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Abstract

The decision to treat active tuberculosis (TB) is dependent on microbiological tests for the organism or evidence of
disease compatible with TB in people with a high demographic risk of exposure. The tuberculin skin test and peripheral
blood interferon-y release assays do not distinguish active TB from a cleared or latent infection. Microbiological culture
of mycobacteria is slow. Moreover, the sensitivities of culture and microscopy for acid-fast bacilli and nucleic acid
detection by PCR are often compromised by difficulty in obtaining samples from the site of disease. Consequently, we

need sensitive and rapid tests for easily obtained clinical samples, which can be deployed to assess patients
exposed to TB, discriminate TB from other infectious, inflammatory or autoimmune diseases, and to identify
subclinical TB in HIV-1 infected patients prior to commencing antiretroviral therapy. We discuss the evaluation
of peripheral blood transcriptomics, proteomics and metabolomics to develop the next generation of rapid
diagnostics for active TB. We catalogue the studies published to date seeking to discriminate active TB from
healthy volunteers, patients with latent infection and those with other diseases. We identify the limitations of
these studies and the barriers to their adoption in clinical practice. In so doing, we aim to develop a framework
to guide our approach to discovery and development of diagnostic biomarkers for active TB.
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Background

Making an early and definitive diagnosis of active tuber-
culosis (TB) infection is vital both at the individual and
population level, thus reducing morbidity, mortality and
transmission. The notoriously pleiotropic presentation of
TB disease means that clinicians rely heavily on confirma-
tory diagnostics [1]. This review will assess how -omics
based technology is poised to push this field beyond the
limitations of currently available tests.

Currently available Mycobacterium tuberculosis (Mtb)
diagnostic approaches

The gold standard for microbiological diagnosis of Mtb
relies on identification of the organism from clinical
specimens. Microscopy, being rapid and affordable, re-
mains the first-line diagnostic approach [2-4], but its
sensitivity is both operator dependent and reliant on the
abundance of Mtb in the sample [2]. Culture of Mtb im-
proves sensitivity [5], but has inherent drawbacks — Mtb
growth in vitro is fastidious and has a slow generation
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time (20-22 h) [6], and thus it takes weeks to identify
Mtb from samples. Nevertheless, matrix-assisted laser
desorption ionization-time of flight (MALDI-TOF) mass
spectrometry and nucleic acid amplification tests (NAATS)
may soon accelerate this step for the identification of
positive cultures [7-11]. Liquid broth-based culture cir-
cumvents slow growth and subjective colony detection
of Mtb on solid agar [12], improving both detection
time and sensitivity compared to solid media cultures
[4, 5, 13]. However, automated liquid culture systems
necessitate significant laboratory infrastructure, and
therefore other manual TB culture methods have been
recommended for resource-limited settings [2]. Micro-
scopic observation of drug sensitivity (MODS) uses
inverted light microscopy to identify the typical cording
pattern of Mtb in liquid culture; it is cost-effective in
resource-limited settings and has similar or superior
sensitivity and specificity to established culture systems
[2, 14-16]. However, it still requires both skilled personnel
and laboratory containment facilities, making it unsuitable
for all settings and certainly not a point-of-care test.

An alternative approach to culture is Mtb antigen
detection, best illustrated by the use of Mtb lipoara-
binomannan in urine as a point-of-care diagnostic
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immunochromatographic assay. Although rapid and
low cost, this test only achieves high sensitivity (>70 %) in
HIV-TB co-infected patients with advanced immunodefi-
ciency (CD4 <200), limiting its diagnostic utility in an
unselected population [17].

NAATs aim to detect Mtb directly from clinical speci-
mens [7, 18], but only the line probe assay and Xpert
MTB/RIF have been endorsed by the Word Health
Organization for use in low- to middle-income countries
[19, 20]. The line probe assay simultaneously detects
Mtb and common rifampicin and isoniazid resistance
mutations, but has a sensitivity of 58—-80 % [21, 22] and
still necessitates laboratory PCR facilities beyond the
reach of many resource-limited settings. In contrast, the
Xpert MTB/RIF platform performs PCR reactions within
proprietary cartridges, making it a rapid diagnostic test
[23]. Smear-positive sputum samples of confirmed pul-
monary TB have 99 % sensitivity and a pooled specificity
of 98 % [24]. Xpert MTB/RIF also detects the most com-
mon rifampicin resistance mutations in the Mtb rpoB
gene, a proxy for multidrug-resistant TB, with a pooled
sensitivity and specificity of 95 % and 98 %, respectively
[20, 24]. However, Xpert MTB/RIF has a lower sensitiv-
ity in smear-negative sputum samples (68 %), and its
sensitivity in extrapulmonary TB samples is highly vari-
able (median 77.3 %, range 25.0-96.6 %) [24—27], leaving
a significant proportion of TB disease reliant on sub-
optimal accuracy from diagnostic tests.

Whole genome pathogen sequencing

Recent advances in genomics offer the opportunity to
advance TB diagnostics by improving bacterial detection.
Whole genome sequencing (WGS) of clinical Mtb isolates
has been used to retrospectively track Mtb transmission
events [28, 29], discriminate between re-infection and re-
lapse cases [30], and identify drug resistance-conferring
mutations [31, 32]. Like NAATs, WGS provides both diag-
nostic confirmation of the presence of Mtb and informa-
tion about antibiotic susceptibility using publicly available
databases of annotated drug resistance and susceptibility
mutations [33, 34]. WGS may vyield results in a clinically
relevant time frame, identifying the organism 1-3 days
after a liquid culture flags positive [35, 36].

