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Abstract

The fast and accurate computation of quantile functions (the inverse of cumula-

tive distribution functions) is very desirable for generating random variates from

non-uniform probability distributions. This is because the quantile function of a dis-

tribution monotonically maps uniform variates to variates of the said distribution.

This simple fact is the basis of the inversion method for generating non-uniform

random numbers. The inversion method enjoys many significant advantages, which

is why it is regarded as the best choice for random number generation. Quantile

functions preserve the underlying properties of the uniform variates, which is ben-

eficial for a number of applications, especially in modern computational finance.

For example, copula and quasi-Monte Carlo methods are significantly easier to use

with inversion. Inversion is also well suited to variance reduction techniques. How-

ever, for a number of key distributions, existing methods for the computational of

their quantile functions are too slow in practice. The methods are also unsuited

to execution on parallel architectures such as GPUs and FPGAs. These parallel

architectures have become very popular, because they allow simulations to be sped

up and enlarged.

The original contribution of this thesis is a collection of new and practical nu-

merical algorithms for the normal, gamma, non-central χ2 and skew-normal quan-

tile functions. The algorithms were developed with efficient parallel computation

in mind. Quantile mechanics—the differential approach to quantile functions—was

used with inventive changes of variables and numerical methods to create the algo-

rithms. The algorithms are faster or more accurate than the current state of the art

on parallel architectures. The accuracy of GPU implementations of the algorithms

have been benchmarked against independent CPU implementations. The results

indicate that the quantile mechanics approach is a viable and powerful technique

for developing quantile function approximations and algorithms.
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Chapter 1

Introduction

On 21 May 1947, John von Neumann wrote the following in a letter to Stanislaw

Ulam [25]:

I am very glad that preparations for the random numbers work are

to begin soon. In this connection, I would like to mention this: As-

sume that you have several random number distributions, each equidis-

tributed in 0, 1 : (xi), (yi), (zi), . . . . Assume that you want one with the

distribution function (density) f(ξ) dξ : (ξi). One way to form it is to

form the cumulative distribution function: g(ξ) =
∫

ξ f(ξ) dξ to invert it

h(x) = ξ ↔ x = g(ξ), and to form ξi = h(xi) with this h(x), or some

approximant polynomial. This is, as I see, the method that you have in

mind.

An alternative, which works if ξ and all values of f(ξ) lie in 0, 1,

is this: Scan pairs xi, yi and use or reject xi, yi according to whether

yi 6 f(xi) or not. In the first case, put ξj = xi in the second case form

no ξj at that step.

The second method may occasionally be better than the first one.

[continues]

The reader may recognise these as the now well-known inversion and rejection meth-

ods. In the previous year, Ulam described what was later called the Monte Carlo

method [53] to von Neumann. The Monte Carlo method, of course, necessitates

the need for random numbers, typically from one or more non-uniform probability

distributions. The inversion and rejection methods are two of the most general

ways to generate non-uniform random numbers. However, the former has many
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theoretical virtues over the latter. Von Neumann alludes to the potential impracti-

cability, much of which remains today, of the inversion method. This thesis focuses

on expanding the practical applicability of the inversion method. An extensive

discussion on sampling distributions by rejection and other means is given by L.

Devroye in [21], which is widely considered as the bible of non-uniform random

number generation.

Von Neumann appreciated the value of Ulam’s statistical sampling idea. He

was also aware of Eniac1, the first general-purpose electronic computer, which was

completed in 1946. The Monte Carlo method was subsequently implemented on

Eniac, to solve the neutron diffusion problem in fission devices. The Monte Carlo

method has, of course, since found application in a wide range of disciplines. The

random numbers for the neutron simulations on Eniac were originally read from

punchcards.2 This was relatively slow.

Von Neumann was conscious of the need for faster sourcing of uniformly dis-

tributed random numbers. Deriving randomness from physical phenomenon, e.g.

radioactive decay, yields “truly” random numbers. However, the process is slow and

reproducibility is an issue. Computers, being deterministic, can generate “pseudo”

random numbers.

Any one who considers arithmetical methods of producing random digits

is, of course, in a state of sin.

— John von Neumann

Von Neumann proposed [82] generating a sequence of pseudo-random numbers using

a method now known as middle-squaring: a seed value is squared, the middle digits

of the result are taken as the next random number and the seed is reset to the

generated random number. Many sequences generated using the middle-square

method converge to zero, but von Neumann was aware of this. Crucially, with

his method, he found that random numbers could be generated hundreds of times

faster than reading them from punchcards. The middle-square method as since been

supplanted by more sophisticated random number generation algorithms. Linear

congruential generators were the most popular for some time, but the Mersenne

1Electronic Numerical Integrator And Computer
2The Monte Carlo method spurred the Rand Corporation, in 1947, to produce a random number

table, which was significantly larger than any other publicly available table, consisting of a million
random digits. The table was published in 1955, in book and punchcard form. The book was
actually reissued in 2001. The “customer” reviews of the reissued A Million Random Digits with

100,000 Normal Deviates on Amazon.com are quite humorous.
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Twister [52] algorithm is arguably the current (at the time of writing) pseudo-

random number generator (RNG) of choice. The Mersenne Twister is currently the

default pseudo-RNG in many industry standard software, including, but not limited

to, Matlab and R [65]. More recent pseudo-RNGs include Marsaglia’s Xorshift

[49] and Random123 [66].3 See, e.g., [64, Chapter 7] or [27, Chapter 1] for a

comprehensive overview of sampling the uniform distribution. Given a source of

uniform random numbers, non-uniform distributions can be simulated, as suggested

by von Neumann’s letter to Ulam.

The most direct way to generate a non-uniform variate is by inversion. This re-

quires the inverse cumulative distribution function (CDF), also known as the quan-

tile function4, of the distribution in question to be computable. Let F (x) be the

CDF of the distribution. Now let q = F−1 be the functional inverse of the CDF. If

U is a standard uniform random variable then X = q(U) has distribution F . If the

quantile function q has a closed-form expression, the generation of variates from

the distribution by inversion is clearly a straightforward matter. Table 1.1 shows

a collection of distributions that have such a q. The presence of a shape parame-

ter—that is, a parameter which neither shifts nor scales the distribution—does not

significantly impact the computational complexity in this case. Things are quite

different for distributions with no closed-form CDF. Table 1.2 shows some distribu-

tions that are non-trivial to invert, due to their non-elementary F and q functions.

More often than not, a distribution with no closed-form CDF will also have one or

more shape parameters. In this case, numerical inversion methods must be used

to compute their quantile function. Resorting to root finding is very much com-

monplace. Evaluating F one or more times for this is known to be computationally

expensive, rendering inversion impractical for applications such as live, real-time

Monte Carlo simulation. Quantile function implementations based on root finding

are typically more than an order of magnitude slower than evaluating a quantile

function from Table 1.1. Being within an order of magnitude would be a more ideal

situation, making inversion tractable in practice. It should be noted that inversion

is very rarely the fastest method for sampling distributions.

In reality, generating variates from non-elementary distributions by inversion is

usually forsaken for clever transformations or rejection sampling, which are typically

more computationally feasible. However, with the inversion method,

3The latter is particularly interesting, because it parallelises very well.
4A very thorough treatment on the statistical applications of quantile functions is given by W.

Gilchrist in [29].
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Table 1.1: The CDF F and quantile function q of some commonly used distribu-
tions. These distributions possess elementary closed-form expressions for F and q.
Each q(u) is valid for u ∈ (0, 1), which implicitly defines the domain of the adjacent
F . The values of q(0) and q(1) are typically defined as zero or ±∞. Location pa-
rameters can be any real number. Scale and shape parameters can be any positive
real number.

Parameters F (x) q(u) ≡ F−1(u)

Cauchy
a (location)

b (scale)
1
π
arctan

(

x−a
b

)

+ 1
2

a+ b tan
[

π
(

u− 1
2

)]

Exponential λ (shape) 1− e−λx − log(1−u)
λ

Laplace
µ (location)

β (scale)

{

1
2
e

x−µ
β if x < µ

1− 1
2
e−

x−µ
β if x > µ

{

µ+ β log(2u) if u 6 1
2

µ− β log [2(1− u)] if u > 1
2

Pareto
k (scale)

α (shape)
1−

(

k
x

)α
k(1− u)−1/α

Uniform a < b x−a
b−a

bu+ a(1− u)

Weibull
α (shape)

β (scale)
1− e

−
(

x
β

)α

β [− log(1− u)]1/α

• uniform variates are monotonically mapped to variates of the non-uniform

distribution; and

• only one uniform variate is required per sample generated.

These are not guaranteed with transformations or the rejection method, which are

important disadvantages. The advantages of the inversion method are beneficial

for a number of applications, especially in modern computational finance. Copula

and quasi-Monte Carlo methods are pertinent examples, and they are significantly

easier to use with inversion (see, e.g., [31, 47, 43]).

The dimension of problems solved by quasi-Monte Carlo simulation is usually

equal to the number of uniform variates required to generate each sample path.

Since the number of uniform variates needed to generate one non-uniform variate

using the rejection method is unbounded, simulations that rely upon rejection turn

into infinite-dimensional problems. Such problems are typically incompatible with

quasi-Monte Carlo. Inversion is also well suited to the variance reduction tech-

niques. Common random numbers and antithetic variates are two examples. Pos-

itively and negatively correlated variates are required for these variance reduction

techniques. The inversion method allows us to do this in a very straightforward

manner. Moreover, the strongest possible correlation can be induced by the in-

version method. Because the rejection method does not guarantee a monotonic

11



Table 1.2: The CDF F and quantile function q of some commonly used distributions. These distributions do not possess
elementary closed-form expressions for F and q. Each q(u) is valid for u ∈ (0, 1), which implicitly defines the domain of the
adjacent F . The values of q(0) and q(1) are typically defined as zero or ±∞. Location parameters can be any real number.
Scale and shape parameters can be any positive real number.

Parameters F (x) q(u) ≡ F−1(u)

Beta
α (shape)

β (shape)
Ix(α, β) I−1

u (α, β)

Chi-squared ν (shape) P
(

ν
2
, x
2

)

2P−1
(

ν
2
, u

)

F
n (shape)

m (shape)
I nx

nx+m

(

n
2
, m

2

)

m

n

[

1

I
−1
u (n

2
,m
2 )

−1

]

Gamma
α (shape)

β (scale)
P
(

α, x
β

)

βP−1 (α, u)

Log-normal
µ (location)

σ (scale)
1
2
erfc

[

µ−log(x)√
2σ

]

eµ−
√

2σerfc−1(2u)

Normal
µ (location)

σ (scale)
1
2
erfc

(

µ−x√
2σ

)

µ−
√
2σerfc−1(2u)

Student t ν (shape) 1
2

(

1 + sgn (x)
[

1− I ν

x2+ν

(

ν
2
, 1
2

)

])

sgn
(

u− 1
2

)

√

ν

[

1

I−1
2min(u,1−u)(

ν
2
, 1
2 )

− 1

]
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mapping between uniform and non-uniform variates, production of correlation is

non-trivial. Furthermore, with inversion, small distribution parameter perturba-

tions cause small changes in the produced variates. This effect is useful for sen-

sitivity analysis. Contrast this to the rejection method, where small parameter

perturbations can cause large changes in the produced variates.5 The only real

disadvantage of variate generation via inversion is potentially the computational

speed of existing methods. If this can be significantly improved, the benefits of

inversion can be realised in practice.

Monte Carlo simulations are naturally suited to parallel computation, since

samples are generated independently of each other. Indeed, performing Monte

Carlo simulations is a popular use of modern many-core architectures, such as

graphics processing units (GPUs) and field-programmable gate arrays (FPGAs).6

These allow substantially more samples to be simulated in a time period, compared

to traditional CPUs. This is very desirable, because a sufficiently accurate solution

can be found much faster. However, to take full advantage of the performance of

many-core processors, the algorithms that they run have to be as branch-free as

possible.

CPUs are not unduly affected by conditional statements in code, due to their

sophisticated branch prediction mechanisms. This is in contrast to GPUs and other

many-core architectures, which are particularly sensitive to divergent flows of ex-

ecution. When branching occurs, each branch taken is effectively serialised, so

the execution time of a conditional statement is roughly equal to the sum of each

branch taken. Branch divergence is said to occur in this case. If the branches are

computationally expensive, valuable parallelism is lost. (Nested conditional state-

ments obviously compound the problem.) Peak performance is therefore achieved

with straight-line code that has only one execution path. Branch divergence can

otherwise significantly affect parallel performance. It is a particular issue for tra-

ditional methods of quantile function computation. The tails of distributions are

usually managed separately, which causes branch divergence. Branch divergence

is also an issue for the rejection method, but in a more fundamental way. This

is because the number of uniform variates required to produce one non-uniform

5This is because, even after a slight parameter perturbation, a previously accepted variate could
be rejected. When this occurs, the subsequently generated variates will be completely different
from before.

6Interestingly, Intel have started integrating FPGAs in certain Xeon
central processing units (CPUs) and in mid 2015 announced they will acquire Altera, a
market leading manufacturer of FPGAs.
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variate is not fixed. The wasted effort in rejecting candidate non-uniform variates

is thus amplified.

Random variate generation is generally the most computationally expensive

part of generating a Monte Carlo sample. It would, therefore, be desirable to have

branch-free algorithms for random variate generation. This demands a fresh look

at the relevant numerical algorithms. Fast, parallel random variate generation is

desirable, because simulations are getting larger, and to take advantage of emerg-

ing parallel architectures. Several popular uniform pseudo- and quasi-RNGs were

implemented and evaluated on the GPU in [16]. We build on this work by enabling

efficient parallel non-uniform variate generation by inversion.

We can relate our work to functions from some existing mathematical soft-

ware. In terms of Mathematica [84], the functions RandomVariate, InverseCDF

and Quantile are very closely related to our research.

• RandomVariate[dist,n] gives a list of n pseudo-random variates from the

distribution dist. For example,

RandomVariate[NormalDistribution[],100]

would generate a list of 100 pseudo-random variates that follow the standard

normal distribution. At the time of writing, the Mathematica RNG docu-

mentation [85] says that these normal variates would be generated using the

Box–Muller method [15]. No mechanism is currently available to stipulate

how non-uniform random variates are generated by RandomVariate. Matlab

has an analogous function to RandomVariate, called random.

• InverseCDF[dist,u] and Quantile[dist,u] give the inverse of the cumu-

lative distribution function for the distribution dist as a function of the vari-

able u. The two functions are equivalent in this context. If u is a list of

uniformly distributed random numbers, the quantile function of dist would

be applied to each element of the list. This would be similar to the behaviour

of RandomVariate, except that the output is not necessarily pseudo-random

and, of course, inversion is the generation method. Matlab has an analogous

function to InverseCDF/Quantile, called icdf.

In 2006, the technology company Nvidia introduced CUDA7, a hardware and

software solution for doing general-purpose parallel computing (as opposed to com-

puter graphics exclusively) on their GPUs. Since its introduction, CUDA has been

7Compute Unified Device Architecture
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used extensively by scientists in industry and academia. Investment banks are

heavy users of GPUs. J.P. Morgan and BNP Paribas have publicly announced that

they have used Nvidia GPUs for accelerating their numerical workloads, including

Monte Carlo simulations. In the light of this, other top banks are almost certainly

using GPUs too.8 In 2008, OpenCL9 was introduced. Whereas CUDA can be used

to program Nvidia GPUs only, OpenCL supports CPUs and GPUs from multi-

ple vendors (including Nvidia). Intel released their response to Nvidia’s foray into

general-purpose parallel computing, called Xeon Phi, in 2012. Intel’s Xeon Phi

incorporates GPU-like technology and supports OpenCL.

The work in this thesis was started when CUDA was well established for many-

core computing, and indeed before Intel’s Xeon Phi was even announced. While all

of the quantile function algorithms in this thesis were implemented and tested in

CUDA, to demonstrate real-world parallel performance, they should translate very

well to other vector/parallel architectures.

1.1 Contributions and structure of the thesis

This thesis looks, in detail, at the quantile function for four distributions: normal,

gamma, non-central χ2 and skew-normal. For each distribution, new ideas and

formulae are introduced and they are used create algorithms that are faster or more

accurate than the current state of the art on parallel architectures. Our normal

and gamma algorithms fit into the former category. There is very little literature

on the quantile function of the non-central χ2 and skew-normal distributions. We

believe that this thesis contains the first comprehensive analysis on these quantile

functions, together with new algorithms that cover the parameter and variable

space more accurately than existing approximations. The mathematical building

blocks that are described in this thesis may also be useful in the future, as a basis

for new quantile function algorithms. The following outlines the structure of this

thesis and signposts key contributions.

8At the time of writing, GPUs are very much mainstream in investment banks, while FPGAs
are used on a more speculative basis. If a particular bank can compute answers faster or more
accurately than their competitors, the bank generally has the opportunity to make more money.

9Open Computing Language
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Chapter 2: Approximating quantile functions in practice

• Important practicalities for computing quantile functions in general are de-

tailed here. Subsequent chapters will refer back to this content.

• Quantile mechanics [76, 74]—the differential approach to quantile functions—

is introduced and reviewed. This thesis makes heavy use of quantile mechan-

ics.

Chapter 3: Normal distribution

• Existing algorithms for computing the normal quantile function are intro-

duced and evaluated on the GPU.

• A new “hybrid” algorithm is developed, which combines several concepts.

Single- and double-precision CUDA implementations of this algorithm are

shown to be the quickest for computing the normal quantile function on Nvidia

GPUs.

• The hybrid algorithm appears in:

W. T. Shaw, T. Luu, and N. Brickman, Quantile mechanics II: changes

of variables in Monte Carlo methods and GPU-optimised normal quantiles,

European Journal of Applied Mathematics, 25 (2014), pp. 177–212.

– Moreover, the implementation is integrated into the NAG GPU Li-

brary10.

Chapter 4: Gamma distribution

• A method for parallel inversion of the gamma distribution is developed. We

will concentrate on the case of generating large quantities of identically dis-

tributed gamma variates at a time. The output of our algorithm has accuracy

close to a choice of single- or double-precision machine epsilon. We show that

the performance of a CUDA GPU implementation of our algorithm (called

Quantus) is within an order of magnitude of the time to compute the normal

quantile function.

10http://www.nag.co.uk/numeric/GPUs/index
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• The gamma quantile algorithm was published in:

T. Luu, Efficient and accurate parallel inversion of the gamma distribution,

SIAM Journal on Scientific Computing, 37 (2015), pp. C122–C141.

– Also, the algorithm implementation has been added to the NAG GPU

Library.

Chapter 5: Non-central χ2 distribution

• Existing non-central χ2 quantile approximations are known to be deficient

in certain areas of the parameter and variable space. A new analytic ap-

proximation for the quantile function is derived. It is shown to complement

existing approximations very well. Based on this, a hybrid approximation is

formed, which has the virtue of computational simplicity, which is desirable

for parallel work. The approximations typically have an accuracy of around

3–5 significant figures.

– It should be noted that the analytic approximation is now used by Boost

C++ Math Toolkit’s11 and Wolfram Mathematica’s [88] non-central χ2

quantile function implementations.

• A power series solution for the quantile function is developed.

Chapter 6: Skew-normal distribution

• A central power series solution for the skew-normal quantile function is de-

veloped.

• Analytic tail approximations for both tails of the distribution are also found.

• A new numerical algorithm (SNCDFINV) is created, by fusing the afore-

mentioned series solution and tail approximations. While the algorithm does

not completely suppress branch divergence, it works quickly on GPUs. On

average, SNCDFINV yields results that have about four correct significant

figures. We argue that SNCDFINV is superior to Cornish–Fisher approxima-

tions with respect to precision. Our algorithm could also be used as a basis

for more accurate approximations.

11See the Boost 1.55 release notes at http://www.boost.org/users/history/version 1 55 0.html.
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Finally, in Chapter 7, the thesis is drawn to a close. While we will focus on four

distributions, many of the underlying ideas and techniques can be generalised and

extended to other distributions. A number of possibilities for future research direc-

tions are also discussed in the closing chapter.
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Chapter 2

Approximating quantile

functions in practice

Quantile functions that are elementary can be implemented with a few keystrokes

using typical built-in mathematical libraries. For example, the exponential quantile

function could be implemented in C as follows.

double exp_inv(double u, double lambda)

{

return -log1p(-u) / lambda;

}

For the sake of simplicity, it has been assumed that 0 6 u 6 1 and λ > 0. Also, care

has been taken to ensure accuracy for u less than machine epsilon. The C function

log1p(x) computes log(1+x) accurately for small x values. Table 1.1 in Chapter 1

gives other examples of elementary quantile functions. While the Cauchy quantile

function

a+ b tan

[

π

(

u− 1

2

)]

would appear at first glance to be easy to implement, some consideration is required

to ensure that the resulting centre and tail variates are accurate. The following C

code correctly implements the Cauchy quantile function. Again, for the sake of

simplicity, it has been assumed that 0 < u < 1, a ∈ R and b > 0. Infinity should

be returned for u = 0, 1.
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double cauchy_inv(double u, double a, double b)

{

double x;

x = -cospi(u) / sinpi(u); /* x = tan(pi * (u - 0.5)) */

return a + b * x;

}

Firstly, the catastrophic cancellation that would occur when a half is subtracted

from u ≈ 1/2 is dispensed with, and secondly, functions are used that accurately

compute cos(πx) and sin(πx) for x that are multiples of 1/2.1

While elementary quantile functions are simple to implement, non-elementary

quantile functions are a different story. Algorithms for computing these quantile

functions generally use polynomial or rational approximations, or numerical root

finding. The former are usually used for distributions with no shape parameters,

while the latter is commonly used when there are. When root finding is employed,

two key ingredients are required: a formula with good accuracy for the initial

guesses and a sufficiently accurate forward CDF algorithm. Furthermore, both of

these should be computationally efficient. This can be an issue for CDF algorithms,

which are typically relatively slow. General methods for computing CDFs are sur-

veyed in [41, Section 5.2]. An alternative to root finding is the direct approximation

of quantile functions via the ordinary differential equation (ODE) that they satisfy,

which is the approach that this work advocates.

