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Abstract

This thesis presents statistical analysis and methodology development for a systems
analysis of ARC syndrome. ARC is a genetic disease caused by mutations in one of
two proteins, VPS33B and VIPAS39, of whose function little is known. Transcrip-
tomic and metabolomic data are analysed to identify differentially expressed genes
and pathways, and to highlight processes which are perturbed. Results consistently
point to processes involved in cell polarisation and cell-cell adhesion, which is cor-
roborated by experimental work. Beneficial suggestions for future experimental
work are included and have already yielded interesting results.

Motivated by the desire to incorporate knowledge of genetic dependencies into
this analysis, methodology is developed to enable Bayesian inference for ‘doubly-
intractable distributions’. These models have a likelihood normalising term which
is a function of unknown model parameters and which cannot be computed. This
means that standard methods for sampling from the posterior, such as Markov chain
Monte Carlo (MCMC), cannot be used. In the developed method, the likelihood is
expressed as an infinite series which is then stochastically truncated. These un-
biased, but possibly negative, estimates can then be used in a Pseudo-marginal
MCMC scheme to compute expectations with respect to the posterior.

Finally, methodology is developed to enable unbiased estimation for models in
which data can be generated but no tractable likelihood is available. The main
motivation for this is stochastic kinetic models used to describe complex and het-
erogeneous biological systems, but models of this type can be found across the
sciences. Approximate Bayesian Computation is used to define a sequence of con-
sistent Monte Carlo estimates, and these are then combined to produce an estimator
which is unbiased with respect to the true posterior. Both approaches are demon-
strated on a range of examples followed by a critical assessment of their strengths
and weaknesses.





Thesis overview

The advent of experimental techniques such as genomic sequencing, proteomics
and metabolomics, has meant that the molecular building blocks of biological or-
ganisms have more or less been catalogued. Current work in Biology therefore
focuses on studying the interactions between these molecules. Statistical and com-
putational modelling of molecular interactions is what sets the Systems Biology
approach apart from more traditional methods in Biology. The aim is to describe
the salient features of a biological system in order to simulate its behaviour and
make testable predictions. Statistical inference is a very important part of this pro-
cess as it enables the fitting of models to noisy and incomplete data, and the ranking
of competing models. The Bayesian paradigm is particularly useful in this respect
as uncertainty is consistently propagated through the modelling process.

Whilst the implementation of Bayesian methodology may be desirable, it is often
difficult to apply for computational reasons. Analytic solutions are rarely available
for the complex models which describe biological systems. In this work, statis-
tical methodology is developed to enable Bayesian inference for a set of models
which are used in Systems Biology and beyond. The motivation for the method-
ology development comes from analysis of data relating to a rare genetic disorder
called ARC syndrome. ARC syndrome is caused by mutations in one of two genes,
VPS33B or VIPAS39, and little is known of their function. Loss of these proteins,
however, results in a severe multisystem disorder, and generally in loss of life by
the age of one year. These proteins must therefore play an important role in cellular
function across a range of tissues.

Chapter 1 provides an introduction to the thesis. It begins by describing ARC syn-
drome, both its clinical presentation and what is currently known of its pathogenesis
from cellular biology. It then goes on to introduce the type of data to be analysed,
as well as the role of stochastic modelling and Bayesian inference in a systems
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Biology approach. A review of the computational statistics required for the later
methodology chapters is also included.

In Chapter 2 transcriptomic and metabolomic data from cell lines knocked-down
for VPS33B or VIPAS39 is analysed. The aims of the analysis are to assess the
similarity of the different cell lines and to identify differentially expressed genes,
pathways and networks of interactors giving insight into the development of ARC
syndrome. The work corroborates conclusions drawn from experimental work as
well as suggesting avenues for future lab work.

