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Abstract

Background: There is increasing appreciation of the proportion of the health burden that is attributed to
modifiable population exposure to environmental health hazards. To manage this avoidable burden in the United
Kingdom (UK), government policies and interventions are implemented. In practice, this procedure is
interdisciplinary in action and multi-dimensional in context. Here, we demonstrate how Multi Criteria Decision
Analysis (MCDA) can be used as a decision support tool to facilitate priority setting for environmental public health
interventions within local authorities. We combine modelling and expert elicitation to gather evidence on the
impacts and ranking of interventions.

Methods: To present the methodology, we consider a hypothetical scenario in a UK city. We use MCDA to evaluate
and compare the impact of interventions to reduce the health burden associated with four environmental health
hazards and rank them in terms of their overall performance across several criteria. For illustrative purposes, we
focus on heavy goods vehicle controls to reduce outdoor air pollution, remediation to control levels of indoor
radon, carbon monoxide and fitting alarms, and encouraging cycling to target the obesogenic environment.
Regional data was included as model evidence to construct a ratings matrix for the city.

Results: When MCDA is performed with uniform weights, the intervention of heavy goods vehicle controls to
reduce outdoor air pollution is ranked the highest. Cycling and the obesogenic environment is ranked second.

Conclusions: We argue that a MCDA based approach provides a framework to guide environmental public
health decision makers. This is demonstrated through an online interactive MCDA tool. We conclude that MCDA
is a transparent tool that can be used to compare the impact of alternative interventions on a set of pre-defined
criteria. In our illustrative example, we ranked the best intervention across the equally weighted selected criteria
out of the four alternatives. Further work is needed to test the tool with decision makers and stakeholders.
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Background
In 2006, the World Health Organisation (WHO) esti-
mated that 24 % of healthy life years (LYs) lost and 23 %
of premature mortality were related to environmental
factors [1]. A subset of these factors are environmental
health hazards that have been linked to various acute
and chronic diseases, such as carbon monoxide poison-
ing at a carboxyhemoglobin (CoHB) level of at least
10 % [2] and metabolic or cardiovascular disorders.
Cardiovascular disorders contribute to 27 % of the death
rate for all ages in Europe and are second only to neo-
plasms in the death rates of all ages across Europe [3].
In addition, environmental health hazards also contrib-
ute to a range of chronic diseases, such as asthma [4],
autoimmune conditions including arthritis [5, 6], auto-
immune thyroiditis [7], celiac disease [8] and multiple
sclerosis [9]. Many of these health outcomes have shown
relationships between exposure and disease. Examples
include the molecular biology linking vitamin D with
multiple sclerosis [10, 11] and the gene mutations asso-
ciated with α particles from the short-lived radon-222
progeny [12, 13].
Government policies on existing interventions can

help to manage the health burden caused by environ-
mental health hazards by reducing exposure to such haz-
ards. In this study we present a general decision support
methodology for experts in public health. This method-
ology uses multi criteria decision analysis (MCDA), a
method that can be applied to risk prioritisation for envir-
onmental public health (EPH) hazard interventions. In con-
trast to previous studies, we demonstrate how MCDA
could be used in a local setting to combine both quantita-
tive and qualitative evidence. The results obtained in this
study are for illustrative purposes only, and are not neces-
sarily reflective of the local situation in the city that we
model. We focus on developing the methods that can be
used to construct the MCDA evidence matrix with a hypo-
thetical case study. Alternative policy evaluation methods
exist, such as cost-benefit analysis (CBA) and cost-
effectiveness analysis (CEA), and for a comparative analysis
of CBA, CEA and MCDA, see [14]. CBA is based on the
principal that all costs and benefits can be modelled with fi-
nancial cost and uses the cost-benefit ratio to compare pol-
icies. CEA on the other hand uses the total cost per unit
benefit in a criterion as the measure for comparative evalu-
ation. Whilst both CBA and CEA methods provide infor-
mation on the costs involved, it is difficult to quantify non-
market impacts, such as environmental impact, morbidity
and wellbeing. In contrast, MCDA is designed to handle
multiple criteria in their different units and it could be ar-
gued that it is better at comparing policies across a wide
range of impacts [14].
Previous studies in the literature have generated ranked

lists of diseases and hazards based on epidemiological

criteria, with the aim to inform policy makers on the set
of hazards that should take priority. Current methods of
prioritization generate quantitative information on the
relative severity of each hazard with respect to one or
two criteria, such as disability adjusted life years
(DALYs) [15], cost of illness (COI) [15], quality adjusted
life years (QALYs), quality of life (QoL) and relative
risks [16]. For example, six microbial illnesses in New
Zealand were ranked against DALYs and COI, where
it was shown that Campylobacteriosis and sequelae
ranked the highest for both [15]. In environmental
health, Hollander et al., [16] have considered DALYs,
life expectancy, QoL and the number of people affected
for exposure to factors including particulate air pollu-
tion, radon, damp, environmental tobacco smoke and
noise, placing particulate air pollution at the top of the
ranking list.
Recently, upstream or distal causes of mortality and

