means they include the interactions with other model
parameters only implicitly. In reality, in extended source models
there must be strong trade-offs among the subfault parameters in
order to produce similar waveforms by summing up their individ-
ual contributions. Errors of individual parameter may provide a
good representation of uncertainties if all members of the solution
ensemble are similar, like showing the same number of principal
slip patches in similar positions. In such well-constrained cases,
marginal probability functions are narrow, and an average solution
is close to all individual solutions (e.g. Liu et al. 2006; Minson
et al. 2014). Otherwise, if the solution ensemble reveals funda-
mental ambiguities of the inversion, using the mean or maximum
likelihood solution may blend significantly different slip patterns
into a single, overly smoothed model. This model may show fairly
low similarity to all individual models of the solution ensemble and
may not even produce an appropriate fit to the data, yet the user
often accepts it as the best model. The marginal probability distri-
butions become broad, hiding the trade-offs among parameters. In
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fact, they are reintroducing spurious models that have obtained a
low score previously, thus being inefficient in the sense of Popperian
falsification.

Also in Popperian inversion, the ensemble of models may become
too large or heterogeneous for direct interpretation, and any contrac-
tion of the solution ensemble into an average model and individual
parameter errors may be prone to similar problems of oversimplifi-
cation. However, full slip ensembles allow for a two-step assessment
of the results, consisting of some pattern recognition and classifica-
tion into subsets of solutions with similar characteristics, followed
by the application of simplified statistics to each subset. The in-
tention of our inversion approach is to keep the model space small
in order to keep the solution ensemble as manageable as possi-
ble. We show that assuming a realistic, empirical autocorrelation
function for the heterogeneity of fault slip (Mai & Beroza 2002)
there exist only a few thousand different slip distributions that we
might optimistically hope to distinguish. Hence, a relatively coarse
sampling of the space of conceivable rupture models is sufficient
for Popperian inversion, where we are not as much interested in
the fine tuning of the optimal solution, but rather in establishing
uncertainties, which will be achieved by falsifying a—hopefully
large—percentage of the trial models. The focus on falsification
does not require a guided search that would concentrate new trial
models in previously identified areas of low misfit. Finally, at this
stage, we will keep the rake angle, the rupture velocity, as well as
the slip velocity function on all subfaults fixed. We readdress these
restrictive assumptions in the discussion section.

This strategy for extended source inversion can be applied to any
observation for which we can solve the forward problem, in par-
ticular seismic, geodetic or tsunami data at suitable recording dis-
tances, or any combination of them. Here we illustrate the scheme
through extended fault inversion from seismic body waves recorded
at teleseismic distances between 30◦ and 95◦. This has become a
routine set-up in teleseismic slip inversion, because of the gen-
eral availability of appropriate recordings for all major earthquakes
worldwide, the comparably unproblematic nature of the forward
problem, as well as the availability of suitable and well-tested codes
(e.g. Kikuchi & Kanamori 1982, 1991, 2003; Ji et al. 2002). Front-
end problems of the inversion such as data coverage and quality,
pre-processing and assumptions on Earth structure are typically
minor for body-wave teleseismic data for the distances considered
(e.g. Weston et al. 2014), however the intrinsic non-uniqueness of
the inversion persists. We first generate slipmaps and synthetic for-
ward predictions for a teleseismic recording geometry to illustrate
the asymmetry between data similarity and model similarity. Next
we perform the complete inversion procedure, comparing synthetic
data to observations and analysing the set of solutions. We select
for these exercises the 2012 September 5, Mw 7.6 earthquake be-
neath the Nicoya Peninsula, Costa Rica earthquake as an example
of a recent earthquake with relatively large moment magnitude and
presumably simple slip distribution (Hayes 2012; Ye et al. 2013;
Yue et al. 2013).

A M O D E L S PA C E O F P S E U D O - R A N D O M
S L I P M A P S

The first step of the inversion scheme is the generation of a rep-
resentative set of slip models that can be evaluated according to
their ability or inability to explain the recorded data. For fixed
rupture velocity, rake and slip velocity function, the model vari-
ability consists in different distributions of fault slip. We discretize

a plane fault into a regular mesh of subfaults with constant slip,
resulting typically in a few hundred of model parameters to be de-
termined, depending on the size of the fault and the subfaults. Such
a model space is too large for a full exploration through system-
atic grid search, varying all subfault displacements independently
with some appropriate increment for relative slip. Fortunately, ac-
cording to empirical experience, inverted earthquake slip maps are
not random fields pixel by pixel. They show a characteristic parti-
tioning of short and long wavenumber components, resulting in the
familiar pattern of one or more distinct slip patches. This obser-
vation allows for using stochastic modelling to generate slip maps
reminiscent of those obtained from inversion (Mai & Beroza 2002;
Lavallée & Archuleta 2003; Lavallée et al. 2006). Among several
tested autocorrelation functions, a von Karman distribution pro-
vides the best fit to power spectral densities of inverted fault slip
distributions (Mai & Beroza 2002). However, the differences be-
tween von Karman, exponential and fractal fits are relatively small
due to the limited range of spatial wavenumbers in data derived
models, subject to fault discretization and smoothing. Independent
support comes from borehole logs, where the power spectra of pa-
rameter variations over a larger range of wavenumbers can also be
adjusted by von Karman distributions (Hollinger 1996; Dolan et al.
1998; Bean et al. 1999). It appears plausible that heterogeneity in
the crust and heterogeneity of fault slip may have similar statistical
properties.