Excitingly, two recent studies propose faster diagnostic
confirmation using WGS by successfully sequencing
Mtb genomes directly from uncultured sputum samples
[37, 38]. However, the ability to recover Mtb genome
sequences also from smear- and culture-negative sputum
samples (derived from previously diagnosed TB patients
after anti-TB therapy) [38] emphasises that DNA-based
techniques cannot discriminate between active disease and
cleared infections, where DNA from dead mycobacteria
may remain detectable.
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Host response-based diagnostics

In part owing to deficiencies in current diagnostics,
around 42 % of notified cases are treated presumptively
for TB disease [1]. In these circumstances, diagnostic
confidence can be offered by the host response to Mtb
infection: non-specific syndromic changes, such as an-
aemia, can be predictive of the likelihood of TB disease
[39], and histopathological changes, such as caseating
granulomata, support a diagnosis of tuberculosis [40]
but are clearly limited by availability of diagnostic sam-
pling of the site of disease. More dynamic pathological
changes can now also be detected through imaging mo-
dalities such as CT-PET scanning [41], but these are still
being evaluated and are not readily available. The host
response to Mtb infection is also exploited in tuberculin
skin tests (TSTs) and interferon gamma (IFN-y) release
assays (IGRAs): these are commonly used to diagnose
asymptomatic ‘latent’ TB infection (LTBI; reviewed ex-
tensively elsewhere [42-44]), but they lack sensitivity
or specificity in the diagnosis of active disease [45, 46].
Extensive research efforts have evaluated -omic tech-
nologies (Box 1) to screen host responses that might
ultimately lead to better diagnostic tests for TB.

Blood transcriptomics
Over 20 studies examining the human transcriptional
response to TB have been published since the first paper
in 2007 [47] (Table 1). Despite this, no diagnostic test for
TB utilising this technology exists. A number of reasons
may account for this. Several of the studies were designed
with the intention of exploring the immunopathogenesis
of TB [48-53] rather than identifying diagnostic markers.
Others have aimed at evaluating the treatment response to
TB with a view to finding new surrogate markers of suc-
cess for both clinical management and use in trials of new
therapies [54, 55]. Of those designed to derive signatures
that would discriminate active TB from health or other
disease states, only a handful have a case definition of ac-
tive TB based on microbiological confirmation, validation
of their signatures in independent cohorts and evaluation
of the diagnostic accuracy of the signature. We have fo-
cused on these studies in greater detail in this review.
Published transcriptional signatures for active TB vary
in size and show surprisingly limited overlap between
studies (Fig. 1). Nevertheless, common functional anno-
tations associated with gene signatures of active TB have
been observed in some studies. These include FCGR sig-
nalling [50, 56], interferon signalling [52, 57], and com-
plement pathways [54, 58]. In addition to variations in
study design, differences in patient demography, site and
duration of TB disease, time on treatment and technical
differences in the methodology of transcriptional profil-
ing may have contributed to the diversity in signatures.
The use of whole blood with and without globin depletion,
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Box 1 High-throughput technologies to profile the
host response in TB [93]
Transcriptomics

Transcriptomics is the analysis of genome-wide gene expression,
measured as RNA transcript abundance by gene chip microarrays or
RNA sequencing. Most often, transcriptomics studies focus on
the expression of protein-coding genes. However, the human
transcriptome also includes non-coding RNA, and may contain
up to 350,000 different transcripts [94]. Gene expression data from
published transcriptomics studies are generally deposited in the
public data repositories Gene Expression Omnibus (http://www.ncbi.
nim.nih.gov/geo/) or Array Express (https//Awww.ebiacuk/arrayexpress/).
However, the lack of detailed metadata and the use of different

platforms render it difficult to combine individual datasets [95].

Proteomics

Proteomics is the study of the collective set of proteins expressed
by a cell or an organism at any given time. The human proteome is
estimated to encompass up to one million different proteins. The
main technology applied in proteomic studies is mass spectrometry,
which involves fragmentation of proteins prior to their detection
and quantification based on the mass-to-charge ratio of the
resulting peptides. The detected peaks are first identified as
peptides through a database search, and are then assigned to
proteins through the use of identification algorithms [96].

Metabolomics

Metabolomics aims to characterize the small molecule metabolites
(e.q. lipids, fatty acids, sugars, amino acids, nucleotides) present in a
clinical specimen. Approximately 20,000 different metabolites have
been detected in human samples [97], with mass spectrometry and
nuclear magnetic resonance as main detection tools. Examples of
the analytical challenges associated with metabolomics studies
include the dependency of the metabolite profile on the
experimental methodology employed, and the broad spectrum of
metabolite origin (e.g. drugs, nutrition) which need to be taken into

account when interpreting inter-individual differences.