morbidity, such as road design factors have been consid-
ered as important in mitigating the environmental health
burden for non-communicable diseases and road traffic
injuries [17]. In contrast to the single or few proximal
causes of an environmental health hazard, the set of up-
stream factors may be large and uncertain. The set of
multiple confounding factors reside upstream of the im-
mediate cause of premature death and suffering and can
be regulated through a set of interventions. By ranking
diseases with respect to one single health metric and
proximal cause, multi-dimensionality that arises from
upstream factors, implementation costs and intervention
strategies are neglected. Studies that combine two cri-
teria, such as the COI and DALYs address this issue in
part, however there is no explicit impact of the interven-
tion in the final ranking of environmental hazards. This
final ranking will not be of practical value to make deci-
sions on hazard management if there are no interven-
tions available or in place. In summary, there is a need
to develop models that quantify the performance of envir-
onmental health hazard interventions against criteria of
public health concern. These models could act as trans-
parent decision support tools for public health profes-
sionals. MCDA is one technique that can be designed to
include proximal and upstream factors to support the
complexities of multidimensional problems [18]. Trans-
parency in MCDA is fundamental. Bots and Hulshof [19],
argue that policy goals may fail if they are not transparent
and define a five stage structure for participatory MCDA
in the Netherlands. This transparent methodology can be
applied in public health settings, where the management
of one single environmental hazard is under deliberation.
In Scotland [20], qualitative evidence was obtained for
MCDA through consensus expert opinion for a set of
flood management interventions. In addition, MCDA has
been applied to developing air quality strategies and
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policy, reported by the UK Department for Environment,
Food and Rural Affairs (DEFRA) [21]. A quantitative ap-
plication of MCDA was applied in Belgium to rank chem-
ical stressors and their associated health effects at
different spatial scales [22]. There are detailed studies of
MCDA outside the discipline of public health that demon-
strate how quantitative and qualitative criteria can be eval-
uated. Caterino et al [23] demonstrate how MCDA can be
applied on both types of criteria to determine stable struc-
tures in the presence of seismic activity, where they use
the eigenvalue approach to convert qualitative variables to
quantitative variables. Further analysis has been per-
formed on this data set to investigate how uncertainty can
be treated in MCDA using Dempster-Schafer theory [24].
In this study, we apply MCDA in public health. The focus
of this work is to demonstrate how MCDA could be ap-
plied in a local setting to prioritise EPH interventions for
a range of different environmental hazards against qualita-
tive and quantitative criteria associated with the interven-
tions. We have chosen four environmental hazards and
these are presented in Table 1. In particular and in con-
trast to other applications of MCDA in environmental
health policy, we demonstrate how MCDA can be imple-
mented in a practical setting using a user-friendly web-
based software (Annalisa © Maldaba Ltd 2009–2014,
http://www.annalisa.org.uk/) which has been previously
applied to support decision-making in patient centred
health care [25]. Although MCDA is not a new method-
ology, implementation of MCDA in software such as
Annalisa is yet to be applied in environmental public
health hazard management.
The paper is divided into three main sections. The first

section outlines the MCDA method. The second section
describes the details of the case study to illustrate the
use of the MCDA method and the third section dis-
cusses the findings.

Methods
Multi criteria decision analysis
MCDA is a quantitative method that can be applied
to evaluate and compare alternative decision options

(e.g. EPH interventions) in terms of their impacts on
a set of criteria (e.g. mortality, morbidity, costs, envir-
onmental sustainability). The main steps of MCDA
are (1) problem formulation where the decision op-
tions and the criteria are defined, (2) the construction
of an evidence matrix which contains the impact of
each option on each criterion, (3) weight elicitation
which elicits (from decision makers) the relative im-
portance of each criterion and (4) integration of the
evidence matrix with the relative weights to provide
an overall performance score of each option.
Mathematically, the overall score or value of each de-

cision option is calculated using the following set of
equations:

Si ¼
Xn

j¼1

ωj � ~xij ð1Þ

~xij ¼ xij
yj

ð2Þ

Xn

j¼1

ωj ¼ 1 ð3Þ

Equation [1] gives the overall score Si of option i on
all the criteria, where n is the number of criteria. The
coefficient ωj is a normalised weight, which gives the
relative importance of each criterion j. The weights
should add up to unity (Eq. [3]). The variable ~xij is an
element of the evidence matrix, referred to as the rating
of option i against the criterion j which is normalised by
a suitably defined constant yj such that, ~xij ¼ xij

yj
. For each

criterion j the set of ratings xij will have different units
of measurement, consequently the ratings are usually
standardised in scales of 0–1, 0–100 or 0–1000 [26].
The selection of the scaling constants is subjective. In
this study for each criterion we used the sum of impacts
across all options as the scaling constant.