We use a von Karman autocorrelation function to produce
pseudo-random slip distributions following the procedure in Mai
& Beroza (2002). The correlation function prescribes the amplitude
spectra of slip, while the phase is generated randomly, and the two-
dimensional slip distribution is computed through spectral synthesis
(Pardo-Igúzquiza & Chica-Olmo 1993). We assume a correlation
length along strike of 1/3 of the fault length plus two subfaults,
and 1/3 of the fault width plus one subfault in downdip direction,
according to the scaling laws obtained by Mai & Beroza (2002). We
choose a Hurst exponent of H = 1, translating to an expected fractal
dimension of two for our model scenario of a plane rupture surface,
known rupture velocity and known slip velocity function. Among
the generated 2-D fields, we keep only those with slip concentrated
in the centre, that is, average slip in the inner 50 per cent of the fault
model area should be at least 0.4 times the variance. This thresh-
old penalizes random fields with large amplitudes at the borders,
which are not desired for earthquake slip distributions where the
displacement should tend to zero at the limit of the rupture area.
If the fault model reaches the free surface, the inner area for slip
validation is extended to the upper model boundary. At this point,
the random 2-D fields still have a mean value of zero as obtained
from the pseudo-random distributions, and need to be shifted in
amplitude to obtain realistic earthquake slip distributions with net
seismic moment different from zero. For this purpose, a constant
of 0.5 times the variance is added to the slip amplitudes, and the
remaining negative values are truncated to zero. In this way we
enforce a positivity constraint on slip and implement the perimeter
of the earthquake where rupture has come to an end. Examples of
different slip distributions obtained by this procedure are shown in
Fig. 1.

An important aspect for the viability of the inversion is the num-
ber of required trial models. Possibly a few slip models may be
sufficient to show that a given inversion problem is ambiguous,
but a large number of models should be tested in order to support
that a slip model is reasonably well resolved. The problem is man-
ageable thanks to the linearity of the forward problem, meaning
that similar models will generate similar data; hence we do not
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Figure 1. Samples from the inventory of 10 000 synthetic slip distributions generated for von Karman power spectral density with fractal dimension of two,
pseudo-random phase values, and appropriate post-processing in order to emulate earthquake slip patterns reminiscent of real data inversion results. The left
part of the figure shows the first 32 random models obtained for a single seed, and the right part shows the most similar counterparts among the remaining
models (the labels indicate the reference slipmap with a star, and the number of the random simulation corresponding to the most similar slipmap). Similarity
is quantified in terms of Normalized zero-lag Cross Correlation (NCC). The figure illustrates the diversity of slipmaps and the repeated occurrence of similar
slipmaps among the inventory, suggesting that we obtained a suitable representation of the model space. Slipmap amplitudes are not to scale.

expect that models with minor differences could be distinguished
from observations. In Popperian inversion, we are interested in
evaluating different models rather than similar models. Above or
below the chosen threshold for falsification there is no sensitiv-
ity to the different performance of marginally different models,
because the model evaluation is a yes–no question. This justifies
keeping the sampling of the model space relatively coarse, how-
ever we are still interested in a model inventory that incorporates
all fundamentally different rupture patterns. Random model gen-
eration cannot guarantee completeness in this sense, because it is
intrinsically unknown in which one of the simulations a specific
rupture pattern will be generated. A pragmatic answer can be given
through a control sample. If we consider that slip models showing
a normalized zero-lag cross correlation larger than 0.9 are defi-
nitely similar regarding the distribution of slip, we generally find
such a high-similarity for slipmaps chosen at random among an
inventory of 10 000 models (Fig. 1). The number of 10 000 slip
models is still a rather cautious choice, and we could further reduce
the model space by eliminating redundant slipmaps. For the pur-
pose of this study, we decide to keep all 10 000 models, because in
our set-up this amount is unproblematic considering computational
efficiency.

