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Hypoxic-ischaemic damage to the developing brain is a leading cause of child death, with high mortality and morbidity, including
cerebral palsy, epilepsy, and cognitive disabilities. The developmental stage of the brain and the severity of the insult influence
the selective regional vulnerability and the subsequent clinical manifestations. The increased susceptibility to hypoxia-ischaemia
(HI) of periventricular white matter in preterm infants predisposes the immature brain to motor, cognitive, and sensory deficits,
with cognitive impairment associated with earlier gestational age. In term infants HI causes selective damage to sensorimotor
cortex, basal ganglia, thalamus, and brain stem. Even though the immature brain is more malleable to external stimuli compared
to the adult one, a hypoxic-ischaemic event to the neonate interrupts the shaping of central motor pathways and can affect
normal developmental plasticity through altering neurotransmission, changes in cellular signalling, neural connectivity and
function, wrong targeted innervation, and interruption of developmental apoptosis. Models of neonatal HI demonstrate three
morphologically different types of cell death, that is, apoptosis, necrosis, and autophagy, which crosstalk and can exist as a
continuum in the same cell. In the present review we discuss the mechanisms of HI injury to the immature brain and the way
they affect plasticity.

1. Introduction

Oxygen deprivation before or around the time of birth often
results in hypoxia-ischaemia-induced brain damage, which
remains a common cause of neonatal brain injury and affects 1
to 3 per 1000 live births in developed countries with incidence
increased up to 26 per 1000 live births in the developing
world [1]. The pattern of injury depends on the level of
the development of the brain and on the severity of the
insult, which both affect the selective regional vulnerability,
as well as the subsequent clinical manifestations. In preterm
infants (<32 weeks of gestation) periventricular white matter
is particularly vulnerable to hypoxia-ischaemia (HI) resulting
in a selective pattern of injury characterised with motor,
cognitive, and sensory deficits with cognitive impairment
significantly associated with early gestational age and cortical
visual impairment particularly common in infants with

severe preterm insult. However, in term infants severe HI
causes selective damage to the sensorimotor cortex, basal
ganglia, thalamus, and brain stem.

Despite the advances in neonatal healthcare, the
increased understating of the pathophysiology of hypoxic-
ischaemic brain injury, and the introduction of therapeutic
hypothermia as standard care for moderate to severe birth
asphyxia, HI continues to lead to significant long-term
neurodisabilities or mortality. Birth asphyxia causes an
annual estimate of one million or 23% of all neonatal deaths
worldwide [2, 3].

The aim of this review is to summarize the current
knowledge on the pathogenesis of neonatal HI brain damage,
including the excito-oxidative cascade, the selective regional
and cellular vulnerability, mitochondrial damage, cell death
continuum and crosstalk following HI, and its effects on the
subsequent brain development and plasticity.
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2. Pathogenesis of Hypoxia-Ischaemia

It is now well established that HI brain injury is a syndrome
that evolves over days, even weeks [4]. During normal con-
ditions, the human brain has a high requirement for oxygen
and glucose, normally used in oxidative phosphorylation
to produce adenosine triphosphate (ATP). During a HI
episode, oxidative phosphorylation is rapidly reduced leading
to primary energy failure in glutamatergic neurons. The sub-
sequent brain injury will depend on the severity and duration
of the HI insult, where with the assistance of magnetic
resonance imaging (MRI) the two main patterns of brain
injury have been described: basal ganglia thalamus (BGT)
and watershed. BGT has mostly been associated with infants
suffering an acute profound HI episode, whereas watershed
predominant pattern is more frequently seen in infants with
partial prolonged HI. However, studies have also shown
a mixture of these two patterns occurring, as well as the
presence of other patterns of brain injury [5]. During a HI
insult, the fetus is able to maintain a temporary degree of
homeostasis by reduction of nonobligatory energy consump-
tion favoring the heart, brain, and adrenal glands, as well as
suppression of neuronal activity and short period mainte-
nance of anaerobic respiration [6–9]. However, this reduced
ATP availability/production results in rapid consumption of
glucose reserves, followed by severe metabolic acidosis as a
consequence of lactic acid accumulation [10–13]. This is fol-
lowed by successful resuscitation and normalization of high-
energy-containing phosphate compounds, such as phospho-
creatine and nucleotide triphosphates. However, in HI brain
injury this recovery phase is short lived and a second wave of
secondary energy failure starts from as early as 6 hours after
initial injury [5]. A schematic overview of hypoxia-ischaemia
pathology is presented in Figure 1.

3. Excito-Oxidative Cascade

One of the earliest events occurring during the evolution
of HI injury is the excito-oxidative cascade. As a result of
reduction in high-energy phosphate metabolism, subsequent
increase in cerebral lactic acidosis leads to cell membrane
ionic transport failure. As the Na+/K+ pumps stop func-
tioning, accumulation of Na+, Ca2+, and Cl− within the cell
occurs. This calcium overload causes activation of lipases,
proteases, and endonucleases leading to destruction of the
cellular skeleton [14]. Rat models of neonatal HI have shown
that this cytoplasmic accumulation of calcium and severe
cell swelling results in necrosis and eventual activation of
multiple cascading events leading to further cell death at
a later stage [15–17]. Additionally, this change in neuronal
membrane voltage results in depolarisation and excessive
presynaptic release of glutamate, which is normally removed
by perisynaptic glia glutamate reuptake pumps during aero-
bic metabolism of glucose [18]. As ischaemia reduces glucose
availability, reuptake of glutamate is severely depleted causing
overactivation of the glutamate receptors. This excitotoxicity
is present in multiple highly metabolic brain regions, includ-
ing the perirolandic cerebral cortex, thalamus, and putamen,
as well as in the cerebrospinal fluid [19–21]. Neurons and

oligodendrocyte progenitors are among the cells that express
glutamate receptors, including the ionotropic ligand-gated
ion channels N-methyl-D-aspartate (NMDA) receptor, a
transmembrane receptor that allows entry of calcium and
sodium into the cell and potassium out; 𝛼-amino-3-hydroxy-
5-methyl-4-isoxazole (AMPA) receptor, which is both a glu-
tamate receptor and a cation channel for sodium and potas-
sium; and kainate receptors, also permeable to sodium and
potassium [22–25]. Additionally, glutamate also activates
metabotropic receptors, known as regulators of intracellular
G-protein signal cascades [14]. Overstimulation of glutamate
ionotropic receptors and subsequent substantial increase of
calcium influx into neurons result in mitochondria dysfunc-
tion [21, 26]. Blockage of NMDA and AMPA receptors has
been reported to significantly reduce brain injury in a rat
model of HI injury [27].