Table 1 Environmental public health hazards, example associated interventions and health effects modelled for the case study

Hazard Example interventions Health effects modelled

Radon Domestic buildings requiring remediation (e.g. retrofitting of
active sumps, passive or active ventilation)

Lung-cancer mortality

Outdoor air pollution Implementing local air quality management, emissions control
(vehicular and industrial) and education

Chronic obstructive pulmonary disease

Indoor Carbon Monoxide Fitting carbon monoxide alarms, servicing of gas appliances,
ventilation, increasing awareness

Cardiovascular disease

Obesogenic environment Encouraging walking and cycling, provision of cycle routes,
encouraging the use of public transport, increased access to
green spaces and fitness facilities, planning disincentives for
fast food restaurants

Chronic obstructive pulmonary disease,
all-cause mortality
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Weights
The weights ωj are a key component of MCDA because
they set the relative importance of each criterion. Every
criterion j, is assigned a value of relative importance by
the decision maker, or decision making team. Similarly to
the ratings, weights are normalised between 0 and 1 and
should add to unity across all criteria. This interactive al-
location of the importance of each criterion is one ex-
ample of the transparency of the MCDA approach.

Ratings
Ratings ~xij determine the impact of each object i on each
criterion j. In contrast to the weights ωj, the ratings are
calculated through mathematical modelling or expert
elicitation. When all the ratings are evaluated, they
form the evidence matrix. This analysis should be com-
pleted before the decision maker assigns weights to the
criteria. In this study we present a general framework
that could be employed to construct the evidence
matrix by focusing on a hypothetical scenario. We will
not be eliciting different weights on the criteria in this
example, instead we will use a uniform weighting,
where each of the weights will be assigned the same
value, for illustrative purposes.

Case study
Here, we propose a method that can be used to design a
MCDA tool to evaluate and compare interventions to
reduce the health burden attributable to environmental
hazards. The tool comprises three components: the set
of criteria for comparing the interventions associated
with the environmental hazards, models to determine
the impacts of each intervention on each criterion
(“ratings”) and the relative importance attached to each
criterion (“weights”). The tool integrates the ratings

and the weights to produce an overall score as a meas-
ure of how well the intervention performs across all the
criteria for each intervention. The scores can be used
to compare the performance of the interventions across
all criteria and thus prioritise the interventions. Here,
we focus on four environmental hazards and their asso-
ciated interventions, just for example, with the aim of
demonstrating the practical application of MCDA (see
Table 1). This illustrative set of environmental hazards
were chosen to be relevant to the ‘built environment’
and include both indoor and outdoor hazards. Deci-
sions can be facilitated with MCDA by assessing the
relative impacts of the interventions on a selection
of criteria. In our scenario, we have chosen six cri-
teria for the comparative evaluation of interventions:
two quantitative criteria of mortality and morbidity
and four qualitative criteria of ‘robust evidence’,
‘wellbeing’, ‘sustainability’ and ‘level of regulation’ (see
Table 2). To obtain evidence for the qualitative cri-
teria, we held a workshop to elicit expert opinion.
Region specific data from an example city in the
south west of England was used as evidence to
assign parameters to the quantitative ratings. This
data was collected from a variety of public sources,
including Sustrans Cycle Network [27] and Public
Health England (PHE) corporate datasets. Regional
data sets were mapped in the graphical information
system ArcGIS v10.0 [27] (see Fig. 1). The methods
that were applied to obtain the ratings are presented
in the following sections.

Quantitative criteria: mortality and morbidity
For the criterion mortality, we applied models that evalu-
ate the health impact of a change in exposure to the envir-
onmental hazard. These were used to calculate the
intervention’s population preventable number of deaths,

Table 2 Explanation of the quantitative and qualitative criteria used in the MCDA model for this case study

Quantitative criteria

Mortality based on mortality models of relative risk from a change in exposure to the hazard following intervention. Morbidity based on hospital
admission models of relative risk from a change in exposure to the hazard following intervention.

Qualitative criteria

Criteria Application Explanation

‘Robust Evidence’ Is there robust evidence for the risk? What is the level of evidence on the risk, i.e. it is robust, plentiful,
consistent, accepted by the scientific community

‘Wellbeing’ Impact on wellbeing With the intervention in place, what impact does this have on
wellbeing and happiness in particular

‘Sustainability of intervention’ Is the intervention sustainable? Is the intervention sustainable in terms of economic, social, and
environmental impacts? Does it require a lot of resources to keep
in place and maintain? Are there social and environmental costs
for its implementation and running?