S Y S T E M AT I C F O RWA R D M O D E L L I N G
F O R T H E 2 0 1 2 N I C OYA E A RT H Q UA K E

In order to evaluate the generated slip models in terms of their abil-
ity to explain recorded data, we have to solve the forward problem
and apply some appropriate similarity or distance measure for the
comparison between synthetic predictions and observations. Both
aspects will be exemplified with the case of the 2012 September
5 Nicoya earthquake. The earthquake occurred beneath the Nicoya
Peninsula on the Pacific coast of Costa Rica and can be attributed
to the subduction of the Cocos Plate below the Caribbean Plate. It
has been characterised as a nearly pure reverse faulting earthquake
with NW–SE strike, parallel to the plate boundary, and moment
magnitude of 7.6 (global CMT catalogue, Dziewonski et al. 1981;
Ekström et al. 2012), making it the largest Central American event
since the destructive January 2001 El Salvador earthquake. Four
studies have proposed finite source models for the Nicoya earth-
quake so far (Hayes 2012; Ye et al. 2013; Yue et al. 2013; Protti
et al. 2014). The first two studies use teleseismic data and two
different inversion schemes (Ji et al. 2002; Kikuchi & Kanamori
2003, respectively), Protti et al. (2014) use geodetic data, and Yue
et al. (2013) combines teleseismic data with local seismic and
geodetic observations. There is reasonable agreement among the
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Figure 2. Distribution of 25 teleseismic broadband stations (triangles) selected for body wave inversion of the 2012 Nicoya earthquake (red star). On the lower
left, we show the subsource parameterization of the fault plane, coincident with the shallow, NE-dipping subduction interface. Numerical values of parameters
are given in the text. Surrounding the station map, we present examples for the distribution of subfault delay times for P and S waves at selected stations.

studies, suggesting that slip is concentrated in one single patch,
about 70 km by 50 km in size. Peak slip amplitudes are ∼3 m, and
slightly larger (∼4 m) in the purely geodetic inversion. The pro-
posed velocity of rupture propagation is 2.5–3.0 km s−1. There are
discrepancies considering hypocentral depth, ranging from 40 km
(Hayes 2012) to 13 km (Yue et al. 2013), with an associated shift
of the hypocentre closer to the Middle American Trench. However,
the main slip patch from extended fault inversion is close to 30 km
depth in all cases. This is consistent with the centroid depth of
29.7 km reported in the global CMT catalogue. Accordingly, the
Nicoya earthquake seems to combine a relatively large moment
magnitude and rupture area with a presumably simple slip distribu-
tion, offering a useful example to explain and apply our inversion
scheme.

We translate slipmaps into predictions for vertical P waves and
horizontal S waves at the locations of 25 seismic broad-band sta-
tions at teleseismic distances from Costa Rica (Fig. 2). The selected
stations belong to the Global Seismographic Network operated by
IRIS and USGS, and were chosen according to azimuthal cover-
age and data quality for the Nicoya recordings. As for many other
circum-Pacific earthquakes, the ocean–continent distribution influ-

ences the teleseismic coverage. We recall that the principles of the
inversion scheme are independent of the forward modelling oper-
ator and type of data used, as well as that there are available GPS
and strong motion data for the Nicoya earthquake (Yue et al. 2013;
Protti et al. 2014) that might be useful to further restrict the so-
lution set by falsifying additional slip models that cannot explain
local data. Here, our priority is on understanding uncertainties of
slip inversion rather than revising the source model of this particular
earthquake, and we limit the inversion to this representative sam-
ple of teleseismic data for the sake of generality. We translate slip
maps into a fault model assuming rupture across a plane surface
with strike N310◦E, dip 24◦ and rake 97◦ (Ye et al. 2013). For the
size of the fault model, a choice that in principle has to be made
according to waveform inspection or by educated guess, we build
on previous work (Hayes 2012) and discretize the fault surface in 15
times 15 subfaults with dimensions of 10 km along strike and 8 km
along dip (Fig. 2). Rupture starts at the centre of the fault model,
associated with coordinates of 10.085◦ N, 85.315◦W and depth of
35 km. We tested different rupture velocity by trial and error and
choose 2.5 km s−1, consistent with previous teleseismic inversions
(Hayes 2012; Ye et al. 2013).
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Figure 3. Geometry of fault plane (green plane, ϕ), downgoing seismic ray or take-off vector (black vectors, �r ) and projection of the take-off vector on the
fault plane (red vectors, projϕ�r ) for some seismic stations (see Fig. 2) for P waves. �r is a unit vector and

∣∣projϕ�r ∣∣ varies between 0 and 1. The perspective
view (a) and the vertical cross section perpendicular to strike (b) are shown. Blue dotted lines show the paths followed for take-off vector projections on the
fault plane. The hypocentre is identified with a yellow star and labels are in km.