4. Inflammation

HI brain injury induces an immediate inflammatory
response, which has been shown to last for days and even
weeks following initial insult [28, 29]. The initial inflam-
matory response’s purpose is to target the damaged region
and involves recruitment and activation of immune cells and
active removal of damaged cells/debris and lipids, in an
attempt to reduce infection.This is followed by a switch from
pro- to anti-inflammatory immune profile to stimulate
healing and tissue repair.

Initial immune response is characterised by activation of
microglia, the innate immune cells of the brain, and migra-
tion of peripheral macrophages, monocytes, and neutrophils
into the site of injury. Microglia cells also contribute to the
cytotoxic damage following HI. It is thought that stressed
neurons activate microglia as early as 2 hours following
injury, which then produce and release proinflammatory
cytokines such as IL-1𝛽 and TNF𝛼 [30–32], proteases, com-
plement factors, activation of respiratory burst, and NMDA-
mediated toxicity, thus contributing to secondary energy
failure damage [33, 34]. Additionally, microglial activation
and subsequent release of cytokines has been directly linked
with axonal injury, that is, white matter damage [35–37].
Astrocytes, which constitute the majority of glia cells in
the brain, play an important role in glutamate uptake and
metabolism, constitute part of the blood-brain barrier, and
form the glial scar surrounding the lesion site following
injury. The latter helps reduce injury but also delays func-
tional recovery [38–41]. Furthermore, reactive astrocytes also
release proinflammatory cytokines such as IL-6 and TNF𝛼
[42–44]. Neutrophils have been shown to accumulate in
ischaemic brain tissue of neonatal mice in a much smaller
extent than in adults, appearing only 42 hours after injury,
and mostly present within blood vessels with limited and
transient brain infiltration following HI [45, 46]. Interest-
ingly, neutrophil-target neuroprotection only demonstrated
beneficial effects when neutropenia was induced prior to HI
and not after [47]. Adaptive immune cells, such as lympho-
cytes, have reduced infiltration in the initial stage of brain
inflammation [46, 48], with a study using middle cerebral
artery occlusion demonstrating T cell infiltration 24 hours
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Figure 1: Schematic overview of hypoxia-ischaemia pathology. Disruption of blood and oxygen supply results in an initial increase in blood
pressure and cerebral blood flow with redistribution favoring the brain, heart, and adrenal glands, as well as reduction in ATP due to limited
glucose availability. This results in intracellular accumulation of calcium and cell membrane depolarisation and initial mostly necrotic cell
death. During the latent/recovery phase there is normalization of homeostasis. However, if the initial insult is prolonged or severe, this
may result within hours in a secondary delayed energy failure, due to disruption of mitochondria function as a result of excitotoxicity,
inflammation, and continual uptake of intracellular calcium as well as release of oxygen reactive species. It is during the secondary energy
failure that most cell death occurs, with predominant apoptosis. A tertiary phase may occur within days after initial injury and continues for
months. This involves late cell death, astrogliosis, remodelling, and repair. Hypothermia, the only clinical treatment available for neonatal
encephalopathy, targets the latent phase.

after injury, which persisted up to 96 hours [49]; this reduced
response is thought to be partially a result of lymphoid pro-
genitor cells immaturity, as blood mononuclear cells remain
largely undifferentiated during the early neonatal period with
diminished expression of surface markers [50]. Nonetheless,
in the chronic long-term inflammatory response to HI,
infiltration of CD4 T cells was shown to occur 7 days after
injury, persisting for up to 35 days after HI [46].

Inflammatory cytokines are highly associated with HI
injury and are released by both innate and brain infiltrating
cells [51]. IL-1𝛽, IL-6, and TNF𝛼 release lead to further syn-
thesis of other cytokines and adhesion molecules, promoting
infiltration of leukocytes, increasing recruitment of immune
cells into the site of injury, and exacerbating damage [46, 47,

52, 53]. Cytokines are also inducers of mediators of cellular
damage such as ROS, as well as cell death: FasL, TNF, TRAIL,
and TWEAK [54].

5. Selective Regional and Cellular
Vulnerability following Neonatal
Hypoxia-Ischaemia

HI does not result in a uniform or global brain injury but
causes selective damage to different brain structures, which,
as previously mentioned, depends on the severity and dura-
tion of the insult as well as on the developmental stage of the
brain when it occurs [55–57].The immature brain is relatively
resistant to hypoxia alone compared to the adult one due
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to its strong protective mechanisms such as capability to
increase cerebral blood flow [55]. It is only when hypoxia
is combined with an ischaemic event in the neonatal brain,
that it causes injury developing for several days, accompanied
by increased neuronal excitement with recurrent seizures
and electroencephalographic defects [55]. Evidence from the
clinical practice supported by MRI suggests that neonatal
HI preferentially affects systems controlling tone and move-
ment [21, 58]. In preterm infants (<32 weeks of gestation)
periventricular white matter is particularly vulnerable to HI
resulting in a selective pattern of injury, called periventricular
leukomalacia (PVL) [21, 59], and characterised with motor,
cognitive, and sensory deficits [21]. Cognitive impairment is
significantly associated with early gestational age [56], with
cortical visual impairment particularly common in infants
with severe PVL [56]. In term infants severe HI causes
selective damage to the sensorimotor cortex, basal ganglia,
and thalamus [60], as well as brain stem [55]. The selective
damage to cortex and basal ganglia commonly results in
severe motor disability, including rigidity, impairment of
mostly the upper limbs, and speech difficulties [55, 61, 62].
The pattern of injury, as previously mentioned, depends
on the level of the development of the brain and on the
severity of the insult, which both affect the selective regional
vulnerability, as well as the clinical manifestations referred to
as spastic diplegia in the case of PVL and extrapyramidal or
dyskinetic cerebral palsy in near-total asphyxia [21].