In the remainder of this chapter, we will set the foundation for our work on

efficiently computing non-elementary quantile functions. The content is general

in nature, not overly focusing on any particular distribution—this is remit of the

next four chapters. Chapters 3–6 are devoted to the normal, gamma, non-central χ2

and skew-normal quantile functions. Existing literature for each distribution will be

surveyed in the respective chapters. Since this chapter applies to any distribution,

it should be of value to anyone embarking on the development of quantile function

algorithms. Moreover, many of the ideas in Chapters 3–6 have the potential to be

extended to other distributions.

1At the time of writing, the functions cospi and sinpi are not actually implemented by the
C standard library, even though that they are recommended operators in the IEEE 754-2008
floating-point specification. However, they are both implemented by CUDA, OpenCL and C++
AMP. Furthermore, CUDA has sincospi, while OpenCL and C++ AMP both specify tanpi.
These two functions further simplify the implementation of the Cauchy quantile function.
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2.1 Quantile mechanics

The quantile function can be viewed as a special function in its own right. A lot

of special functions are, of course, solutions to differential equations or integrals.

In [76], quantile functions were characterised by differential equations, and ana-

lytic series expansions of the quantile functions for the normal, Student t, beta

and gamma distributions were derived. We will review the basic ideas of quantile

mechanics now.

Let F : R→ (0, 1) be the CDF of a continuous random variable. By the inverse

function theorem, for 0 < u < 1, the corresponding quantile function q(u) = F−1(u)

must satisfy the ODE
dq(u)

du
=

1

f(q(u))
, (2.1)

where f is the probability density function (PDF) of the random variable. In [76],

(2.1) is called the first order quantile ODE. This ODE was used in [56] to derive

series solutions of the hyperbolic, variance-gamma and generalised inverse Gaussian

quantile functions. The first order quantile ODE can actually be found in [81],

where it is solved numerically for the normal, exponential, Cauchy and gamma

distributions.

Differentiating (2.1) with respect to u results in

d2q

du2
= Hf (q)

(

dq

du

)2

, (2.2)

where

Hf (x) = −
d

dx
log f(x), (2.3)

and the explicit dependence on u is suppressed for brevity. In [76], (2.2) is called

the second order quantile ODE. H(x) is a simple rational function for the Pearson

system of distributions, so series solutions can be found in these cases. Table 2.1

gives H for some commonly used Pearson distributions.

2.1.1 Variate recycling

The idea of using quantile mechanics to convert samples from one distribution to

another was initiated in [74]. Let G be the CDF of an intermediary distribution

and let q be the quantile function of the target distribution (with PDF f). If v is
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Shape parameters f(x) Hf (x) = − d
dx

log f(x)

Exponential N/A e−x 1

Normal N/A 1√
2π

e−
1
2
x2

x

Student t ν 1√
νπ

Γ( ν+1
2 )

Γ( ν
2 )

(

1 + x2

ν

)− ν+1
2 (1+ν)x

ν+x2

Gamma α γ(α,x)
Γ(α)

1+x−α
x

Beta α, β xα−1(1−x)β−1

B(α,β)
α−x(α+β−2)−1

(x−1)x

Table 2.1: The PDF f and H-function of some commonly used Pearson distribu-
tions. Shape parameters can be any positive real number.

a sample from the intermediary distribution,

Q(v) = q(G(v)) (2.4)

maps v to the target distribution. The sample v is recycled into one from the target

distribution. Note that this mapping is monotonic, so if v is generated by inversion

(using G−1), the underlying properties of the uniform variates are preserved. If

Q can be approximated with an approximation that covers a long enough range,

branch divergence will be alleviated. In the interests of speed, G−1 should preferably

be easy to compute.

Let us consider a change of independent variable in the second order quantile

ODE, (2.2). Letting v = G−1(u) and writing Q(v) = q(u), some differentiation and

simplification gives

d2Q

dv2
+Hg(v)

dQ

dv
= Hf (Q)

(

dQ

dv

)2

, (2.5)

where

Hg(x) = −
d

dx
log g(x) (2.6)

with g the PDF of the intermediary distribution. In [74], (2.5) is called the recycling

ODE.

2.2 CDF mechanics

To yield a sufficiently accurate answer, traditional quantile function algorithms

based on root finding usually evaluate the CDF F several times. Suppose the
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successive approximations are

x0, x1, x2, . . . .

Then

F (x0), F (x1), F (x2), . . .

would be computed. The explicit computation of F (x1), F (x2), . . . could be avoided,

by simply calculating the difference between F (xi) and F (xi+1) implicitly. To ease

approximation of this quantity, a change of variable could be used. In a sense,

this is variate recycling but in “reverse”. Taylor polynomials can potentially be

employed to get F (xi+1) from F (xi).

Assuming the initial guess for the quantile x0 is sharp, the corrections δi to the

successive approximations

x0, x1, x2, . . .

will be relatively small and progressively decrease in magnitude. In the second

iteration, after F (x0) is evaluated, F (x1) = F (x0 + δ0) will be required. It seems

wasteful to compute F (x1) afresh, given the relationship between it and F (x0). If we

expand F (x) about x = x0 as a Taylor series, F (x1) can be obtained by substituting

δ0 = x1 − x0 into the expansion, assuming we are inside the radius of convergence.

This process can clearly be repeated to get F (x2), F (x3), . . . implicitly. The use of

Taylor series expansions is especially justified for this purpose since we are working

locally. Alternatively, adaptive numerical integrators such Runge–Kutta–Fehlberg

[26] could be used to go between F (xi) and F (xi+1).

We will now develop an analogue to quantile mechanics. The new machinery

has the potential to assist the approximation of CDFs. Let us reconsider the CDF

F of a continuous random variable. We have, by definition,

dF (x)

dx
= f(x) (2.7)

where, as usual, f is the PDF of the random variable. This ODE can be considered

as the first order CDF ODE.

2.2.1 Reverse variate recycling

Let q be the quantile function of a foreground distribution (with PDF g) and F be

the CDF of the target distribution (with PDF f). If x is a sample from the target
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distribution,

P (x) = q(F (x)) (2.8)

maps x to the foreground distribution. The function q basically acts as a “post

filter”. An application of CDF of the foreground distribution obviously recovers

the CDF of the target distribution. Differentiating (2.8), we have

dP (x)

dx
=

f(x)

g(P (x))
(2.9)

and
d2P

dx2
=

dP

dx

[

Hg(P )
dP

dx
−Hf (x)

]

, (2.10)

the first and second order CDF recycling ODEs.

2.3 Floating-point considerations

Single and double-precision floating-point are the most commonly used data types

for computer simulations. We consider only IEEE single- and double-precision2

floating-point formats in this work, so there are some important simplifications that

can be made when computing q(u). Let us fix some notation. Let, respectively,

ǫs = 2−24 ≈ 5.96 × 10−8,

mins = 2−126 ≈ 1.18 × 10−38,

min′s = 2−149 ≈ 1.40 × 10−45

(2.11)

be machine epsilon, the smallest positive (normal) number, and the smallest positive

subnormal number for IEEE single-precision. Also let

ǫd = 2−53 ≈ 1.11 × 10−16,

mind = 2−1022 ≈ 2.23 × 10−308,

min′d = 2−1074 ≈ 4.94 × 10−324

(2.12)

be the equivalent values for IEEE double-precision. Various schools of thought exist

as to how accurate quantile functions—and random numbers in general—need to

be. Some may take the position that the number of significant figures obtained

2Talking about single-precision may seem quaint. However, single-precision computations are
appreciably faster than double-precision on modern parallel architectures. Single-precision is con-
sequently coming back into fashion.
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is perhaps unimportant, due to the numerous uncertainties elsewhere in problems.

We will instead aim to eliminate as much uncertainty as possible from our numerical

considerations and characterise the associated errors.

2.3.1 Uniform input

Pseudo- and quasi-RNGs work with unsigned integer data types—typically 32- or,

to a lesser extent, 64-bit integers. Most RNGs, therefore, output random inte-

gral values between 0 and either 232 or 264. For example, the Mersenne Twister

MT19937 RNG [52] outputs 32-bit integers. A floating-point multiplication by 2−32

or 2−64 gives a random uniform number between 0 and 1 that can be fed into q(u).

Since we are focusing on simulation applications, we will assume a 32- or 64-

bit RNG is the source of randomness for non-uniform variate generation. The

smallest (non-zero) uniform number we encounter is thus 2−32 ≈ 2.33 × 10−10 or

2−64 ≈ 5.42 × 10−20. It should be noted that these numbers are larger than both

mins and mind. The largest uniform number (excluding 1) produced by a 32- and

64-bit RNG is 1− 2−32 and 1− 2−64 respectively. However, machine precision can

affect these limits. If single-precision numbers are sought, the largest number will

be limited to 1 − ǫs in either case. If double-precision numbers are requested, the

largest number will be 1− 2−32 or 1− ǫd depending on the RNG.

2.3.2 Non-uniform output

On the other side of the coin, there are occasions where the true result of q(u) is

outside the range of representable floating-point numbers. The most obvious case

is overflow. Here it is logical to return infinity. The other case, which is not so

clear-cut, is what to do in the event of gradual underflow. Can we simply ignore

this and return zero, or should we return a subnormal number that will be imprecise

to some degree?

For example, gradual underflow might occur for the gamma distribution with a

very small shape parameter α. Let us consider the case of α = 1/100. Figure 2.1

shows the gamma quantile function for this particular α. The gamma quantile at

u = 37/100 is 3.741497614 × 10−44 to ten significant figures. This value is less

than mins, but greater than min′s. Therefore, the gamma quantile at u = 37/100

cannot be fully represented in single-precision. The nearest subnormal number is

3.783506 × 10−44, which has a relative error of 0.0112277. This begs the question

of how to measure the accuracy of a subnormal result.
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Figure 2.1: The gamma quantile function for α = 1/100.

The finite range of floating-point numbers means that the uniform input range

of concern to us can sometimes be shorter than usual. For example, if α = 1/100,

the gamma CDF
1

Γ(α)

∫ x

0
tα−1e−t dt

evaluated at x = min′s is 0.3580441447 to ten significant figures, so zero can (and

should) be returned for all u less than this value when working in single-precision.

2.4 Target computer architecture

For an algorithm to be of any value it arguably has to eventually run on a computer

for some greater good. While there can be advantages during algorithm design in

not making any assumptions on the target computer, e.g. future applicability, a

balance has to be struck. For instance, the IEEE floating-point number format

has been—and almost certainly for the foreseeable future is—the prevailing data

type for real numbers on computers, so the assumption of exact real numbers is

impractical, to say the least. It would also be remiss not to consider trends in

computer architecture.

Many-core parallel architectures are a growing trend that is especially pertinent

to computer simulations. Accounting for this during the design of quantile function

algorithms is, therefore, a relatively sound assumption to make. The upside of this

is that the algorithm running times should be reduced on these parallel computers.
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Where possible, our quantile function algorithms will address the issue of branch

divergence.

2.5 Evaluation and validation

This section details how we will evaluate the speed and precision of our quantile

function algorithms.

2.5.1 Speed

We will consider only the timing of code directly related to computation of quantile

functions. Anything else, such as uniform random number generation, is not our

concern.

The speed of our algorithms will be evaluated by generating 107 random inputs

and measuring the time to apply the quantile function to them. This experiment

will be repeated, with fresh random numbers, 100 times to get an average. Nvidia’s

CUDA Random Number Generation library [61] will be used to generate the uni-

formly distributed random numbers. The numbers will be pseudo-random and gen-

erated by MRG32k3a [46], and 19,532 blocks of 512 threads will be used, with each

thread processing a single uniform input. Our algorithms will be accurately timed

using CUDA events as per the CUDA C Programming Guide [59, Section 3.2.5.6.].

2.5.2 Precision

There are several error measures we could use. However, since we are working with

floating-point numbers, it makes sense to restrict our attention to relative error

measures. The most obvious relative error measure is probably

E1 = max
u

∣

∣

∣

∣

q̃(u)

q(u)
− 1

∣

∣

∣

∣

, (2.13)

where u is a uniform input and q̃(u) denotes the approximation of q(u). This is

a forward relative error measure. If q̃(u) and q(u) are both ∞, then this measure

is taken as zero. This is the same if q̃(u) and q(u) are both less than mins or

mind (effectively regarding all subnormal numbers as zero). We also consider the

“roundtrip”/backward relative error measure

E2 = max
u

∣

∣

∣

∣

F (q̃(u))

u
− 1

∣

∣

∣

∣

, (2.14)
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which we define as zero if u is less than F (mins) or F (mind) and q̃(u) is less than

either mins or mind.

The error measure E2 is arguably more independent than E1, because it does

not depend on another algorithm and implementation of q(u). For well-trodden

quantile functions, this is less of an issue. However, for distributions that have little

or no existing quantile function algorithms, E2 should be the first port of call. As a

last resort, assuming that the PDF can be evaluated, standard quadrature methods

can be used to compute F . If the density of the distribution is not mathematically

expressible, which is the case for the CGMY3 [18] and stable distributions (see,

e.g., [58]), another route must be found. If the characteristic function is available,

an inverse Fourier transformation yields the PDF. Alternatively, a direct path from

the characteristic function to the quantile function could be used [75].

The smallest possible relative error achievable is dependent on machine epsilon.

It should be noted that machine epsilon accuracy is usually overkill in practical

simulation applications. For example, extreme accuracy can be traded off against

computational speed in many Monte Carlo applications in finance.4

3Carr–Geman–Madan–Yor
4Senior quantitative analyst at a Tier 1 investment bank, private communication.
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Chapter 3

Normal distribution

The normal (Gaussian) PDF is

fµ,σ(x) =
1

σ
√
2π

e−
(x−µ)2

2σ2 , (3.1)

where µ ∈ R is the mean parameter and σ ∈ R>0 is the standard deviation param-

eter. If Z ∼ N(0, 1) then σZ + µ ∼ N(µ, σ). Without loss of generality we can set

µ = 0 and σ = 1, which leads to the standard normal distribution. We will thus

take the normal PDF to be the familiar

φ(x) =
1√
2π

e−
1
2
x2
. (3.2)

Figure 3.1 shows the normal PDF. By definition, the normal CDF is

Φ(x) =
1√
2π

∫ x

−∞
e−

1
2
t2 dt (3.3)

=
1

2

[

1 + erf

(

x√
2

)]

(3.4)

=
1

2
erfc

(

− x√
2

)

, (3.5)

where erf(x) is the error function and erfc(x) = 1 − erf(x) is the complementary

error function. The normal quantile function is therefore

Φ−1(u) =
√
2 erf−1(2u− 1) (3.6)

= −
√
2 erfc−1(2u). (3.7)
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Figure 3.1: The normal PDF φ.

The log-normal (see, e.g., [38, Chapter 14]) and Johnson system [37] of distributions

are related to the normal distribution. The quantile function of these distributions

can be obtained by algebraic transformations of Φ−1(u), e.g. the log-normal quan-

tile of u is exp(µ+ σΦ−1(u)). Tractable skewed variants of the normal distribution

can be obtained simply, by the quadratic transformations given in [72]. Azzalini’s

skewed normal distribution, which seems to have been adopted as the definitive

skew-normal distribution, is treated in Chapter 6.

For some time, the venerable Box–Muller method [15]—or the polar variant

[50] of it—was the default choice for generating normal variates, because it is very

computationally efficient. However, nowadays, inversion of the normal CDF is

often required when producing normal variates. Modern simulation methods such

as quasi-Monte Carlo and copula methods call for direct inversion of CDFs (see

Chapter 1 and, e.g., [31, 47, 43]). The normal quantile function is a standard

inclusion in most numerical libraries, including Intel’s Math Kernel Library (MKL),

NAG’s numerical libraries, Boost’s C++ Math Toolkit, and Nvidia’s CUDA Math

Library. Standalone open-source implementations of Φ−1 are also freely available

(e.g., [83] or [2]).1 The normal distribution does not possess a shape parameter.

This means that a one-off polynomial or rational minimax approximation can be

1The normal quantile function Φ−1(u) is often given in the form
√
2 erf−1(2u − 1). It should

be noted that direct implementation of this, using the inverse error function, will result in loss of
precision for small u. One should instead use the equivalent form −

√
2 erfc−1(2u) or an algorithm

specially designed for computing Φ−1. This matter is explained in more detail in Section 3.1.
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constructed and verified offline, so most library and standalone implementations of

Φ−1 use such approximations.

3.1 Existing methods

There are several well-known approximations for Φ−1. They all use a rational ap-

proximation for u ∈ [0+b, 1−b], where b > 0 is the tail breakpoint. The other values

in (0, 1) are covered by at least one additional polynomial or rational approxima-

tion, which are in terms of a computationally expensive change of variable. The

reason for this two-pronged approach is because Φ−1 has rather a split personality.

It is slowly varying in the central region where u is between about 0.1 and 0.9, and

then diverges to infinity as u → 0+ or u → 1−. This is shown in Figure 3.2. The

values of b for existing algorithms are as follows:

• b = 0.08 for Moro [55],

• b = 0.075 for Wichura (Algorithm AS 241) [83],

• b = 0.02425 for Acklam [2].

The two-pronged approach is absolutely fine for CPUs, where branch prediction

means that virtually no performance penalty is incurred for branching. Things

are quite different for GPUs, which are sensitive to branching. Suppose Wichura’s

algorithm is run on a Nvidia Fermi or Kepler GPU. Threads on such a GPU execute

in groups of 32. Nvidia call these groups warps. Assuming uniformly distributed

input, the probability that all threads in a warp use the central approximation is

0.8532 ≈ 0.006. The equivalent probability for the tail approximation is negligible,

so there is a 99% likelihood of branch divergence occurring. When this happens each

thread is forced to compute both the central and tail rational approximations, along

with a logarithm and square root. A similar calculation shows that with Acklam’s

algorithm there is a 80% probability of branch divergence. Branch divergence will

be minimised if b for a particular approximation is sufficiently small.

New approximations of special functions that deliberately address branch diver-

gence on GPUs can be found in the literature. An earlier version of this study, [71],

first gave branch-free approximations for Φ−1. M. Giles has given single and double-

precision approximations for erf−1 [30] and advocates its use for computing Φ−1

[30, p. 1]. The inverse error function can be found in the Intel Math Kernel Library

(MKL) and the Nvidia CUDA Math Library, implemented as erfinv. However,
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Figure 3.2: The normal quantile function Φ−1.

both libraries also provide the inverse complementary error function erfcinv, for

good reason. What is the point of erfcinv, since erfc−1(x) = erf−1(1 − x)? Sup-

pose Φ−1(u) is implemented in the form
√
2 erf−1(2u−1). Working in floating-point

arithmetic, if u is less than machine epsilon, then 2u − 1 = −1, so erf−1(2u − 1)

will be evaluated as −∞ instead of a finite negative value. For u slightly larger

than machine epsilon, there will be a partial loss of precision, because the density

of floating-point numbers is far less around −1 than zero. One should instead im-

plement Φ−1(u) in the form −
√
2 erfc−1(2u) to maintain precision for low u, even

though it is generally slower than erfinv. CUDA 5.0 onwards includes the normal

quantile function normcdfinv, which is indeed based on erfcinv.

Wichura’s and Acklam’s algorithms for computing Φ−1 will now be analysed

in detail. The Beasley–Springer–Moro algorithm will also be examined. All three

algorithms actually share the same DNA, but Wichura’s is slightly more evolved.

3.1.1 Wichura’s algorithm AS 241

Wichura published an algorithm for Φ−1 in 1988 and it is currently used in R and

the NAG Library. Wichura gave two versions of his algorithm in [83]: PPND7,

accurate to around seven significant figures; and PPND16, accurate to around 16

significant figures. These map very nicely to single and double-precision floating-

point implementations. Algorithm 1 gives the pseudocode for Wichura’s algorithm.
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R1(t) is a rational minimax approximation to

Algorithm 1 Wichura’s algorithm (PPND)

Input: u ∈ (0, 1)
Output: Φ−1(u)

if |u− 0.5| 6 0.425 then

return (u− 0.5)R1((u− 0.5)2) ⊲ R1(t) ≈ Φ−1(0.5+
√
t)√

t
else

r =
√

− log[min(u, 1− u)]
if r 6 5 then

return sgn(u− 0.5)R2(r) ⊲ R2(t) ≈ −Φ−1(exp(−t2))
else

return sgn(u− 0.5)R3(r) ⊲ R3(t) ≈ −Φ−1(exp(−t2))
end if

end if

Φ−1(0.5 +
√
t)√

t
(3.8)

over 0 6 t 6 0.4252. Figure 3.3 shows that this expression is relatively simple

for the relevant range. Indeed PPND7 uses a rational approximation of degree 3,

while one of degree 7 is used by PPND16. R2(t) and R3(t) are rational minimax

approximations to

− Φ−1(exp(−t2)) (3.9)

for 1.6 6 t 6 5 and 5 6 t 6 27 respectively. Figure 3.3 shows that this expression

is virtually linear. The ranges correspond to exp(−272) 6 u 6 exp(−52) and

exp(−52) 6 u 6 exp(−1.62). Note that exp(−272) ≈ 2.51 × 10−317 < mind, the

smallest normal positive double-precision floating-point number. PPND7 uses a

rational approximation of degree (3, 2) for R2 and R3, while a pair of degree 7 are

used by PPND16. All of the polynomial coefficients that Wichura’s algorithm uses

are positive, which is good for numerical stability.