The solution of the forward modelling problem involves the com-
putation of the Green’s functions for P and S waves for each pair
of subfault and station, as well as the scaling, alignment and super-
position of all subfault contributions. We use unfiltered displace-
ment data in the inversions and compute Green functions using
the Kikuchi and Kanamori inversion package, including a propaga-
tor matrix approach in a simplified Jeffreys and Bullen earth model
(Kikuchi & Kanamori 2003). We assume a single triangle as slip ve-
locity function for each subfault, and select a constant half duration
of 3 s for this earthquake consistent with the subfault discretization
and the frequency content of the target displacement waveforms.
We assign delay times to each subfault Green functions taking into
account the arrival time of the rupture front as well as the geometry
of fault plane and downgoing seismic ray.

trup,i j = x j

vr
−

∣∣projϕ�r ∣∣
i
x j cos θi j

c
. (1)

The first term is equal to the length of the subfault position vec-
tor, xj (from the hypocentre) divided by the rupture speed, vr. The
second term corresponds to the projection of the take-off vector,
�r , onto the subfault position vector, divided by the local phase ve-
locity, c. The term,

∣∣projϕ�r ∣∣
i
, varies between 0 and 1, depending

on the position of the each seismic station, i, and the geometry of
fault plane, ϕ (Fig. 3). The angle θ ij is defined between the subfault
position vector and the projection of the take-off vector for each
seismic station. The projection and the generally larger velocity
of wave propagation compared to rupture propagation makes the
second term smaller than the first. Hence, the rupture term, with
radial symmetry, dominates delay times (Fig. 2). Finally, the pre-
diction for each slip distribution is obtained as a weighted sum of
all subfault contributions over the fault plane. For this purpose, slip
velocity functions for each subfault are scaled by the corresponding
local displacement discontinuity. The area of the overall earthquake
source time function is normalized to the net seismic moment of
the earthquake (2.93×1020 Nm, Hayes 2012). The normalization
implies that scalar seismic moment is not a parameter we address
in inversion.

Before comparing the model predictions to recordings from the
Nicoya earthquake, we use synthetic waveforms to illustrate the

main potential of teleseismic body wave data to distinguish be-
tween different rupture patterns. High resolving power requires that
notably different slip models translate to notably different seismo-
grams, while our working hypothesis in this study is more pes-
simistic: The non-uniqueness of the inversion corresponds to the
existence of notably different models with similar forward predic-
tions. Fig. 4 displays forward modelling predictions for 32 slipmaps
from Fig. 1 in waveform panels, illustrating how the variability of
slipmaps translates into variability of predicted data. A wide range
of different rupture patterns on a 150 km by 120 km fault model boils
down to relatively minor differences in waveforms. This comparison
is chilling, because the variability of waveforms is not substantially
larger than the level of mismodelling that we may be forced to ac-
cept in some applications to real data. The general similarity of
forward modelling predictions explains the familiar dependence of
slip inversions on details of the procedure such as data selection,
seismogram alignment, earth model selection and the choice of
regularization parameters, misfit norm, elementary slip function or
rupture speed, among others. Also changes in the synthetics for
different focal mechanisms or hypocentral depths may become im-
portant, causing additional trade-offs with point source parameters,
which are typically outsourced from extended fault inversion.

Finally, we use synthetic waveforms to analyse if the similar-
ity in waveforms and the similarity in slipmaps, albeit different in
size, may at least follow a monotonic relationship. That is, more
different slipmaps would consistently correspond to more different
seismograms. We can easily answer this question in the negative,
analysing similarity among slip models and their corresponding pre-
dictions (Fig. 5). For the sake of simplicity, we quantify similarity
using the normalized cross correlation coefficient for both, mod-
els and data. As suspected, slipmap correlations are smaller than
seismogram correlations, even though subfault displacements are
always positive numbers and, unlike seismogram amplitudes, can
never interfere destructively. The scatter of points indicates that the
relationship is not monotonic. The non-uniqueness of the problem
becomes particularly well illustrated through pairs of models with
low similarity (cross correlation <0.45) that translate into sets of
seismograms with average cross correlations larger than 0.9 (red
box in Fig. 5). These cases mostly correspond to pairs of models

 at Purdue U
niversity L

ibraries A
D

M
N

 on July 8, 2015
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


Extended fault inversion with random slipmaps 83

Figure 4. Waveform predictions for the first 32 random models from Fig. 1 (red seismograms) and displacement waveforms for the Nicoya earthquake (black).
The significant variability of rupture patterns in Fig. 1 corresponds to relatively minor variability of synthetic waveforms, all of them providing a first order fit
to the observations. Stations are sorted by azimuth from north, vertical P waves are shown in the left-hand panels, SH waves in the right panels.

with significantly asymmetric slip distribution but different direc-
tivity. This behaviour traces back to the dominance of the radial term
in the subfault delay times (Fig. 2). Teleseismic seismograms allow
for a relatively good discrimination between centred and peripher-
ical slip patches, however the directivity detection for peripherical
patches depends on the projection of the takeoff vector and trans-
lates into smaller time differences. Waveform comparison (Fig. 5)
confirms that S waves, with smaller wave speed, are more sensitive
to directivity compared to P waves (López-Comino et al. 2012).
Such extreme mistakes have been hopefully prevented in published
teleseismic inversions by pursuing reasonable data coverage and
careful inspection of waveform fits, yet it is instructive to see the
overall similarity of waveforms in this example.