During the course of the transcriptomic data analysis, it became clear that it was
desirable to incorporate knowledge about the topology of protein interactions when
identifying differentially expressed genes. One way to do this is using an undi-
rected graphical model to describe the dependencies between the differentially ex-
pressed genes. However, Bayesian posterior inference for these types of models
is extremely difficult due to the presence of an intractable normalising term in the
likelihood. This situation, and its associated difficulties, are commonly found in
many areas of Statistics in which dependent data is modelled, such as spatial statis-
tics and image analysis. These types of distributions have been termed ‘doubly-
intractable’. In Chapter 3, current inference methods are reviewed and then a novel
Markov chain Monte Carlo (MCMC) approach for Bayesian inference is developed
and presented.

A common ingredient in a systems analysis of a biological process is to define a
stochastic model describing the process and then fit the model to available noisy
observations. For many models, it is not possible to write down or compute a likeli-
hood, but it is possible to generate data according to the model. This makes it very
difficult to apply standard procedures from either frequentist or Bayesian statistics.
Methods such as Approximate Bayesian Computation (ABC), which require only
simulation at the expense of introducing some bias, have therefore had a surge in
popularity as modelling complex biological systems has become common place.
However, the bias introduced is not well characterised. In Chapter 4, literature on
ABC methods and unbiased estimation is reviewed and then methodology is devel-
oped to allow unbiased estimation of functions or parameters with respect to the
posterior distribution.

Finally, Chapter 5 discusses the contributions of the thesis and suggests areas for
future work.



Contributions of this thesis

The contributions of this thesis are threefold:

1. Transcriptomic and metabolomic data from three knock-down cell lines is
analysed to gain insight into the pathogenesis of ARC syndrome. A mixture
of univariate, multivariate and network based statistical methods are used.
The similarity of the three cell lines is compared and differentially expressed
genes and pathways are identified. The findings are then discussed in de-
tail with reference to recent literature and independent experimental observa-
tions from the lab. Suggestions for future experimental work are also made.
This work forms part of a submitted paper written in collaboration with other
members of the Gissen lab: ‘Regulation of post-Golgi PLOD3 trafficking is
essential for collagen maturation’ (Banushi et al., 2015).

2. Motivated by the idea of using dependencies between proteins in the identifi-
cation of differentially expressed genes, statistical methodology is developed
to enable Bayesian inference for probabilistic models with an intractable nor-
malising term. It is shown that these ‘doubly-intractable’ distributions are
commonly encountered across a range of disciplines. The methodology is
based on Pseudo-marginal MCMC, in which only an unbiased estimate of
the target posterior is required at each iteration. A method for generating
such unbiased estimates is developed and an approach allowing negative esti-
mates to be used is described. The methodology is tested on several examples
including undirected graphical models. This work has been accepted for pub-
lication in Statistical Science as ‘On Russian Roulette Estimates for Bayesian
inference with Doubly-Intractable Likelihoods’ (Lyne et al., 2015).

3. Methodology is developed to enable unbiased posterior estimation for mod-
els with fully intractable likelihoods. This situation is extremely common in
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Systems Biology where complex molecular interactions are often described
by stochastic kinetic equations. These models can be simulated from, but like-
lihoods cannot be computed. Currently, Approximate Bayesian Computation
(ABC) methods are often used for inference in this case, but the introduced
bias is not well characterised. In the newly developed methodology, a simple
series is constructed which enables a sequence of Monte Carlo ABC estimates
to be combined to form an unbiased estimator. This can then either be used in
a Pseudo-marginal MCMC scheme or directly to produce unbiased estimates
of posterior expectations. This is the first time unbiased estimation has been
developed in the likelihood-free context without the need to introduce further
assumptions.
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Chapter 1

Introduction

1.1 ARC syndrome

Arthrogryposis, renal dysfunction and cholestasis (ARC) syndrome is an autosomal
recessive genetic disease. Its name describes three of the main diagnostic features:
joint contractures, kidney tubular dysfunction and disruption of bile flow from the
liver to the duodenum. ARC is a multisystem disorder with defects of the muscu-
loskeletal system, kidneys, liver, skin and platelets. The syndrome is rare but severe;
children affected by the syndrome suffer from a severe failure to thrive and most die
in the first year of life.