3.1.2 Acklam’s algorithm

Acklam’s algorithm [2], which was first published on the Web in 2003, is another

respected approximation and is recommended by Jäckel in [36]. Acklam took a

slightly different approach to Wichura. Like Wichura’s algorithm, Acklam’s one

uses a rational minimax approximation for a central region. While Wichura uses
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Figure 3.3: Plot of Φ−1(0.5+
√
t)/
√
t for 0 6 t 6 0.4252 (left) and −Φ−1(exp(−t2))

for 1.6 6 t 6 27 (right).

two rational approximations for the tail, Acklam only uses one. Algorithm 2 gives

the pseudocode for Acklam’s algorithm. R1 is same as Wichura’s but of degree 5

Algorithm 2 Acklam’s algorithm

Input: u ∈ (0, 1)
Output: Φ−1(u)

if |u− 0.5| 6 0.47575 then

return (u− 0.5)R1((u− 0.5)2) ⊲ R1(t) ≈ Φ−1(0.5+
√
t)√

t
else

q =
√

−2 log[min(u, 1− u)]
return sgn(u− 0.5)R′

2(q) ⊲ R′
2(t) ≈ −Φ−1(exp(−t2/2))

end if

and over 0 6 t 6 0.475752. R′
2(t) is a rational approximation to

− Φ−1(exp(−t2/2)) (3.10)

of degree (5, 4). This approximation covers 2−1073 6 u 6 0.02425. Acklam’s poly-

nomial coefficients are a mixture of positive and negative ones. The degrees of the

rational approximations used by Acklam suggest an accuracy between Wichura’s 7

and 16 significant figures. Acklam quotes that the relative error of his approxima-

tions is at most 1.15 × 10−9 in magnitude. This has been independently verified

in [70] and observed by a number of people who have also implemented Acklam’s

algorithm. Moreover, Acklam gives a way to refine initial approximations to full

machine precision. It involves a single iteration of Halley’s rational method, so

assumes access to a sufficiently accurate Φ or erfc library function. In [70], Shaw

observed that the use of Halley’s method actually gave no improvement over a
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Newton based refinement.

3.1.3 Beasley–Springer–Moro algorithm

The Beasley–Springer–Moro algorithm [55] is sometimes suggested for approxi-

mating Φ−1 (see, e.g., [31]). Moro’s algorithm is a modification to Beasley and

Springer’s one from [9], improving the accuracy in the tails. Algorithm 3 gives the

pseudocode for the Beasley–Springer–Moro algorithm. R1 is the same as Wichura’s

Algorithm 3 Beasley–Springer–Moro algorithm

Input: u ∈ (0, 1)
Output: Φ−1(u)

if |u− 0.5| 6 0.42 then

return (u− 0.5)R1((u− 0.5)2) ⊲ R1(t) ≈ Φ−1(0.5+
√
t)√

t
else

r = log(− log[min(u, 1− u)])
return sgn(u− 0.5)R′′

2(r) ⊲ R′′
2(t) ≈ −Φ−1(exp(− exp(t)))

end if

but of degree (3, 4) and over 0 6 t 6 0.422. R′′
2(t) is a polynomial approximation

to

− Φ−1(exp(− exp(t))) (3.11)

of degree 8. In Beasley and Springer’s original algorithm, if |u − 0.5| > 0.42,

r =
√

− log[min(u, 1− u)] is computed and then a rational approximation to

− Φ−1(exp(−r2)) (3.12)

of degree (3, 2) is used. Unfortunately, both algorithms are optimised for absolute

error. Moro’s algorithm is not accurate enough for full double-precision calculations.

It is also not quite sufficient for full single-precision. Beasley and Springer published

their algorithm in 1977, nearly a decade before Wichura. (Wichura did reference

the 1977 paper.)

3.1.4 Shaw’s branch-free algorithm for GPUs

A branch-free algorithm for the normal quantile function was given by Shaw in [71].

A change of variable means that only one rational approximation appears in the

algorithm. Let us consider

v = − log[2(1 − u)] (3.13)
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for 1/2 < u < 1. This is the quantile of the Laplace double-exponential distribution

for 1/2 < u < 1. The mapping

Q(v) = Φ−1
(

1− e−v/2
)

(3.14)

transforms positive double-exponential variates to normal ones. Odd symmetry of

Φ−1(u) allows 0 < u 6 1/2 to be managed simply. Figure 3.4 shows a plot of Q(v)

for 0 6 v 6 44. This range is equivalent to 0.5 6 u 6 1−e−44/2 ≈ 1−3.89×10−20. A

single minimax rational approximation to Q suitable for single and double-precision

Monte Carlo was generated in Mathematica 8 [86]. The single-precision rational

approximation is of degree 6, while the double-precision one has degree 13. Both

rational approximations are over 0 6 v 6 22, reaching u = 2−32. A branch-free

normal quantile function approximation based on Φ−1(u) = sgn(u − 1/2) × Q(v)

where

v =







− log(2u) if 0 < u 6 1/2

− log(2(1 − u)) if 1/2 < u < 1
(3.15)

was implemented in CUDA. For clarity, Algorithm 4 gives the pseudocode for this.

Note that only one log is used in this solution. Code implementing this is given

Algorithm 4 Shaw’s branch-free algorithm

Input: u ∈ (0, 1)
Output: Φ−1(u)

if u > 1
2 then

u← 1− u
end if

v ← − log(2u) ⊲ double-sided exponential quantile
return sgn

(

u− 1
2

)

Q(v) ⊲ Q rational approximation

in CUDA device function form in Appendix B.1. Like Wichura’s algorithm, all of

the coefficients that appear in Shaw’s algorithm are positive.

The CUDA implementation of Shaw’s algorithm was significantly faster on the

GPU than any other algorithm at its time of creation, in both single- and double-

precision. This included an implementation based on Nvidia’s built-in erfc−1 func-

tion, erfcinv, which was around three times slower. CUDA was at version 4.0 at

the time. Nvidia’s erfcinv(x) function in CUDA 4.0 returns: erfinv(1 − x) for

x > 0.0625; and the result of a rational approximation in terms of [− log(x)]−1/2

for other positive x (based on [12]). A pre-print [73] demonstrating the superiority
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Figure 3.4: The exponential to normal transformation Q(v) = Φ−1
(

1− e−v

2

)

for

0 6 v 6 44.

of Shaw’s algorithm was made available to Nvidia and by CUDA 5.5, the perfor-

mance of Nvidia’s erfc−1 function had somehow caught up with Shaw’s algorithm.

In response, this author blended two concepts to create an even faster algorithm.

3.2 Ideas for faster performance

We will now give details of ideas to accelerate normal quantile computation. The

branch-free solution for the normal quantile function by Shaw was used as a starting

point. In this section we will see the effect of applying Giles’ low-probability branch

divergence idea and ideas by this author. We will see novel use of rsqrt (reciprocal

square root) and warp vote functions, combined with Giles’ idea, to create the

fastest known GPU normal quantile function implementation.

3.2.1 Low-probability branch divergence

Giles’ [30] approach to approximating erf−1 is based on a branching formula with

a low branch divergence probability. Nvidia’s built-in CUDA inverse error function

is modelled on Giles’ version because of this. Despite the shortcomings of Giles’

erf−1 algorithm for computing the normal quantile function, the idea of allowing

one or more “edge case” branches, which are seldom expected to be evaluated, is
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an interesting one. A single, main branch can then be optimised to service the

majority of cases. Suppose the probability that any group of threads executing

in lockstep all take a common branch is, say, 0.999. Then on a CUDA GPU the

probability of warp divergence not occuring is 0.99932 ≈ 0.968. This level branch

divergence can usually be tolerated. This, of course, has to be balanced with the

computational costs of each branch. A disadvantage of this low-probability branch

divergence scheme is that portability (between different GPU vendors) and future

proofness (Nvidia may increase the size of a warp) is somewhat sacrificed.

Shaw’s branch-free solution uses a single rational approximation over the in-

terval of interest. It covers 2−32 6 u 6 1 by transforming two-sided exponential

variates in the range [−22, 22]. The single-precision version uses a rational approxi-

mation of degree 6, while the double-precision one has degree 13. Most exponential

variates will be in a much shorter range, most of the time; (−8, 8), for example,

covers e−8/2 < u < 1 − e−8/2 ≈ 0.999832. Bearing in mind, because of symme-

try, only [0, 22] has to be considered, a shorter rational approximation can cover

[0, 8) and another can manage [8, 22]. Of course, this does introduce the pos-

sibility of branch divergence, but the probability is relatively small—most input

will still be handled by the same rational approximation, most of the time. On

a CUDA GPU with a warp size of 32, the probability of not diverging is about

0.99983232 ≈ 0.994647. Even branching at v = 6 results in an acceptable level of

branch divergence: 0.038908.

A single-precision rational approximation of degree (4, 5) was found for [0, 7]

and one of degree (3, 4) to cover [7, 22]. Using these in a branched approximation

scheme actually had a slight adverse effect on speed. It turned out that the overhead

of simply evaluating an if statement negated the advantage gained by splitting

[0, 22]. (Other sensible splits were tested.) However, branching allows us to cover

the deep lower tail without compromising performance significantly. The smallest

normal positive single-precision value is mins ≈ 1.18 × 10−38, which requires an

approximation over [0, 87] since e−87/2 ≈ 8.23 × 10−39. A single-precision rational

approximation of degree (3, 4) was found for [22, 87]. Appendix B.2 gives the CUDA

implementation of the branched algorithm for single-precision.

A double-precision rational approximation of degree 10 was found for [0, 8] and

one of degree (6, 7) to cover [8, 22]. The smallest normal double-precision value is

mind ≈ 2.23×10−308, which requires an approximation over [0, 708] since e−708/2 ≈
1.65 × 10−308. A rational approximation of degree 6 was found for [22, 44]. Up to

v = 44 covers 64-bit RNGs (2−64 ≈ 5.42 × 10−20 and e−44/2 ≈ 3.89 × 10−20). Up
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to v = 708 is possible with several approximations, but delegating to the Nvidia

algorithm turned out to be better for 44 6 v 6 708. Appendix B.3 gives the CUDA

implementation of the branched algorithm for double-precision.

3.2.2 Student t distribution inspired variate recycling

The branch-free solution for the normal quantile function takes a uniform variate,

transforms it into a two-sided exponential variate by inversion using (3.15), and

uses a rational approximation to convert it to a normal variate. An analysis of

the CUDA implementation found that the call to log dominates the running time.

This lead to alternative intermediary distributions to be considered. Given the

relationship the t-distribution has with the normal distribution, it is a natural

candidate. Obviously, a t-distribution with a large degree of freedom is preferable,

but its quantile function has to be efficient to compute. Closed-form expressions

of this for degrees of freedom ν = 1, 2, 4 are known (see, e.g. [69]). The quantile

function of the t-distribution with two degrees of freedom

2u− 1
√

2u(1− u)
(3.16)

is exceedingly simple, involving no transcendental functions. An added bonus is

that the quantile function involves the reciprocal of the square root. This is very

pertinent. The primary function of GPUs is the swift manipulation of computer

graphics. Real-time lighting effects are commonplace in video games, requiring the

normalisation of millions of vectors per second by their Euclidean norm. GPUs are

therefore very fast at computing the reciprocal (inverse) square root, i.e. x−
1
2 . Most

math libraries, including the CUDA one [60], have a rsqrt(x) function. In fact,

on Nvidia GPUs,
√
x is implemented by taking the reciprocal of rsqrt(x). Since

the t-distribution with ν = 2 is one of the fattest tailed members of the family, we

should not expect the penetration of the tails of the normal distribution to be easy

(cf. using an exponential intermediary distribution).

For even more efficient normal quantile function computation, let us consider

a rescaling. Let t2 be the t-distribution with location µ = 0, scale σ = 1√
2
and

degrees of freedom ν = 2. The quantile function of this distribution is simply

u− 1
2

√

u(1− u)
. (3.17)
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Figure 3.5: The t2 to normal transformation Qt(v) = Φ−1
[

1
2

(

1 + v√
1+v2

)]

for

0 6 v 6 20.

If v is a sample from the distribution,

Qt(v) = Φ−1

[

1

2

(

1 +
v√

1 + v2

)]

(3.18)

maps v to the normal distribution. Figure 3.5 shows a plot of Qt(v) for 0 6 v 6 20.

As expected, the reach of the t2 distribution into the normal tail is nothing to

write home about. However, Qt(15.5) ≈ 3.07933, for which u ≈ 0.998963, giving a

low branch divergence probability. Branch divergence would still be relatively low.

The remaining can be managed by the improved exponential transform machinery.

The result is a hybrid algorithm. For double-precision, a rational approximation of

degree (14, 15) for Qt(v) was found for 0 6 v 6 15.5.

We can actually do better and make more economical approximations. Let us

consider

Ψ(u) =
Φ−1(u)

u− 1
2

. (3.19)

Let v = q̃(u), where q̃ is any invertible function and write

Q̃(v) = Ψ(q̃−1(v)) = Ψ(u). (3.20)
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Figure 3.6: The Q̃ transformation on [1, 22].

If

q̃(u) =
1

2
√

u(1− u)
(3.21)

then

q̃−1(v) =
1

2

(

1 +

√

1− 1

v2

)

(3.22)

for u > 1/2. The function Q̃(v) is slightly easier to approximate than Qt(v), as

shown in Figure 3.6. For single-precision, a rational approximation of degree 5 for

Q̃(v) was found for 1 6 v 6 21. For double-precision, a rational approximation

of degree 11 was found for 1 6 v 6 22. These ranges are very good, providing

lower probabilities of branch divergence, since q̃−1(21) ≈ 0.999433 and q̃−1(22) ≈
0.999483. The aforementioned change of variable will be referred to as t̃2 henceforth.

Hybrid approximation for single-precision

Algorithm 5 gives the pseudocode for our new normal quantile algorithm based on

an hybrid approximation, which uses the t̃2 and exponential changes of variable.

Appendix B.4 gives the single-precision CUDA implementation of this.

The single-precision branch-free and branched implementations could not use

CUDA’s fast, intrinsic logf function, because it results in poor relative error near

u = 0.5. There were no such problems elsewhere, around zero and one in particular.
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Algorithm 5 Hybrid approximation of the normal quantile for single-precision

Input: u ∈ (0, 1)
Output: Φ−1(u)

v ← 1
2

√

u(1− u)
−1

⊲ q̃(u)
if v 6 21 then ⊲ v > 21 cannot be handled

return
(

u− 1
2

)

Q̃(v) ⊲ Q̃ rational approximation
else

if u > 1
2 then

u← 1− u
end if

v ← − log(2u) ⊲ double-sided exponential quantile
return sgn

(

u− 1
2

)

Q(v) ⊲ Q rational approximation
end if

A side benefit of recycling t̃2 variates is that the intrinsic function can be used in

the hybrid implementation.

Hybrid approximation for double-precision

All CUDA-enabled GPUs that support double-precision floating-point numbers also

allow the threads within a warp to cooperate. Specifically, the 32 threads in a

warp can take a binary vote (see [59, Section B. 13.]). In this scheme, each thread

simultaneously casts their yes/no (true/false) vote and then is notified of everyone

else’s vote. The threads can alternatively receive a summary of the votes in the

form of logical AND or inclusive OR of them.

This warp voting functionality can be exploited in the hybrid solution to further

alleviate branch divergence. We have the fast t̃2 transformation that is suitable for

most warps for most of the time. We also have the comparatively slow exponential

transformation that is suitable for all warps. In the (rare) event of a thread in a

warp needing to use this transformation because the t̃2 transformation is unsuitable,

branch divergence occurs, which means that two sets of quantile and rational func-

tions are computed. Only one set per warp is actually required: if any of the threads

in the warp strictly needs to use the exponential transformation, force every other

thread to also use the transformation (irrespective of their t̃2 eligibility); otherwise,

all of the threads can just use the t̃2 transformation. This all-or-nothing strategy

can be implemented using warp voting. The relevant CUDA code is all(v < X),

where X is upper limit of the t̃2 range, i.e. 21 or 22 depending on single or double-

precision. The all function here returns true if and only if all v in the warp are
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less than X. The threads in a warp are executing in lockstep anyway, so there are

no synchronisation issues when taking a warp vote. The equivalent of CUDA warp

voting is described in the OpenCL 2.0 specification.

The pseudocode for our double-precision hybrid normal quantile algorithm is

essentially the same as Algorithm 5, but ‘v 6 21’ is substituted for ‘all v in the

warp are 6 22’. Appendix B.5 gives the CUDA implementation of this.

3.3 Performance and accuracy on the GPU

We benchmarked the GPU performance of the new algorithms against the well-

established candidates. This was done in accordance with Section 2.5. We also

considered the optimised normal quantile function in Nvidia’s CUDA Math Library,

normcdfinv. Both single and double-precision variants of each algorithm were

evaluated where possible. Unlike Wichura, neither Moro nor Acklam give single-

precision coefficients for their approximations, so they only feature in our double-

precision tests.

Faithful CUDA GPU implementations of the algorithms were written by this

author. Wichura’s original Fortran implementation of his algorithm was ported to

CUDA. The implementation of Acklam’s algorithm was based on the pseudocode

on his website. CUDA’s built-in erfc function was used for the Halley refinement

suggested by Acklam. Moro’s algorithm was implemented using the pseudocode

in [31]. All of the code written was optimised as far as possible for the GPU

architecture, e.g. divisions were factored out of conditional statements.

The performance of the algorithms was evaluated on three high-end Nvidia

GPUs:

• GeForce GTX Titan;

• Tesla K80;

• Tesla C2050.

The C2050 is based on Nvidia’s previous generation Fermi architecture, while the

other two are Kepler GPUs. We used CUDA 7.0 software, the most recent produc-

tion release at the time of writing.
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Figure 3.7: Lower tail |Φapprox(u)/Φ(u)−1| log-log plots for single-precision CUDA
versions of Wichura, Nvidia and the branch-free and branched solutions.

3.3.1 Precision

Mathematica 8 [86] was used by this author to benchmark the accuracy of the algo-

rithms, because it has the built-in capability to run user-defined CUDA functions

on the GPU. A reference based on Mathematica’s arbitrary-precision InverseErfc

function was used. Random numbers were again generated on the GPU’s mem-

ory by Nvidia’s CUDA Random Number Generation library [61]. These were then

copied to Mathematica for the computation of reference output. Each algorithm

was then ran and their output was compared with the reference. Figures 3.7 and

3.8 show the accuracy of the algorithms for the lower tail. The plots in this section

show log10 |approx/exact − 1| as a function of log10(u). Shaw’s branch-free formula

preserves a precision better than 4.1 × 10−7 down to about u = 10−10.

Figure 3.9 shows our single-precision hybrid approximation maintains accuracy
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Double-precision
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Figure 3.8: Lower tail |Φapprox(u)/Φ(u)−1| log-log plots for double-precision CUDA
versions of Moro, Wichura, Acklam (unrefined), Acklam (refined), Nvidia, and the
branched solution.
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Table 3.1: Percentage difference of the time taken for each single-precision algo-
rithm, relative to Nvidia’s built-in normcdfinv function, to compute the normal
quantile for 1 billion pseudo-random uniform variates on the test Nvidia GPUs.
(Lower is better.)

Single-precision algorithm GTX Titan K80 C2050

Wichura +19.36 +32.29 +33.53

Branch-free +11.10 +17.49 +18.06

Branched +16.09 +24.75 +23.54

Hybrid −4.90 −5.17 −2.51

Table 3.2: Percentage difference of the time taken for each double-precision algo-
rithm, relative to Nvidia’s built-in normcdfinv function, to compute the normal
quantile for 1 billion pseudo-random uniform variates on the test Nvidia GPUs.
(Lower is better.)

Double-precision algorithm GTX Titan K80 C2050

Moro +52.23 +67.58 +70.82

Wichura +43.71 +54.12 +56.83

Acklam (unrefined) +11.46 +25.91 +27.87

Acklam (refined) +244.12 +241.27 +248.22

Branched +13.20 +27.74 +29.75

Hybrid −27.24 −4.27 −5.01

right down to the smallest non-zero input. Extensive tests suggest its relative error

peaks at about 3.91× 10−7. Figure 3.10 shows the left-tail outcome for the double-

precision hybrid approximation. This confirms that double-precision is realised

consistently throughout the region of interest. Between 2−32 and 1, the hybrid

approximation’s peak relative error is about 8.58 × 10−16.

3.3.2 Speed

The timings for single-precision are given in Table 3.1. The hybrid algorithm is

the fastest, having a slight edge over Nvidia. The branch-free method comes third

behind the hybrid and Nvidia algorithms, but has the merit of robustness with

respect to any future increase in the number of threads per warp. It may also be

of value for other vector/parallel architectures such as Intel’s Xeon Phi.

The timings for double-precision, reported in Table 3.2, are very interesting.
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Figure 3.9: Precision of the single-precision hybrid approximation in the left tail.
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Figure 3.10: Precision of the double-precision hybrid approximation in the left tail.
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The use of the t̃2 distribution as an intermediate distribution results in a clear

win for this method on performance grounds, and given that it also provides clear

double-precision accuracy over the range of interest for Monte Carlo work, we argue

that it is a good candidate for the preferred method on GPUs. The advantage arises

from the relatively fast speed of the inverse square root operation compared to the

logarithm in double-precision on Nvidia GPUs. We do not quite know why the

difference for the GTX Titan time is markedly exaggerated. We also noticed the

effect on a GeForce GTX 480 card. The GTX GPUs are consumer-level products

(aimed at gamers), whereas the Tesla K80 and C2050 cards are both primarily

designed for high-performance computing. Tesla GPUs have first-class support for

double-precision computations, so this may be the reason.