‘Level of regulation’ How regulated is the intervention Is the intervention subject to regulation? Is it enforceable in law?
Are there penalties for failure? E.g. emissions tests.
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DHið Þ , where the subscript i denotes the intervention
(see Fig. 2a and Additional file 1). Excess relative risk
(ERRHi ) for all-cause mortality, the baseline mortality
rate for the city MRPð Þ and the size of the affected
population in the city at risk ( NPi ¼ 258; 700;

obtained from the 2010 census [28]) were used to cal-
culate a point (central) estimate of DHi .

DHi ¼ Ui � ERRHið Þ �MRP � NPi ð4Þ

Fig. 1 Example hazard and intervention map. Example city hazard and intervention map. Data were provided by Sustrans, GIS corporate datasets
at PHE and the radon research group at PHE. © Crown copyright and database rights 2013 Ordnance Survey 100016969. Data that were used in the
quantitative analysis include the A road junctions (thick bold lines), the local cycle routes, the national cycle network and the national cycle route
networks (triangles), and the proportion of homes that exceed the action level for radon. We restricted all data included in the model calculations to
the wards of the city (light gray lines). In the legend, boxes represent the percentage of homes predicted to be above the radon action level for the
ranges 1–3 %, 3–5 %, 5–10 %, 10–30 % and >30 %
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In the above equation Ui is the intervention efficacy
and in this study, we set Ui = 1 throughout, which as-
sumes that intervention uptake is maximal. Equation [4]
models the evidence that is associated with exposure to
the environmental hazard and health effects of interven-
tion. Here, it is used to calculate an approximate num-
ber of premature deaths prevented through hazard
management. Regional values for NPi and MRP were ob-
tained (see Additional file A1).
Similarly for the criterion morbidity, we use models of ex-

cess relative risk ðERRHiÞ for cause specific hospital admis-
sions, the population relevant disease prevalence (dR) and
the size of the affected population in the city at risk (NPi ).
These quantities are then multiplied to calculate a point
(central) estimate of the morbidity impact mi.

mi ¼ Ui � ERRHið Þ � dR � NPi ð5Þ

Equation [5] models the number of hospital admis-
sions prevented by hazard management (interventions).

Qualitative criteria
To obtain ratings for the qualitative criteria, we used an
expert elicitation method by asking public health and
academic experts to fill in a questionnaire distributed in
a workshop. Originally, the following seven qualitative
criteria were chosen: ‘Robust evidence for risk’, ‘impact
on wellbeing’, ‘sustainability of intervention’, ‘level of regu-
lation’, ‘acceptance of intervention by the public’, ‘accept-
ance of risk by the public’, and ‘prospect of intervention’.
During the workshop, we only collected sufficient data
from questionnaires on ratings from the first four cri-
teria, and so the remaining criteria (i.e. ‘acceptance of
intervention by the public’, ‘acceptance of risk by the
public’, and ‘prospect of intervention’) were not consid-
ered in the MCDA analysis in this case.
The qualitative ratings were obtained by eliciting ex-

pert opinion on the performance of each intervention
against the qualitative criteria on a scale from zero to
one. Following the approach of Kenyon [20], questions
were presented to academic experts in public health at a

Fig. 2 Mathematical modelling for ratings calculation. Mortality and morbidity impacts calculated for the set of hazards and corresponding
interventions. a. Diagram depicting the modelling methodology applied to determine the impact of an intervention on the health burden
associated with the corresponding environmental hazard. b. Decrease in PM10 as a result of percentage change in annual average daily flow
(AADF) of HGVs calculated in CALINE4. The graph shows the mean PM concentration over seven estimates of the PM concentration within the city
(solid line). Error bars represent one standard deviation from the mean. c. Pie chart showing the relative normalised ratings of the four hazards and
interventions for the criteria mortality. d. Pie chart showing the relative normalised ratings of the four hazards and interventions for the criteria morbidity
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workshop on EPH and 15 min were allocated for the ex-
perts to provide distributions on the ratings for each
intervention. To obtain the expert’s knowledge about the
ratings, elicitation techniques were used to construct a
probability distribution function for each of the ratings.
Distributions were generated using a statistical method
outlined in the software SHELF [29] and experts were
asked to provide median, lower and upper quartiles for
each rating. Each set of questionnaires addressed one
intervention at a time and the questionnaires were de-
signed to be accessible to decision makers with minimal
prior knowledge of probability distributions.
The criterion ‘level of regulation’ was measured be-

tween “no regulations in place” and a scenario where
“strict criteria and controls are maintained”. ‘Robust
evidence of risk’ was graded between “no evidence
available” and “significant high quality evidence avail-
able”. The final two criteria followed some existing defi-
nitions in the epidemiology literature. Sustainability was
taken to concern the ‘environment, development, human
needs and the capacity of the environment to cope with
the consequences of economic systems’ [30]. Zero corre-
sponded to a low sustainability and one corresponded to
high sustainability of the intervention that can be de-
fined by sustainability measures, i.e. the intervention is
completely sustainable. For ‘wellbeing’, the questionnaire
focused on the “happiness gained” as a result of inter-
vention. We chose to focus on self-reported happiness,
as it has been suggested that it is linked to the built
environment [31].