or fractionated peripheral blood mononuclear cells for
transcriptional profiling is likely to cause significant con-
founding. In addition, the use of different array platforms
necessitates cross-comparison using a common feature
such as gene name, but this may be insufficient because
discriminating signatures in different studies may include
unannotated probes with no gene name, or diverse probes
for the same gene that do not give concordant signals.
Amongst the most highly cited studies, Berry et al. [57]
described a 393-transcript signature of active TB versus
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healthy states, derived from a UK population (training set)
and validated in a UK test set as well as in an independent
South African cohort. Active TB cases were defined as
culture-positive pulmonary TB with radiographic changes
and whole blood transcriptomic samples were acquired
prior to any TB treatment. Patients with LTBI were
defined by the absence of signs or symptoms of active
TB, and a positive IGRA and TST. Healthy controls
had no symptoms or signs of TB and a negative IGRA
and TST. Differentially expressed genes between active TB
and healthy states (both LTBI and healthy controls)
were identified in the training set using expression-
level, statistical filters and hierarchical clustering. Ma-
chine learning and k-nearest neighbour class prediction
showed a sensitivity and specificity of 61.67 and 83.75 %,
respectively, in the UK test cohort, and of 94.12 and
96.67 %, respectively, in the South African validation
cohort. Additionally, disease-associated transcriptional
changes, used to derive a so-called molecular distance
to health, were shown to correlate with radiographic
changes and to revert to that of healthy controls after
treatment. The difference in sensitivity between the UK
and South African cohorts was attributed to the poten-
tial contribution of different Mtb lineages in the more
ethnically diverse UK cohort as well as to latent TB
cases being misclassified as active disease, potentially
representing sub-clinical active TB.

A greater clinical challenge is distinguishing patients
with TB disease from other diseases. In the study described
above, Berry et al. [57] derived an 86-transcript signature of
TB versus other inflammatory diseases, including staphylo-
coccal and Group A streptococcal infections, systemic
lupus erythematosus and Still's disease, by comparison with
previously published data sets. However, in subsequent
studies, this did not discriminate TB from cases of pulmon-
ary sarcoidosis [51], which can mimic the presentation
of active TB. Bloom et al. [48] published a 144-transcript
signature that could distinguish TB from other pulmonary
disease (sarcoidosis, non-tuberculous pneumonia and lung
cancer) and was derived from differentially expressed tran-
scripts between the TB and sarcoid groups. When applied
to training, test and validation cohorts, and using class
prediction via support vector machines (SVMs), sensitivity
was over 80 % with specificity over 90 % in distinguishing
TB from non-TB (sarcoid, pneumonia, lung cancer,
healthy controls). This study was restricted to UK and
French patients and the number of patients with pneumo-
nia or lung cancer was relatively modest. In addition, pneu-
monia cases compared to TB in this study experienced a
variable duration of antibiotic therapy before transcriptomic
sampling, which may have significantly confounded
the conclusions as the authors highlighted the effect
of antibiotic treatment on transcriptional profiles in a sep-
arate cohort of pneumonia patients.
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Table 1 Transcriptomic studies

Study Sample Dataset Country Classes Number HIV  Case definition Independent  Validation  Evaluation of Signature size
C
GSE number status oo TR T8 Microbiologically TST IGRA test set set accuracy
treatment®  location proven®

Maertzdorf  WB 74092 India B 13 - 0 p Y Y Y Y TB vs. LTB/HV4
et al, 2015
62] LTBI 56 +/- +/-

HC 20 -
Walter WB 73408 USA B 109 - p Y Y Y Y
et al, 2015
61] LTBI +

Pneumonia -
Anderson  WB 39941 South Africa,  CCTB 95 - P, EP Y Y Y Y TB vs. LTBI 42TB
et al, 2014 Malawi, Kenya CNTB 57 B P EP U vs. OD 51
[60]

LTBI 68 - + o+

oD 140 - -

CCTB 51 + P, EP Y

CNTB 17 + P, EP U

LTBI 0 + + 4+

oD 93 + -
Caietal, PBMC 54992 China B 173 0 P Y Y N Y TB vs. HV 1, TB vs.
2014 [58] LTB] 148 + LTBI 1

HC 51 -
Dawany PBMC 50834 South Africa  TB 21 + Y P Y N Y Y HIV vs. HIV/TB 251
et al, 2014
63] HC 22 +
Kaforou WB 37250 South Africa, TB 97 - <1d P, EP Y Y Y Y TB vs. LTBI 27, TB
etal, 2013 Malawi LTRI 83 B . vs. OD 44
[59]

oD 83 - +/-

B 97 + <1d P, EP Y

LTBI 84 + + o+

oD 92 + +/-
Bloom WB 42834 UK & France B 35 - 0 p Y Y Y Y TB vs. OD 144
[eigl‘, 2013 Sarcoid 61 -

Pneumonia 14 -

Lung 16 -

cancer

HC 113 - -
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Table 1 Transcriptomic studies (Continued)

Verhagen
et al, 2013
(98]

Cliff et al,,
2012 [54]

Maertzdorf
et al, 2012
[51]

Ottenhof
et al, 2012
[52]

Bloom
etal, 2012
[55]

Lesho
etal, 2011
[99]

Maertzdorf
et al, 2011
[56]

Maertzdorf
et al, 2011
[50]

Luetal,
2011 [100]

Berry et al,
2010 [57]

WB

WB

WB

PBMC

WB

PBMC

WB

WB

PBMC

WB

41055

Venezuela

3134836238 South Africa

34608

56153

40553

N/A

25534

28623

27984

Germany

Indonesia

South Africa,
UK

USA

South Africa

The Gambia

China

UK, South
Africa

TB

LTBI

HC
Pneumonia

B

B

LTBI
HC
Sarcoid
TB

HC

B

LTBI
B
LTBI
BCG vacc
HC
B
LTBI
HC
B
LTBI
HC
B
LTBI
HC
PTB
LTBI
HC
oD

29
25
18
27

33
34

46
25
37
46
59
26
54
69
24
96

0, 1/4/26 w

0, 8w, 28w

0, 2w, 2 m,
6m,12m

<4w

TB vs. LTBI 5

Treatment 62

TB vs. LTBI 664
treatment 320

TB vs. LTBI vs. BCG
vacc vs. HC 127

TB vs. LTBI 5

TB vs. LTBI 3

TB vs. health
393TB vs. OD 86
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Table 1 Transcriptomic studies (Continued)