It should be noted that Nvidia’s built-in normcdfinv function makes use of

tailored implementations of mathematical functions. These implementations only

consider the input range of relevance. For example, where a generic log could

be used, instead there is a stripped down version of log that does not support

special cases such as infinity and NaN2 values, which would cause overheads and

are unneeded in the context of normcdfinv. Our implementations of Φ−1 only use

standard functions from [60]. The timings in Tables 3.1 and 3.2 could, therefore,

be improved.

3.4 Commentary

We have described a new algorithm for computing the normal quantile function on

GPUs. The normal distribution is almost unique from our perspective in that its

quantile function is not elementary, yet there are no shape parameters to be con-

cerned of. This means that rational minimax approximations are a viable solution

with very little downside.

As we will see in the next three chapters, the presence of a shape parameter in

a distribution complicates quantile function approximation considerably.

2Not a Number
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Chapter 4

Gamma distribution

The gamma distribution is used in physical and financial modelling. Rainfall [35]

and insurance claims [13, p. 43] are two examples. Let

Fα(x) =
1

Γ(α)

∫ x

0
tα−1e−t dt =

γ(α, x)

Γ(α)
(4.1)

be the CDF of the gamma distribution with shape parameter α > 0 and unit scale

parameter.1 Now let qα = F−1
α be the functional inverse of the gamma CDF.

The gamma quantile function qα clearly does not have a closed-form expression, so

numerical methods must be used to compute it. The derivative of Fα, the gamma

PDF

fα(x) =
d

dx
Fα(x) =

xα−1e−x

Γ(α)
, (4.2)

becomes very small in the right tail. This makes root finding in this region prob-

lematic. Figure 4.1 shows the gamma PDF fα for various α.

The normal distribution can be sampled via the Box–Muller transformation,

but there is no known equivalent for sampling the gamma distribution. However,

a simple and efficient rejection-based algorithm for generating gamma variates is

given by Marsaglia and Tsang in [51]. Changing the value of α does not have a

significant effect on the computational complexity of this algorithm, which is a de-

sirable feature. Moreover, only one normal and one uniform variate are required per

gamma variate. If the generation of gamma variates via inversion is not required,

then Marsaglia and Tsang’s algorithm should be considered.

1The gamma distribution has a scale parameter β > 0, such that if X ∼ Γ(α, 1), then βX ∼
Γ(α, β). The gamma CDF with general scale parameter is as per (4.1) but x is replaced with x/β.
We can thus always assume β = 1.
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Figure 4.1: The gamma PDF fα(x) for various α.
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A method for parallel inversion of the gamma distribution is described in this

chapter. This is very desirable for random number generation in Monte Carlo sim-

ulations where gamma variates are required. In this chapter, we will concentrate

on the case of generating large quantities of identically distributed gamma vari-

ates at a time. When the shape parameter α is fixed, it opens the possibility of

pre-computing a fast approximation to qα. Let α be a fixed but arbitrary shape

parameter. Explicitly, given a list of uniformly distributed random numbers our

algorithm applies qα to each element. The result is, therefore, a list of random

numbers distributed according to the gamma distribution with shape α. The out-

put of our algorithm has accuracy close to a choice of single- or double-precision

machine epsilon.

Inversion of the gamma distribution is traditionally accomplished using some

form of root finding. This is known to be computationally expensive. Our algo-

rithm departs from this paradigm by using an initialisation phase to construct, on

the fly, a piecewise Chebyshev polynomial approximation to a transformation func-

tion, which can be evaluated very quickly during variate generation. The Cheby-

shev polynomials are high order, for good accuracy, and generated via recurrence

relations derived from recycling ODEs (2.5).

We are not aware of any research or commercial solutions for GPU-optimised

inversion of the gamma distribution. We remodel the gamma quantile function for

efficient evaluation on GPUs and other parallel architectures by using various ideas.

More specifically, we leverage quantile mechanics with tailored changes of variable

to facilitate fast and accurate computation of the gamma quantile function. A nov-

elty of our approach is that the same change of variable is applied to each uniform

random number before evaluating the transformation function. This is particularly

amenable to implementation on single instruction, multiple data (SIMD) architec-

tures, whose performance is sensitive to frequently diverging execution flows due

to conditional statements. We show that the performance of a CUDA GPU imple-

mentation of our algorithm (called Quantus) is within an order of magnitude of the

time to compute the normal quantile function. An open-source implementation of

our new GPU-optimised algorithm is publicly available.2

2https://github.com/thomasluu/quantus
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Figure 4.2: The gamma quantile function qα(u) for 0 6 u < 1 and various α.
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4.1 Approximating the gamma quantile function

Figure 4.2 shows the gamma quantile function qα for the same α values in Figure 4.1.

By definition, we have qα(0) = 0 and qα(1) =∞ for all α.

The exponential and χ2 distributions are special cases of the gamma distribu-

tion.3 The quantile function of the exponential distribution with rate parameter

λ > 0 is
1

λ
q1(u) = −

1

λ
log(1− u), (4.3)

so q1(u) is, therefore, trivial to implement. The quantile function of the χ2 distri-

bution with ν > 0 degrees of freedom is

2 qν/2(u). (4.4)

If ν = 1,

q1/2(u) = [erf−1(u)]2, (4.5)

so q1/2(u) is another case that is straightforward to implement.

In general, qα is typically computed by numerical root finding. This is the

approach taken by the Boost C++ Math Toolkit [14], which uses [22]. NAG [57]

and R [65] instead use [11] to first compute the χ2 quantile function and then

transform the result into the equivalent gamma variate. The most recent (at the

time of writing) algorithm for qα in the literature is in [28]. The authors claim their

inversion algorithm, which uses Newton root finding, is more accurate than the one

in [22].

The first order gamma quantile ODE,

dqα
du

= eqαΓ (α) q1−α
α , (4.6)

is actually used in [81], where it is solved numerically. However, they encountered

accuracy problems when α was near zero. We will treat this with a change of

variable.

3While not a special case, the beta distribution is related to the gamma distribution. If X1 ∼
Γ(α, 1) and X2 ∼ Γ(β, 1) are independent, X1/(X1 +X2) ∼ B(α, β). So if one has a fast gamma
variate generator, a fast beta variate generator is always available.
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4.1.1 Analytical estimates

As u→ 0,
dqα
du
∼ Γ (α) q1−α

α . (4.7)

Treating (4.7) as an exact ODE, it has the solution qα(u) = [uΓ(α + 1)]1/α. This

motivates the approximation

xα(u) = [uΓ(α+ 1)]1/α (4.8)

for qα(u). The derivative of Fα(xα(u)) is just exp(−xα(u)). Consequently, the

difference of this quantity from one is a measure of how accurate xα(u) is to qα(u).

This would be useful for qα algorithms based on root finding, because the expensive

iterative process can potentially be short-circuited. Solving ǫ = 1 − exp(−xα(u))
for u allows one to find, for a particular α and tolerance ǫ, the range of u that can

be managed by xα(u). Let

uα(ǫ) =
[− log(1− ǫ)]α

Γ(1 + α)
(4.9)

be the upper limit of the approximation xα for ǫ. Table 4.1 gives uα for various

α in single- and double-precision. An analogous procedure can be used to derive

approximations for certain distributions, such as the non-central χ2 distribution.

See Chapter 5 for an in-depth analysis of the non-central χ2 quantile function.

The form of xα(u) in (4.8) is unsuitable for practical implementation for very

small α, because of the resultant large power, which is problematic for u close to

unity. Fortunately, this can be managed:

xα(u) = [uΓ(α+ 1)]1/α

= exp

{

1

α
[log u+ log Γ(1 + α)]

}

.
(4.10)

The power series of log Γ(1 + z) for |z| < 2 (given by equation 6.1.33 in [1, p. 256])

is especially useful here, for α near zero. The series converges rapidly for |z| < 1/2

and the obvious implementation of log Γ(1 + z) is absolutely fine for z outside this

range.

We will rely on (4.10) when it will yield a sufficiently accurate result. Sec-

tion 4.1.2 will give details of approximations for other inputs.
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Table 4.1: Upper u-limits of the approximation [uΓ(α+1)]1/α to the gamma quantile
function qα(u) for various α in single- and double-precision. Asterisked values are
not representable in the respective floating-point number formats and would be
flushed to zero. This is the same for the double-asterisked value, but it would be
rounded to one.

uα(ǫ)

α Single-precision (ǫ = ǫs) Double-precision (ǫ = ǫd)

10−9 9.9999998 × 10−1** 9.999999638404157 × 10−1

10−8 9.9999984 × 10−1 9.999996384042162 × 10−1

10−7 9.9999839 × 10−1 9.999963840480389 × 10−1

10−6 9.9998394 × 10−1 9.999638410680227 × 10−1

10−5 9.9983943 × 10−1 9.996384694366355 × 10−1

10−4 9.9839545 × 10−1 9.963905630200882 × 10−1

10−3 9.8406912 × 10−1 9.644855708647861 × 10−1

10−2 8.5157729 × 10−1 6.965068173834265 × 10−1

10−1 1.9915322 × 10−1 2.668089225353158 × 10−2

100 5.9604647 × 10−8 1.110223024625157 × 10−16

101 1.5596895 × 10−79* 7.840418869435904 × 10−167

102 3.6141656 × 10−881* 3.724082781223321 × 10−1754*

4.1.2 Numerical approximations

The gamma quantile function is neither analytic at zero nor easy to approximate

without treating the tail separately. We can actually kill two birds with one stone by

considering a transformation of the gamma distribution. This indirect route, which

turns out to be fruitful, does not appear to have been explored in the literature.

Let X ∼ Γ(α, 1). We will consider Y ∼ logX. Since the range of X is [0,∞), the

range of Y is the entire real line. Y follows the exp-gamma distribution with shape

α, unit scale, and location zero. The CDF of Y is

F̂α(x) = Fα(e
x), (4.11)

which implies its inverse is

q̂α(u) = log qα(u), (4.12)

so if we can approximate q̂α(u), then qα(u) follows immediately. The PDF of Y is

f̂α(x) =
exα−ex

Γ(α)
, (4.13)
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Figure 4.3: The normal to exp-gamma transformation q̂α ◦ Φ for various α. The
ranges in the top two plots are truncated due to the analytic approximation from
Section 4.1.1.

so

Hf̂α
(x) = ex − α, (4.14)

as per (2.3). In contrast to

Hfα(x) =
1 + x− α

x
, (4.15)

which diverges as x→ 0, Hf̂α
(x) clearly converges as x→ −∞.

We observed that the density of Y is remarkably similar to the skew-normal

distribution4 [5] with shape −α−1. This suggests that the skew-normal distribution

would be useful for variate recycling. Unfortunately, this distribution’s quantile

function is only straightforward to evaluate for a very limited number of cases—

none of which that are of use to us, but all is not lost. The left tail of the skew-

normal distribution with negative shape (skew) “decreases at the same rate as the

normal distribution tail” [6, pp. 52–53]. This points to the normal distribution as

4The PDF of the skew-normal distribution with shape parameter α ∈ R is 2φ(x)Φ(αx). The
quantile function of this distribution is, therefore, easy to compute for α ∈ {−1, 0, 1}. See Chapter 6
for an in-depth analysis of the skew-normal quantile function.
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being a good alternative for variate recycling. We have

v0 = Φ−1(2−32) ≈ −6.23 (for 32-bit RNGs),

v0 = Φ−1(2−64) ≈ −9.08 (64-bit RNGs)
(4.16)

and
Φ−1(1− ǫs) ≈ 5.29 (for single-precision),

Φ−1(1− 2−32) ≈ 6.23 (double-precision 32-bit RNGs),

Φ−1(1− ǫd) ≈ 8.21 (double-precision 64-bit RNGs),

(4.17)

which gives an idea of the ranges we typically have to approximate over. Nev-

ertheless, for completeness, we will also show that our method—very naturally—

accommodates for input down to min′d. However, qα(u) with a very small α param-

eter skirts the u-axis and suddenly goes to infinity. As shown in Section 4.1.1, the

start of the range to approximate over can sometimes be brought in. Figure 4.3

shows the appropriateness of the normal to exp-gamma transformation

Q(v) = q̂α(Φ(v)) (4.18)

for various α. Note that the transformation becomes more linear as α increases.

This is because the exp-gamma distribution converges to the normal distribution

as α→∞.

Recalling the normal PDF (3.2), H for the normal distribution is easily found

to be

Hφ(x) = x. (4.19)

Combining (2.5) with (4.14) and (4.19), the normal to exp-gamma quantile recycling

ODE and initial conditions are

d2Q

dv2
=

dQ

dv

[

(

eQ − α
) dQ

dv
− v

]

,

Q(vi) = q̂α(Φ(vi)),

Q′(vi) =
φ(vi)

f̂α(Q(vi))
,

(4.20)

or equivalently

Q′
0 = Q1,

Q′
1 = Q1

[(

eQ0 − α
)

Q1 − v
]

,
(4.21)

57



with Q0(vi) = Q(vi) and Q1(vi) = Q′(vi). The first order system can be represented

as
V1 = eQ0 ,

V2 = V1 − α,

V3 = V2 ·Q1,

V4 = V3 − v,

V5 = Q1 · V4,

(Q0)1 = Q1,

(Q1)1 = V5,

(4.22)

where (X)k denotes the kth coefficient in the Taylor series of X(v). So

(V1)k =







e(Q0)0 if k = 0,
∑k−1

j=0(1− j/k)(V1)j(Q0)k−j otherwise,

(V2)k = (V1)k − δkα,

(V3)k =
k
∑

j=0

(V2)j(Q1)k−j ,

(V4)k = (V3)k − (v)k,

(V5)k =

k
∑

j=0

(Q1)j(V4)k−j ,

(Q0)k>0 =
1

k
(Q1)k−1,

(Q1)k>0 =
1

k
(V5)k−1,

(4.23)

with

(v)k =



















v if k = 0,

1 if k = 1,

0 otherwise,

(Q0)0 = Q(v),

(Q1)0 = Q′(v),

(4.24)

where we have employed the technique from [54, Section 3.4] to derive the recur-

rence relations for the Taylor coefficients of Q about any point. (See also [20] and

[56]. The latter novelly extends the method to several non-Pearson distributions,
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which have relatively complicated H-functions.) These recurrence relations are

straightforward to implement on a computer. Moreover, for 1, 2, . . . , n the total

number of elementary operations required to compute (Q0)n is of order n2 (assum-

ing (Q0)1, (Q0)2, . . . , (Q0)n−1, and the previously computed auxiliary variables are

cached so they can be reused). The complexity of evaluating (Q0)k is thus relatively

low. The accuracy of the summations corresponding to V1 and the product aux-

iliary variables (V3 and V5) can be improved by Kahan/compensated summation

(see, e.g., [33]).

Given a suitably accurate numerical approximation of Q(vi) and setting v = vi

in the recurrence relations above, we can compute the coefficients of the Taylor

expansion of Q(v) about v = vi, (Q0)k, up to an arbitrary order. The truncated

Taylor series of Q(v) about v = vi is thus

n
∑

k=0

(Q0)k(v − vi)
k. (4.25)

We have shown that the normal to exp-gamma transformation regularises qα

well for uniform output from 32- and 64-bit RNGs. We have also shown that the

analytic approximation in Section 4.1.1 can handle input close to zero for small

to moderate α. For other α, the normal to exp-gamma transformation can be

extended right down to min′d. Figure 4.4 shows that this transformation is perfectly

serviceable for this case.

Very large shape parameter values

It is well known that the gamma distribution tends to the normal distribution as

α → ∞. Since the normal distribution approximates the gamma distribution well

for large α, it is a natural candidate for variate recycling in this case. While the

normal to exp-gamma transformation is theoretically suitable for very big α values,

directly transforming normal variates to gamma ones is more efficient. Details for

this are given here for completeness. The ranges we have to approximate over are

as per (4.16) and (4.17). Figure 4.5 shows the appropriateness of the normal to

gamma transformation

Q(v) = qα(Φ(v)) (4.26)

for various large α.
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Figure 4.4: The normal to exp-gamma transformation q̂α◦Φ for α = 10 and α = 100,
applicable to the full complement of double-precision numbers.
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Figure 4.5: The normal to gamma transformation qα ◦Φ for α = 103 and α = 106,
applicable to the full complement of double-precision numbers.
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The normal to gamma quantile recycling ODE and initial conditions are

d2Q

dv2
=

dQ

dv

(

1− α+Q

Q

dQ

dv
− v

)

,

Q(vi) = qα(Φ(vi)),

Q′(vi) =
φ(vi)

fα(Q(vi))
,

(4.27)

or equivalently

Q′
0 = Q1,

Q′
1 = Q1

(

1− α+Q0

Q0
Q1 − v

)

,
(4.28)

with Q0(vi) and Q1(vi) as appropriate. This leads to

V1 = 1− α+Q0, (V1)k = δk(1− α) + (Q0)k,

V2 = V1 ·Q1, (V2)k =

k
∑

j=0

(V1)j(Q1)k−j,

V3 =
V2

Q0
, (V3)k =

1

(Q0)0



(V2)k −
k
∑

j=1

(Q0)j(V3)k−j



 ,

V4 = V3 − v, (V4)k = (V3)k − (v)k,

V5 = Q1 · V4, (V5)k =

k
∑

j=0

(Q1)j(V4)k−j,

(Q0)1 = Q1, (Q0)k>0 =
1

k
(Q1)k−1,

(Q1)1 = V5, (Q1)k>0 =
1

k
(V5)k−1,

(4.29)

where (v)k, (Q0)0, and (Q1)0 are as per (4.24).

4.2 Parallel inversion algorithm

We will now give the design of our new gamma quantile function algorithm, and

evaluate a CUDA GPU implementation of it.

4.2.1 Algorithm design

Our algorithm for qα is split into two phases:
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• initialisation for a given shape parameter α; and

• generation of gamma variates with shape α.

For the sake of simplicity, this section will ignore the normal to gamma trans-

formation (4.26). If the transformation is used for large α values, the algorithm

steps are broadly identical.

Initialisation

Routine 6 Initialisation.

Input: The value of α, requested precision ǫ (either ǫs or ǫd), target RNG (either
32- or 64-bit).

⊲ Determine relevant u-range (Section 2.3.1)
1: umin ← the smallest (non-zero) uniform number produced by the target RNG
2: umax ← the largest (excluding 1) uniform number produced by the target RNG
3: if umin < uα(ǫ) then
4: umin ← uα(ǫ) ⊲ See Section 4.1.1
5: end if

6: if umin > umax then

7: xα(u) can be used for all 0 6 u 6 umax so no further initialisation is neces-
sary.

8: end if

⊲ Compute the smallest and largest expected inputs into the recycling
function Q (4.18)

9: v0 ← Φ−1(umin)
10: vm ← Φ−1(umax)
11: An instance of the recycling ODE (4.20) is solved over [v0, vm].

Routine 6 gives the pseudocode for this phase. Our ODE solution is an ap-

proximation, which is in the form of a piecewise Taylor polynomial approximation.

Supposing [v0, vm] is partitioned as v0 < v1 < · · · < vm, Q is thus approximated by

polynomials of the form
n
∑

k=0

Q(k)(vi)

k!
(v − vi)

k, (4.30)

where we compute the Taylor coefficients using the recurrence relations developed

in Section 4.1.2. The task of computing the piecewise polynomial approximations

can be done sequentially or in parallel, by concurrently expanding about different

points. The ODE solution is basically an (m+1)×(n+1) matrix with the coefficients

of the polynomial expansion about vi in the ith row. For an arbitrary v ∈ [v0, vm]

63



Table 4.2: The recommended parameters for the initialisation phase of our algo-
rithm.

Single-precision Double-precision

Maximum order 10th 20th

Initial step size 1/4 1/8

Tolerance target 50ǫs 50ǫd

the relevant row for evaluating Q(v) is easily found. If v0 < v1 < · · · < vm is an

equidistant partition of [v0, vm], the calculation is even simpler: the correct row is

the integer part of (v−v0)/h, assuming h is the distance between any two partition

points. We will actually use equidistant partitions, because they are feasible due

to our changes of variable. We can estimate the accuracy of an approximant about

vi by evaluating it at vi+1 and comparing the result with Q(vi+1), since this is

where the error will peak. The partition of [v0, vm] and order n can be refined and

adjusted so as to meet a desired tolerance.

A simple yet reliable procedure therefore exists for solving the recycling ODEs.

It works by successively refining a mesh. Given an initial step size, a piecewise Tay-

lor polynomial approximation to Q is generated. Derivatives of up to a specified

maximum order can be used to iteratively form piecewise polynomials of increasing

accuracy. If an approximation is found that is accurate to some tolerance, initial-

isation is complete. If such an approximation is not found, the search process is

repeated with the step size halved. Table 4.2 gives the initialisation parameters

that we recommend. They were found to give a good balance of performance and

accuracy. Starting with step sizes with an integral power of two and expanding

about points that are a whole multiple of the step size allows for more efficient

polynomial selection and evaluation.