Approximately 75% of cases are caused by mutations in VPS33B which encodes
the protein Vacuolar Protein Sorting 33 Homolog B (VPS33B). The other ∼25%
of cases are caused by mutations in VIPAS39 which encodes VPS33B Interacting
Protein, Apical Basolateral Polarity Regulator (VIPAR) (Gissen et al., 2004; Smith
et al., 2012; Gissen et al., 2006; Cullinane et al., 2010). From the severity and mul-
tisystem nature of ARC syndrome, it is clear that the proteins are involved in a vital
cellular process across many tissues. Further, it is highly likely that they function
together as loss of either leads to the same disease symptoms. The precise func-
tions of VPS33B and VIPAR are unknown, but information gleaned via homology
as well as experimental results from the Gissen lab and elsewhere, has elucidated
several interactors and roles for the two proteins.

VPS33B and VIPAR are homologous to yeast Vps33p and Vps16p which are con-
stituents of the HOmotypic fusion and vacuole Protein Sorting (HOPS) and class C
CORe Vacuole/Endosome Tethering (CORVET) protein complexes crucial for vac-
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Figure 1.1: The trafficking of a molecule in yeast which is eventually degraded. CORVET
functions via Rab5 to fuse two early endosomes. HOPS then promotes fusion of the late
endosome with the vacuole via Rab7. Reprinted with permission of The Company of Biol-
ogists, Journal of Cell Science, kleine Balderhaar and Ungermann (2013).

uolar biogenesis (kleine Balderhaar and Ungermann, 2013). This is a process which
involves mechanisms such as the sorting of vacuolar proteins away from secretory
pathways, endocytosis of material from the plasma membrane and transport path-
ways which deliver proteins to the vacuole (Bryant and Stevens, 1998). The HOPS
and CORVET complexes carry out multiple roles including tethering membranes
and interacting with RAB GTPases which regulate trafficking (Solinger and Spang,
2013).

The HOPS and CORVET complexes have mammalian equivalents which are in-
volved in vesicular trafficking in endocytosis and autophagy (Pols et al., 2013; Kim
et al., 2010; Huizing et al., 2001; McEwan et al., 2015). Metazoans have two ho-
mologues of Vps33p (VPS33A and VPS33B) and Vps16p (VPS16 and VIPAR).
Some studies have proposed that both sets of homologues participate in HOPS
and CORVET function in multicellular organisms (Tornieri et al., 2013; Zhu et al.,
2009). However, experimental evidence from studies in mammalian cells has identi-
fied VPS33A and VPS16, and not VPS33B and VIPAR, as members of the conven-
tional mammalian HOPS and CORVET complexes (Baker et al., 2013; Wartosch
et al., 2015; Graham et al., 2013).

Previous work from the Gissen lab has suggested that VPS33B and VIPAR form a
complex that functions as a Rab11a effector due to its specific interaction with the



1.2. Experimental models of ARC syndrome 27

active form of Rab11a (Cullinane et al., 2010). Rab11a is a small GTPase known
to regulate the recycling of internalised cargo back to the cell membrane, and to
participate in epithelial cell polarity. RNAi knockdown (kd) of Vps33b and Vipas39
in mouse Inner Medullary Collecting Duct (mIMCD-3) cells leads to downregulated
expression of apical junction complex proteins and loss of polarity (Cullinane et al.,
2010). This links the VPS33B-VIPAR complex to diseases such as cancer, in which
the disruption of cell-cell junctions and polarity leads to epithelial-to-mesenchymal
transition (EMT) and metastasis.