T H E S E T O F S O LU T I O N S F O R T H E 2 0 1 2
N I C OYA E A RT H Q UA K E

Here we show the comparison of 10 000 model predictions to real
data, how to falsify trial models, and the characteristics of the so-
lution ensemble. We retrieve waveforms from the 2012 Nicoya
earthquake through the IRIS-Wilber interface, and apply a stan-
dard pre-processing to the data. This includes cutting 1-min P- and
S-wave windows, removing the instrument responses to obtain dis-
placement waveforms, and rotating horizontal seismograms into the
station backazimuth in order to isolate the SH component (Kikuchi
& Kanamori 1982). Before comparison, we normalize observations
and synthetics using the rms of waveform amplitudes, given that
the focal mechanism and scalar seismic moment have been fixed
beforehand. Normalization equalizes the weighting of observations
for different wave-type, azimuth and distance, and reduces the im-
pact of uncertainties of the fault geometry. For the application to
real data, we use L1-norm misfit for seismogram comparison. L1-
norm misfit is more sensitive to small amplitudes compared to other
widely used distance or similarity measures such as least squares
misfit or cross correlation. This is a desired property for extended

fault inversion because the effects of rupture propagation mainly
manifest in the duration of seismogram pulses, which for their part
are usually framed by small amplitudes near the zero crossings of
the traces.

First, in a brief relapse back to inversion as an inductive tool, we
present the formally best fitting model (Fig. 6). It shows a simple
pattern of one single slip patch, ∼70 km × ∼50 km large, with peak
slip of ∼3 m close to the hypocentre. This result is similar to pre-
vious studies (Hayes 2012; Ye et al. 2013; Yue et al. 2013; Protti
et al. 2014), validating our modelling approach. The source time
function indicates a rupture duration of ∼30 s. The best model is
valuable as a reference for misfit: it corresponds to overall satisfac-
tory waveform matches. Discrepancies between data and synthetics
are mainly related to near nodal S waves and to signal in the late part
of the analysed time windows, which contains arrivals that are not
addressed by the forward modelling operator. Formal normalized
L1-fit is 0.4892, understanding L1-fit as unity minus normalized
misfit, such that an optimal fit corresponds to a L1-fit equal one,
where uo(t) and us(t) are the observed and synthetic seismograms,
respectively, considering a temporal window (tb,te),

L1 = 1 −
(∑te

tb
|uo(t) − us(t)|∑te

tb
|uo(t)|

)
. (2)

The waveform comparison shows that our assumptions of con-
stant rupture velocity, rake and slip velocity function are not prej-
udicial to fit the observation for this earthquake. This suggests that
reported rake variations (Hayes 2012; Ye et al. 2013; Yue et al.
2013; Protti et al. 2014) are not essential to fit teleseismic data and
may belong to the null-space in this case. The same appears to hold
for slip near the boundaries of the fault model, present in previ-
ous models, but nearly absent from our results due to the way we
construct the trial models. Applying the principle of parsimony, we
might propose to favour our model over models with more complex
parametrization, however the purpose of this study is to explore
uncertainties. We will now address the question whether details of

 at Purdue U
niversity L

ibraries A
D

M
N

 on July 8, 2015
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


84 J.Á. López-Comino et al.

Figure 5. (a) Asymmetry between waveform similarity and slipmap similarity, displayed as contour plot for binned normalized cross-correlation (NCC)
coefficients among pairs of models. Usually waveform similarity is larger than slipmap similarity, exceeding 0.9 for most pairs of models. We focus on
particularly problematic pairs characterized by low slipmap correlation (<0.45) but high waveform correlation (>0.9) that may introduce ambiguity into
extended fault inversion (red box). (b) Examples of slipmap pairs of ambiguous models (each row shows two pairs). All slipmaps have been normalized to
the scalar moment estimate available for the Nicoya earthquake. (c) The comparison of synthetic waveforms for the first pair of ambiguous models shows that
these very different slip patterns might be difficult to distinguish from recorded data (blue and red seismograms correspond to the left and right slipmaps,
respectively, in the first row of Fig. 4b).
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Extended fault inversion with random slipmaps 85

Figure 6. Best-fitting model from our inventory of random slipmaps corresponding to L1-fit of 0.4892 (upper left), associated source time function for
triangular slip velocity function with 3 s half-duration on each subfault and rupture speed of 2.5 km s−1 (upper right), and waveform matches between predicted
(red) and observed (black) displacement seismograms (stations sorted by azimuth from north).

the model such as the position of peak slip are well constrained, as
well as whether a substantially different slipmap would explain the
data as well.