In the interests of numerical stability we would prefer to evaluate Chebyshev

polynomials instead of Taylor ones. Armed with our Taylor coefficients, an efficient

method to accomplish this is given in [78]. (See [56, section 8.5.2] for an application

to the hyperbolic distribution.) Our Taylor polynomials can be recast into the

Chebyshev form

c0
2

+

n
∑

k=1

ckTk

(

v − vi
h

)

, (4.31)

where Tk(x) are the Chebyshev polynomials of the first kind, defined as

Tk(x) = cos(k arccos x), (4.32)
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and ck are Chebyshev coefficients. These coefficients are computed as

ck =
n
∑

r=k

arθr,k, (4.33)

where

ar =
Q(r)(vi)

r!
hr (4.34)

and

θr,k =







21−r
( r
(r−k)/2

)

if r − k is even,

0 otherwise,
(4.35)

which can be evaluated recursively.

While our approximants are not guaranteed to preserve complete monotonicity,

it is not unreasonable to expect them by and large to be monotonic. We found

this to be true in practice. Also, whenever monotonicity between two consecutive

variates was violated, the deviation from monotonicity was very close to machine

epsilon. Such deviations are irrelevant in practice for most simulations.

Generation

Routine 7 Generation.

Input: A uniform variate u ∈ (0, 1)
Output: qα(u)
1: if u 6 uα(ǫ) then
2: return xα(u)
3: end if

4: v ← Φ−1(u) ⊲ Evaluate change of variable
5: y ← Q(v) ⊲ The recycling function is computed
6: return exp(y) ⊲ Since Q(v) = q̂α(u)

Routine 7 gives the pseudocode for the variate generation phase. The recycling

function Q(v) is computed by looking up the appropriate Chebyshev polynomial

and evaluating it using Clenshaw’s formula [19]. It should be noted that this does

not introduce additional branch divergence. Once the correct polynomial index

is determined by each thread, the polynomials are evaluated synchronously—the

instructions to do this are identical, but the coefficients may be different. The

variate generation portion of the algorithm is incredibly simple, so the barrier to

execution on present and future computer architectures is low.
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4.2.2 Computational experiments

We will now demonstrate the parallel performance of our gamma quantile function

algorithm. This was done in accordance with Section 2.5. The Oxford English

Dictionary says quantile originates from the Latin word quantus, which means how

great, how much. Quantus, therefore, seems an apt name for our algorithm im-

plementation. The performance of Quantus was evaluated on two high-end Nvidia

GPUs:

• a Kepler-class GeForce GTX Titan; and

• a Fermi-class Tesla C2050.

The test GPUs were hosted in a system with

• an Intel Core i5-4670K (overclocked to 4.2 GHz); and

• 8 GB of RAM.

The system was running

• Ubuntu Server 12.04.2 LTS with GCC 4.6.3;

• Nvidia CUDA 6.5.14; and

• Boost 1.56.0.

The freely available Boost C++ Math Toolkit provides a high-quality quantile

function implementation for the gamma distribution (along with several other dis-

tributions). Suitably precise initial conditions can hence be computed via Boost’s

quantile function implementation.

The Quantus initialisation code was parallelised with OpenMP and compiled

using GCC with the –O2 optimisation flag. For both single- and double-precision

initialisation, double working precision was used. This yields recycling function

approximations with accuracy close to machine epsilon. A caveat is that the initial

conditions have to be accurate to target precision. This is easily achieved for single

target precision. However, for double target precision this is problematic for values

in the right tail. We took a brute force approach, simply computing these initial

conditions with software-simulated arbitrary precision for u > 9/10. We used the

normal recycling scheme from Section 4.1.2 for all α > 1000. The normal quantile

function was computed using the hybrid GPU-optimised algorithm from Chapter 3.
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Speed

Using the parameters in Table 4.2, the coefficients table for the recycling function

approximation always comfortably fits5 in the level 1 (L1) cache on Nvidia GPUs,

so evaluation of the function is very fast.

Table 4.3 shows the performance of Quantus for a wide range of shape param-

eters. The performance is always within an order of magnitude of the time to

compute the normal quantile function, which is what we were aiming for. Table 4.3

also shows the initialisation times of Quantus. They are relatively high compared

to generation, but bear in mind initialisation is a fixed cost.

Precision

The precision of Quantus was assessed by inspecting the output from ten out of the

100 runs of each speed test. The gamma output and corresponding uniform input

were copied from the GPU to the CPU. 80-bit extended precision references were

computed using Boost and compared to the copied values.

Table 4.4 gives peak relative error statistics for Quantus with the same shape

parameters from the speed test. See Section 2.5.2 for the definitions of E1 and E2.

We found Quantus achieves better or comparable accuracy with respect to Boost’s

gamma quantile function in both single- and double-precision, over all distribution

parameters and uniform inputs for both relative error measures. The results sug-

gest our algorithm is stable for α 6 103. The peak backward errors for α > 104

deteriorate, because of the large magnitude of the variates, but the forward errors

are excellent.

4.3 Commentary

We have described a method for the efficient and accurate parallel inversion of the

gamma distribution. Quantile mechanics was used with select changes of variable to

accomplish this. We showed that the performance of a CUDA GPU implementation

of our algorithm is similar to the time to compute the normal quantile function. The

underlying algorithmic ideas should translate well to other parallel architectures,

e.g., Intel Xeon Phi.

Devroye in [21, p. 404] said a good gamma variate generator should

• have uniform generation speed over all shape parameters α;

5The average table size for single- and double-precision was about 0.4 and 4 KB, respectively.
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Table 4.3: Timings in ms to compute the gamma quantile function qα for 107

pseudo-random uniform variates using an implementation of the algorithm de-
scribed in Section 4.2.1 averaged over 100 runs on the two test Nvidia GPUs.
All standard deviations were negligible. Initialisation times for the implementation
on an Intel Core i5-4670K system are also shown. Timings for the normal quantile
function Φ−1 using the hybrid GPU-optimised algorithm from Chapter 3 are given
on the bottom row.

Single-precision Double-precision

Generation Generation

α Init. Titan C2050 Init. Titan C2050

10−9 0.06 0.70 2.44 10.39 4.32 3.73

10−8 0.37 0.71 2.32 19.84 4.31 3.73

10−7 0.68 0.69 2.32 16.27 4.32 3.74

10−6 0.70 0.72 2.32 17.25 4.38 3.81

10−5 0.83 0.75 2.35 16.88 4.81 4.57

10−4 0.85 1.01 2.65 10.75 7.42 6.63

10−3 0.83 1.50 4.04 9.83 13.72 11.94

10−2 0.79 1.75 5.70 9.47 15.77 13.03

10−1 0.80 1.72 5.47 10.98 13.20 11.36

101 0.71 1.25 3.69 6.11 9.09 8.21

102 0.60 1.17 3.44 5.30 8.51 7.65

103 0.60 1.10 3.08 5.54 6.93 6.51

104 0.60 0.96 2.59 5.12 6.64 6.23

105 0.58 0.97 2.59 5.06 6.63 6.23

106 0.58 0.96 2.59 4.96 6.63 6.23

107 0.77 0.97 2.59 4.66 6.34 5.96

108 1.52 0.96 2.59 4.61 6.34 5.96

109 3.67 0.96 2.59 7.12 6.33 5.96

Φ−1 n/a 0.44 0.97 n/a 4.00 3.61
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Table 4.4: Peak relative error statistics for an implementation of the algorithm
described in Section 4.2.1, over 108 pseudo-random uniform variates for each α.
See Section 2.5.2 for the definitions of E1 and E2.

Single-precision Double-precision

α E1 E2 E1 E2

10−9 nil nil 2.42× 10−13 5.42 × 10−20

10−8 4.13× 10−5 4.13 × 10−13 2.43× 10−13 1.08 × 10−19

10−7 7.44× 10−5 7.44 × 10−12 2.58× 10−13 1.63 × 10−19

10−6 5.03× 10−5 5.03 × 10−11 2.73× 10−13 2.71 × 10−19

10−5 6.29× 10−5 6.29 × 10−10 3.26× 10−13 3.25 × 10−18

10−4 4.14× 10−5 4.14 × 10−09 2.15× 10−13 2.15 × 10−17

10−3 2.77× 10−5 2.77 × 10−08 1.62× 10−13 1.62 × 10−16

10−2 1.28× 10−5 1.28 × 10−07 1.32× 10−13 1.32 × 10−15

10−1 8.76× 10−6 8.76 × 10−07 4.88× 10−14 4.88 × 10−15

101 8.15× 10−7 7.20 × 10−06 1.92× 10−15 1.45 × 10−14

102 1.23× 10−6 3.87 × 10−05 3.01× 10−15 6.96 × 10−14

103 1.81× 10−7 1.49 × 10−05 6.34× 10−16 5.07 × 10−14

104 2.23× 10−6 1.10 × 10−03 9.70× 10−15 4.94 × 10−12

105 2.84× 10−7 3.99 × 10−04 3.27× 10−16 4.50 × 10−13

106 5.44× 10−8 2.66 × 10−04 2.19× 10−16 8.35 × 10−13

107 1.02× 10−7 1.43 × 10−03 1.90× 10−15 2.90 × 10−11

108 7.88× 10−8 3.67 × 10−03 1.99× 10−16 7.25 × 10−12

109 6.34× 10−8 9.71 × 10−03 1.19× 10−16 1.63 × 10−11

69



• be simple to implement; and

• have small or non-existent initialisation times.

We believe our algorithm meets the first and last of these goals. While our algorithm

is simple in principle, it is certainly not one of the easiest algorithms to implement.

Much of the effort is in efficiently implementing the recurrence relations and au-

tomating the generation of the gamma quantile function approximation. However,

our generation times are more or less uniformly bounded, and our initialisation

times are relatively small and get amortised for practical simulation sizes.
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Chapter 5

Non-central χ2 distribution

The non-central χ2 distribution features in the Cox–Ingersoll–Ross and Heston

models in mathematical finance. The PDF of the distribution is

fν,λ(x) =
1

2
e−(x+λ)/2

(x

λ

)ν/4−1/2
Iν/2−1

(√
λx
)

(5.1)

on x ∈ [0,∞), where ν > 0 is the degrees of freedom parameter, λ > 0 is the

non-centrality parameter and I is the modified Bessel function of the first kind.

The PDF can also be written in terms of the normalised confluent hypergeometric

limit function 0F̃1(a; z) = 0F1(a; z)/Γ(a):

fν,λ(x) = 2−ν/2e−
1
2
(λ+x)xν/2−1

0F̃1

(

;
ν

2
;
xλ

4

)

. (5.2)

This is the form that we will primarily work with. Figure 5.1 shows the non-central

χ2 PDF for various ν and λ. When ν < 2, the distribution has an infinite peak

at the origin. This suggests that the non-central χ2 quantile function for ν < 2

is harder to compute. When λ = 0, the non-central χ2 distribution reduces to

the (central) χ2 distribution. The χ2 quantile function can be handled with the

methods developed in Chapter 4, since it is a special case of the gamma distribution.

The non-central χ2 CDF is

Fν,λ(x) = 1−Qk/2

(√
λ,
√
x
)

(5.3)

where Qm is Marcum’s Q function, which is defined as

QM (α, β) =
1

αM−1

∫ ∞

β
xMe−(x2+α2)/2IM−1(αx) dx, (5.4)
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Figure 5.1: The non-central χ2 PDF fν,λ(x) for various ν, λ.
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with M,α, β > 0.

If the generation of non-central χ2 random variates via inversion is not required,

then this is relatively straightforward to accomplish, by exploiting the additive

properties of the χ2 distribution: X + Y ∼ χ2
ν(λ) if X ∼ χ2

ν and Y ∼ χ2
2V where

V ∼ Poi(λ/2).

5.1 A new analytic approximation

Let qν,λ = F−1
ν,λ be the non-central χ2 quantile function. In the interests of brevity,

q will be used instead of qν,λ when there is no ambiguity. The first order non-central

χ2 quantile ODE is

dq

du
=

1

fν,λ(q)
(5.5)

=
1

2−ν/2e−
1
2
(λ+q)qν/2−1

0F̃1

(

; ν2 ;
λq
4

) (5.6)

=
2ν/2e

1
2
(λ+q)q1−ν/2

0F̃1

(

; ν2 ;
λq
4

) . (5.7)

So, as u→ 0,
dq

du
∼ 2ν/2e

1
2
λq1−ν/2Γ(ν/2). (5.8)

This suggests that the asymptotic formula

xν,λ(u) = [2ν/2−1eλ/2uνΓ(ν/2)]2/ν = [2ν/2eλ/2uΓ(1 + ν/2)]2/ν (5.9)

would be a useful approximation for when qν,λ(u) is very small. Indeed, the formula

is now used by the Boost C++ Math Toolkit1 [14] and Wolfram Mathematica [88].

Note that when λ = 0 (the central χ2 special case), the formula matches (4.8)

scaled by two with α = ν/2. The precision of the approximation is given by

1− fν,λ(xν,λ(u))
2xν,λ(u)

uν
. (5.10)

1See https://svn.boost.org/trac/boost/changeset/85074 and https://svn.boost.org/trac/
boost/changeset/85103 for the accepted source code changes.
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5.2 Existing approximations

There are a handful of established approximations for the non-central χ2 quantile

function, including one due to Pearson [63]. However, the approximations typi-

cally fail for small enough inputs—Pearson’s approximation can yield a negative

result and the approximation from [67] can give a complex-valued result. These are

known issues. They are especially problematic for refinement via root finding, since

these invalid values obviously cannot be fed into Fν,λ(x). Several popular existing

approximations will now be detailed, with emphasis on when they can break down.

5.2.1 Sankaran’s approximation

Sankaran gives an analytic approximation for the non-central χ2 CDF [67, 68]:

Fν,λ(x) ≈ Φ

[ x
ν+λ − µ

σ

]

(5.11)

where Φ is the standard normal CDF and

h = 1− 2

3

(ν + λ)(ν + 3λ)

(ν + 2λ)2

p =
ν + 2λ

(ν + λ)2

m = (h− 1)(1 − 3h)

µ = 1 + hp(h− 1− (1− h/2)mp)

σ = h
√

2p(1 +mp/2).

(5.12)

Sankaran’s CDF approximation is readily invertible:

qν,λ(u) ≈ (ν + λ)
[

Φ−1 (u)σ + µ
]1/h

. (5.13)

Figure 5.2 shows the backward relative error (2.14) of Sankaran’s non-central χ2

quantile function approximation for ν = 5, λ = 1/2 and ν = 1/2, λ = 1/2. The

approximation is generally good in the central region, but deteriorates badly in the

left tail.

For small enough u, when Φ−1 (u) σ + µ < 0, (5.13) will give a complex-valued

result. Judging from error messages about invalid comparisons with complex values,

Mathematica 9.0.1’s [87] non-central χ2 quantile function implementation appears

to be based on root finding using a slight modification of Sankaran’s approximation.
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Figure 5.2: The backward relative errors of Sankaran’s non-central χ2 quantile
approximation for ν = 5, λ = 1/2 and ν = 1/2, λ = 1/2.
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For instance, substituting (u, ν, λ) =
(

1
100 ,

1
2 ,

1
10

)

into (5.13) produces −0.740868 +
0.287014i. Calling Mathematica 9.0.1’s non-central χ2 quantile function with the

same parameters results in the following output.

Quantile[NoncentralChiSquareDistribution[1/2,1/10],1/100]//N

Greater::nord: Invalid comparison with -0.739859+0.286623 I attempted. >>

LessEqual::nord: Invalid comparison with -0.739859+0.286623 I attempted. >>

LessEqual::nord: Invalid comparison with -0.739859+0.286623 I attempted. >>

Greater::nord: Invalid comparison with -0.739859+0.286623 I attempted. >>

LessEqual::nord: Invalid comparison with -0.739859+0.286623 I attempted. >>

General::stop: Further output of LessEqual::nord will be suppressed during this calculation. >>

FindRoot::srect: Value If[-0.739859+0.286623 I<=0.,0.5 +0.1,-0.739859+0.286623 I] in search specification

{Statistics‘NoncentralDistributionsDump‘x$308,Statistics‘NoncentralDistributionsDump‘startval[0.5,0.1,0.01]}

is not a number or array of numbers. >>

Greater::nord: Invalid comparison with -0.739859+0.286623 I attempted. >>

General::stop: Further output of Greater::nord will be suppressed during this calculation. >>

FindRoot::srect: Value If[-0.739859+0.286623 I<=0.,0.5 +0.1,-0.739859+0.286623 I] in search specification

{Statistics‘NoncentralDistributionsDump‘x$308,Statistics‘NoncentralDistributionsDump‘startval[0.5,0.1,0.01]}

is not a number or array of numbers. >>

Quantile[NoncentralChiSquareDistribution[0.5,0.1],0.01]

This author forwarded the output to Wolfram, and xν,λ (5.9) was quickly incorpo-

rated into Mathematica 10.0.0 [88].

5.2.2 Pearson’s approximation

E. S. Pearson gives an approximation to qν,λ in [63] (see also [39]) of the form

b+ cχ2
f , where

b = − λ2

ν + 3λ

c =
ν + 3λ

ν + 2λ

f =
(ν + 2λ)3

(ν + 3λ)2
=

ν + 2λ

c2

(5.14)

and χ2
f is the quantile of the central χ2 with f degrees of freedom. The first

three moments of (b + cχ2
f ) agree with those of the non-central χ2 distribution.

Figure 5.3 shows the backward relative error of Pearson’s non-central χ2 quantile

approximation for ν = 5, λ = 1/2 and ν = 1/2, λ = 1/2. The approximation, like

Sankaran’s, is relatively poor for u near zero, but is otherwise relatively good.

For small enough u, Pearson’s approximation will give a result less than zero.

This effect is demonstrated in the second plot of Figure 5.3. To compute the non-

central χ2 quantile function, the Math Toolkit in Boost [14] up to and including

version 1.54.0 uses Pearson’s aforementioned approximation as an initial guess and

refines it by root finding using the CDF (whose implementation is based on [23] and

[10]). In the event of a negative initial guess, Boost would use a simple heuristic,
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setting the guess to the smallest positive number available, e.g. mind for double-

precision. Finding the root of Fν,λ(x) − u = 0 with such a crude guess is very

inefficient. A better approximation for this case is given in Section 5.1. Boost

1.55.0 uses xν,λ due to private communication with this author.

5.2.3 Temme’s median approximation

It is worth mentioning that Temme in [77] gives the relation

Fν,λ(ν + λ) ≈ 1/2, (5.15)

which immediately yields an asymptotically good approximation for the non-central

χ2 median. When ν and λ are both close to zero, the true median is much smaller

than ν + λ. For example, if we fix ν = 1/10 and allow λ to vary and vice versa,

Figure 5.4 graphically compares the forward accuracy (2.13) of Temme’s median

approximation to that of (5.9) with u = 1/2. Our approximation from Section 5.1

clearly complements Temme’s median approximation well.

5.2.4 Ding’s algorithm

There is very little on computing high-precision non-central χ2 quantiles in the

literature. In [24], an algorithm for this is given. The algorithm uses Newton’s

method, but the novelty is that the non-central χ2 PDF and CDF are computed

concurrently and only using the central χ2 PDF and CDF. However, the algorithm

employs a crude Cornish–Fisher initial guess to start its iterations. This author

found similar issues with this approach to Sankaran’s and Pearson’s approximations.

Substituting the Cornish–Fisher guess with the approximation we will develop in

Section 5.4 cures this, simultaneously improving the speed and precision of Ding’s

algorithm.

5.3 Power series solution

We will now develop a series solution for the non-central χ2 quantile function. The

quantile function q of the non-central χ2 distribution satisfies

d2q

du2
=

[

2 + q − ν

2q
− λ

4

0F̃1

(

; ν2 + 1; λ4 q
)

0F̃1

(

; ν2 ;
λ
4 q
)

]

(

dq

du

)2

(5.16)
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Figure 5.3: The backward relative errors of Pearson’s non-central χ2 quantile ap-
proximation for ν = 5, λ = 1/2 and ν = 1/2, λ = 1/2.
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Figure 5.4: The log10 forward relative errors of Temme’s median approximation
ν + λ and xν,λ(1/2) for ν = 1/10 and λ = 1/10.
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conditional on q(0) = 0 and

q(u) ∼
[

2ν/2−1eλ/2uνΓ(ν/2)
]2/ν

as u→ 0. (5.17)

Let

v =
[

2ν/2−1eλ/2uνΓ(ν/2)
]2/ν

. (5.18)

If

q(v) =

∞
∑

n=0

gnv
n (5.19)

with g0 = 0 and g1 = 1, then

n(2n+ ν)gn+1 =

n−1
∑

k=1

gk+1gn−k+1 (n− k + 1) [(2− ν) (k + 1)− 2 (n− k)− (2− ν)]

+ a(n)(1− λ/ν)− λ

2

n−1
∑

i=1

a(i)fn−i

,

(5.20)

where

a(i) =
i
∑

j=1

i−j
∑

k=0

gjgk+1gi−j−k+1(k + 1)(i− j − k + 1) (5.21)

cn(b) =

n
∑

k=1

dk(b)en(k) (5.22)

dk(b) =







1
Γ(b) if k = 0

dk−1(b)
(b+k−1)k if k > 0

(5.23)

en(α) =







(

λ
4

)α
if n = α

1
n−α

∑n−α
k=1 ((α+ 1)k − (n− α))gk+1en−k(α) if n > α

(5.24)

fn = Γ(ν/2)

[

cn(ν/2 + 1)− 2

ν
cn(ν/2) −

n−1
∑

k=1

fkcn−k(ν/2)

]

. (5.25)
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The (lengthy but mechanical) derivation of this is in Appendix C. The first few

terms are
g1 = 1

g2 =
ν − λ

ν(ν + 2)

g3 =
4λ2(ν + 3)− 2λν(3ν + 10) + ν2(3ν + 10)

2ν2(ν + 2)2(ν + 4)

. (5.26)

When ν = 2, λ = 0, experimentation with many terms confirms that the coefficients

are consistent with the series of the exact solution, q(u) = −2 log(1 − u) with

u = v
2 . Also, if ν = 1, λ = 0 then the coefficients are in accordance with those of

2
[

erf−1(u)
]2
, where u =

√

2v
π .