Recent work from the lab has indicated a role for VIPAR/VPS33B in a trafficking
pathway which transports Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase type
3 enzyme (PLOD3) from the TGN to its functional sites in procollagen carriers.
Collagens are the most abundant family of proteins in the human body and the major
fibrous protein in the extracellular matrix. Lysine hydroxylation of procollagen is
a post-translational modification carried out by three PLOD enzymes (PLOD1-3).
The specific collagen modifications catalyzed by PLOD3 are critical for the process
of fibre crosslinking, which stabilises the procollagen fibril into the overall collagen
structure (Knott and Bailey, 1998). Clinical features of the single patient described
with PLOD3 deficiency overlap with those of ARC syndrome, supporting the idea
that VPS33B-VIPAR interacts with PLOD3, and include severe growth retardation,
hypotonia (abnormally increased muscle tone), arthrogryposis, low bone mineral
density and bone fractures (Salo et al., 2008).

1.2 Experimental models of ARC syndrome

Experimental tools have been developed in the Gissen Lab to allow investigation
into the functions of VPS33B and VIPAR, and how mutating them might cause the
ARC syndrome phenotype. These experimental models can be used to investigate,
for example, the localisation of proteins, possible protein interactors and the mor-
phological impacts of low levels of VPS33B/VIPAR. They can also be analysed
via transcriptomic, proteomic or metabolomic experiments to assess how the global
expression of various molecules is affected by the mutations.

Mouse Inner-Medullary Collecting Duct (mIMCD-3) cells have been stably
knocked down using silencing short hairpin (sh-) RNA for VPS33B, VIPAS39

and PLOD3. mIMCD-3 cells are a polarised epithelial cell line which form tubules
and tight junctions and are therefore a good context in which to study the impact
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Figure 1.2: Mouse IMCD cells grown in 3D culture to form spheres with a central lu-
men. The image on the left shows control cells forming a cohesive epithelial layer, in the
three knock-down cell lines junction and polarisation are disrupted. Picture provided by A.
Straatman-Iwanowska (Gissen Lab).

of VPS33B and VIPAR mutations on polarisation and epithelial integrity. The
phenotype observed in knock-down cells can be clearly seen in Figure 1.2. Control
cells form a central lumen when grown in 3D culture with correctly polarised cells,
but the three knock-downs suffer from disrupted cell junctions and do not form
a cohesive cell layer. This corroborates previous work suggesting that VPS33B,
VIPAR and PLOD3 are involved in cell polarisation and adhesion.

In the first chapter of this thesis, transcriptomic and metabolomic data from mIMCD
cells knocked-down for VPS33B, VIPAS39 and PLOD3 are analysed. The first aim
is to analyse how similar the transcriptional and metabolite response is in the three
different cell lines. Phenotypic observations suggest that the three proteins have
some overlapping function and this analysis could further validate or dispel this
hypothesis. The second aim is to identify genes and metabolites which have sig-
nificantly different expression when VPS33B, VIPAR and PLOD3 have reduced
levels. By identifying these genes and their functions, it is hoped that processes rel-
evant to the pathogenesis of ARC syndrome will be discovered. The final aim is to
determine pathways and networks of interactors whose functions are substantially
perturbed in the knock-down cell lines and discuss in reference to recent literature
how these might be involved in the pathogenesis of ARC syndrome.

1.3 Transcriptomics: Affymetrix microarrays

Messenger RNA (mRNA) is a polymeric molecule whose main role is to carry ge-
netic information from chromosomal DNA to cellular sites where proteins are syn-
thesised. Within a given organism, all cells contain the same sequence information
in their DNA, and yet distinct cell types exist with different morphologies and func-
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tions. One of the major differences between cell types is differential expression of
mRNA; certain genes will be more highly expressed in one cell type compared to
another. We can think of each cell type as having a characteristic gene expression
profile which allows that cell type to carry out its specific function. The ability to
measure this expression profile is incredibly useful to gain insight into the genetic
interactions within cells as well as for diagnostic/investigative medicine. It has
revolutionised the way molecular biology proceeds; genes which are differentially
expressed between two experimental conditions can immediately be identified with
no bias introduced by the state of current knowledge.