Results
Example environmental hazards and interventions
Outdoor air quality and controlling the number of heavy
goods vehicles
Particulate Matter (PM) has been associated with cardio-
pulmonary mortality [32] and morbidity [33] and the
health burden can be reduced through compliance to air
quality standards, vehicle emission controls and road
traffic interventions [34]. To calculate the change in ex-
posure to particulate matter less than 10 micrometres in
diameter (PM10) from limiting the number of heavy
goods vehicles (HGV), we focused on the percentage
change in Annual Average Daily Flows (AADFs) for
HGVs on the A road network in our example city (see
Fig. 1). The AADFs provide the number of vehicles that
will drive on a particular stretch of road on an average
day of the year. Data and geometry of the AADF and A
road network in the city were obtained from the open
access traffic statistics published by the Department of
Transport [35]. To obtain the rating for the impact of
HGV controls on health, we calculated the reduction in
the disease burden from changes in air pollution (PM10)
that occur from a prospective percentage change in

AADFs on the A road network in the city. The quoted
relative risk for all-cause mortality for a 10 μg/m3 change
in PM10 is 1.1006 in Europe [36], and so the relative risk
coefficient is βPM ≅ 0.01, (see Additional file 1). We cal-
culated the point (central) estimate of the number of
preventable deaths DPM by reducing the flow of HGVs
by 50 % on the A roads as an example air pollution con-
trol measure. This calculation required the predicted
change in PM10, which we estimated using CALINE4
[37], one of many atmospheric emission dispersion soft-
ware that are available. CALINE4 is an atmospheric dis-
persion model for line sources (road networks), and can
be applied to a range of different geographical settings
and where possible, we attempted to fit all parameters to
existing data, using UK vehicle fleet averages and emis-
sion rates (see Additional file 2). This analysis predicted
a change in PM10 of 2.5 μg/m3 (decrease per year),
which could be substituted into Eq. [4] to obtain the
number of deaths prevented DPM ≅ 30 per year for the
city. Next, we calculated the morbidity impact. The
quoted relative risk of hospital admissions for chronic
obstructive pulmonary disease (COPD) for a 10 μg/m3

change in PM10 is 1.38 [33]. The prevalence of COPD
hospital admissions in the region of our city is ~0.2 %
[38] and so mPM ≅ 36 hospital admissions avoided per
year. We only calculated morbidity impacts for COPD
as an example of morbidity impacts.

Remediation to control levels of indoor radon
Radon is a naturally occurring, radioactive gas that is
produced from rocks and soils [39]. It is known that
residential ingress of radon can increase the risk for
lung cancer in the population, where the quoted rela-
tive risk of lung cancer incidence for a 100 Bq/m3 in-
crease in measured radon is 1.16 [40]. Methods to
reduce levels of indoor radon include built-in protec-
tion and remediation [41, 42]. There are various types
of radon remediation available and in this example
we chose the retrofitting of under floor ventilation in
the form of active sumps for residential properties as
an illustrative intervention [43]. It has been estimated
that at most 2400 homes are at or above the action
level in our city [44]. To obtain the regional popula-
tion that would be affected by retrofitting this inter-
vention, we assume the scenario that all houses that
are at or above the action level could be remediated.
This number of houses is multiplied by the average
household size for the city of 2.3 persons per house-
hold [28], so that the estimated population that is
exposed is around 5520 people. To estimate the re-
duction of indoor radon, we take the average level of
radon for homes in the city, that warrant remediation,
of 300 Bq/m3 which would be reduced by a reduction
factor of 5.3 [43]. The reduction factor is the ratio of
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the initial radon concentration divided by the concentra-
tion after remediation. Using this ratio and rearranging
the equation gives an approximate reduction of 243
Bq/m3. Previous studies on radon-related housing in-
terventions have only considered health effects associ-
ated with lung cancer mortality [45]. To obtain the
associated reduction in risk we used the age standar-
dised crude mortality rate for lung cancer averaged
between men and women. In 2011, this was 73.45 per
100,000 population in the city [46]. By substitution of
the demographic values specific to our city into Eqs.
[4] and [5], we obtained the number of preventable
deaths DR ≅ 1.2 per year. Relative to DPM, DR is small,
however this is expected because the number of
people in the remediated homes initially exposed to
indoor radon was approximated as 5520 (see supple-
mentary Additional file 1).