For general ν, λ, sanity checks are not as straightforward. However, for odd

degrees of freedom, progress can be made. If ν = 2k + 1 with k ∈ N, [42] proves

that the non-central χ2 PDF is

fν,λ(x) =

(

2x

λ

)k exp [− (x+ λ) /2]√
2πx

dk cosh
√
λx

dxk
. (5.27)

So

f1,λ(x) =
e−

λ
2
−x

2 cosh
(√

λx
)

√
2π
√
x

f3,λ(x) =
e−

λ
2
−x

2 sinh
(√

λ
√
x
)

√
2π
√
λ

f5,λ(x) =
e−

λ
2
−x

2

(

λx cosh
(√

λx
)

−
√
λx sinh

(√
λx
))

√
2πλ2

√
x

f7,λ(x) =

√
xe−

λ
2
−x

2

(

(λx+ 3) sinh
(√

λx
)

− 3
√
λx cosh

(√
λx
))

√
2πλ2

√
λx

f9,λ(x) =

√
xe−

λ
2
−x

2

(√
λx(λx+ 15) cosh

(√
λx
)

− 3(2λx+ 5) sinh
(√

λx
))

√
2πλ3

√
λx

. . . = . . . .

(5.28)

The resultant PDFs can be integrated exactly. Finite series of the corresponding

CDFs can hence be found and manually reversed. Numerous experiments have

been conducted in Mathematica by this author, and perfect agreement of symbolic

coefficients from the manually inverted series and the our recurrence relation always
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occurred.

5.4 A simple and general approximation

We will now supplement the existing approximations with our new power series so-

lution, to form a more general and complete approximation. We will also be aiming

for computational simplicity. Our algorithm would, therefore, be especially ideal

for computing the initial guess in non-central χ2 quantile function implementations.

5.4.1 Formulation

We favour Sankaran’s approximation, given in Routine 8, over Pearson’s, because

the normal quantile function is easier to compute than the central χ2 quantile

function. The remaining question is when to use the power series solution and also

how much of it to use.

Well, in the interests of simplicity we will actually only use the leading order

term of the series. With regard to which approximant to use, if a Sankaran approx-

imation is not real, we will unconditionally use the series solution. If the Sankaran

approximation is real, the second non-zero term of the series will be used to decide

which answer to use. More specifically, a cut-off point u∗ ∈ (0, 1) will be computed

using the term. Now, if the input u is greater than u∗, the series solution will be

rejected in favour of Sankaran’s approximation. Routine 9 gives the pseudocode for

computing the series solution and cut-off point. Finally, Algorithm 10, designated

NCX2CDFINV, gives the complete procedure in pseudocode form.

Routine 8 sankaran

Input: u ∈ (0, 1), ν > 0, λ > 0.
Output: Sankaran’s approximation of qν,λ(u).

1: h← 1− 2
3
(ν+λ)(ν+3λ)

(ν+2λ)2

2: p← ν+2λ
(ν+λ)2

3: m← (h− 1)(1− 3h)
4: µ← 1 + hp(h− 1− (1− h/2)mp)
5: σ ← h

√
2p(1 +mp/2)

6: z ← Φ−1(u)
7: x← zσ + µ
8: return (ν + λ)x1/h
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Routine 9 luu

Input: u ∈ (0, 1), ν > 0, λ > 0.
Output: Luu’s approximation of qν,λ(u).
1: ǫ← 1/10
2: c← 2ν/2−1eλ/2νΓ(ν/2)

3: v ← [cu]2/ν ⊲ v(u)
4: g2 ← ν−λ

ν(ν+2)

5: g3 ← 4λ2(ν+3)−2λν(3ν+10)+ν2(3ν+10)
2ν2(ν+2)2(ν+4)

6: if ν = λ then ⊲ g2 = 0

7: h← 3

√

ǫ
|g3|

8: else

9: h←
√

ǫ
|g2|

10: end if

11: u∗ ← 1
ch

ν/2 ⊲ Using the inverse of v(u).
12: return (v, u∗)

Algorithm 10 Non-central χ2 quantile algorithm (ncx2cdfinv)

Input: u ∈ (0, 1), ν > 0, λ > 0.
Output: Hybrid approximation of qν,λ(u).
1: if u = 0 then

2: return 0
3: end if

4: if u = 1 then

5: return ∞
6: end if

7: xsankaran ← sankaran(u, ν, λ)
8: (xluu, u

∗)← luu(u, ν, λ)
9: if xsankaran 6∈ R then ⊲ In practice, isnan would be used to test this.

10: return xluu
11: end if

12: if u < u∗ then

13: return xluu
14: else

15: return xsankaran
16: end if
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5.4.2 Precision

We will now give an indication of the accuracy of Algorithm 10. The algorithm

was implemented in double-precision for this purpose. 80-bit extended precision

references were computed using Boost 1.57.0 and compared to the results from

NCX2CDFINV. Table 5.1 shows average and peak backward relative errors (2.14)

for a wide range of ν and λ pairs.

5.5 Commentary

In this chapter, we have described new advances in the computation of the non-

central χ2 quantile function. A new analytic approximation, which addresses de-

ficiencies of existing approximations, was derived first. This led to a power series

solution for the quantile function, which is interesting from a theoretical and prac-

tical point of view. Finally, a new algorithm, called NCX2CDFINV, was created

by combining two approximations. We believe that NCX2CDFINV is the first non-

central χ2 quantile function algorithm to reliably cover the whole parameter and

variable space of the distribution. No effort has been made to make the algorithm

accurate to machine precision, but it is computationally efficient. We believe our

algorithm would, therefore, be an excellent candidate for initial guesses in high-

precision non-central χ2 quantile algorithms and low-precision simulations.
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Table 5.1: Average and peak backward relative error (2.14) statistics for an implementation of NCX2CDFINV, over 108

pseudo-random uniform variates for each ν and λ pair. Standard deviations are in brackets. Peak statistics are in bold.

λ

ν 10−4 10−3 10−2 10−1 100 101 102 103

10−4

1.68 × 10−9

(1.51 × 10−7)

3.46× 10
−5

1.24 × 10−7

(5.75 × 10−6)

3.93× 10
−4

1.24 × 10−5

(2.01 × 10−4)

4.86× 10
−3

1.19 × 10−3

(6.11 × 10−3)

5.22× 10
−2

9.40 × 10−3

(1.42× 10−2)

4.91× 10
−2

1.22 × 10−2

(3.40× 10−2)

3.63× 10
−1

2.08× 10−4

(5.80× 10−4)

5.79× 10
−2

5.57× 10−6

(1.40× 10−5)

1.15× 10
−3

10−3

2.15 × 10−7

(5.41 × 10−6)

3.47× 10
−4

1.32 × 10−7

(4.12 × 10−6)

3.46× 10
−4

1.23 × 10−5

(1.81 × 10−4)

3.92× 10
−3

1.19 × 10−3

(6.05 × 10−3)

6.15× 10
−2

9.43 × 10−3

(1.42× 10−2)

4.97× 10
−2

1.22 × 10−2

(3.41× 10−2)

3.63× 10
−1

2.08× 10−4

(5.80× 10−4)

5.79× 10
−2

5.57× 10−6

(1.40× 10−5)

1.15× 10
−3

10−2

1.34 × 10−5

(1.44 × 10−4)

1.09× 10
−1

1.33 × 10−5

(1.29 × 10−4)

3.46× 10
−3

5.10 × 10−6

(6.62 × 10−5)

3.46× 10
−3

1.19 × 10−3

(5.53 × 10−3)

1.60× 10
−1

9.57 × 10−3

(1.42× 10−2)

5.29× 10
−2

1.22 × 10−5

(3.40× 10−2)

3.65× 10
−1

2.08× 10−4

(5.79× 10−4)

5.78× 10
−2

5.57× 10−6

(1.40× 10−5)

1.15× 10
−3

10−1

1.68 × 10−3

(6.11 × 10−3)

4.35× 10
−2

1.69 × 10−3

(6.16 × 10−3)

4.38× 10
−2

2.10 × 10−3

(8.15 × 10−3)

5.89× 10
−2

3.43 × 10−3

(1.72 × 10−2)

1.39× 10
−1

9.86 × 10−3

(1.25× 10−2)

5.27× 10
−2

1.19 × 10−2

(3.33× 10−2)

3.65× 10
−1

2.07× 10−4

(5.73× 10−4)

5.61× 10
−2

5.57× 10−6

(1.40× 10−5)

1.14× 10
−3

100
1.95 × 10−2

(2.50 × 10−2)

9.20× 10
−2

1.95 × 10−2

(2.49 × 10−2)

9.20× 10
−2

1.94 × 10−2

(2.48 × 10−2)

9.15× 10
−2

1.82 × 10−2

(2.34 × 10−2)

8.73× 10
−2

4.90 × 10−3

(5.93× 10−3)

2.73× 10
−2

7.91 × 10−3

(1.86× 10−2)

2.22× 10
−1

1.96× 10−4

(5.10× 10−4)

4.03× 10
−2

5.51× 10−6

(1.36× 10−5)

1.06× 10
−3

101
4.70 × 10−3

(2.10 × 10−2)

5.74× 10
−1

4.70 × 10−3

(2.10 × 10−2)

5.74× 10
−1

4.70 × 10−3

(2.10 × 10−2)

5.73× 10
−1

4.70 × 10−3

(2.10 × 10−2)

5.70× 10
−1

4.97 × 10−3

(2.23× 10−2)

6.59× 10
−1

3.10 × 10−3

(1.22× 10−2)

3.29× 10
−1

1.33× 10−4

(2.12× 10−4)

8.44× 10
−2

5.06× 10−6

(1.03× 10−5)

2.77× 10
−4

102
3.22 × 10−4

(1.17 × 10−3)

2.80× 10
−1

3.22 × 10−4

(1.17 × 10−3)

2.80× 10
−1

3.22 × 10−4

(1.17 × 10−3)

2.80× 10
−1

3.22 × 10−4

(1.17 × 10−3)

2.80× 10
−1

3.23 × 10−4

(1.17× 10−3)

2.80× 10
−1

3.40 × 10−4

(1.23× 10−3)

2.96× 10
−1

2.23× 10−4

(8.07× 10−4)

2.03× 10
−1

8.37× 10−6

(2.28× 10−5)

5.95× 10
−3

103
2.96 × 10−5

(9.71 × 10−5)

2.02× 10
−2

2.96 × 10−5

(9.71 × 10−5)

2.02× 10
−2

2.96 × 10−5

(9.71 × 10−5)

2.02× 10
−2

2.96 × 10−5

(9.71 × 10−5)

2.02× 10
−2

2.96 × 10−5

(9.71× 10−5)

2.02× 10
−2

2.96 × 10−5

(9.72× 10−5)

2.02× 10
−2

3.11× 10−5

(1.02× 10−4)

2.12× 10
−2

2.07× 10−5

(6.78× 10−5)

1.44× 10
−2
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Chapter 6

Skew-normal distribution

The normal distribution is symmetric about its mean. Azzalini’s skew-normal dis-

tribution [5] is a generalisation of the normal distribution that allows for non-zero

skewness. The PDF of this skew-normal distribution is

fµ,σ,α(x) =
2

σ
φ

(

x− µ

σ

)

Φ

(

α
x− µ

σ

)

, (6.1)

where µ and σ are location and scale parameters as per the normal distribution and

α ∈ R is the shape parameter that controls skewness. The functions φ and Φ are

the PDF and CDF of the standard normal distribution, as defined in (3.2) and (3.5).

As in the normal distribution case, the location and scale parameters are not of

material concern to us because we can assume µ = 0 and σ = 1 while approximating

the skew-normal quantile function. We will thus take the skew-normal PDF to be

fα(x) = 2φ (x)Φ (αx) . (6.2)

When α = 0, the skew-normal distribution reduces to the standard normal distribu-

tion (since Φ(0) = 1/2). The skew-normal distribution for −α is the mirror of that

for α, so we will restrict our attention to α > 0. Figure 6.1 shows the skew-normal

PDF for various α > 0. It is worth mentioning that as α → ∞, the skew-normal

distribution tends to the half-normal distribution with density

√

2

π
e−

x2

2 , (6.3)
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Figure 6.1: The skew-normal PDF for various α > 0.
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whose CDF is easily invertible. The quantile function of the skew-normal distribu-

tion with α = 1 can be handled with ease since

f1(x) =
d

dx
Φ2(x). (6.4)

For α 6∈ {−1, 0, 1}, the skew-normal quantile function is not known to have a

closed-form expression. However, the skew-normal CDF can be expressed in terms

of Owen’s T function, which is defined as

T (x, a) =
1

2π

∫ a

0

e−x2(1+t2)/2

1 + t2
dt, (6.5)

with x, a ∈ R. Let

Fα(x) = Φ(x)− 2T (x, α) (6.6)

be the skew-normal CDF. From (6.5), we have

T (0, a) =
1

2π
arctan(a), (6.7)

which implies that

Fα(0) =
1

2
− arctan(α)

π
. (6.8)

This leads to a general quantile result, namely that the skew-normal quantile func-

tion is precisely zero at

u0 =
1

2
− arctan(α)

π
(6.9)

for all shape parameters α. We will use this to develop a series solution for the

skew-normal quantile function momentarily. Before we look at this, it is worth

saying that skew-normal random variates can be easily generated without inverting

Fα(x). If z0, z1 are standard normal variates with correlation δ, then

x =







z1 if z0 > 0

−z1 otherwise
(6.10)

is a random variate of the skew-normal distribution with α = δ/
√
1− δ2 (see, e.g.,

[3]).
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6.1 Central power series solution

Let qα(u) = F−1
α denote the skew-normal quantile function. In the interests of

brevity, q will be used instead of qα when there is no ambiguity. For 0 < u < 1 we

have

dq

du
=

√
2π exp

(

q2

2

)

erfc
(

− αq√
2

) , (6.11)

conditional on q(u0) = 0. Before proceeding, it actually turns out to be advanta-

geous to make the change of variable

v = Φ−1(u), (6.12)

which maps the ODE to
dq

dv
=

exp
(

1
2

(

q2 − v2
))

erfc
(

− αq√
2

) . (6.13)

This is conditional on q(Φ−1(u0)) = 0. The presence of the dependent variable as

a function of erfc in the ODE complicates matters somewhat. To deal with this,

we will work out the series of erfc(x(t)) where x is an analytic function in t.

The complementary error function erfc(z) satisfies (see, e.g., [79]) the linear

ODE

w′′(z) + 2zw′(z) = 0 (6.14)

where
w(z) = erfc(z)

w(0) = 1

w′(0) = − 2√
π
.

(6.15)

Setting z = x(t), where x is an analytic function in t, the chain and quotient rules

give

w′(z) = w′(t)/u′(t) (6.16)

and

w′′(z) =
u′(t)w′′(t)− w′(t)u′′(t)

u′(t)3
. (6.17)
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Therefore erfc(x(t)) satisfies

w′′(t) = w′(t)
x′′(t)
x′(t)

− 2x(t)w′(t)x′(t) (6.18)

where
w(t) = erfc(x(t))

w(t0) = erfc(x(t0))

w′(t0) = −
2√
π
e−x(t0)2x′(t0).

(6.19)

Let

x(t) =
∞
∑

i=0

(x)i(t− t0)
i. (6.20)

Applying appropriate recurrence relations to w′′(t) and adjusting for x′ and x′′

where necessary, we obtain

(T1)k = −2(x)k,

(T2)k =

k
∑

j=0

(w′)j(T1)k−j ,

(T3)k =

k
∑

j=0

(j + 1)(x)j+1(T2)k−j,

(T4)k =

k
∑

j=0

(j + 1)(j + 2)(x)j+2(w
′)k−j,

(T5)k =
1

(x)1



(T4)k −
k
∑

j=1

(j + 1)(x)j+1(T5)k−j



 ,

(T6)k = (T5)k + (T3)k,

(w)k =







erfc((x)0) if k = 0

1
k (w

′)k−1 otherwise
,

(w′)k =







− 2√
π
e−(x)20(x)1 if k = 0

1
k (T6)k−1 otherwise

.

(6.21)
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After some simplification, we have

w(t) = erfc(x(t)) =
∞
∑

i=0

(w)i(t− t0)
i (6.22)

where

(w)n =
1

n(n− 1)(x)1

[

n−2
∑

i=0

δi(i+ 1)(w)i+1 [(n − i− 1)(n − i)(x)n−i − 2Dn(i)]− En

]

Dn(i) =
n−i−2
∑

k=0

(x)n−2−i−k

k
∑

j=0

(k − j + 1)(x)k−j+1(j + 1)(x)j+1

En =
n−2
∑

j=1

(j + 1)(x)j+1(n− j − 1)(n− j)(w)n−j

(6.23)

We can now develop the series solution for the skew-normal quantile function.

Let

q(v) =
∞
∑

n=0

cn(v − v0)
n. (6.24)

The coefficients of the series can be computed with the following recurrence rela-
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tions.

Bn =































v2 if n = 0

2v if n = 1

1 if n = 2

0 otherwise

An =
1

2

n
∑

j=0

cn−jcj −Bj

an =







exp(A0) if n = 0

1
n

∑n−1
i=0 (n− i)aiAn−i otherwise

bn = −αcn√
2

dn(i) =

n−i−2
∑

k=0

bn−2−i−k

k
∑

j=0

(k − j + 1)bk−j+1(j + 1)bj+1

en =
n−2
∑

j=1

(j + 1)bj+1(n− j − 1)(n − j)fn−j

fn =



















erfc(b0) if n = 0

− 2√
π
e−b20b1 if n = 1

1
n(n−1)b1

[

∑n−2
i=0 δi(i+ 1)fi+1 [(n− i− 1)(n − i)bn−i − 2dn(i)] − en

]

otherwise

gn =
1

f0

[

an −
n
∑

i=1

fign−i

]

cn =







q(v0) if n = 0

1
ngn−1 otherwise

(6.25)
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Figure 6.2: The normal to skew-normal transformation for α = 1 and α = 3.

For v0 = Φ−1(u0), when q(v0) = 0, we have

c0 = 0

c1 = e−
v20
2

c2 = −
1

2
e−v20

(

√

2

π
α+ e

v20
2 v0

)

c3 =

e−
1
2(3v

2
0)
(

3α

(

2α+
√
2πe

v20
2 v0

)

+ πev
2
0
(

v20 − 1
)

+ π

)

6π
.

(6.26)

Moreover, when α = 1, experimentation with many terms confirms that the coef-

ficients are consistent with the series of the exact solution, q(v) = Φ−1(
√

Φ(v)),

about v = Φ−1(1/4).

Due to the Gaussian change of variable, q(v) becomes more linear as α → 0.

The applicability of the series solution that we have just developed is, therefore,

widest when α ≈ 0. As we increase the magnitude of α, q(v) appears more and

more boomerang-shaped. This effect is shown in Figure 6.2. For |α| / 1, it is

evident that q(v) is a near linear function. In this case, our power series really

comes into its own. For example, for α = 1/2, the series coefficients, to twenty
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significant figures, are

c0 = 0

c1 = 0.93076675216545461682

c2 = 0.0034823090353740146853

c3 = 0.00023027801455712131008

c4 = 1.9142647842329812281 × 10−6

c5 = −1.9389408012460763489 × 10−6

c6 = −2.6830046692737864968 × 10−7

c7 = −1.0834703556008779814 × 10−8

c8 = 2.2647847528405086592 × 10−9

c9 = 4.8950228045400391666 × 10−10

c10 = 3.7564194584734528925 × 10−11.

(6.27)

Using these eleven terms yields approximations with a relative accuracy of less than

2.1× 10−5 on v ∈ [v0, 4], which is equivalent to

0.352416 ≈ 1

2
− arctan(1/2)

π
6 u 6 Φ(4) ≈ 0.999968,

and less than 2.0 × 10−8 on v ∈ [−4, v0]. In contrast, if α = 3 then the relative

accuracy is less than 9.3× 10−4 over v ∈ [−3, 0].

6.2 Tail approximations

Figure 6.1 suggests that the behaviour of the left and right tails of the skew-normal

distribution are quite distinct. Let us consider the first order skew-normal quantile

ODE (6.11) in an asymptotic setting. As u→ 1,

dq

du
∼
√

π

2
exp

(

q2

2

)

, (6.28)

with the condition that q(1) =∞. The solution to this is just

√
2 erf−1(u). (6.29)
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Figure 6.3: The log10 relative errors of the skew-normal quantile approximation√
2 erf−1(u) for α = 2 (on 9/10 6 u < 1) and α = 5 (on 5/10 6 u < 1).

This, alone, turns out to be a very good approximation to the right tail of the skew-

normal distribution. Note the similarity to the normal quantile function. While,

naturally, getting better as u → 1, (6.29) also becomes more and more viable as

α→∞. Figure 6.3 illustrates this point. The derivative of Fα(
√
2 erf−1(u)) is

1 + erf(α erf−1(u))

2
. (6.30)

Consequently, the difference of this quantity from one is a measure of how accurate

our tail approximation is to qα(u). Solving

ǫ =
erfc(α erf−1(u))

2
(6.31)

for u allows one to find, for a particular α and tolerance ǫ, the range of u that can

be managed by (6.29). The upper limit of the approximation (6.29) for ǫ is

erf

[

erfc−1(2ǫ)

α

]

. (6.32)

A formula for the case u → 0 cannot be derived using the same method as for

u→ 1, so another route must be used.