Microarrays are a high-throughput assay which enable researchers to measure ex-
pression levels of a large number of RNA molecules within one sample simulta-
neously. The following description is based on Affymetrix arrays as these were
the ones used in our experiments and the specific type of array is relevant to how
the proceeding analysis is carried out. The concept is simple (see Figure 1): a
chip is designed such that it contains ‘probes’ (short oligonucleotide sequences)
complimentary to regions on the (‘target’) mRNA molecules in a given organism.
Before the sample can be applied to the chip, double-stranded cDNA is synthesised
from the RNA in the sample. This is then transcribed using biotin-labelled ribonu-
cleotides to produce antisense mRNA molecules. The chip and the labelled mRNA
are hybridised and then stained with a fluorescent molecule which binds to biotin.
The chip is then scanned producing an image in which the fluorescence of each
spot is related to the amount of biotin and hence to the amount of that particular
mRNA molecule. Each chip contains multiple probes for each target mRNA which
are combined to obtain a more precise measurement of the expression level.

Microarray chips have been extremely useful in identifying functionally relevant
genes across a range of processes and diseases, as they provide a more complete
picture of gene transcription than more traditional low-throughput methods. How-
ever there are several problems with the technique which limit its accuracy, for
example:

• Different probes for the same gene will have different (unknown) binding
affinities.

• Probes frequently ‘cross-hybridise’ to the wrong target.

• There is a lack of consensus on how to convert fluorescence measurements



30 Chapter 1. Introduction

Figure 1.3: Processes involved in measuring mRNA abundance using an Affymetrix mi-
croarray. RNA from the original sample is reverse-transcribed to give cDNA and then re-
transcribed with biotinylated nucleotides. This mixture is then hybridised with the array and
scanned giving an image file which requires processing to produce values indicating rela-
tive mRNA abundance. Reprinted by permission from Macmillan Publishers Ltd, Nature
Reviews Genetics, The Tumor Analysis Best Practices Working Group (2004).
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into mRNA expression values.

A more holistic point worth noting, is that microarrays provide information about
mRNA levels in the sample, but this does not necessarily translate directly to in-
formation about protein levels, as transcriptional regulation is not the only way of
controlling protein concentrations in a cell. There is debate over the level of correla-
tion between the proteome and the transcriptome, and hence how informative tran-
script levels are about protein expression, for example Ghazalpour et al. (2011) and
Nagaraj and Wisniewski (2011) find r = 0.27 and r = 0.6 respectively. However,
results in the first paper suggest that transcript levels may correlate more strongly
with clinical traits than protein levels (at least with currently available experimental
techniques) and that therefore transcriptomic analysis does yield biologically rele-
vant information.

1.4 Metabolomics

Metabolites are small molecules which are intermediates or products of the chem-
ical reactions in living organisms. Metabolomics is an experimental and analytical
field in which the concentrations of many metabolites are measured simultaneously
in a given sample, based on the idea that these concentrations can reflect changes
in disease state or cellular function and provide insight into disease pathogenesis.
Small molecules are extracted from the sample, and then separated and quantified.
The techniques involved include liquid and gas chromatography (LC and GC) for
separation and nuclear magnetic resonance (NMR) spectroscopy and mass spec-
troscopy (MS) for quantification. Combinations of these techniques are often used,
meaning that extensive pre-processing of the data is required before expression lev-
els are obtained.

The metabolomic data obtained from the mIMCD cell lines was produced using
GC-MS and this technique is therefore described in more detail. In the gas chro-
matograph, the sample is first vapourised before travelling up a capillary column.
Differences in chemical properties of the various molecules lead to them separating
as they travel, and they can then be eluted separately. The mass spectrometer is
then used to identify the amount and type of molecules present in the sample. The
molecules are converted into charged fragments which are then detected based on
their mass-to-charge ratio.