Stern et al, PBMC  N/A Colombia
2009 [53]

Jacobsen  PBMC 6112 Germany
et al, 2007
[101]

Mistry WB N/A South Africa
et al, 2007
(471

B

LTBI

HC

B

LTBI

HC

B

Cured TB
LTBI

Rec TB

1

1

1

37
22
15
10
10
10
10

TB vs. LTBI vs. HC 3

TB vs. cured vs.
LTBI vs. recurrent 9

WB Whole blood, PBMC Peripheral blood mononuclear cells, TB Active tuberculosis, LTBI Latent TB infection, HC Healthy controls, OD Other diseases, CCTB Culture-confirmed TB, CNTB Culture-negative TB, EP Extrapulmonary,

P Pulmonary, Y Yes, N No

“Number of days (d), weeks (w) or months (m) on treatment at time of sampling

bU if unclear whether all TB cases were microbiologically confirmed, e.g. if diagnosis was based on Mtb culture or chest X-ray or TB symptoms, or if microbiologically proven and unproven TB cases were

grouped together
“Never involved in training the model
INew, independent set of samples
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A Berry 393 Kaforou 27

Anderson 42

tuberculosis infection, HC Healthy controls, OD Other disease

Fig. 1 Venn diagrams of selected published transcriptomic signatures. Signatures were compared by gene symbol annotation, and the overlap
visualised with Venn diagrams [115]. Since not all transcripts are annotated with a gene name, the gene numbers displayed in the Venn diagrams
may not add up to the number of transcripts in the published signature. a Gene signatures that distinguish TB cases from healthy controls
(including latently infected subjects). Berry 393 = 393-transcript signature of TB versus healthy states (LTBI and healthy controls) [57]; Kaforou
27 = 27-transcript signature of TB versus LTBI [59]; Anderson 42 = 42-transcript signature of TB versus LTBI [60]. b Gene signatures that distinguish TB
cases from other diseases. Berry 86 = 86-transcript TB-specific signature [57]; Bloom 144 = 144-transcript signature of TB versus other pulmonary disease
[55]; Kaforou 44 = 44-transcript signature of TB versus OD [59]; Anderson 51 = 51-transript signature of TB versus OD [60]. 7B Tuberculosis, LTB Latent

Bloom 144 Kaforou 44

Berry 86

Anderson 51

Kaforou et al. [59] and Anderson et al. [60] presented
much larger multi-centre studies in Africa, comparing
TB to other diseases where TB was in the differential
diagnosis. Importantly, these included HIV-positive adults
and children, respectively, and encompassed a far broader
range of conditions than the previously described studies
[59, 60]. Kaforou et al. [59] recruited adult patients to com-
pare culture-positive pulmonary and extrapulmonary TB to
LTBI and other diseases. Discovery cohorts from Malawi
and South Africa were used to define a 44-transcript signa-
ture of TB versus other diseases, which was then validated
with an external dataset. They also proposed a calculation
for a so-called Disease Risk Score (DRS) to reduce the
multigene transcriptional signature to a single numerical
value in order to discriminate TB from other diseases. This
provided a sensitivity of 93—100 % in test and validation
cohorts, and specificities of 88—96 %. The inclusion of a
broad range of diagnoses represents a pragmatic approach
relevant to clinical setting in which TB presents.

In their study of children with TB, Anderson et al. [60]
employed a similar study design in the same geographical
locations, although the description of TB disease was not
detailed. The DRS based on a 51-transcript signature dis-
tinguished TB from other diseases in the validation cohort
with a lower sensitivity of 82.9 % and specificity of 83.6 %.
Additionally, culture-negative cases were included and
evaluated separately. In this context, sensitivity decreased
to as low as 35 % in the ‘possible TB’ cases but specificity
was maintained at around 80 %. The DRS therefore
outperformed the Xpert MTB/RIF assay in sensitivity in

both culture-positive and -negative cohorts, but could not
compete with the 100 % specificity of this PCR assay.

A new whole blood transcriptomic study in a US
population identified new classifiers for active TB and
compared their accuracy to those from other published
studies [48, 51, 57, 59] using SVM and receiver operator
characteristic curves [61]. They described high areas
under the curve (AUCs) when discriminating between
TB and pneumonia in their own cohort (0.965). These
were higher than previously published signatures (0.9
and 0.82) and also performed well when used to classify
a previously published dataset (0.906). In contrast, TB
versus LTBI classifiers in all studies performed consistently
accurately when applied across all datasets. Although not
yet available at the time of writing, this study will provide
additional array data valuable for cross validation in future
studies. In this respect, an important hurdle to under-
taking cross validation between published studies and
meta-analyses is the lack of metadata linking individual
cases to the corresponding transcriptomes deposited in
public repositories.