Being based on the falsification of inappropriate slipmaps, our
inversion scheme depends on criteria to decide whether a given trial
model achieves an appropriate fit to the observations. For a sub-
stantial amount of models, using an objective misfit measure and
threshold values automatizes this decision. We use average L1-fit
to quantify similarity between seismograms. Such as any other at-
tempt to condensate the information contained in full waveform
matches into a single number, this norm is susceptible to loosing
information, but we consider it a sensible choice for extended fault
inversion. The introduction of a threshold value that classifies mod-
els into two categories—wrong or possibly right—is a distinctive
feature of Popperian inversion. We chose the threshold based on vi-
sual inspection of waveform matches for models that achieve a given
L1-norm. In our example, waveform matches with overall L1-fit of

0.4392 (5 per cent below the formally best model) are appropriate
within a reasonable amount of mismodelling at most stations, while
waveform matches with L1-fit of 0.3892 already show clear defi-
ciencies compared to the best fitting model (Fig. 7; see e.g. stations
KBS, KEV, GRFO, ADK and BILL for P-waves). The degrada-
tion of waveform matches does not affect all waveforms equally.
In particular S waves show little variability, and also for P waves
the differences appear at some stations and not at others. The first
two station panels of Fig. 7 illustrate this behaviour. While at HRV
the waveform matches are practically indistinguishable for different
average L1-fit, KBS appears much more diagnostic in order to dis-
tinguish between different rupture patterns for this earthquake. The
5 per cent misfit increase already leads to a notable mismatch of
P-wave duration compared to the best solution. On the other hand,
a 10 per cent misfit increase, besides degradation of fit at individual
stations, leads to a large asymmetry in normalized cross correla-
tions between seismogram and slipmaps, showing pairs of possible

 at Purdue U
niversity L

ibraries A
D

M
N

 on July 8, 2015
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


86 J.Á. López-Comino et al.

Figure 7. Comparison of waveform matches for models with different L1-fit values. In each station and wave-type (P or SH) panel, we show the fit of the ten
best models (L1-fit between 0.4792 and 0.4892, top), 10 models with fits of L1 ≈ 0.4392 (best model −5 per cent, centre), and 10 models with fits of L1 ≈
0.3892 (best model −10 per cent, bottom). The degradation of fits is very small for S waves, but fits are clearly different for P waves at several stations, where
the formally inferior models lead to wrong predictions of P-wave’s duration.

solutions with low similarity (Fig. 8). Then, 5 per cent misfit in-
crease, or L1-fit of 0.4392, will be chosen as threshold for falsifying
inferior trial models.

The solution set, containing 252 out of 10 000 trial models that
produce L1-fit larger than 0.4392, indicates an overall satisfactory
resolution of the extended fault inversion for the Nicoya earth-
quake (Fig. 9). All members of the solution set show a single slip
patch around the hypocentre. According to a visual inspection of

slipmaps, none of them is substantially different from the formally
best solution, with the main slip occurring in a ∼70 km × ∼50 km
large area. There is no model that suggests significant slip in other
parts of the fault, or significant rupture directivity. On the other
hand, the variations among acceptable models tell us what is not
resolved in inversion. For example, peak slip varies between 2 and
3.5 m in the solution set (Fig. 10). Variations of almost a factor
two indicate significant uncertainties for this parameter. There are
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Figure 8. (a) Comparison of waveform similarity and slipmap similarity for the solution set of the Nicoya earthquake. Such as in Fig. 4(a), we display a contour
plot for binned normalized cross-correlation (NCC) coefficients among pairs of possible models according to the −5 per cent threshold and −10 per cent
threshold. (b) Comparison of the ‘0’ contour lines for various thresholds: 10 formally best models, −5 per cent threshold, −10 per cent threshold as well as the
entire model space (red line) for reference.

models with more concentrated slip and larger peak slip (e.g. model
with L1-fit = 0.4744), compared to models with a broader slip
maximum (e.g. L1 = 0.4748). In some models, peak slip splits into
two relative maxima, connected by large slip close to 2 m (e.g. the
second model, L1 = 0.4859). This does not suggest a description
as separate patches, but it does indicate that the detailed topogra-
phy of the slip patch is unresolved. This is also evident from the
variability in the position of peak slip, which can be located at any
direction from the hypocentre. Further uncertainties are related to
the characteristics of peripheral slip in the model. While peripheral
slip is a priori small due to the way we construct trial models, the
distribution is highly variable among the solution set, suggesting
that slip below 1 m may belong to the null-space. Contour plots of
the slip distributions (Fig. 11) illustrate the uncertainties: The 1.5 m
slip contour appears well resolved, the 2 m contour lines confining
the slip maximum show significant variability, and the 1 m contour
lines may extend into the periphery of the slip model. Forming the
mean and the standard deviation of the solution set indicates that the
most significant uncertainties occur around the 1 m contour. Source
time functions (Fig. 11b) illustrate another insight for the Nicoya
earthquake: The best models correspond to concentrated slip, while
the misfit increases for more distributed slip that introduces delay
of the moment rate maxima.