The quality of indoor air and fitting carbon monoxide
alarms
Long term exposure to carbon monoxide (CO) has been
associated with a range of adverse health effects, such as
headache and exacerbation of COPD [47], self-reported
neurological symptoms [48], angina in patients with is-
chemic heart disease, mild neurological effects, athero-
sclerosis, low birth weight [49] and congestive heart
failure among the elderly [50, 51]. CO is a colourless,
odourless gas and has a short half-life; symptoms are
often similar to flu, which makes it difficult to identify
and there may be many missed opportunities to inter-
vene. Recently, a study on the prevalence of potential
exposure to CO in Hackney Homes (inner London
social housing) was conducted [52]. McCann et al. [52],
estimated a CO alarm incidence rate of 4.64 incidence
per 1000 households over a six month period, for CO
levels above 50 ppm. Morris et al., [50] have calcu-
lated a relative risk of 1.22, associated with an in-
crease of 10 ppm in CO for hospital admission due
to cardiovascular disease (congestive heart failure).
Typical background levels of CO in UK homes range
from 0–48 ppm [53] and there are 108,000 house-
holds in our example city. Here, we assumed a worse
case scenario of levels at around 50 ppm so that, at
maximum efficiency, the intervention would reduce
levels by 50 ppm. To calculate the mortality and mor-
bidity ratings, we substituted the number of people
exposed and the prevalence of heart failure of 0.7 %
[54] into the Eq. [5]. This gave a result of mCO ≅ 10
hospital admissions avoided. There are approximately
40 deaths per year due to acute carbon monoxide
poisoning, although this figure is thought to be an
underestimation of the true burden [55]. This value is
small compared to the relative risk of hospital admis-
sion due to congestive heart failure. Thus DCO ≅ 0.

The obesogenic environment. Encouraging cycling
through the provision of cycle routes and lanes
The obesogenic environment has been shown to have an
effect on the prevalence of type 2 diabetes, dementia, is-
chaemic heart disease, cerebrovascular disease, breast
cancer, colorectal cancer and depression [56, 57]. Inter-
ventions are being encouraged to help tackle obesity
within the population and include promotion of cycling
to work through the provision of cycle routes or lanes
and cycle to work schemes with tax benefits. For this en-
vironmental hazard, the intervention is counterfactual.
Our example city promotes cycling, by providing the fol-
lowing facilities; (1) cycle lanes (mandatory and advisory),
(2) contra-flow cycle lanes, (3) contra-flow cycle streets,
(4) cycle paths and (5) cycle tracks. These facilities are
complemented by tax incentives for buying a cycle for
commuting purposes through the Finance Act (1999) [58],
which was introduced to promote healthier journeys to
work and reduce environmental pollution. The quoted
relative risk for all-cause mortality for an increase of 11
metabolic equivalent (MET) hours of physical activity per
week is 0.81 [59, 60], where MET hours are measures of
the energy cost of a physical activity per hour. In 2011, it
was estimated that 3055 people in our example city trav-
elled to work by bicycle and the average speed of a cyclist
is 13.4 km/h [59]. To calculate the distance covered by the
cycle routes in the city, we used the measure tool in Arc-
GIS. The distance covered by the national, local and Na-
tional Cycle Network combined was 88,958 metres, which
is less than the average distance covered for the average
cyclist in a week of 93,730 metres. The average trip length
for a UK cyclist per week was calculated by multiplying
the average trip length (5150 metres [61]) by the number
of trips per day (2.6) times seven (number of days in a
week). To obtain the relative risk for this level of physical
activity per week, we used the MET intensity for cycling
of 8.5 [62] and the duration of hours cycled per week. By
substitution of the values into Eq. [4], Do ≅ 12 deaths
avoided. To obtain the morbidity impact, we considered
the number of hospital admissions associated with an in-
crease in physical activity. For levels of moderate physical
activity, the relative risk for COPD hospital admissions
due to an increase in physical activity is 0.68 [63]. The
prevalence of COPD hospital admissions in our region is
~0.2 % [38]. We approximated moderate physical activity
with a value of 2 METs to calculate the exposure response
coefficient. The values were substituted into Eq. [5] to cal-
culate the morbidity impact: mo ≅ 6 hospital admissions
averted.

Qualitative criteria: expert elicitation
In each questionnaire, a short description of the object
set and criterion was given and an example of the me-
dian, lower and upper quartiles were presented, (see
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Fig. 3a). To help the experts understand the illustrative
criteria, they were given a descriptive rating scale that
presented six equally spaced points on a continuous
scale from zero to one, (see Fig. 3a). The results were
imported into the statistical software SHELF [29] and
three random expert opinions for each qualitative criter-
ion were combined to obtain the consensus cumulative
distribution function (CDF) (see Fig. 3b).