Furthermore, the fact that all the diagnostic signatures
described above are based on multigene signatures ne-
cessitates capacity for whole genome measurements or
at least PCR multiplexing. The most recent study pub-
lished by Maertzdorf et al. [62] aimed to identify the
minimum number of transcripts that provide optimal
diagnostic accuracy in order to reduce the cost of such tests
and, therefore, their accessibility. Based on microarray data-
sets from two previous studies [50, 56], a 360-gene target
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custom made PCR array was applied to samples from a
new cohort of TB patients and healthy controls in India. A
stepwise approach using training and testing sets was
used to define a small set of top classifying genes. Two
tree-based models were used, with the conditional infer-
ence model identifying a four-gene signature (GBP1, ID3,
P2RY14 and IFITM3) that could differentiate active TB
from a healthy state with an AUC of 0.98. Independent
validation using RT-PCR was performed in two further
African cohorts resulting in AUCs of 0.82 and 0.89. The
study goes on to analyse existing published microarray
datasets, training their model on RT-PCR data of TB and
healthy controls in India, and testing with microarray data
from various studies [48, 51, 57, 59, 63]. The signature
maintained consistently high AUCs in all HIV-negative
populations when discriminating active TB from healthy
states, but yielded a lower AUC in HIV-positive cohorts.
Additionally, evaluation of its performance in ‘other disease’
cohorts was found to be more variable across varying eth-
nicities, geographical locations and HIV status. This is an
exciting step forward identifying potential candidates for
development in molecular point-of-care TB diagnostics.

Tissue transcriptomics

Blood samples are taken as part of routine clinical care,
and thus are readily accessible for research purposes and
diagnostic tests. However, transcriptional profiling at the
site of disease may yield biologically relevant responses
that are not evident in blood. Indeed, a blood signature
that discriminates between individuals with active and
latent TB infection is only partly enriched in the transcrip-
tome of human TB lung granulomas [64] and cervical
lymph nodes [65]. Similarly, the transcriptional signature
that distinguishes TB from sarcoidosis in mediastinal
lymph node samples shows little overlap with previously
published peripheral blood signatures [66].

One explanation for these compartmentalised responses
could be the structural heterogeneity that is observed
amongst individual granulomas within the same host [67],
and which is also reflected in the transcriptome [64].
Subbian et al. [64] found that fibrotic nodules showed
both quantitatively and qualitatively different transcrip-
tional changes compared to cavitating granulomas. The
heterogeneity of localised tissue responses may be lost
when averaging systemic (blood) responses, and potentially
impede the discovery of sensitive peripheral blood bio-
markers. Therefore, transcriptomes from the site of
disease may provide more sensitive biomarkers than
peripheral blood and complement conventional histo-
pathological diagnostics [66].

Proteomics
Several studies have investigated the diagnostic potential
of proteomic fingerprinting to identify different disease
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states (i.e. active TB versus healthy state, LTBI or other
diseases) and monitor the treatment response in TB
(Table 2).

In 2006, Agranoff et al. [68] were the first to demon-
strate that the serum proteome can distinguish active
pulmonary TB from both non-TB disease and healthy
controls. Employing proteomic profiling and a SVM
learning approach, this landmark study identified a com-
bination of four biomarkers (serum amyloid A, trans-
thyretin, neopterin and C reactive protein), that, when
measured by conventional immunoassays such as ELISA,
could identify active TB cases in an independent cohort
with a sensitivity and specificity of 88 and 74 %, respect-
ively. The authors hypothesised that diagnostic accuracy
could be further improved with immunoassays that tar-
get specific protein variants (as identified by proteomic
technologies) rather than the total protein.

Despite these early findings, and numerous studies
since, there are at least two major barriers to translating
proteomic biomarkers into diagnostic tests. Firstly, the
protein biomarker candidates reported by independent
studies vary considerably and a universal proteomic pro-
file of TB has therefore remained elusive. Differences in
proteomic techniques and their resolutions, study design,
case definitions and statistical analyses may all contribute
to discrepant results. Nevertheless, there is overlap in the
proteins reported to be differentially expressed in active
TB; selected examples include CD14, S100A proteins, apo-
lipoproteins, fibrinogen, orosomucoid and serum amyloid
A. The decision regarding which of these differentially
expressed proteins are further considered or combined as
candidate biomarkers can however be biased. For instance,
investigators may choose to validate only proteins that can
be measured by commercial ELISA kits [69], identify only
(arbitrarily) selected differentially expressed protein peaks
[70, 71] or none at all [72-76], or exclude ‘non-specific’ in-
flammatory markers such as acute phase proteins [77]. The
inconsistent selection approach taken by different groups
consequently impairs the assessment of common protein
signatures between independent studies. Secondly, identi-
fied proteins of interest are not always (1) evaluated for
their diagnostic potential (i.e. with receiver operator curve
analyses or decision trees); (2) cross-validated in independ-
ent datasets; or (3) evaluated with external datasets.

Indeed, the need to validate diagnostic models in inde-
pendently recruited patient populations and to define
the target group in which the diagnostic test is likely to
be successful (e.g. ethnic background, HIV status) has
been convincingly illustrated by Ratzinger et al. [78],
who applied the diagnostic algorithm previously devised
by Agranoff et al. [68] to a new Central European patient
cohort of 36 active TB cases and 170 patients with other
diseases. The originally published diagnostic algorithm
predicted disease status in the new cohort with a poor



Table 2 Proteomics studies

Study Sample Data  Country Classes Number Case definition Independent  Validation Evaluation of Signature Protein
HV  PriorTB T8 Microbiologically TST IGRA TSt set’ set” accuracy - size biomarkers
status treatment® location proven® \dentified

Achkar etal, Serum Y us B 37 - <7d P, EP u N N Y 10 Y

2015177 LTBI 34 - + 4/

HC 20 - -

oD 19 -

8B 10 + <7d P, EP u 8

LTBI 23 + + /-

HC 16 + -

oD 26 +
Wang et al, Serum China 8B 122 - - p U N N Y 5 Y
2015 0102 Treated 91 - 2m