D I S C U S S I O N

As illustrated in this study, significant differences in distributions
of earthquake slip often translate into only minor variations of tele-
seismic body waves. In terms of the inverse problem, this implies
that significant parts of the model space may correspond to similar
misfit values and cannot be resolved in the presence of data and
modelling uncertainties. Even in a linear setup, where we assume
rupture velocity and slip velocity function to be known and only the
subfault displacements have to be determined, there may exist a vast
null space. Such ambiguity is well accredited for earthquake slip
inversions and modellers are presumably aware of the instabilities.
Nevertheless we may be sceptical of the priority given to best-fitting
models produced by optimization tools (Tarantola 2006). Here we

run through a Popperian inversion scheme that accounts for the
asymmetry between data similarity and model similarity by falsify-
ing inappropriate trial models and treating all remaining models as
coequal solutions of the inverse problem. Assuming that the input
set includes all different rupture scenarios, the solution ensemble
includes all rupture models that are consistent with the observed
data within some selected level of mismodelling. Different from
Bayesian inversion, we do not assemble the results from model
testing into a posterior probability distribution. We directly reject
underperforming trial models instead of just assigning them a low
degree of plausibility. Also we do not focus on the best model,
although the identification of the formally best trial model is a by-
product in our inversion. As in any extended fault inversion, we may
expect that the best model is a rather coincidental choice among a
number of possible models with similar performance. This point of
view allows reducing the sampling density in the model space, mak-
ing the approach inexpensive from a computational point of view. In
particular, subfault Green’s functions can be computed beforehand,
and only the summation of subfault contributions and computation
of the misfit norm needs to be repeated for each trial model.

Common with other search approaches, our extended fault inver-
sion circumvents matrix inversion that has to be stabilized using for
example subjective smoothing constraints to adjust the resolution
of the model to the resolving power of the data. However, search
approaches are limited by the variety of the underlying trial models,
which also implicitly introducing a priori information into inver-
sion. Here, the construction manual for slipmaps is derived from
spectral properties of inverted fault solutions and may be affected
by all their shortcomings, including nonphysical constraints applied
in the original inversions. This circular logic is difficult to avoid in
search schemes. Random modelling will generate fields reminiscent
of earthquake slip distributions that have been seen previously, but
impose limitations towards identifying any fundamentally different
behaviour of the system. On the other hand, building on the body
of acquired knowledge allows for keeping the model space man-
ageable. Assuming von Karman power spectra with empirically
derived correlation lengths (Mai & Beroza 2002), only a few thou-
sand different earthquake slip distributions may be realized. Since
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88 J.Á. López-Comino et al.

Figure 9. Solution ensemble from Popperian inversion for the Nicoya earthquake, consisting of 252 unfalsified trial models with L1-fit ≥ 0.4392. Slip maps
are sorted according to their L1-fit (see labels), however we consider them coequal solutions of the inverse problem. Slip amplitudes are plotted using the
same colour scale as in Fig. 5. Although all solutions correspond to a single dominant slip patch near the hypocentre, the variability of the solutions indicates
that characteristics such as the exact position of peak slip, the concentration of slip, and the distribution of peripheral slip below 1 m are not resolved by the
inversion.
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Figure 9 – continued

correlation length scales with fault size, at least for the resolvable
part of the source model, the amount of trial models is almost in-
dependent of earthquake magnitude or fault discretization. For our
example, a set of 10 000 pseudo-random maps still contains many
redundancies (Fig. 1, Fig. 8) and could be condensed further. The

amount of models may increase if we choose a lower Hurst number,
increasing the roughness of slip. Hurst numbers around H = 0.75
are accredited empirically (Mai & Beroza 2002), possibly reflect-
ing the mapping of variable rupture speed, rise time, and geometric
irregularities of the fault surface onto the slip distribution. For the
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Figure 10. Comparison of peak-slip distribution for various thresholds: 10 formally best models, −5 per cent threshold and −10 per cent threshold.

data example chosen in this study, rupture models with H = 1 have
been shown capable of fitting the observations.

Popperian inversion appears sublime from a viewpoint of philo-
sophical aesthetics, but in practice it depends on difficult decisions
about the sampling of the model space as well as misfit threshold
values. As for the threshold, we have to recognize that falsification
may be probabilistic in nature. There is a contradiction between the
division of neighbouring models in the misfit ranking into wrong
and possibly true at the chosen misfit threshold, and our expectation
that the performance of these models is practically indistinguish-
able. In this sense, our yes-no scheme is a more primitive flavour of
Bayesian approaches, and the selection of the threshold is important.
A too conservative threshold causes contamination of the solution
set by inferior models, while a too restrictive threshold invalidates
the inversion scheme. There is probably no general-purpose solu-
tion to this dilemma, but on the positive side, Popperian inversion
is well suited to incorporate meaningful misfit descriptions. Since
no matrix inversion is needed, different misfit norms such as L1
and L2 can be implemented easily. Beyond that, the binary yes–no
structure of Popperian inversion allows for the use of Boolean ex-
pressions. We may implement multiple thresholds for example for
the misfit norm of data subsets, different misfit norms, or even for
an individual observation that is considered particularly relevant.
There is full flexibility in using elementary and Boolean algebra
to combine different criteria and decide if a model should be con-
sidered falsified due to its overall poor performance or due to its
failure in any specific aspect. In the sense of falsification, a model
will be rejected through logical disjunction if it fails in one or more
categories. This is particularly useful for joint inversion of different
data types, for example seismic and geodetic data. The reasonable
requisite of appropriate fit to each individual set of input data is
straightforward to implement in Popperian logic.