Integrating the evidence
The values of the evidence matrix, which feeds into
the MCDA, are presented in Fig. 4. These values were
obtained by normalising the ratings across the haz-
ards and interventions. In this study, we apply uni-
form weights to the criteria and use an online MCDA
decision support tool Annalisa [25] to determine the
overall score of each intervention across all the cri-
teria. The scores are then used to rank the interven-
tions. In our illustrative example, HGV controls (to
improve outdoor air quality) is ranked the highest,
suggesting that this intervention has the highest posi-
tive impact across all criteria. Encouraging cycling
was ranked the second highest, followed by the qual-
ity of indoor air and fitting carbon monoxide alarms.
Remediation to control levels of indoor radon ranked
the lowest. This was the outcome based on equal
weightings of the criteria. Changing the values of the
weights would have an effect on the final ranking

order of the interventions. In a practical setting, sen-
sitivity analysis can be performed to assess the ro-
bustness of the final ranks to changes in the weights,
changes in exposure to the environmental hazard and
intervention efficacy.

Discussion
Main findings
In this study we have demonstrated how MCDA
could be applied in public health to evaluate, compare
and rank interventions that mitigate the effect of en-
vironmental hazards on health across several criteria.
The range and complexity of environmental health
hazards to which the UK population is exposed is
vast. Because of competing demands on resources,
and a reduction in the public budget of governments,
there is a need to prioritise the most significant environ-
mental health hazards where interventions are likely to
yield the greatest health benefit, whilst taking into account
important factors such as the prospect of intervention and
presence of statutory regulations. The MCDA method-
ology presented here is intended to provide a decision
support framework for decision makers in a local author-
ity who are responsible for distributing and allocating re-
sources. Determining the best policy procedure is not
intuitive, when dealing with multiple criteria. The decision
problem is multidimensional in nature and as such, quan-
titative methods that combine the evidence based on the

Fig. 3 Elicited ratings for risk, wellbeing, sustainability and level of regulation. Expert-elicited evidence (ratings) of risk, wellbeing, sustainability and level of
regulation calculated for the set of hazards and corresponding interventions. a. Figure showing the example presented to experts in EPH
before completing the questionnaire to elicit summary variables for the ratings. b. Integration of the ratings for the qualitative criteria, using the software
SHELF for each of the hazards and associated interventions. Plots show the individual cumulative distribution functions (CDF) and the overall linear pool
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impact of interventions can be applied to rank interven-
tions in terms of their performance across several criteria.
The MCDA tool is designed to evaluate and compare in-
terventions to reduce the health burden attributable to en-
vironmental hazards. Where local evidence has not been
obtainable, we have used evidence from the literature to
assign the relative risk of disease for local environmental
hazards. We envisage that through a working partnership
with experts who have practical experience of the current
hazards and interventions required, that MCDA could
help prioritise health hazards and their interventions and
be applicable to provide quantitative predictions of the
impact of policies that can reduce the health burden.
The use of MCDA to aid UK policy decision making is

currently limited but has been applied to air quality [20]
and flood defences [19]. Decision making usually relies
on expert option as to how the proposal fits with na-
tional and local policy, the underpinning strength of evi-
dence, the ease of its implementation, and the views of
the public. The application of MCDA to support UK
health policy is becoming more accessible with detailed
studies on how to correctly apply MCDA, for example
choosing among statins in primary healthcare prevention
[64]. MCDA as a support tool in EPH fits with more
strategic approaches including the use of ecological link-
age frameworks that more explicitly incorporate the ‘dis-
tal’ determinants of health outcomes and related policy
levers across a breadth of local settings. MCDA could be
used within an ecosystems-enriched Drivers, Pressures,
State, Exposure, Effects, Actions (eDPSEEA) conceptual
model which integrates human health and environmental

impact analysis. The model uses the concept of ecosys-
tems services to emphasize human health and well-being
values alongside the health of the environment [65]. Our
application of MCDA has been shown to support the
growing calls for ‘ecological public health’ as advocated by
eDPSEEA.

Study limitations
We presented a practical application of MCDA based on
an example UK city. The scope of interventions consid-
ered here is minimal and was used only for illustrative
purposes. There are many other interventions to manage
the wide range of environmental hazards to which popu-
lations are exposed (e.g. waste management options).
Similarly, the criteria considered is also minimal and
does not reflect the range of criteria that would need to
be considered for a practical application. For example,
cost will vary considerably between each intervention
chosen and often ultimately drives the decision. For a
practical application of MCDA, experts in EPH could be
approached for advice on which criteria to include in the
MCDA model.
The purpose of our study was to demonstrate the po-

tential benefit of using MCDA in supporting public en-
vironmental health decision-making. Thus, further data
collection and analysis on both the quantitative and
qualitative evidence would be required for a future in
depth study and practical application. In particular, some
excess relative risks refer to all-cause mortality and
others specific-cause mortality. The evidence for the
quantitative criteria is dependent on the availability of