Cured 59 - 26 'm

HC 122
Liu et al, Serum China SP-TB 49 - - P Y N Y 3 N
2015 [72] SN-TB 66 B _ p

HC 80 -
Xu et al, Serum China B 40 - - p Y N N Y 3 N
2015 [69] HC 40

oD 80

Zhang et al, Plasma China LTBI 71 - + o+ Y N Y 19 Y

2014 [103] HC 75 B o

Xu et al, Serum China B 76 - p U N N Y 3 Y

2014 [92] HC 6

Song et al, Serum South Korea B 26 - P U N N Y 1 Y

2014 [104] HC 3

Nahid et al, Serum Uganda B 39 - <5d p Y N N Y 4 Y

201411051 Responder 19 - 2m

Non- 20 - 2m
responder
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Table 2 Proteomics studies (Continued)

QOu et al,
2013 [106]

Liu et al,
2013 [70]

De Groote
etal, 2013
[107]

Zhang et al,
2012 [71]

Sandhu
etal, 2012
[73]

Liu et al,
2011 [75]

Deng et al,
2011 [74]

Tanaka et al,
2011 [108]

Liu et al,,
2010 [76]

CSF

Serum

Serum

Serum

Plasma

Serum

Serum

Plasma

Serum

N

China

China

Uganda

China

Peru

China

China

Japan, Vietham

China

EP-TB
HC

oD

B

HC

oD

B
Treated

B
LTBI
HC
oD
B

oD
(+LTBI)

OD (-LTBI)
OD all
B

HC
oD
B
EP-TB
HC
oD
B

HC
SP-TB
SN-TB
HC
oD

45
45
45
180
91
120
39
39

129
36
30
69
151

44
110
80
32
36
37
81
40
35
39
63
51
36
55
13

EP

EP, P

+/-

N/A®

N/A®

33

57
98

N/A®
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Table 2 Proteomics studies (Continued)

Agranoff Serum N Uganda, The B 197 +/- <7d P, EP Y Y Y Y 4
et al, 2006 Gambia, Angola,
[68] UK HC 25 +/-

oD 168 +/-

CSF Cerebrospinal fluid, TB Active tuberculosis, LTBI Latent TB infection, HC Healthy controls, OD Other diseases, SP Smear positive, SN Smear negative, EP Extrapulmonary, P Pulmonary; Y yes, N no
“number of days (d) or months (m) on treatment at time of sampling

PU if unclear whether all TB cases were microbiologically confirmed, e.g. if diagnosis was based on Mtb culture or chest X-ray or TB symptoms, or if microbiologically proven and unproven TB cases were
grouped together

“never involved in training the model (nested, k-fold or leave-one-out cross-validation (without test) are not considered to make use of an independent test set)

“new, independent set of samples, e.g. from different ethnic background or geographic location

“Differentially expressed proteins were identified but suitability as biomarkers was not assessed
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accuracy of only 54 % (19 % sensitivity and 62 % specifi-
city). Ratzinger et al. [78] argued that the performance
difference to the initial study may be attributable to dif-
ferences in the composition of the comparison groups
and the pre-test probability due to study design (ap-
proximately 1:1 distribution of TB cases and controls in
the original case-control study [68] versus 1:4 distribu-
tion in the following cross-sectional study [78]).

Further, only one, very recent study has deposited its
proteomic data on publically available databases. In this
study, Achkar et al. [77] identified two separate protein
biosignatures with excellent diagnostic accuracy for
active TB in either HIV uninfected (AUC 0.96) or co-
infected individuals (AUC 0.95). In this prospective
study [77], the TB group included smear-negative and
smear-positive as well as pulmonary and extrapulmonary
cases. Despite the small number of patients, the resulting
protein panels are likely to be useful in clinical practice if
they can be cross-validated, and the deposited data repre-
sent a valuable external reference set for future studies.

Taken together, many studies have described alter-
ations in peripheral blood proteins during active TB and
suggested those as diagnostic disease markers. Although
the observed differences evolve around common func-
tional categories, in particular inflammatory responses,
tissue repair and lipid metabolism [77], significant im-
provements in standardisation and validation procedures
are needed to increase reproducibility and accuracy of
protein biosignatures, and to advance adoption to the
clinical setting [79].

Metabolomics

TB-associated changes in the metabolite profile have
been examined in blood and other clinical specimens such
as urine, sputum, cerebrospinal fluid or breath (Table 3).
However, the primary aim of most published studies has
been to gain novel biological insights into TB pathogenesis
rather than to probe diagnostic value. Accordingly, diag-
nostic performance of the candidate biomarkers has not
always been assessed. Those interested in a diagnostic
evaluation cannot easily make use of the generated data
since these are not routinely deposited on public data-
bases, with only one study providing its raw data as
supplementary material [80].