Unilateral carotid artery ligation in neonatal mice and
rats, combined with exposure to moderate hypoxia, causes
ipsilateral ischaemic white matter injury, reproducing many
anatomical features of PVL [63]. The vulnerability of the
immature white matter to HI injury has been for a long
time attributed to the immaturity of its vascular supply [63].
Later studies have demonstrated the natural vulnerability of
oligodendrocyte progenitors and immature oligodendroglia
to excitotoxic, oxidative, and inflammatory insults as a major
mechanism of susceptibility to injury [63]. Several studies
have investigated the early events, as well as the long-term
behavioural and imaging outcomes following HI, demon-
strating motor and cognitive impairment and severe cerebral
abnormalities [63]. Additionally relatively mild HI insult has
also been reported to result not just in immediate but also
in late progression of tissue damage [64]. However, clinical
and laboratory evidence suggests that both developmentally
dependent patterns (term and preterm) of neonatal HI brain
injury are associated with glutamate-mediated excitotoxicity
[21]. Several studies confirm increased glucose metabolism
in regions vulnerable to HI. Positron emission tomogra-
phy (PET) of children who suffered severe hypoxic insult
with subsequent permanent neurological disabilities demon-
strated increased glucose metabolism in sensorimotor cortex
and basal ganglia [65]. Pu et al. observed an elevated proton
MR scanning peak for glutamate/glutamine in basal ganglia
and thalami of infants with moderate or severe HI injury, but
not in infants with mild injury or normal ones [66]. Regional
changes in neuronal glucose metabolism have been related
to synaptic activity rather than to changes in the neuronal
cell body, thus suggesting that areas with enhanced glucose
metabolism are likely to have enhanced synaptic activity [67].

These findings have been confirmed through developmental
studies of glucose metabolism, showing correlation between
changes in synaptic density and glucose metabolic rate, as
well as through MRI studies in rodents and humans where
cerebral glucose metabolism has been correlated with glu-
tamate neurotransmitter cycling during synaptic activation
[21, 68, 69]. Thus the vulnerability of selected brain regions
to HI is likely to be a consequence of excessive activity of
excitatory synapses [21]. It is noteworthy that the selectively
vulnerable regions (somatosensory cortex, putamen, and
thalamus) have been confirmed to have high metabolic rate
[21] and are interconnected by functionally active excitatory
glutamatergic neurons [70]. Therefore the selective vulnera-
bility of the different regions following neonatal HI could be a
consequence of their position within excitatory circuits [71].
The vulnerability of selected neuronal populations to severe
asphyxia can be explained with their proximity to developing
glutamatergic circuits [21] and this hypothesis is supported
by data obtained from animal experiments showing obvious
increase in extracellular glutamate following removal of
glutamate from the synapse thus reducing delivery of glucose
and depriving the perisynaptic glial transporter from energy
[21]. In humans the severity of seizures and other clinical
symptoms of encephalopathy following HI correlates with
increased levels of glutamate, aspartate, and glycine in cere-
brospinal fluid, which could be a consequence of glutamate
transporter malfunction [72]. For example, Martin et al.
reported early loss of astroglial glutamate transporter in areas
with selective neuronal degeneration in a piglet model of
asphyxia [60, 73]. Increase of extracellular concentrations of
glutamate and other excitotoxic amino acids such as glycine,
combined with membrane depolarisation due to mitochon-
drial dysfunction, contributes to opening of the NMDA
receptor channels, allowing an influx of sodium and calcium
and subsequent intracellular injury [21]. Murugan et al.
observed that hypoxia-induced excess levels of extracellular
glutamate prevented its uptake by astroglial excitatory amino
acid transporter and augmented the expression of functional
astroglial NMDA receptor [74].Thus increase in gap junction
proteins between astroglia and oligodendroglia following
hypoxia contributes to the spreading of NMDA receptor-
mediated excitotoxic calcium signals into oligodendrocytes
triggering oligodendroglial apoptosis and contributing to
neonatal periventricular white matter damage [74].

NMDA channel blockers, such as dizocilpine (MK-801),
magnesium (endogenous cationic NMDA channel blocker),
and other NMDA-antagonist drugs, including ketamine and
dextromethorphan, have proven neuroprotective in rodent
models of neonatal HI if used before or shortly after injury;
however delayed application appears less beneficial [21]. AHI
event impairs ATP-dependent pumps, that is, Na-K ATPase,
which triggers Na+ accumulation and K+ efflux thus gating
voltage sensitive Ca-channels and stimulating reverse Ca-
Na exchange leading to build-up of Ca+ [75]. This Ca+
overload is responsible for the inappropriate stimulation of
Ca-dependent enzyme systems, leading to structural and
functional axonal injury and abolished propagation of the
action potential [75]. Therefore blockade of voltage gated
Na-channels or AMPA receptors can provide protection
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for central axons and glia [75]. Use of AMPA-type gluta-
mate antagonists alone during ischaemia has no effect, yet
combining memantine (an NMDA receptor blocker) with
an AMPA/kainate receptor blocker improved recovery of
the action potential in myelinated axons after ischaemia
suggesting NMDA receptor blockers as potentially useful
therapeutic treatment for some white matter conditions [76].

Glutamate-mediated injury results in prolonged destruc-
tion of oligodendrocyte precursors after a HI event. NMDA
receptors are present in the myelinating processes of oligo-
dendrocytes, where the small intracellular space could lead to
a rise in intracellular Ca+ and Na+ concentration in response
to NMDA receptor activation. Simulated ischaemia triggers
an inward current in oligodendrocytes partly mediated by
NMDA receptors that can weakly be blocked by magnesium
and that may contain NR1, NR2C, and NR3 subunits, sug-
gesting oligodendroglial NMDA receptors of unusual subunit
composition as a potential therapeutic target for preventing
white matter damage in a variety of diseases [77]. Neverthe-
less, cerebral recovery and cellular reorganisation following
neonatal HI have also been described, with long-term regen-
eration of oligodendrocyte progenitors and remyelination
also taking place [63, 78]. Following HI, the precursor cells
in the subventricular zone demonstrate multipotency in vitro
and generate more neurons and oligodendrocytes in vivo
[78–80] suggesting that the early postnatal subventricular
zone is a potential source of different progenitor cells for
repair, including oligodendrocyte progenitors [78]. Following
moderate neonatal HI, myelin basic protein (MBP) is initially
decreased in the ipsilateral hemisphere but recovers within
a couple of weeks, while more severe injury results in a
prolonged reduction of the levels of MBP [63]. This suggests
generation of new oligodendrocytes, either migrating from
the subventricular zone or arising from oligodendrocyte
progenitors in the spared white and grey matter [80, 81].