Fig. 4 MCDA ranking of interventions and their associated environmental hazards. Extract (screen dump) from the model Annalisa. The MCDA tool
was developed in Annalisa © Maldaba Ltd 2009-2014, (http://www.annalisa.org.uk/). Bottom panel shows values of the central point estimates of the
normalised ratings that were calculated for the example city. Middle panel shows uniform weights, where in practice a stakeholder would be able to
assign weights of importance. Top panel shows the integration of the ratings with the weights and priority of the interventions
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epidemiological data in the literature. Another study
in this special issue presents scientific evidence for
health affects due to indoor air pollutants [66]. In the
study Asikainen et al. it is stated that current ventila-
tion standards are specified by satisfaction with air
quality. This approach to maintaining standards is
limited because it does not elucidate health impacts
due to long term exposure to indoor air pollution. By
modelling three alternative exposure control scenar-
ios, they found that indoor source control results in
the largest health benefit. In a practical application of
MCDA, it will be important for decision makers and
experts in environmental health to be aware of the
range of quantitative exposure impact models that are
available, such as [66]. Where these models are avail-
able, the data should be incorporated into the MCDA
evidence matrix.
The robustness of the final ranking of interventions

could be investigated by performing MCDA under dif-
ferent scenarios and carrying out sensitivity analysis. For
example, for outdoor air quality, a realistic intervention
may not be able to reduce the flow of HGVs by 50 %. A
10 % reduction may be a more realistic target. We have
used local data from a real city where we had data as an
example to show how this could be applied to any popu-
lation centre. In some calculations, local data was not
available. Region specific data was obtained through
local profiles of health and wellbeing within communi-
ties, such as from the Joint Strategic Needs Assessment,
or County level health profiles [38, 46]. We assumed the
road network only within our example city and not in-
cluding neighbouring routes. Uncertainty could arise in
the relative risk calculation, however with uniform
weights, the final rank in our example is robust to per-
turbation in exposure and relative risk.
Limitations were also imposed on the analysis by

the available data and assumptions made. For example
in the radon assessment we have assumed that risk
exists only for houses at or above the action level. A
residual radon associated lung cancer risk also exists
amongst those who live in houses below the action
level, limiting the validity of our model of effect.
Additionally, there are around 40 deaths per year due
to carbon monoxide [66], however due to insufficient
epidemiological evidence on relative risks, we have set
the mortality rating for carbon monoxide to be zero.
It is thought that the estimates of chronic carbon mon-
oxide exposure are underestimated [42, 67], however, im-
proved diagnosis and exposure estimates could help to
gain a better understanding of mortality associated with
carbon monoxide poisoning. For example, Davis and
Cummings suggest the use of key diagnostic questions in
clinical practice that could help identify CO related health
outcomes [55].

In our pilot workshop, we produced questionnaires
for seven criteria. These included: ‘acceptance of inter-
vention by the public’, ‘acceptance of risk by the public’,
and ‘prospect of intervention’ in addition to the four
analysed in this study. To elicit a distribution of values
from the data, we randomly chose three complete ques-
tionnaires. For each of these questionnaires, we re-
quired the upper and lower quartiles and the median
values for each hazard and associated intervention. It
was not possible to obtain these data for the criteria ‘ac-
ceptance of intervention by the public’, ‘acceptance of
risk by the public’ and ‘prospect of intervention’. This
was because a number of the participants had marked
the box “don’t know” in the distribution. In a further
study, it may be possible to survey the public on the ac-
ceptance of risk through questionnaires distributed to
affected residents.
To integrate the evidence matrix with the weightings

we applied uniform weights. Different weights across the
criteria could be obtained by approaching experts in
EPH, e.g. Directors of Public Health and environmental
health practitioners in local authorities to elicit the
weightings. When the final decision involves a group of
stakeholders, different elicitation methods exist that can
be used to integrate the individual weights, as outlined
by Jia et al., [68]. For this example, we need to apply the
model/tool to the real world, to test its application and
obtain stakeholder feedback to add differential weights
to the criteria that may affect the final ranking of the
prioritised interventions.

Conclusions
We have demonstrated that MCDA can be used in
practice to support environmental health policy
makers decide on the most appropriate interventions
across a pre-defined set of criteria. The MCDA re-
quires input on the impact of each intervention on
each criterion (ratings) and on the relative importance
of the criteria (weightings). The ratings can be ob-
tained from models or elicited from experts. Weight-
ings are normally elicited from decision makers.
MCDA can be adopted as a practical, transparent tool
to guide local authorities and environmental health
policy makers. Further work is needed to test the tool
with decision makers and stakeholders, where ease of
use and compliance with the tool could be assessed
and support provided where necessary. To apply
MCDA in local authority settings for EPH, we suggest
that decision makers can be supported in constructing
the ratings by research scientists with expertise in epi-
demiology and exposure modelling. Once the ratings
have been calculated, decision makers can then use de-
cision support tools, such as Annalisa to perform the
MCDA and obtain the ranking of intervention options.
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