For the majority of studies that have evaluated the ac-
curacy of metabolic biomarkers, it is unclear whether
active TB cases were microbiologically proven since
radiological disease was often included as a diagnostic
criterion. This leaves only a few reports comparing
confirmed active TB with healthy, LTBI or symptomatic
disease controls. Weiner et al. [81] demonstrated that
20 serum metabolites sufficed to discriminate between
patients with active pulmonary TB and healthy controls
(with or without LTBI) with an accuracy of 97 %. Lau et al.
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[80] reported that the combination of the cholesterol
precursor 4a-formyl-4f-methyl-5a-cholesta-8-en-3[3-ol
with either 12-hydroxyeicosatetraenoic acid or cholesterol
sulphate differentiated active pulmonary TB not only from
healthy controls but also from patients with community-
acquired pneumonia with >70 % sensitivity and =90 % spe-
cificity. In urine, 42 compounds were needed to identify
active TB cases amongst TB suspects with an AUC of 0.85
[82], while in breath, Mtb-derived volatile organic com-
pounds predicted active TB patients amongst TB suspects
with an AUC of 0.93 [83]. However, none of these studies
included independent test sets. By contrast, Banday et al.
[84] generated a model based on five urine metabolites
(o-xylene, isopropyl acetate, 3-pentanol, dimethylstyrene
and cymol) that, in an independent test set of active TB
cases and healthy controls, achieved an AUC of 0.988. In
addition, Kolk et al. [85] derived a seven-metabolite signa-
ture by breath analysis in a South African cohort of TB
suspects, which in a different set of patients from the same
area yielded 62 % sensitivity and 84 % specificity. It should
be noted that a similar sensitivity (64 %) was achieved
when the authors randomly assigned samples as TB or
non-TB cases, whereas the specificity dropped to 60 %.

Alterations detected in the metabolome of active TB
patients include differences in the abundance of specific
host-derived metabolites but also the presence of com-
pounds derived from Mtb itself (e.g. cell wall lipids) or —
when including TB patients on treatment — of anti-TB
drugs [86, 87]. It is therefore important to consider subject
characteristics when comparing metabolite biosignatures
reported by different studies. In addition, since the meta-
bolic profile is shaped by several environmental factors, in-
cluding dietary intake, medication, comorbidities and stress
[88], careful matching of cases and controls is desirable
during biomarker discovery to minimise metabolite ‘noise’.
In the catalogued studies, only Frediani et al. [86] addressed
this issue by assessing dietary intake and matching TB cases
with healthy household controls.

The number of measured metabolites varies greatly be-
tween published studies (from 34 to >21,000), dependent
on, for example, the analytical technique used. The differ-
ence in measured metabolites and the often large propor-
tion of unidentifiable metabolite peaks render it difficult
to compare biosignatures between studies or to reproduce
findings. Indeed, Mahapatra et al. [89] had to exclude 10
of 45 potential biomarkers identified in the discovery set
as they did not yield quantitative data in the test set
despite consistent use of the analytical technique (liquid
chromatography—mass spectrometry).

To summarise, the metabolomics approach to TB bio-
marker discovery faces many of the same challenges as
proteomics, including data availability, reproducibility,
standardisation and validation. The current lack of ex-
tensive cross-validation and of robust overlap between



Table 3 Metabolomics studies

Study Sample Data  Country Classes  Number Case definition Independent  Validation  Evaluation of Signature Metabolite
access HV  PriorTB T8 Microbiologically TST IGRA festset’ set accuragy®  size biomarkers
status treatment® location proven® identified

Zhou et al, Plasma N China B ? P Y N N N N/AT Y
2015 [109) e 3 o

oD 110 - -
Lau et al, Plasma Y Hong Kong B 37 - P Y N N Y 2 Y
2015 [80] HC 30

oD 30
Feng et al, Serum N China B 120 P U N N Y 4 Y
2015 [110] HC 105

oD 146
Mason et al,, CSF N South EP-TB 17 - EP, P Y N N N N/A! Y
Game, o w -
Das et al, Urine N India B 21 - - P Y N N Y 42 Y
2015 [82] oo o o
Frediani etal,  Plasma N Georgia 8 17 <7d p Y N N N N/Af Y
2014 [86] HC 17
Mahapatra Urine N Uganda,South  TB 87 - - p Y N N Y 6 Y
et al, 2014 [89] Africa Treated 59 B I'm

Treated 20 - 2m

Treated 54 - 6m
Zhou et al, Serum N China B 38 PEP Y N N N N/AT Y
2013 [112] he 39 o
Che et al, Serum N China B 136 - - P, EP U Y N Y 1 Y
2013 [113] Treated 6 - 2m

HC 130 -
Du Preez and Sputum N South Africa 8B 34 p Y N N N N/Af Y
Loots 2013 [87] oD 61
Weiner et al,, Serum N South Africa 8B 44 - - P Y N N Y 20 Y
2012181 LTBI 46 - +

HC 46 - -
Kolk et al., Breath N South Africa B 71 + p Y Y N Y 7 Y
2012 [85] oD 100
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Table 3 Metabolomics studies (Continued)

Banday et al, Urine N India B 117 - p Y Y N Y 5
2011 [84] Treated 20 <7m

LTBI 19 +

HC 37 -

oD 12
Phillips et al,, Breath N us, TBY 226 - p u N N Y 10
2010 [114] Philippines,UK
Phillips et al, Breath N us 8B 23 p Y +/- N N Y 130
2007 [83] LTBI 19 +

oD 59 +/- v

CSF Cerebrospinal fluid, TB Active tuberculosis, LTBI Latent TB infection, HC Healthy controls, OD Other diseases, EP Extrapulmonary, P Pulmonary, Y Yes, N No

“number of days (d) or months (m) on treatment at time of sampling

PU if unclear whether all TB cases were microbiologically confirmed, e.g. if diagnosis was based on Mtb culture or chest X-ray or TB symptoms, or if microbiologically proven and unproven TB cases were
grouped together

“never involved in training the model (nested, k-fold or leave-one-out cross-validation (without test) are not considered to make use of an independent test set)

4new, independent set of samples, e.g. from different ethnic background or geographic location

predictive ability of the (O)PLS-DA model was not considered a valid accuracy evaluation

fDifferentially expressed metabolites were identified but suitability as biomarkers was not assessed

9IDifferent diagnostic criteria were compared but class distribution was not clear
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independent studies means that no satisfactory metabol-
ite biosignatures have been discovered yet, and this em-
phasises the need for additional, well-designed studies
aimed specifically towards the discovery of diagnostic
markers.