For the left tail of the skew-normal distribution with α > 0, [17] proves the

inequality

√

2

π

φ(x
√
1 + α2)

|α| (1 + α2)x2
−
√

2

π

(

2 +
1 + α2

α2

)

φ(x
√
1 + α2)

|α| (1 + α2)2x4
< Fα(x) <

√

2

π

φ(x
√
1 + α2)

|α| (1 + α2)x2
.

(6.33)

The upper bound is interesting to us, because it is invertible. To see this, recall the
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Figure 6.4: The Lambert W -function W (z) for −1/e 6 z 6 1.

definition of the normal PDF φ. So

Fα(x) <

√

2

π

φ(x
√
1 + α2)

|α| (1 + α2)x2
=

e−
1
2(1+α2)x2

π |α| (1 + α2)x2
. (6.34)

Let u = Fα(x), then, assuming the upper bound is reasonably sharp,

1

2
(1 + α2)x2e

1
2(1+α2)x2 ≈ 1

2πu |α| (6.35)

=⇒ x ≈ ±

√

√

√

√

2W
(

1
2πu|α|

)

1 + α2
(6.36)

where W (z) is the Lambert W -function1. The negative solution happens to be

the approximation we want. We found that it gives up to around three significant

figures of accuracy.

The Lambert W -function, also known as the product log function, is a relatively

simple quantity to compute. Figure 6.4 gives a plot of W (z) for −1/e 6 z 6 1.

Since W (z) is the solution to

f(w) = wew − z = 0, (6.37)

1W (z) gives the principal solution for w in z = w exp(w).
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and
f ′(w) = ew(1 + w)

f ′′(w)
f ′(w)

=
2 + w

1 + w
,

(6.38)

the use of Halley’s method in the form

wn+1 = wn −
f(wn)

f ′(wn)

[

1− f(wn)f
′′(wn)

2f ′(wn)2

]−1

(6.39)

is very natural. The question now is how to choose the initial guess w0. Power series

expansions for W (z) at z = 0,−1/e,∞ are certainly suitable, but better formulae

are available.

We adopt the analytic approximations in [7]. For −1/e 6 z 6 0,

W (z) = −1 +
√
η

1 + ((N1
√
η)/(N2 +

√
η))

(6.40)

is given, where

η = 2 + 2ez (6.41)

and

N1 =

(

1− 1√
2

)

(N2 +
√
2). (6.42)

If, as per [8],

N2 = 3
√
2 + 6− [(2237 + 1457

√
2)e− 4108

√
2− 5764]

√
η

(215 + 199
√
2)e− 430

√
2− 796

, (6.43)

then approximations with a relative error of at least 0.013% will be yielded, which

is excellent. For z > 0, [7] gives

W (z) ≈ log

{

6

5

z

log[(12/5)(z/ log(1 + (12z/5)))]

}

, (6.44)

which is quoted to have a maximum relative error of 2.39%. There are more com-

plicated approximations in [7] that offer more accuracy, but a balance between

the computational effort for the initial guess and subsequent refinements has to

be struck. We found the aforementioned pair of approximants to be good enough.

Two or three Halley iterations are typically sufficient for double-precision results.
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For completeness, Routine 11 gives the pseudocode for computing W (z).2

Routine 11 Lambert W -function

Input: z ∈ [−1/e,∞)
Output: W (z)
1: if z = −1/e then

2: return −1
3: end if

4: if z = 0 then

5: return 0
6: end if

7: if z > 0 then

8: w0 ← log
{

6
5

z
log[(12/5)(z/ log(1+(12z/5)))]

}

9: else

10: η ← 2 + 2ez

11: N2 ← 3
√
2 + 6− [(2237+1457

√
2)e−4108

√
2−5764]

√
η

(215+199
√
2)e−430

√
2−796

12: N1 ←
(

1− 1√
2

)

(N2 +
√
2)

13: w0 ← −1 +
√
η

1+((N1
√
η)/(N2+

√
η))

14: end if

15: while true do

16: f ← w0 exp(w0)− z
17: w1 ← w0 − f/((exp(w0)(w0 + 1)− (w0 + 2)f/(2w0 + 2)))
18: if |w0/w1 − 1| < ǫ then ⊲ ǫ represents machine epsilon here
19: break

20: end if

21: w0 ← w1

22: end while

23: return w1

In summary, we now have tail approximations for both ends of the skew-normal

distribution. The four cases are outlined below.

(α > 0, u→ 1) √
2 erf−1(u) (6.45)

(α > 0, u→ 0)

−

√

√

√

√

2W
(

1
2πu|α|

)

1 + α2
(6.46)

2An open-source implementation of the Lambert W -function algorithm is available from the
public GitHub repository https://github.com/thomasluu/plog.
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(α < 0, u→ 0)

−
√
2 erfc−1(u) (6.47)

(α < 0, u→ 1)
√

√

√

√

2W
(

1
2π(1−u)|α|

)

1 + α2
(6.48)

In the last case there is no loss of precision, because u is not near zero. The nature of

these tail approximations means that they are also general upper and lower bounds

for skew-normal quantiles. There is overlap between these tail approximations and

our central power series solution. We will use this observation in Section 6.4 to

create a complete algorithm for the skew-normal quantile function. Let us first

review the prevailing method to approximate skew-normal quantiles.

6.3 Cornish–Fisher approximations

The use of Cornish–Fisher expansions [34], which are in terms of cumulants, are a

natural method to crudely approximate the skew-normal quantile function. Indeed,

Azzalini’s skew-normal software package [4] (written in R) and the Boost C++

Math Toolkit [14] both use a Cornish–Fisher expansion with the first four cumulants

of the (normalised) skew-normal distribution. The approximation that uses this

particular expansion is

qα(z) ≈ σ

(

z +
z2 − 1

6
κ3 +

z3 − 3z

24
κ4 −

2z3 − 5z

36
κ23

)

+ µ, (6.49)

where z = Φ−1(u) and

µ =

√

2
πα√

α2 + 1

σ =

√

1− 2α2

πα2 + π

κ3 = −
√
2(π − 4)α3

(α2 + 1)3/2
(

2
α2+1 + π − 2

)3/2

κ4 =
8(π − 3)α4

((π − 2)α2 + π)2
.

(6.50)
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The Cornish–Fisher approximations are then refined with Newton’s method. Boost

uses the algorithm from [62] to implement the the skew-normal CDF.

The Cornish–Fisher approximation that uses the first five cumulants is

qα(z) ≈ σ

(

z +
z2 − 1

6
κ3 +

z3 − 3z

24
κ4 −

2z3 − 5z

36
κ23

+
z4 − 6z2 + 3

120
κ5 −

z4 − 5z2 + 2

24
κ3κ4 +

12z4 − 53z2 + 17

324
κ33

)

+ µ,

(6.51)

where

κ5 =

√
2(π(3π − 40) + 96)α5

(α2 + 1)5/2
(

2
α2+1

+ π − 2
)5/2

. (6.52)

Cornish–Fisher expansions are asymptotic in nature, so increasing the number of

cumulants used will, of course, not necessarily yield more accurate results. More-

over, the quality of the (tail) approximations deteriorate as z → ±∞. This is a

well known issue, which will be addressed in the next section.

6.4 A new numerical algorithm

We will now combine our power series solution and tail approximations to develop

an improved algorithm for the skew-normal quantile function. The combination of

the polynomial and analytic approximants means that inversion is very computa-

tionally efficient, comparable to that of Cornish–Fisher expansions.

6.4.1 Algorithm design

For a given u, α pair, we are able to compute, using (6.32), the point from which

the right tail approximation (6.45) can be used. However, we cannot do this for

the left tail approximation (6.46). In the light of this, the power series solution

of Q(v) = q(Φ(v)) is formed. The recurrence relation from Section 6.1 is used to

compute the required coefficients. The symbolic form of the coefficients can be

pre-computed or computed on-the-fly. We chose to do the former. In any case,

the last coefficient computed is used to estimate the radius of convergence. If

v = Φ−1(u) is outside this range, we switch to the left tail approximation. Using

the last coefficient is justified, because it is precisely what adaptive ODE solvers

such as the Runge–Kutta–Fehlberg method [26] are based on. We calculate the

difference between a Taylor series approximation of order n from one of order n−1
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to gauge the error estimate. This quantity is

ǫ ≈ |cn|hn, (6.53)

where h is the step-size, so, allowing for a generous safety factor, we take the radius

of convergence as

h ≈ 3

4

∣

∣

∣

∣

ǫ

cn

∣

∣

∣

∣

1/n

. (6.54)

Algorithm 12, designated SNCDFINV, gives the pseudocode for all of this.

6.4.2 Computational experiments

We will now demonstrate the parallel performance of our skew-normal quantile

function algorithm SNCDFINV. This was done in accordance with Section 2.5.

Our implementation uses the first five non-zero coefficients of the central series

solution. The symbolic form of c1, c2, . . . , c5 were generated for this purpose using

(6.25). All computations were implemented in double-precision. The performance

of SNCDFINV was evaluated on three high-end Nvidia GPUs:

• a GeForce GTX Titan;

• a Tesla K80; and

• a Tesla C2050.

The C2050 is based on Nvidia’s previous generation Fermi architecture, while the

other two are Kepler GPUs. We used CUDA 6.5.14 software, the most recent

production release at the time of writing.

We benchmarked the performance of SNCDFINV against the Cornish–Fisher

expansions (6.49) and (6.51). We will denote these by CF4 and CF5 respectively.

Speed

Table 6.1 shows the performance of SNCDFINV, CF5 and CF4 for a wide range

of shape parameters. The performance of SNCDFINV is always within an order of

magnitude of the time to compute CF5 and CF4.

Precision

The precision of SNCDFINV, CF5 and CF4 were assessed by inspecting the output

from ten out of the 100 runs of each speed test. The skew-normal output and cor-
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Algorithm 12 Skew-normal quantile algorithm (sncdfinv)

Input: u ∈ (0, 1), α ∈ R.
Output: qα(u)
1: ǫ← 1/100

⊲ Check right tail approximation applicability

2: ur ← erf
[

erfc−1(2ǫ)
|α|

]

3: if α > 0 ∧ u > ur then

4: return
√
2 erf−1(u)

5: end if

6: if α < 0 ∧ (1− u) > ur then

7: return −
√
2 erfc−1(u)

8: end if

9: v ← Φ−1(u) ⊲ Evaluate the Gaussian change of variable
10: if α < 0 then

11: v = −v
12: end if

⊲ Form series of Q(v) about v0
13: v0 ← Φ−1(u0) ⊲ See (6.9) for the definition of u0
14: c0 ← 0

15: c1 ← e−
v20
2

16: c2 ← −1
2e

−v20

(

√

2
π |α|+ e

v20
2 v0

)

17: . . .
18: cn ← . . .

19: h← 3
4

∣

∣

∣

ǫ
cn

∣

∣

∣

1/n
⊲ Calculate a safe step-size

⊲ Check left tail approximation applicability
20: vl ← v0 − h
21: if v < vl then
22: if α > 0 then

23: return −
√

2W
(

1
2πu|α|

)

1+α2

24: else

25: return

√

2W
(

1
2π(1−u)|α|

)

1+α2

26: end if

27: end if

⊲ The normal to skew-normal recycling function is computed.
28: Q←

∑n
k=0 ck(v − v0)

k ⊲ In practice, this would be evaluated using Horner’s
scheme.

29: if a < 0 then

30: return −Q
31: else

32: return Q
33: end if
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Table 6.1: Timings in ms to compute the skew-normal quantile function qα for 107

pseudo-random uniform variates using implementations of SNCDFINV, CF5 and
CF4 averaged over 100 runs on the three test Nvidia GPUs. All standard deviations
were negligible.

SNCDFINV CF5 CF4

α Titan K80 C2050 Titan K80 C2050 Titan K80 C2050

2−5 42.95 9.57 31.57 39.54 10.88 30.96 24.14 6.55 16.37

2−4 42.99 8.17 31.57 39.53 9.46 30.96 23.81 5.31 16.37

2−3 43.69 8.21 31.58 40.04 9.45 30.96 23.85 5.41 16.37

2−2 42.44 8.22 31.57 39.95 9.44 30.95 24.53 5.37 16.37

2−1 43.80 8.27 31.55 40.61 9.46 30.95 24.91 5.43 16.37

21 49.15 9.01 36.35 42.61 9.44 30.96 25.89 5.38 16.37

22 54.61 9.80 44.11 41.17 9.47 30.93 25.15 5.42 16.33

23 53.78 9.59 43.31 41.39 9.51 30.95 25.36 5.42 16.35

24 50.67 9.08 40.31 41.06 9.46 30.95 25.21 5.43 16.35

25 46.73 8.24 35.78 41.05 9.46 30.95 25.35 5.35 16.35

26 39.66 7.04 30.38 41.01 9.46 30.95 24.87 5.36 16.35

27 34.09 5.91 26.32 41.30 9.56 30.95 25.16 5.48 16.35

responding uniform input were copied from the GPU to the CPU. 80-bit extended

precision references were computed using Boost 1.57.0 and compared to the copied

values. Table 6.2 gives average and peak forward relative error (2.13) statistics for

the implementations with the same shape parameters from the speed test. Table 6.3

shows the same for the backward relative error (2.13).

The error statistics are very interesting, especially in the light of the the speed

results. An immediate observation is that SNCDFINV’s average and maximum

errors are consistently lower than those of the Cornish–Fisher approximants. More-

over, the peak relative errors of SNCDFINV are always at a sensible level. As one

would expect, all approximations are very good for α ≈ 0. Also, as α increases

away from zero, the error statistics of both CF5 and CF4 deteriorate. It should be

noted that their errors for even small to moderate α are quite poor.

6.5 Commentary

We have described the development of an algorithm, called SNCDFINV, for com-

puting the skew-normal quantile function. The algorithm compares favourably

with commonly used Cornish–Fisher expansions. We believe our algorithm would,

therefore, be a strong candidate for initial guesses in high-precision skew-normal
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Table 6.2: Average and peak forward relative error (2.13) statistics for implemen-
tations of SNCDFINV, CF5 and CF4, over 108 pseudo-random uniform variates for
each α. Standard deviations are in brackets. Peak statistics are in bold.

α SNCDFINV CF5 CF4

2−5

1.02 × 10−14

(3.24× 10−13)

1.71× 10
−09

3.10× 10−12

(9.17× 10−10)

4.91× 10
−06

5.03 × 10−11

(3.10× 10−08)

1.66× 10
−04

2−4

1.24 × 10−12

(5.92× 10−12)

5.56× 10
−09

3.07× 10−10

(1.93× 10−07)

1.10× 10
−03

1.81 × 10−09

(1.58× 10−06)

9.02× 10
−03

2−3

1.59 × 10−10

(7.46× 10−10)

2.43× 10
−07

2.65× 10−08

(1.25× 10−05)

5.94× 10
−02

4.32 × 10−08

(2.18× 10−05)

1.04× 10
−01

2−2

8.09 × 10−09

(6.01× 10−08)

1.54× 10
−05

3.79× 10−06

(1.20× 10−02)

1.19× 10
+02

8.93 × 10−07

(1.37× 10−03)

1.37× 10
+01

2−1

2.50 × 10−06

(2.32× 10−05)

1.32× 10
−02

3.19× 10−04

(1.03 × 10+00)

1.01× 10
+04

1.47 × 10−04

(4.23× 10−01)

4.17× 10
+03

21
6.28 × 10−04

(1.25× 10−03)

3.50× 10
−02

6.54× 10−02

(5.34 × 10+01)

4.25× 10
+05

1.21 × 10−01

(1.00× 10+02)

7.97× 10
+05

22
7.95 × 10−04

(5.75× 10−03)

1.29× 10
−01

2.26× 10−01

(8.16 × 10+01)

2.78× 10
+05

4.15 × 10−01

(1.52× 10+02)

5.18× 10
+05

23
4.54 × 10−04

(6.55× 10−03)

1.72× 10
−01

4.99× 10−01

(1.04 × 10+03)

1.00× 10
+07

9.25 × 10−01

(1.96× 10+03)

1.90× 10
+07

24
2.88 × 10−04

(4.72× 10−03)

1.73× 10
−01

4.15× 10−01

(2.95 × 10+02)

1.43× 10
+06

9.57 × 10−01

(7.32× 10+02)

3.54× 10
+06

25
1.77 × 10−04

(2.89× 10−03)

1.56× 10
−01

2.25× 10−01

(2.55 × 10+02)

2.42× 10
+06

1.09× 10+00

(2.09× 10+03)

1.98× 10
+07

26
1.00 × 10−04

(1.67× 10−03)

1.33× 10
−01

4.56× 10−01

(3.03 × 10+02)

2.32× 10
+06

6.73 × 10−01

(4.37× 10+02)

3.34× 10
+06

27
5.57 × 10−05

(1.04× 10−03)

1.09× 10
−01

1.04 × 10+00

(8.55 × 10+02)

5.97× 10
+06

2.94 × 10−01

(4.43× 10+01)

3.10× 10
+05
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Table 6.3: Average and peak backward relative error (2.14) statistics for implemen-
tations of SNCDFINV, CF5 and CF4, over 108 pseudo-random uniform variates for
each α. Standard deviations are in brackets. Peak statistics are in bold.

α SNCDFINV CF5 CF4

2−5

3.12 × 10−14

(4.00× 10−13)

2.96× 10
−10

1.17× 10−12

(5.23× 10−12)

4.77× 10
−09

3.07 × 10−12

(8.38× 10−12)

9.98× 10
−10

2−4

3.74 × 10−12

(4.87× 10−11)

3.65× 10
−08

7.46× 10−11

(3.28× 10−10)

2.94× 10
−07

1.11 × 10−10

(2.26× 10−10)

9.46× 10
−08

2−3

4.16 × 10−10

(5.56× 10−09)

4.23× 10
−06

4.70× 10−09

(2.02× 10−08)

1.74× 10
−05

5.26 × 10−09

(1.05× 10−08)

9.14× 10
−06

2−2

3.88 × 10−08

(5.40× 10−07)

4.23× 10
−04

2.87× 10−07

(1.19× 10−06)

9.49× 10
−04

3.05 × 10−07

(6.22× 10−07)

4.69× 10
−04

2−1

3.31 × 10−06

(5.02× 10−04)

3.00× 10
−01

1.57× 10−05

(6.27× 10−05)

4.61× 10
−02

1.79 × 10−05

(3.98× 10−05)

1.05× 10
−02

21
6.36 × 10−04

(6.77× 10−03)

3.58× 10
−01

1.05× 10−02

(3.73 × 10+01)

3.72× 10
+05

1.00 × 10−03

(2.66× 10−02)

9.99× 10
−01

22
2.64 × 10−03

(3.53× 10−02)

6.84× 10
−01

2.48× 10−02

(6.38× 10−02)

9.99× 10
−01

3.79 × 10−02

(7.27× 10−02)

1.00× 10
+00

23
2.10 × 10−03

(3.55× 10−02)

7.86× 10
−01

5.09× 10−02

(1.15× 10−01)

1.00× 10
+01

8.81 × 10−02

(1.94× 10−01)

1.00× 10
+00

24
1.13 × 10−03

(2.53× 10−02)

7.89× 10
−01

8.89× 10−02

(2.35× 10−01)

1.18× 10
+00

2.32 × 10−01

(7.61× 10−01)

4.75× 10
+00

25
5.37 × 10−04

(1.60× 10−02)

7.49× 10
−01

1.63× 10−01

(5.64× 10−01)

3.69× 10
+00

1.76× 10+00

(9.57× 10+00)

8.54× 10
+01

26
2.43 × 10−04

(9.37× 10−03)

6.91× 10
−01

3.94× 10−01

(1.90 × 10+00)

1.61× 10
+01

1.55× 10+03

(1.36× 10+04)

1.75× 10
+05

27
1.16 × 10−04

(5.49× 10−03)

6.25× 10
−01

2.64 × 10+00

(1.92 × 10+01)

2.17× 10
+02

1.14× 10+14

(1.46× 10+15)

2.92× 10
+16
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quantile algorithms and low-precision simulations. In contrast to Cornish–Fisher

approximations, our power series solution will give more accuracy by dialling up

the number of terms used.

The skew-normal quantile function algorithm we have described is not a truly

branch-free solution, due to the separate tail formulae. Further work would be

necessary to remove this dependency. We simply take the hit of branch divergence

on GPUs in this first-cut solution. Nevertheless, our skew-normal algorithm does

not need an initialisation stage, which means that it can be used when the shape

parameter α varies between calls. For the fixed parameter case, the algorithm from

Section 4.2.1 could be adapted for the skew-normal distribution.
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Chapter 7

Conclusions

In this thesis, we have shown that the quantile mechanics approach is a viable

and powerful technique for developing quantile function approximants. Along the

way, we have applied the technique to the normal, gamma, non-central χ2 and

skew-normal distributions. The main research output for each distribution was

a quantile function algorithm that is faster or more accurate than the current

state of the art on GPUs and other many-core architectures. Our normal and

gamma algorithms fit into the “faster” category. We believe that this thesis contains

the first comprehensive analysis on the non-central χ2 and skew-normal quantile

functions, together with new algorithms that cover the parameter and variable

space more accurately than existing approximations. In particular, we derived new

analytic approximations and power series solutions for the non-central χ2 and skew-

normal quantile functions. These are interesting from a theoretical and practical

perspective.

We believe that the practical applicability of the inversion method has been

expanded in a meaningful way. This was the goal of this thesis. A main idea was

to find efficient methods for constructing the polynomial approximations that John

von Neumann talked about in his letter (partially reproduced on page 8) to Stanis-

law Ulam [25]. We have concurrently looked at algorithms that are particularly

suitable for parallel implementation. The algorithms are, therefore, especially use-

ful for random number generation. This work is, of course, not the last word on

the matter.