To keep this proof of concept simple, we assume in this study
that rupture velocity, the slip velocity function and rake values of

subfault slip are known and constant across the fault. For our real
data example, we obtain appropriate waveform fits under these as-
sumptions, justifying their introduction in order to obtain a simple
description for the Nicoya earthquake. More generally, there may
exist trade-offs between these parameters and the slip distribution,
or we may be unable to fit waveforms if the rupture is characterised
by significant heterogeneity in these parameters. Actually, rake vari-
ations would not be necessary in a model scenario of a plane fault
under uniform shear stress, and are sometimes suspicious to be the
result of imperfect forward modelling. Variations in rupture velocity
and rise time, on the other hand, are predicted by rupture dynamics.
A common way to accommodate these variations is through a multi-
ple time window scheme, where local slip histories are obtained as a
superposition of time-lagged elementary functions. This introduces
additional degrees of freedom, requiring substantial modification of
our inversion approach in order to keep computational requirements
reasonable, for example by replacing the random model generation
by a guided search in the model space. Possibly a sparse parame-
terization of the additional model parameters that describe variable
rupture speed may solve this issue, such as a search for rupture front
delays only at a few key points of the slip distribution, followed by
interpolation. Alternatively we may invoke earthquake dynamics;
not all slip distributions are physically acceptable. Setting up the
model space from dynamic rupture simulations is computationally
expensive (e.g. Peyrat & Olsen 2004; Ripperger et al. 2008), but
pseudo-dynamic slip models may represent a practicable solution.
Albeit existing epistemic uncertainty, pseudo-dynamic modelling
provides recipes for estimating rupture velocity and rise time from
local slip amplitudes and the subfault position vector (e.g. Guatteri
et al. 2004; Schmedes et al. 2010), for potential applications to
complex rupture processes without relevant computational compli-
cations.

The 2012 Nicoya earthquake turns out to show a well-behaved
slip distribution that can be easily reconstructed from teleseismic
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Figure 11. Comparison of properties of the 10 formally best trial models (left-hand column), models with L1-fit ≈ 0.4392 (the formally worst models included
in the solution set, centre column), and models with L1-fit ≈ 0.3892 (falsified models, right-hand column). The first rows compare slip contours (2, 1.5 and
1 m) for the models, showing large scatter among falsified models, and an overall consistent behaviour for members of the solution set (black reference lines:
average for the 10 formally best models, blue reference lines: average for all models above the respective threshold, red lines: 10 individual models). The same
display has been chosen for the moment rate functions (4th row). Finally, the last rows show the mean and standard deviation for the 10 formally best models,
all models with L1-fit ≥ 0.4392, and all models with L1-fit ≥ 0.3892, respectively.
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body waves. This characteristic allows formulating a hypothesis for
the source process, which may be our formally best model (Fig. 6)
or any other of the 252 trial models that form the solution set and
correspond to similar waveform fits. The set contains only simi-
lar solutions –a single centred slip patch- with minor differences.
The similarity suggests that we could still reduce the volume of
the model space, merging pairs or groups of very similar models
into a single one. The minor differences between the slipmaps are
interesting, because they relate to properties that are often picked
out in the interpretation of fault models, such as the precise location
of peak slip relative to the hypocentre. Generalizing the results for
the Nicoya earthquake, viable peak slip amplitudes may have large
limits of variation, and we may hardly obtain information about
the total extent of rupture from finite fault inversions. Small slip in
peripheric regions does not contribute significantly to the wavefield
and become invisible from a practical point of view. This affects for
example inferring the segmentation of major faults, confining seis-
mic gaps, and estimating the seismic potential of plate boundaries.
As an encouraging outcome, we did not undermine the legitimacy
of optimization approaches in the case of the Nicoya earthquake.
Proposed models (Hayes 2012; Ye et al. 2013; Yue et al. 2013; Protti
et al. 2014) are in line with the characteristics of our solution set. In
this case, previous studies certainly spent more effort on front-end
issues of the inversion, such as the selection and processing of data,
and Earth structure introduced into the forward operator. Popperian
inversion tells us what level of detail we may venture to interpret,
and warns us if inversions are not well constrained. For a solution
set revealing more substantial ambiguities, a classification of slip
maps according to any appropriate similarity or distance measure
may help us to interpret the inversion result, propose different hy-
potheses for the source process, and guide the search for additional
data that might possibly distinguish between the different scenarios.
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