Conclusion

Current diagnostics are inadequate and -omics approaches
provide evidence that it may be possible to use the host
response to diagnose TB. However, there are common
limitations to the -omics studies described and we suggest
the following framework for future TB biomarker studies.

Firstly, TB case definitions (Box 2) and time of sampling
need to be standardised and clearly distinguishable on a
case-by-case basis. Since treatment effects on the tran-
scriptome have been described as early as 1 or 2 weeks
[54, 55], samples should ideally be taken pre-treatment.

Secondly, technical aspects of experiments, such as
the mapping to registries, also require standardisation.
For example, microarray cross-comparison problems arise
when transcriptomic studies are performed using different
platforms, and a move to RNA sequencing with standar-
dised sequencing depth could bypass this problem. At the
very least, biomarker discovery studies need to provide a
clear and complete description of their methodologies to
enable replication in follow-up studies with new cohorts,
and therefore allow exclusion of experimental variability
as a potential confounder.

Thirdly, ascertaining an adequate sample size to train
classification algorithms is difficult and no consensus exists
on a priori requirements. In the existing (transcriptomic)
literature, sample size ranges from 3 to 883 patients. How-
ever, it is expected that, if an algorithm has been trained
with an adequate sample size, then algorithm performance
should not deteriorate when the training set sample size is
further increased. Tomlinson et al. [66] have recently dem-
onstrated one way of assessing this by using computational
simulations to model increasing training set sample sizes,
in which they showed that test accuracy improved as sam-
ple size increased.

Box 2 Standardised case definitions for TB based on
World Health Organization criteria [1]
Active disease

1. Bacteriologically confirmed TB
2. Presumptively treated TB

Latent infection

The presence of immune responses to Mtb antigens (IGRA or

TST positive) without clinical evidence of active TB
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Finally, further assessment of new biomarkers by cross-
validation is an essential step in the evaluation of the signa-
ture. True cross-validation involves a test set that has never
contributed to model training. For example, leave-one-out
validation does not meet this criterion, whereas splitting a
cohort to use one part exclusively for training and the other
exclusively for testing does represent a valid approach.
Open access to -omics data with well-annotated, case-by-
case metadata would facilitate external cross-validation with
truly independent test sets and, in addition, assist in evalu-
ating the applicability of a signature in different contexts.
Alternatively, multi-centre studies (e.g. including high and
low transmission settings) would provide an ideal environ-
ment to define and validate a TB biosignature.

We expect that adherence to this framework would facili-
tate biomarker discovery. Ultimately, however, prospective
clinical trials need to be designed to test the impact of a diag-
nostic biosignature on TB diagnosis and clinical outcomes.

In clinical practice, much of the diagnostic uncertainty
in TB arises in cases which are smear-negative pending
culture and where microbiological culture is more diffi-
cult, such as in extrapulmonary TB, which represents up
to half of the TB seen in lower transmission settings like
the UK [90]. Thus far, most of the reviewed studies have
been performed in the context of pulmonary, usually
smear-positive, TB. A large proportion of TB presents as
pulmonary TB in high transmission settings, and it is
reasonable, therefore, to initially describe the host re-
sponse in this homogenous sub-group [1]. It would be
useful to extend future studies to include evaluation in
more challenging clinical situations, and to assess whether
the proposed diagnostic biomarkers can predict the risk of
reactivation or progression of LTBI to active TB. In fact,
the often moderate sensitivity and specificity achieved by
diagnostic models based on -omics measurements may be
of particular relevance for the unmet diagnostic need of
such challenging settings. The World Health Organization
has suggested optimal biomarker test requirements to de-
tect TB as providing sensitivity 280 % in microbiologically
confirmed extrapulmonary TB and 268 % in smear-
negative culture-positive pulmonary TB [91]. Such re-
quirements are met by some of the proteomic studies that
distinguished extrapulmonary TB from other cases (in-
cluding pulmonary TB, healthy controls and other disease)
with a sensitivity of 94.4 % [74], and smear-negative TB
from healthy controls with a sensitivity of >80 % [72, 76].

Alternatively, it may be more suitable to use -omics-
based tests as triage tests to rule out TB when a high
sensitivity can be reached but with lower specificity. The
suggested minimum requirements for a TB triage test
have been set out as >90 % sensitivity and >70 % specificity
[91]. Again, these requirements have been met by some
of the published studies [57, 59-61, 69, 81, 92]. However,
substantial technical progress is needed to reduce price,
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equipment requirements and time for sample analysis and
thus to make -omics tests adequate for field use [91].

Finally, while signatures containing multiple biomarkers
(proteins, metabolites or transcripts) are more likely to be
successful in identifying active TB, it is still worth explor-
ing strategies that can reduce these to facilitate translation
into diagnostic tests. For example, a minimal set of genes
with a high diagnostic accuracy could be measured by
more conventional techniques (e.g. PCR) in the field as
demonstrated by Maertzdorf et al. [62]. It is unlikely, how-
ever, that one signature will be adequate to diagnose active
TB in all clinical settings and it is more conceivable that
different combinations of biomarkers will confer diagnos-
tic value in different settings, e.g. one set of markers for
differentiating between active and latent TB, and another
to diagnose TB in comparison to other diseases.
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