Subplate neurons are a transient cell type located beneath
the cortical plate.They formone of the first functional cortical
circuits and are crucial for the normal visual cortical devel-
opment and plasticity [56]. Subplate neurons incorporate
into synaptic networks providing excitatory interconnections
between neocortical layer IV and the thalamus. Human tha-
lamocortical development begins at 22–25 weeks of gestation
(GW), while synaptogenesis of the visual cortex takes place
between 28 GW and birth [56].

In mice subplate neurons undergo apoptosis in the first
postnatal week [82] and are mostly absent from the adult
neocortex [56, 83]. In humans the peak of the subplate zone
development coincides with the window of susceptibility to
PVL, that is, 24 GW, decreases during the third trimester,
and is absent after 6 months of age [56]. Thus damage to
these neurons might play a role in the pathology of many
neurodevelopmental disorders [84]. In a preterm model of
HI McQuillen et al. observed complete neuronal cell death
in the subplate zone, while cortical neurons were spared [56]
and attributed this high subplate neuronal susceptibility toHI
to early maturation, associated with an increase of NMDA-
type and AMPA/kainate glutamate receptors [56]. The same
group suggests that PVL disrupts the activity-dependent
refinement of thalamocortical connections into mature

ocular dominance columns [56], which form through activ-
ity-dependent competition for neurotrophins. As mentioned
before, animal models of moderate HI resembling PVL have
demonstrated only transient decrease inMBP expression due
to proliferation of reactive late oligodendrocyte progenitors
[85]. Visual testing of premature children withmoderate PVL
at 1 year of age revealed at least one abnormality in 71%
of the infants; however 66% of those had normal optical
radiation and visual cortex [56, 86]. This phenomenon could
be explained with the selective vulnerability of subplate
neurons to HI either on their own or in combination with
oligodendroglial damage [56].

6. Mitochondrial Damage in
Hypoxia-Ischaemia

When short in duration, primary energy failure phase is
rapidly compensated during the reoxygenation by cerebro-
protectivemechanisms, with redistribution of blood flow and
increase of brain, heart, and adrenal glands mediated cardiac
output [6–9]. However, inmore acute or prolonged reduction
in blood gas exchange, or following successful resuscitation, a
secondary wave of energy depletion occurs.This is associated
with a substantial increase in exhaustion of cellular energy
reserves (ATP), as well as a rise in lactate, pH fluctuation, and
increase in oxidative stress [87, 88], as well as high calcium
influx into the mitochondria matrix [89–91]. This is followed
by epileptogenic activity, which can be supervised through
EEG. Several different animal studies have demonstrated not
only this biphasic evolution in injury, but also the fact that it
is during the second energy failure phase that the majority of
cellular death occurs [92–94]. This is likely to be a result of
the presence of oxygen radicals, nitric oxide, inflammatory
response, and excitatory amino acids. Whereas production
and release of free radicals has been shown to occur during
the primary injury, it is in fact during the reperfusion period
that most of the oxidative markers are generated.

As previously mentioned, it is known that the brain has
a high requirement for aerobic respiration, which signifies a
higher rate of mitochondrial respiratory activity, thus poten-
tiating the risk of free radicals release from this organelle.
Additional sources of reactive oxygen species include nitric
oxide synthase (NOS), several steps in the arachidonic acid
metabolism, and compromised pathways involving xan-
thine and superoxide dismutase. Furthermore, HI-mediated
decrease in intracellular pHmay alter binding of metals, such
as iron, thus increasing its catalytic activity in the Harber-
Weiss reaction [95]. Brain lipids are highly enriched in
polyunsaturated fatty acids (PUFAs); also many brain
regions, such as the striatum, contain a high concentration
of iron. This causes the brain to be highly susceptible to lipid
peroxidation, destruction of cellular membrane, as well as
DNA damage, degradation of protein structure, and tissue
deterioration [96–98]. In correlation with these findings, a
neonatal rat model of HI has shown that use of the xan-
thine oxidase inhibitor allopurinol prevented severe neuronal
cell loss, a strong indicative of the significance of oxygen
radicals in the development of secondary/delayed neuronal
cell loss [99]. Additionally, a study by Millerot-Serrurot and
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colleagues has shown an immediate transient increase in
iron levels within the hypoxic tissue of rats that underwent
permanent focal ischaemia. Furthermore, iron chelation
resulted in reduction of ischaemic-mediated damage [100].