MS platforms can be used to characterise, identify and quantify a large num-
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Figure 1.4: Processes involved in measuring metabolite abundance using GC-MS. The
sample is first vapourised and then transferred to a chromatographic column. Compounds
are separated in the column via their interaction with the column walls. Samples leaving
the column are ionised and passed through a magnetic field which separates the the ionised
compounds based on their charge-to-mass ratio. GC-MS schematic was created by K. Mur-
ray and shared under CC BY-SA 3.0.

ber of metabolites where the concentrations might cover a large range of values
(Kaddurah-Daouk et al., 2008). In particular they can be used to measure low con-
centration molecules such as signalling molecules and to measure the abundance
of molecules which are not yet identified. GC-MS provides structural information,
reasonable quantitative precision and high-throughput data, however it cannot be
used to study molecules which cannot be readily vapourised.

1.5 Stochastic modelling in Systems Biology

Mathematical modelling has a long history in Biology. Topics have included the
modelling of predator-prey populations (Lotka, 1925; Volterra, 1927), quantifying
the effect of cow-pox inoculation on the spread of smallpox (Bernoulli, 1760) and
excitation and conduction in neurons (Hodgkin and Huxley, 1952). However, the
advent of high-throughput technologies enabling the simultaneous quantification of
many molecules, has a led to a massive increase in the number of researchers work-
ing in the field of mathematical and computational biology. It is no longer possible
to follow up experimentally on all findings of interest, and a computational model
can be a cheaper and more efficient way to perturb the system of interest. Two of the
key aims are to simulate the process so as to make testable predictions and to inves-

https://en.wikipedia.org/wiki/Gas_chromatography
https://creativecommons.org/licenses/by-sa/3.0/legalcode
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tigate the interactions between multiple components of one organism. In addition to
these practical considerations, has come the awareness that Biology cannot be un-
derstood simply by drawing diagrams of interactions between molecules (Kitano,
2002a). An understanding of its dynamics is key to understanding its complex-
ity.

Kitano (2002a) describes a cycle of Systems Biology research (see Figure 1.5) in
which models are created, simulated to make predictions and then tested experimen-
tally. Some models will be eliminated and those that are consistent with evidence
can be further developed and analysed to improve understanding.

Figure 1.5: The cycle of Systems Biology research. From Kitano (2002b), reprinted with
permission from AAAS.

The models in use have become more complex to incorporate the vast wealth of
knowledge collated on biological systems, but it is not possible to build models of
molecular interactions of a scale to be useful. Hence all models of biological sys-
tems are approximations which leave out many details and include only the salient
features of interest. Further, experimental conditions can never be completely con-
trolled in biological systems, for example hormonal oscillations, respiration and
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individual genetic variations. In this modelling regime, the kinetics of biological
processes are inherently stochastic and therefore require stochastic models (Wilkin-
son, 2011).

Accordingly, a key part of the Systems Biology cycle is statistical inference: fitting
and comparing stochastic models to observed data. Bayesian methods provide a
powerful framework for analysis due to the fully probabilistic approach for incorpo-
rating prior beliefs, statistical models and data. Probability distributions describing
full beliefs about model parameters given the observed data can be obtained. For
models of real world situations, analytic solutions are rarely available for Bayesian
inference and hence computational methods are important. Increases in computa-
tional power have combined with methodological developments such as those in
Markov chain Monte Carlo theory to allow Bayesian methods to be applied to a
wide range of situations, however there are still many models and big data scenar-
ios in which full Bayesian solutions remain elusive. In the next section the details
of Bayesian inference are described.

1.6 Bayesian inference

Across the sciences, a key aim is to understand the underlying processes which
produce observed data. Statistical modelling and inference are useful tools to aid in
this understanding and to enable scientists to make testable predictions. There are
various stages involved in inference after collecting some data:

1. The formulation of a statistical model, often several competing models

2. Fitting the models, finding which parameter values best fit the observed data

3. Model selection, choosing which model best describes the underlying process
or is most useful for the purpose

4. Testing how well the model fits the data, possibly by collecting more data.

The methodology developed in the later part of this thesis is associated with the
Bayesian paradigm in which model parameters are viewed as random variables and
probability is used to quantify uncertainty or beliefs about the parameter. Before
any data is collected, information about the parameters is included in the prior dis-
tribution. These beliefs are then updated using information in the likelihood to
produce the posterior distribution, from which all inferences proceed.
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Throughout this thesis, unless stated otherwise, the observed data is denoted by y,
and the unknown model parameters are denoted by θ . The posterior distribution,
π(θ |y), is proportional to the data likelihood, p(y|θ) and the prior π(θ)

π(θ |y) = p(y|θ)π(θ)
p(y)

, (1.1)

where p(y) =
∫

Θ
p(y|θ)π(θ)dθ . Often we are interested in computing the expecta-

tion of some function with respect to the posterior distribution i.e.

Eπ [ϕ(θ)] =
∫

Θ

ϕ(θ)π(θ |y)dθ

where the simplest function, and often the one of interest, is ϕ(θ) = θ , the param-
eter values themselves. The denominator of (1.1), p(y), is known as the marginal

likelihood or the model evidence and is generally not easy to compute. Whether
or not this matters depends on the problem at hand. For parameter inference, it is
generally not required as it is not a function of θ and inference can therefore be
based on π(θ |y) ∝ p(y|θ)π(θ). If, on the other hand, it is model comparison that
is of interest, then the model evidence is crucial as the posterior odds of two models
is computed as

π(M1|y)
π(M2|y)

=
p(M1)

p(M2)
× p(y|M1)

p(y|M2)
.

1.7 Monte Carlo methods

1.7.1 Monte Carlo integration

Monte Carlo methods are a set of simulation tools utilising random numbers to
estimate integrals or expectations with respect to a given distribution. They are
therefore extremely useful in Bayesian statistics, both for parameter inference and
model choice. Assume we wish to estimate an integral of the form
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I =
∫

Θ

ϕ(θ)p(θ)dθ , (1.2)

where p(θ) could equal p(θ |y). In the simplest application of Monte Carlo, N

points are sampled from p(·) and the integral is approximated by

Î =
1
N

N

∑
n=1

ϕ(θ n) θ n ∼ p(·).

The estimator is unbiased and its variance converges at the canonical rate of 1/N as
long as it is bounded appropriately. This rate is independent of dimension, meaning
it can outperform quadrature in high dimensions.

1.7.2 Importance sampling

It is not always possible to sample from the density p above and indeed it is not
always optimal in terms of the variance of the estimator. Importance sampling is a
technique which allows the integral I to be approximated by sampling from a differ-
ent distribution, referred to as the importance density, and weighting each sample
to compensate for the discrepancy between the importance density and p. We can
rewrite (1.2) as

I =
∫

Θ

ϕ(θ)p(θ)
g(θ)

g(θ)dθ ,

by introducing the importance density, g(·), which has the same support as p(·).The
integral can now be approximated via Monte Carlo with

Îimp =
1
N

N

∑
n=1

ϕ(θ n)p(θ n)

g(θ n)
θ n ∼ g(·),

where p(θ n)/g(θ n) is the importance weight for the n-th sample. Clearly impor-
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tance sampling also gives unbiased estimates of the integral, however, the impor-
tance sampling estimate can often have a lower variance if the importance density
is appropriately designed, see for example Ripley (2009, Chap. 5) for details of
optimal implementation.

1.7.3 Markov chain Monte Carlo

A prerequisite for the use of Monte Carlo integration is the ability to sample from
the probability distribution of interest, p(·). In Bayesian statistics the distribution
of interest is generally the posterior distribution, but for many combinations of like-
lihoods and priors it has proven difficult to design methods to sample efficiently
from this distribution. Indeed this meant that for a long time Bayesian inference
was only implemented in situations with a simple likelihood and a conjugate prior.
The development of Markov chain Monte Carlo (MCMC) methods revolutionised
the field of Bayesian statistics by enabling samples to be drawn from a much greater
range of posterior distributions.