There are a number of possibilities for future research directions. Concrete

ideas include improving the non-central χ2 and skew-normal quantile function al-

gorithms, especially their respective accuracies. The foothold gained in this work is
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likely to be valuable. Other distributions are also certainly ripe for research. This

is especially true for Pearson distributions, which have pleasant quantile ODEs

that are relatively easy to work with. Non-Pearson distributions are slightly more

involved, in that their density function typically includes a special function. How-

ever, as we have shown with the non-central χ2 and skew-normal distributions, if

the special function itself satisfies an ODE then significant progress can be made.

For the development of fast GPU quantile function algorithms, there is the issue of

branch divergence. Handling this in an efficient manner for the whole parameter

and variable space of a distribution is somewhat more of an art than a science.

We saw this with the normal and gamma distributions, where multiple and even

compositions of inventive changes of variable were called upon. Nevertheless, wor-

thy candidates are distributions that—intentionally or otherwise—mimic the target

distribution. For example, the Kumaraswamy distribution [45] (see also [40]) is re-

markably beta-like, yet it has a closed-form CDF1. Some other interesting tractable

beta-like distributions are reviewed in [44].

An open problem in fast and accurate quantile function computation is the case

of when the shape parameter(s) of a distribution is not fixed, but varies. This more

or less precludes the use of pre-computing approximants via quantile mechanics.

However, this author has experimented with an idea of working with the ODE of

the forward CDF (as opposed to the inverse function), with a view to accelerating

the repeated CDF computations in root-finding algorithms. A sizeable speed-up

(without compromising accuracy) was observed for the gamma distribution, but

the performance is still not quite appropriate for real-time simulation purposes.

Nevertheless, details of the underlying mathematics—coined ‘CDF mechanics’—

were given in Section 2.2.

1The Kumaraswamy CDF on x ∈ [0, 1] is simply
[

1− (1− xα)β
]

, where α, β > 0 are shape

parameters. The corresponding PDF for this distribution is αβxα−1(1 − xα)β−1. Compare this
with the PDF of the beta distribution: 1

B(α,β)
xα−1(1− x)β−1.
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Appendix A

Availability of software

Normal distribution

Open-source implementations of the GPU-optimised normal quantile approxima-

tions in Chapter 3 are given in Appendix B. Similar implementations are also

available in the NAG Numerical Routines for GPUs (see http://www.nag.co.uk/

numeric/GPUs/index). Anyone who wishes to obtain this should contact NAG

either through the website www.nag.co.uk, or via email at infodesk@nag.co.uk.

Gamma distribution

An open-source implementation of the gamma quantile function algorithm de-

scribed in Chapter 4 is available from the public GitHub repository https://github.

com/thomasluu/quantus. A production grade GPU and multithreaded CPU im-

plementation of the algorithm is available from NAG. Please see http://www.nag.

co.uk or contact the author for more details.

Non-central χ2 and skew-normal distributions

An open-source implementation of the quantile function algorithms described in

Chapters 5 and 6 is available from the public GitHub repositories https://github.

com/thomasluu/ncx2cdfinv and https://github.com/thomasluu/sncdfinv.
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Appendix B

CUDA device functions for Φ−1

B.1 Branchless approximation for single-precision

__device__ float branchless(float u)

{

float ushift = u - 0.5f;

if (ushift > 0.0f) u = 1.0f - u;

float v = -logf(u + u);

float p = 1.68267776058639e-6f;

p = p * v + 0.0007404314351202936f;

p = p * v + 0.03602364419560667f;

p = p * v + 0.4500443083534446f;

p = p * v + 1.861100468283588f;

p = p * v + 2.748475794390544f;

p = p * v + 1.253314132218524f;

float q = 0.00003709787159774307f;

q = q * v + 0.004513659269519104f;

q = q * v + 0.1101701640048184f;

q = q * v + 0.8410203004476538f;

q = q * v + 2.402969434512837f;

q = q * v + 2.692965915568952f;

q = q * v + 1.0f;
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return __fdividef(p, q) * copysignf(v, ushift);

}

B.2 Branched approximation for single-precision

__device__ float branched(float u)

{

float ushift = u - 0.5f;

if (ushift > 0.0f) u = 1.0f - u;

float v = -logf(u + u);

float p, q;

if (v < 22.0f) {

p = 1.68267776058639e-6f;

p = p * v + 0.0007404314351202936f;

p = p * v + 0.03602364419560667f;

p = p * v + 0.4500443083534446f;

p = p * v + 1.861100468283588f;

p = p * v + 2.748475794390544f;

p = p * v + 1.253314132218524f;

q = 0.00003709787159774307f;

q = q * v + 0.004513659269519104f;

q = q * v + 0.1101701640048184f;

q = q * v + 0.8410203004476538f;

q = q * v + 2.402969434512837f;

q = q * v + 2.692965915568952f;

} else {

p = 0.00001016962895771568f;

p = p * v + 0.003330096951634844f;

p = p * v + 0.1540146885433827f;

p = p * v + 1.045480394868638f;
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q = 1.303450553973082e-7f;

q = q * v + 0.0001728926914526662f;

q = q * v + 0.02031866871146244f;

q = q * v + 0.3977137974626933f;

}

p *= copysignf(v, ushift);

q = q * v + 1.0f;

return __fdividef(p, q);

}

B.3 Branched approximation for double-precision

__device__ double branched(double u)

{

double ushift = u - 0.5;

if (ushift > 0.0) u = 1.0 - u;

double v = -log(u + u);

double p, q;

if (v < 8.0) {

p = 1.349518868381678058753249e-8;

p = p * v + 8.52746651977185243009898e-6;

p = p * v + 0.0007406377273502195713300782;

p = p * v + 0.02110410727013085360335842;

p = p * v + 0.2623738494513625927357995;

p = p * v + 1.636409525694839308796912;

p = p * v + 5.518808617987600457113932;

p = p * v + 10.40118297266547564032922;

p = p * v + 10.8611239302525037936894;

p = p * v + 5.835965523943366494409442;

p = p * v + 1.253314137315500218846638;

q = 3.475390584395848523528879e-7;
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q = q * v + 0.00006713843966407750619673244;

q = q * v + 0.003234732137701730881039638;

q = q * v + 0.06142247251750825316341193;

q = q * v + 0.5598983561302253505510779;

q = q * v + 2.723933211326168795847825;

q = q * v + 7.495380651029058089810514;

q = q * v + 11.93179043337747424406973;

q = q * v + 10.81567043691618587425845;

q = q * v + 5.156426788932205027416249;

} else if (v < 22.0) {

p = 5.905547081121762506516589e-8;

p = p * v + 0.00002242239919190552389396371;

p = p * v + 0.001823372963609771796770297;

p = p * v + 0.04741412290058875930061007;

p = p * v + 0.4414912980032717990549048;

p = p * v + 1.424983759201438344148404;

p = p * v + 1.250429746707532155567877;

q = 7.820715032526777904083752e-10;

q = q * v + 1.038245803426121099241835e-6;

q = q * v + 0.0001691152956136853577153963;

q = q * v + 0.007734585142330988979414947;

q = q * v + 0.1248230877587629006979956;

q = q * v + 0.7546908613706284650243254;

q = q * v + 1.628953198232099316377859;

} else if (v < 44.0) {

p = 5.610390426863731506852026e-11;

p = p * v + 1.421171074845048244184302e-7;

p = p * v + 0.00004247705115079861566951468;

p = p * v + 0.003356723402904164805382096;

p = p * v + 0.0846819487619891724948853;

p = p * v + 0.6645701735755075991918887;

p = p * v + 1.218054142898073209279639;

q = 2.938536605592884511709757e-9;

q = q * v + 2.108867766800134266521303e-6;
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q = q * v + 0.0003132939517941178397687649;

q = q * v + 0.01414790841185618108831795;

q = q * v + 0.2116313408806531549023063;

q = q * v + 0.9697478641141374383359639;

} else {

return -CUDART_SQRT_TWO * erfcinv(u + u);

}

p *= copysign(v, ushift);

q = q * v + 1.0;

return p / q;

}

B.4 Hybrid approximation for single-precision

__device__ float hybrid(float u)

{

float v, p, q, ushift;

ushift = u - 0.5f;

v = copysignf(ushift, 0.0f);

if (v < 0.499433f) {

asm("rsqrt.approx.ftz.f32 %0,%1;" : "=f"(v) : "f"(u - u * u));

v *= 0.5f;

p = 0.001732781974270904f;

p = p * v + 0.1788417306083325f;

p = p * v + 2.804338363421083f;

p = p * v + 9.35716893191325f;

p = p * v + 5.283080058166861f;

p = p * v + 0.07885390444279965f;

p *= ushift;

q = 0.0001796248328874524f;
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q = q * v + 0.02398533988976253f;

q = q * v + 0.4893072798067982f;

q = q * v + 2.406460595830034f;

q = q * v + 3.142947488363618f;

} else {

if (ushift > 0.0f) u = 1.0f - u;

asm("lg2.approx.ftz.f32 %0,%1;" : "=f"(v) : "f"(u + u));

v *= -0.6931471805599453f;

if (v < 22.0f) {

p = 0.000382438382914666f;

p = p * v + 0.03679041341785685f;

p = p * v + 0.5242351532484291f;

p = p * v + 1.21642047402659f;

q = 9.14019972725528e-6f;

q = q * v + 0.003523083799369908f;

q = q * v + 0.126802543865968f;

q = q * v + 0.8502031783957995f;

} else {

p = 0.00001016962895771568f;

p = p * v + 0.003330096951634844f;

p = p * v + 0.1540146885433827f;

p = p * v + 1.045480394868638f;

q = 1.303450553973082e-7f;

q = q * v + 0.0001728926914526662f;

q = q * v + 0.02031866871146244f;

q = q * v + 0.3977137974626933f;

}

p *= copysignf(v, ushift);

}

q = q * v + 1.0f;

asm("rcp.approx.ftz.f32 %0,%1;" : "=f"(v) : "f"(q));

return p * v;

}
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B.5 Hybrid approximation for double-precision

__device__ double hybrid(double u)

{

double v, p, q, ushift;

ushift = u - 0.5;

v = copysign(ushift, 0.0);

if (all(v < 0.499483203996)) {

v = rsqrt(u - u * u);

v *= 0.5;

p = 7.2744228279773304710401873082e-8;

p = p * v + 0.0000421743871813882581153268755947;

p = p * v + 0.00520379665440516934032831487884;

p = p * v + 0.225264560844470327491137486146;

p = p * v + 4.14932318033989880708071080023;

p = p * v + 35.4767630504161379997123610715;

p = p * v + 145.073376038130631263518147487;

p = p * v + 279.375312117440143683363022333;

p = p * v + 236.365498586700680221243225944;

p = p * v + 75.0305448544398694183806332634;

p = p * v + 6.39207201315300014457052458023;

p = p * v + 0.0167925887515079331460230479124;

p *= ushift;

q = 6.75247954960365765875437842188e-9;

q = q * v + 4.65945444291242666572785117414e-6;

q = q * v + 0.000655200752555879764745895049551;

q = q * v + 0.0321185176417740220294374574723;

q = q * v + 0.675906789081877876894258344513;

q = q * v + 6.75231637016836002442853621662;

q = q * v + 33.6182510700950789325981739877;

q = q * v + 84.7300851352254981643307375148;
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q = q * v + 106.642594343396090577609079223;

q = q * v + 63.3625936203786444600988073568;

q = q * v + 15.2022982212427166686341278383;

} else {

if (ushift > 0.0) u = 1.0 - u;

v = -log(u + u);

if (all(v < 44.0)) {

if (v < 8.0) {

p = 1.349518868381678058753249e-8;

p = p * v + 8.52746651977185243009898e-6;

p = p * v + 0.0007406377273502195713300782;

p = p * v + 0.02110410727013085360335842;

p = p * v + 0.2623738494513625927357995;

p = p * v + 1.636409525694839308796912;

p = p * v + 5.518808617987600457113932;

p = p * v + 10.40118297266547564032922;

p = p * v + 10.8611239302525037936894;

p = p * v + 5.835965523943366494409442;

p = p * v + 1.253314137315500218846638;

q = 3.475390584395848523528879e-7;

q = q * v + 0.00006713843966407750619673244;

q = q * v + 0.003234732137701730881039638;

q = q * v + 0.06142247251750825316341193;

q = q * v + 0.5598983561302253505510779;

q = q * v + 2.723933211326168795847825;

q = q * v + 7.495380651029058089810514;

q = q * v + 11.93179043337747424406973;

q = q * v + 10.81567043691618587425845;

q = q * v + 5.156426788932205027416249;

} else {

p = 3.520313516116902104718364e-14;

p = p * v + 1.290150467609741469439886e-10;

p = p * v + 6.205583506207842717279345e-8;

p = p * v + 9.158932787882144364471905e-6;

p = p * v + 0.0005374401369638208453883002;
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p = p * v + 0.01394912091056901348391011;

p = p * v + 0.1654924245227317720698501;

p = p * v + 0.8766747937038415857312223;

p = p * v + 1.884681361008701399986748;

p = p * v + 1.252361243983087224074555;

q = 2.192764889420860512097952e-12;

q = q * v + 2.388944627137940203964714e-9;

q = q * v + 6.091425154840720318019782e-7;

q = q * v + 0.00005611957534780981729681127;

q = q * v + 0.002210289965119635784953798;

q = q * v + 0.03993946264733258917755805;

q = q * v + 0.3362029856232688357862647;

q = q * v + 1.278191163497808490709652;

q = q * v + 2.000771714036158414980628;

}

p *= copysign(v, ushift);

} else {

return -CUDART_SQRT_TWO * erfcinv(u + u);

}

}

q = q * v + 1.0;

return p / q;

}
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Appendix C

Non-central χ2 quantile

function power series derivation

This appendix details the derivation of the power series solution in Section 5.3. The

quantile function q of the non-central χ2 distribution satisfies

d2q

du2
=

[

2 + q − ν

2q
− λ

4

0F̃1

(

; ν2 + 1; λ4 q
)

0F̃1

(

; ν2 ;
λ
4 q
)

]

(

dq

du

)2

, (C.1)

conditional on q(0) = 0 and

q(u) ∼
[

2ν/2−1eλ/2uνΓ(ν/2)
]2/ν

as u→ 0. (C.2)

Let

v =
[

2ν/2−1eλ/2uνΓ(ν/2)
]2/ν

. (C.3)

This maps the ODE to

d2q

dv2
+

1− ν/2

v

dq

dv
=

[

2 + q − ν

2q
− λ

4

0F̃1

(

; ν2 + 1; λ4 q
)

0F̃1

(

; ν2 ;
λ
4 q
)

]

(

dq

dv

)2

. (C.4)

Let us rearrange this into

2 vq
d2q

dv2
+ (2− ν) q

dq

dv
= v (2− ν + q)

(

dq

dv

)2

− λ

2
vq

(

dq

dv

)2
0F̃1

(

; ν2 + 1; λ4 q
)

0F̃1

(

; ν2 ;
λ
4 q
) .

(C.5)
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Try

q(v) =

∞
∑

n=0

gnv
n (C.6)

with g0 = 0 and g1 = 1. So

2 v

( ∞
∑

n=0

gnv
n

)( ∞
∑

n=0

(n+ 2)(n + 1)gn+2v
n

)

= (2− ν) v

( ∞
∑

n=0

(n+ 1)gn+1v
n

)2

− (2− ν)

( ∞
∑

n=0

gnv
n

)( ∞
∑

n=0

(n+ 1)gn+1v
n

)

+ v

( ∞
∑

n=0

gnv
n

)( ∞
∑

n=0

(n+ 1)gn+1v
n

)2

− λ

2
v

( ∞
∑

n=0

gnv
n

)( ∞
∑

n=0

(n+ 1)gn+1v
n

)2( ∞
∑

n=0

fnv
n

)

, (C.7)

where ∞
∑

n=0

fnv
n =

0F̃1

(

; ν2 + 1; λ4 q(v)
)

0F̃1

(

; ν2 ;
λ
4 q(v)

) , (C.8)

which we will defer the handling of. We have

2 v

∞
∑

n=0

vn
n
∑

i=0

gign−i+2 [(n− i+ 2) (n− i+ 1)]

= (2− ν) v

∞
∑

n=0

vn
n
∑

i=0

gi+1gn−i+1 [(i+ 1) (n− i+ 1)]

− (2− ν)
∞
∑

n=0

vn
n
∑

i=0

gign−i+1 (n− i+ 1)

+ v
∞
∑

n=0

vn
n
∑

j=0

gj

(

n−j
∑

i=0

gi+1gn−j−i+1 [(i+ 1) (n− j − i+ 1)]

)

− λ

2
v

∞
∑

n=0

vn
n
∑

k=0

k
∑

j=0

gj

(

k−j
∑

i=0

gi+1gk−j−i+1 [(i+ 1) (k − j − i+ 1)]

)

fn−k

(C.9)
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=⇒
∞
∑

n=0

vn+12
n
∑

i=0

gign−i+2 [(n− i+ 2) (n− i+ 1)]

=

∞
∑

n=0

vn+1 (2− ν)

n
∑

i=0

gi+1gn−i+1 [(i+ 1) (n− i+ 1)]

−
∞
∑

n=0

vn+1 (2− ν)

n+1
∑

i=0

gign−i+2 (n− i+ 2)

+

∞
∑

n=0

vn+1
n
∑

j=0

gj

(

n−j
∑

i=0
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)

−
∞
∑

n=0
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2

n
∑
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k
∑

j=0

gj

(

k−j
∑

i=0
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)
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(C.10)

=⇒ 2
n
∑

i=1

gign−i+2 [(n− i+ 2) (n− i+ 1)]

= (2− ν)

n
∑

i=0

gi+1gn−i+1 [(i+ 1) (n− i+ 1)]

− (2− ν)

n+1
∑

i=1

gign−i+2 (n− i+ 2)

+

n
∑

j=1

gj

(

n−j
∑

i=0

gi+1gn−j−i+1 [(i+ 1) (n− j − i+ 1)]

)

− λ

2

n
∑

k=1

k
∑

j=1

gj

(

k−j
∑

i=0

gi+1gk−j−i+1 [(i+ 1) (k − j − i+ 1)]

)

fn−k

(C.11)
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=⇒ n (2n+ ν) gn+1

= (2− ν)

n−1
∑

i=1

gi+1gn−i+1 [(i+ 1) (n− i+ 1)]

− 2
n
∑

i=2

gign−i+2 [(n− i+ 2) (n− i+ 1)]

− (2− ν)

n
∑

i=2

gign−i+2 (n− i+ 2)

+

n
∑

j=1

gj

(

n−j
∑

i=0

gi+1gn−j−i+1 [(i+ 1) (n− j − i+ 1)]

)

− λ

2

n
∑

k=1

k
∑

j=1

gj

(

k−j
∑

i=0

gi+1gk−j−i+1 [(i+ 1) (k − j − i+ 1)]

)

fn−k

(C.12)

=⇒ n (2n+ ν) gn+1

=

n−1
∑

i=1

gi+1gn−i+1 (n− i+ 1) [(2− ν) (i+ 1)− 2 (n− i)− (2− ν)]

+ a(n)− λ

2

n
∑

k=1

a(k)fn−k

(C.13)

where

a(n) =

n
∑

j=1

gj

(

n−j
∑

i=0

gi+1gn−j−i+1 [(i+ 1) (n− j − i+ 1)]

)

. (C.14)

We will now give a recursive formula for the coefficients in

∞
∑

n=0

fnv
n =

0F̃1

(

; ν2 + 1; λ4 q(v)
)

0F̃1

(

; ν2 ;
λ
4 q(v)

) . (C.15)

Let us focus on 0F̃1

(

; b; λ4 q(v)
)

for some b. The power series expansion of 0F̃1 (; b; z)

at z = 0 is

0F̃1 (; b; z) =

∞
∑

k=0

1

Γ(b+ k)k!
zk (C.16)
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(see, e.g., [80]). Let us define the coefficients of this series recursively.

dk(b) =







1
Γ(b) if k = 0

dk−1(b)
(b+k−1)k if k > 0

. (C.17)

Now let ∞
∑

n=0

cn(b)v
n = 0F̃1

(

; b;
λ

4
q(v)

)

. (C.18)

We have (see, e.g., [32, 56])

cn(b) =







d0(b) if n = 0
∑n

k=1 dk(b)en(k) if n > 1
, (C.19)

where

en(α) =







(

λ
4

)α
if n = α

1
n−α

∑n−α
k=1 ((α+ 1)k − (n− α))gk+1en−k(α) if n > α

. (C.20)

Returning to our original problem,

fn =
1

c0(ν/2)

(

cn(ν/2 + 1)−
n−1
∑

k=0

fkcn−k(ν/2)

)

= Γ(ν/2)

(

cn(ν/2 + 1)−
n−1
∑

k=0

fkcn−k(ν/2)

)
. (C.21)

The formulae in Section 5.3 follow immediately.
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List of Abbreviations and

Symbols

Ix(a, b) normalised incomplete beta function of a, b and x : Ix(a, b) =
Bx(a,b)
B(a,b)

I−1
x (a, b) inverse of Ix(a, b) with respect to x

CDF cumulative distribution function

CPU central processing unit

erf(x) error function

erfc(x) complementary error function

FPGA field-programmable gate array

P (a, x) normalised lower incomplete gamma function of a and x : P (a, x) = γ(a,x)
Γ(a)

P−1(a, x) inverse of P (a, x) with respect to x

GPU graphics processing unit

ODE ordinary differential equation

PDF probability density function

RNG random number generator

SIMD single instruction, multiple data
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