Nitric oxide (NO) is synthesized within the brain
from arginine, nicotinamide adenine dinucleotide phosphate
(NADPH), and oxygen by NO synthase (NOS).This produc-
tion is initiated by excessive glutamate release that causes cou-
pling and activation of the NMDA receptor, allowing calcium
to excessively enter into the brain cells, especially in regions
such as the thalamus and basal ganglia. During HI, the
mitochondria electron transport chain is interrupted, causing
the H+ gradient in the inner membrane to dissipate, thus
stopping ATP production and mitochondria depolarisation,
leading to calcium accumulation within the inner membrane
[101, 102]. Excessive intracellular calcium causes activation
of NOS, which then produces NO, water, and citrulline.
Oxidative stress leads to an excessive production of NO,
which then combines with superoxide radicals to produce
peroxynitrite [103], which is quickly decomposed to form
NO2+, nitrogen dioxide, and hydroxyl radicals. This results
in mitochondrial dysfunction and permeabilisation, accom-
panied by failure of oxidative phosphorylation [104, 105].
The NO-induced neuronal toxicity has been demonstrated
in neonatal rodent models of HI, where both inhibition
of NOS 1.5 h before insult in the rat and neuronal NOS
(nNOS) deletion in mice demonstrated a highly protective
effect, particularly in the hippocampal and cortical brain
regions [106, 107]. Furthermore, nNOS and inducible NOS
(iNOS) inhibition also improved long-term outcomes in
another neonatal HI model [108]. Additionally, NO can
impair mitochondria respiration by disrupting cytochrome
oxidase/complex 4 function and complex 1, thus increasing
mitochondrial production of superoxide and peroxynitrite
ions, particularly during hypoxic insult [109, 110]. As afore-
mentioned, HI injury leads to accumulation of lactic acid
which is caused, in part, by mitochondria permeabilisa-
tion and loss of function, as shown in a MRI study by
Fatemi and colleagues [17]. Accumulation of superoxide
and peroxynitrite can increase trafficking of cytochrome
C and apoptosis-inducing factor (AIF), both proapoptotic
proteins, from the outer mitochondria membrane into the
cytoplasm, triggering intrinsic pathway-mediated apoptosis.
In neonates, the proapoptotic protein Bax initiates this outer
mitochondrial membrane permeabilisation [111]. Subsequent
experiments using both a neonatal mouse model of HI
and an adult rat model of cerebral ischaemia have shown
that administration of Bax-inhibiting peptides reduced brain
injury [112, 113]. Once in the cytoplasm, cytochrome C binds
to caspases triggering activation of caspase-3, which in turn
initiates apoptotic-mediated DNA fragmentation [114, 115].
AIF, on the other hand, triggers non-caspase-mediated DNA
fragmentation, which is associated with increased activity of
poly-ADP-ribose polymerase 1 (PARP1) [116]. HI injury also
induces autophagy. A study by Hoshino et al. has shown that
autophagosomes present within the ischaemic border zone in
the heart had a 5-fold increase in mitochondria, indicating
potential mitophagy [117]. Mitochondrial biogenesis was also
present in the brain of rats 6 hours after neonatal HI, which

was also associated with increase in HSP60 and COXIV as
well as citrate synthase activity in the neurons within the
cortical border zone.This suggests an endogenous attempt for
repair following HI injury [118].

7. Apoptosis-Necrosis Continuum following
Neonatal HI

Based on biochemical and morphological criteria, cell death
is usually classified as either apoptotic (Type I) or necrotic
(Type III). While apoptotic cells represent the develop-
mentally programmed cell death and are characterised by
cytoplasmic condensation and shrinkage, plasma membrane
blebbing, fully undamaged cytoplasmic membrane, and
tightly packed chromatin clusters, necrotic cells have com-
plete organelle disruption, swelling and tearing of the cell
membrane, and widely scattered small chromatin clusters
(Table 1) [119]. Both necrosis and apoptosis, as well as a
third hybrid form, combining features of both necrosis and
apoptosis have been registered as types of cell death after
HI. The mode of cell death that cells will undergo after HI
depends on the severity of the insult, the glutamate receptor
subtype that has been stimulated, the degree of cellular
calciumoverload, thematurity of the affected cell type, as well
as cellular energy depletion, and mitochondrial dysfunction
[119]. Postmortem brain tissue from infants following neona-
tal HI injury, as well as neonatal animalmodels of such injury,
suggests that apoptosis is more prominent in the immature
compared to the adult brain [55], probably due to the fact that
the former preserves more cells with capacity for apoptotic
cell death and eliminates them during development. Zhu et
al. show severalfold more pronounced nuclear translocation
of apoptosis-inducing factor, cytochrome C release, and
caspase-3 activation following HI in the immature compared
to the adult brain, with hippocampal CA1 subfield shifting
from apoptosis-related neuronal death at P5–P9 to necrosis
related calpain activation at P21 and P60 [120]. Nakajima et
al. report that more than 50% of the degenerating cells in
several brain regions following HI in the neonatal rat are
apoptotic [121], while following adult middle cerebral artery
occlusion Li et al. observe a ratio of 1 : 6 to 1 : 13 apoptosis
versus necrosis [122]. Interestingly, in many regions such as
the cerebral cortex and basal ganglia the number of apoptotic
cells remains high for more than a week following HI [121].

The levels of several biochemical markers of apoptosis
have been reported to be increased following neonatal HI.
Caspase-dependent pathways are activated to execute pro-
grammed cell death in numerous cell types and also play an
important role in neurodegeneration following neonatal HI
[120, 123, 124]. Johnston et al. demonstrated that, following
HI insult in 7 d old rats, regions with apoptotic morphology
also showed increased levels of caspase-3 [21]. Although pan-
caspase inhibition in models of neonatal HI has proven neu-
roprotective [125, 126], this type of inhibition is not selective,
because caspases, as well as being involved in programmed
cell death after injury, are also crucial for the normal
brain development. Inhibition of the executioner caspase-
3, which precedes DNA fragmentation following neonatal
HI, althoughmoderately neuroprotective, is undesirable with
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Table 1: Cell death phenotypes.

Cytoplasm Cell membrane Nucleus

Apoptosis

(i) Condensation
(ii) Shrinkage
(iii) Undamaged mitochondria, but might
also appear swollen

Undamaged (i) Large chromatin clusters
(ii) Undamaged nuclear membrane

Necrosis Totally disrupted organelles (i) Rupture
(ii) Swelling

(i) Undamaged nuclear membrane
(ii) Widely scattered very small chromatin
clusters

Apoptosis-necrosis
continuum

(i) Varying degrees of condensation
(ii) Rarefaction with varying preservation of
organelles
(iii) Undamaged mitochondria
(iv) Occasional autophagocytic inclusions

Undamaged
(i) Incomplete packaging of nuclear chromatin
into small and more numerous clusters
(ii) Various degrees of membrane preservation

respect to the important role of caspase-3 in physiological
apoptosis and its effect on brain development [127]. Caspase-
2 is an initiator caspase, which, similarly to caspase-3,
increases in the immature brain followingHI insult in an age-
dependent manner [125, 126, 128]. Deletion of caspase-2
in the immature brain is neuroprotective, especially when
combined with mild hypothermia [127].

Activation of caspasesmay be linked to calpain activation,
which regulates cytoskeletal function [55, 129]. Northington
et al. observed that Fas death receptor protein expression
rapidly increased after neonatal HI, in line with cleavage
of procaspase-8 and increase of Bax and cytochrome C,
and accompanied with mitochondrial abnormalities in the
thalamus, and preceded caspase-3 activation and apoptosis at
24 h after HI in the neonatal rat [48].

Despite all the biochemical markers of apoptosis
observed in the neonatal brain following HI insult, several
studies fail to demonstrate typical apoptotic neuropathology
in the acute phase after HI [130, 131].

The term “apoptotic-necrotic continuum” has been intro-
duced as a definition for cells exhibiting a hybrid type of
cell death, combining both apoptotic and necrotic morphol-
ogy following a neonatal excitotoxic insult [132]. Another
term defining this hybrid type of cell death is “pathologi-
cal apoptosis” introduced by Blomgren et al. and referring
to cells exhibiting typical programmed cell death features,
such as pyknosis, caspase-3 activation, and nuclear conden-
sation, along with nonprogrammed cell death characteristics
[133]. Apoptotic-necrotic continuum includes a variety of cell
deathmorphologies (Table 1), such as incomplete nuclear and
cytoplasmic packaging, disruption ofmitochondrial integrity
in areas with mitochondrial energy failure, and trafficking
distresses, observed within one or more closely related
regions in the neonatal brain following single insult com-
bined with substrate depletion [119]. The apoptotic-necrotic
continuum is well reported in the neonatal brain following
HI injury [119, 121, 131, 134], although the exact mechanisms
behind this hybrid type of cell death are not very clear
and are suggested to be a consequence of interrupted apop-
tosis signalling due to mitochondrial structural and func-
tional failure [119]. Northington et al. suggest that the pre-
dominant form of cell death following neonatal HI injury is

the apoptosis-necrosis continuum characterised with partial
activation of the caspase cascade, as well as transitional forms
of cell degradation biochemical markers [119]. This would
explain why within 24 h following HI event in the neonatal
brain markers of apoptosis such as caspases 3 and 9 are
abundant, but there is no ultrastructural evidence for apop-
totic cell death [119]. HI injury is associated with an energy
failure, occurring simultaneously with activation of apoptotic
pathways. Decrease of ATP in vitro by 30–50% produces
transitional cell death forms, including inhibition of nuclear
condensation and DNA fragmentation [135] corresponding
to the typical continuum cell death phenotype (Table 1).

8. Autophagy and Cell Death following
Neonatal HI

Autophagy is an adaptive process through which eukaryotic
cells degrade and recycle their own cytoplasm and organelles
via a lysosomal system, in response to unfavourable condi-
tions [137, 138]. Autophagy is considered to be a homeostatic
nonlethal stress response protecting the cell from low nutri-
ent supplies [138] and is classified as Type II programmed
cell death [139]. A hallmark of autophagy is the forma-
tion of double-membrane autophagosomes derived from the
endoplasmic reticulum, beginning with nucleation (induc-
tion) and followed by phagosome formation, subsequent
autophagosome maturation, and fusion with a lysosome,
succeeded by degradation or recycling of the autophagosome
content [140]. There is a crosstalk and continuum between
autophagic and apoptotic cell death pathways. Autophagy
may proceed to apoptosis and in turn to necrosis, but
autophagy can block apoptosis by sequestration of mito-
chondria. Extracellular or metabolic signals can trigger stress
response in the cells. If the subsequent injury is repairable,
the cell might undertake autophagy to sequester the damage
to the organelles. However if autophagic capacity is decreased
and the damage cannot be repaired or removed, autophagic
cell death might occur or intrinsic apoptosis pathway might
be initiated throughmitochondrial polarisation and caspase-
9 activation. If the injury cannot be repaired the cells
might directly undergo apoptotic cell death either through
intrinsic (caspase-9) or extrinsic receptor-linked (caspase-8)
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Cell death

Physiological
(controlled)

Necrosis

Caspase-independent Caspase-dependent

Receptor-linked
caspase-8 (extrinsic)

Mitochondrial depolarisation
caspase-9 (intrinsic)

Cytochrome C 
APAF-1

Autophagy Apoptosis Other

Figure 2: Schematic presentation of the relationship between the
different types of cell death. Cell death could be controlled (phys-
iological), including autophagy (caspase-independent) and apop-
tosis (caspase-dependent), or necrotic. The boundaries between
apoptosis, necrosis, and autophagy are not always clear. Apoptotic
death is mostly caspase-dependent; however apoptotic morphology
can sometimes be registered without obvious caspase activation
[136]. Caspase activation can occur through membrane receptor
binding (extrinsic) or as a result of metabolic changes following
mitochondrial depolarisation (intrinsic) and release of cytochrome
C and APAF-1 (adapted from [136]).

pathways. However caspase inhibition can alter the cell death
process into autophagy [141]. A schematic summary of the
relationship between the types of cell death is presented in
Figure 2 [136].

Autophagy is seen in developmental and pathologic
conditions and both in vitro and in vivo studies reveal
that it has a significant role in the damage occurring after
neonatal HI, depending on the severity of the insult, the
time, and the affected region [138, 140]. For example, in a rat
model of neonatal HI Ginet and collaborators demonstrated
earlier induction of autophagy in cortex and CA3 hippocam-
pus in comparison to striatum or thalamus [142]. Several
studies demonstrate that dying neurons with high level of
autophagy also express apoptotic features [140, 142, 143];
however that is again region specific. Following neonatal
HI cell death in CA3 hippocampal neurons, for example, is
associated with a more autophagic phenotype, while the CA1
hippocampal neurons have strong apoptotic characteristics
[142]. Inhibition of autophagy through neuron-specific dele-
tion of Atg7 or knockdown of Beclin-1 results in near com-
plete protection of hippocampus in neonatal HI [144, 145],

and delayed pharmacological inhibition of autophagy with
3-methyladenine in focal ischaemia proves neuroprotec-
tive in neonatal rats [138, 146]. Conversely, pretreatment
with 3-methyladenine and wortmannin, both inhibitors of
autophagy, reduces Beclin-1 and switches the cell death
mechanism from apoptotic to necrotic; however preinsult
treatment with rapamycin, resulting in enhanced autophagy,
augments Beclin-1 expression, reduces necrotic cell death,
and decreases brain injury [147]. Therefore neuroprotective
pharmacological pretreatment despite increasing markers of
autophagy can potentially provide neuroprotection [140, 147].

More in vivo studies, along with computational analysis,
are still needed to understand the complex pathways leading
to programmed cell death. This can provide quantitative
analysis of the connections between the different cell death
types and their role inHI neurodegeneration in the newborn.

Although animal models are critical for studying and
understanding the mechanisms of HI injury and for phar-
macological testing of potential therapeutics, they are very
close but do not completely reflect the pathophysiology
observed in a human brain following neonatal HI insult. In
the forebrain and cerebellar cortex of the human neonate
selective neuronal populations degenerate with no evidence
of infarct, with some degenerating cortical neurons staining
positive, but some also negative for cleaved caspase-3 [138].
At the same time some degenerating cortical neurons with
necrotic morphology appear positive for p53, although such
positive cells have not been observed in animal models
[138]. Studies of human term brains of infants who suffered
perinatal asphyxia and severe HI encephalopathy report
enhanced autophagy associated with neuronal death after
HI [140, 143]. This overall suggests that classic apoptosis
has little contribution to damage occurring in the human
brain following neonatal HI and underlines the importance
of understanding the mechanisms of the crosstalk between
the different types of cell death.

9. Gender-Specific Differences in Cell Death
following Neonatal Hypoxia-Ischaemia

Most rodent studies looking at the levels of cell death fol-
lowing neonatal HI include both sexes and report combined
data. However a lot of clinical and experimental evidence
suggests important differences between males and females,
with increased loss ofmale hippocampal volume after chronic
postnatal hypoxia andmale sex considered a well-established
risk factor for poor neurodevelopmental outcome after pre-
mature birth [148]. Several studies demonstrate that males
are more prone to suffer stroke [149, 150] and have higher
incidence of prematurity, intraventricular haemorrhage, and
mortality due to prematurity [151, 152]. Clinical studies
following very prematurely born infants report male sex as
a risk factor for poorer lung function, increased respiratory
morbidity, and worse neurological function overall [153].The
mechanisms underlying these gender-related differences are
unknown with some evidence suggesting that testosterone
exacerbates damage, or that oestrogen/progesterone are pro-
tective, or that gender differences in cell death pathways may
favour females [152]. Studies of neonatal cerebral ischaemia
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report involvement of sexually dimorphic pathways of
cell death with males predominantly displaying caspase-
independent PARP/NO-mediated cell death, resulting in AIF
release and translocation, and DNA fragmentation, while
females are showing mitochondrial cytochrome C release
and subsequent caspase-dependent cell death activation [154,
155]. Thus sex differences are an important parameter that
needs to be considered when assessing brain damage fol-
lowing neonatal HI and further studies taking into account
these differences need to be conducted for the development
of efficient neuroprotective strategies.

10. Neonatal Hypoxia-Ischaemia and
Plasticity of the Developing Brain

The term plasticity (from the Greek “plastos” meaning
moulded) has been introduced by Merriam-Webster as “the
capacity to vary in developmental pattern, in phenotype, or in
behaviour according to varying environmental conditions.”
Brain plasticity includes carefully regulated molecular, cellu-
lar, and physiological events promoting the ability of the brain
to amend its own organisation and function in response to
body changes or environmental alterations. The developing
brain is more malleable to external stimuli compared to the
adult one, which is generally considered advantageous in
respect of recovery of function [156]. Enriching environmen-
tal conditions can trigger a positive response in the brain
with most beneficial outcomes observed during maturation.
In both animals and humans stimulating environment trig-
gers outgrowth of neural projections, resulting in increased
dendritic branching and cognitive enhancement [157–159].
Although the developing brain ismore plastic and thuswould
be expected to have better recovery mechanisms following
injury, it seems that the immature brain has some of the worst
developmental outcomes following significant insult [156].
Injury and seizures trigger excessive stimulation of particular
pathways normally involved in shaping the developing brain
circuitry, which under these circumstances promote out-
growth of neural projections generating abnormal connec-
tions and circuitry and could subsequently lead to epilepsy,
motor, and cognitive impairment [21, 156]. For example,
glutamate is important for classical neurotransmission, as
well as for activity-dependent plasticity during development
[160]. While increased amounts of synaptic and extracellular
glutamate are observed inmost brain regions with glutamate-
containing pathways, the toxic effects of glutamate accumula-
tion depend on the type of postsynaptic glutamate receptors.

NMDA receptors are involved in activity-dependent
synaptic plasticity, including long-term potentiation (LTP)
and refinement of synaptic connection [160, 161]. They
require coactivation by glutamate and glycine and are also
voltage-dependent, necessitating postsynaptic membrane
depolarisation to release the magnesium channel-block thus
allowing the NMDA channel to open and calcium to flow
into the cell [160]. Therefore the NMDA receptors appear
to be particularly important for the pattern of injury in
the developing brain, as HI can disrupt the membrane
potentials thus overcoming the magnesium block and open-
ing the channels. Functionally the NMDA receptor activity

is controlled through changes in the subunit composition
[162, 163]. Autoradiographic studies of glutamate binding
to NMDA receptor in rat hippocampus demonstrated an
excessive increase in receptor density in comparison to adult
brain, as well as selective changes in binding to glutamate
binding sites and channels [164]. Electrophysiological studies
of rat thalamocortical synapses demonstrate that LTP and
NMDA-mediated synaptic currents are increased at postnatal
day 3 to 7, which is a critical period for somatosensory cortical
plasticity [165].Thus it is quite likely thatNMDAreceptors are
involved in mediating the damage following HI insult to the
developing brain and the use of NMDA channel blockers has
neuroprotective potential for this type of injury.

AMPA receptors also participate in injury to the develop-
ing brain following HI insult. Although AMPA receptors are
mostly associated with the trafficking of sodium, immature
AMPA channels transport calcium as well. However, in
rodents the increasing expression ofGluR2 receptor andRNA
editing within the first two postnatal weeks generates calcium
impermeable AMPA channels [162, 166]. Developmentally
the NMDA receptors are the first ones to appear on the newly
formed synapse, followed byAMPA receptors associatedwith
increased neuronal activity [160]. AMPA agonists produce
greater brain injury in neonatal compared to adult animals,
while AMPA antagonists do not demonstrate an immense
neuroprotective potential in comparison to NMDA receptor
antagonists following HI insult to the developing brain.
Both NMDA and AMPA receptors in the immature brain
participate in activity-dependent neuronal plasticity and
development; however their enhanced function during brain
maturation also results in increased vulnerability to exci-
totoxicity of both neurons and oligodendrocytes. Therefore
compared to the adult brain the immature one can survive
longer periods of energy depletion due to its lower energy
needs; however when this deprivation reaches a certain
threshold, excitotoxic pathways are activated and excitotoxic
injury escalates [160, 167].

Skoff et al. ultrastructurally studied the neuron-glia inter-
actions in rodents at 1 month following moderate neonatal
HI injury, showing that this type of brain insult produces
continued degeneration as well as recovery of neuronal and
glial elements [63]. The severity of insult directly correlates
with the level of degeneration with increased severity being
more deteriorating. The contralateral side of the injured
animals did not differ from age-matched controls, with lateral
cortex containing a mixture of small and large diameter
axons, and small and large myelinated fibres, and the stria-
tum appearing normal in most areas with many mature
oligodendrocytes and myelinated fibres of normal diameter
[63]. Small and thinly myelinated axons, suggesting neuritic
growth, were also observed in normal animals, as well
as on the contralateral side of HI brains. However, the
ipsilateral side demonstrated cortical and striatal bundles
of neurites, as well as many immature newly formed and
mature synapses, and hardly any astrocytic processes in the
bundles [63, 168]. On the ipsilateral side Skoff et al. observed
neurons undergoing degeneration even at 1 month after
injury and normal axons and axons undergoing degeneration
but having normal myelin sheath, suggesting that axonal
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degeneration is not necessarily secondary to oligodendroglial
and myelin degradation [63]. However, they also registered
axonal and dendritic growth cones with synapses occasion-
ally attached to them, clearly indicating actively growing
neuronal processes and active synapse formation [63]. Thus
the ipsilateral side revealed cellular elements of both neural
degeneration and recovery often in direct physical proximity,
suggesting that some cells remain extremely vulnerable to
insult a month after injury while others are spared [63]. The
abundance of neurites on the ipsilateral side is a sign for
recovery, although it is unclear whether they generate from
postmitotic neurons whose development is delayed due to
the injury; from neurons with injury-severed axons capable
of regenerating new processes; from new neurons projecting
their neurites through the lesion site; or from contralateral
neurons, whose projections are involved in ipsilateral repair
[63]. Overall this data suggests that as all the components and
cellular processes required for functional recovery (sprouting
of neurites, synapse formation, and myelination) are present
in the ipsilateral hemisphere following HI insult in the
developing rodent brain, the long-term functional deficits
are likely to result from inability of the regrowing axons
to innervate their normal targets because of the physical
boundaries of the lesion and the abnormal cell types in the
injured hemisphere [63].

It has been long established that neural stem cells in
the dentate gyrus of the hippocampus and the subventric-
ular zone (SVZ) continue to proliferate during adulthood
[169, 170]; however the neurogenesis capacity of the brain
decreases with age due to the increasing production of
negative regulators [170]. Surprisingly, injury to the brain
does not reduce or impair endogenous neurogenesis, but
quite the opposite. Neurogenesis is actually preserved or even
increased after seizures and stroke in rodent animal models,
with evidence suggesting extensive cell proliferation in the
SVZ following HI [170]. Several studies demonstrate that 1–
3 weeks after moderate HI the SVZ expands in size, with
an increased number of 5-Bromo-2󸀠-deoxyuridine (BrdU)
positive cells, suggesting higher levels of proliferation. BrdU
positive cells are also registered in cortex and striatum,
probably due to either migration of proliferating cells from
the SVZ or increased capacity of the local progenitors to
proliferate in response to the injury-triggered environmental
changes [170]. However, despite the endogenous neurogene-
sis capability of the brain, a HI insult during or around the
time of birth would still cause injury due to excessive cell loss
or as a result of impairment of growth and differentiation fac-
tors production [170]. Some compounds pharmacologically
reducing neuronal cell death and inflammation have a longer
therapeutic windowprobably because they promote neuronal
migration, neurogenesis, and oligodendrogenesis [171, 172].
Several groups suggest the use of stem cell treatment as an
opportunity to increase the capacity of the neonatal brain
to regenerate [173], mainly by the use of mesenchymal stem
cells (MSCs) [170, 174, 175]. MSC transplantation following
neonatal HI has proven neuroprotective, although the precise
mechanism behind that effect is not clear. MSCs are able
to migrate to site of injury, differentiate into specific lin-
eages, and possess anti-inflammatory properties, thus aiding

brain tissue repair through possible replacement of damaged
neurons and oligodendrocytes, and modulation of the host
inflammatory response. Another possibility is that the MSCs
do not integrate in the host network but stimulate the
proliferation and differentiation of endogenous precursors
[170]. Thus MSC therapy has a high potential for treatment
of neonatal HI brain damage through stimulation of the
endogenous neuroregeneration and plasticity.

Apoptosis and caspase activation play a very important
role in the developing brain for elimination of redundant and
damaged neurons and sculpting the tissue. HI injury inter-
rupts the apoptosis signalling due tomitochondrial structural
and functional failure, thus resulting in the occurrence of the
apoptosis-necrosis continuum [119]. Around the time of birth
cortex and basal ganglia undergo dynamic development,
associated with shaping of central motor pathways, involving
establishment of new corticothalamic connections, as well as
elimination of old ones [21]. A HI event around this time
interrupts these processes and depending on its severity can
affect normal developmental plasticity through altering neu-
rotransmission, changes in cellular signalling, neural connec-
tivity and function, and wrong targeted innervation. Studies
looking at traumatic injury in the developing brain [156],
which in a way resembles HI insult, have pointed out that the
dogma “younger is better” may be incorrect and that “good”
plasticity under traumatic conditions can be transformed into
“bad” plasticity. Understanding the mechanisms behind this
transformation would allowmore effective approach towards
treatment following HI injury in the developing brain and
possible prevention of the subsequent neurodisabilities.
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