There are of course many other (sometimes preferable) ways to sample from dis-
tributions, such as rejection sampling and inverse transform sampling, however as
the methodology development in this thesis largely focuses on MCMC methods, we
assume for now that these methods are not available.

To describe MCMC, we first define a Markov chain. A stochastic process, {Xn},
is Markovian if the conditional distribution of Xn+1 given X1, . . .Xn depends only
on the previous sample, Xn. This conditional distribution, K, is called the transition
distribution or kernel and we will assume it is stationary (i.e. does not depend
on n). The joint distribution of the Markov chain is completely defined by the
initial distribution of X1 and the iteratively applied transition kernel. The aim in
MCMC is to design and simulate a Markov chain which has the target density as
its unique stationary density. The invariant or stationary density, π , for transition
kernel, K(x,dy) is defined as

π(dy) =
∫

x∈X
π(dx)K(x,dy), (1.3)

which in words means that if we have a sample from π , and the transition kernel is
applied, the marginal distribution of the next state of the chain is also π . Surpris-
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ingly, MCMC algorithms which have π as their invariant density can be designed
relatively simply (for example using the algorithms described in the next two sub-
sections), however two other conditions must also be satisfied to guarantee that the
chain has a unique stationary distribution and is guaranteed to converge to it:

1. irreducibility, the ability to reach any x with π(x) > 0 in a finite number of
steps.

2. aperiodicity, the chain must not get trapped in cycles.

With these three conditions met (π as the stationary distribution, irreducibility and
aperiodicity) then for π-a.e. x ∈ X

lim
n→∞
||Kn(x, ·)−π(·)||= 0,

(see Roberts and Rosenthal (2004) for proof).

The next two subsections outline details of common MCMC algorithms which can
be used to construct Markov chains which converge to π .

1.7.4 The Metropolis-Hastings algorithm

It is often easy to construct Markov chains which are reversible (also referred to as
satisfying detailed balance), defined as follows

π(dy)K(y,dx) = π(dx)K(x,dy) for all x,y ∈ X. (1.4)

This is important because integrating both sides with respect to x returns Equa-
tion (1.3), and hence it is a useful condition to derive MCMC algorithms. The
Metropolis-Hastings algorithm is the simplest way to make use of this sufficient
(but not necessary) condition, and the steps are outlined in Algorithm 1. To im-
plement the algorithm, all that is required is the design of a proposal distribution,
q(x, ·).

To show that the algorithm produces a Markov chain which satisfies detailed bal-
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Algorithm 1 The Metropolis-Hastings algorithm
Initialise with a sample x0
for n = 1 to N do

Sample x′ ∼ q(xn−1, ·)
Set xn = x′ with probability, α

α(x,x′) = min
[

1,
π(x′)q(x′,x)
π(x)q(x,x′)

]

Or with probability 1−α set xn = xn−1
end for

ance consider two situations: (a) x = x′, for which detailed balance is satisfied triv-
ially and (b) x 6= x′. It suffices to show that the left-hand side (or right-hand side) of
Equation (1.4) is symmetric in x and y for the transition kernel of the Metropolis-
Hastings algorithm.

π(dy)K(y,dx) = π(y)dy q(y,x)α(y,x)dx = π(y)q(y,x)min
[

1,
π(x)q(x,y)
π(y)q(y,x)

]
dxdy

= min [π(y)q(y,x),π(x)q(x,y)]dxdy

Note that the normalising constant of the target distribution, π , is not required in the
acceptance ratio, as it cancels.

1.7.5 The Gibbs sampler

The Gibbs sampler is a special case of the Metropolis-Hastings algorithm used to
sample from a d-dimensional target distribution. At each iteration, the i-th compo-
nent is drawn from its conditional distribution dependent on all the other compo-
nents which are fixed. This can either be implemented with the components updated
in sequential order (which generally does not satisfy detailed balance) or with the
component to be updated decided randomly (which does). Either way, the Gibbs
sampler generates a Markov chain with π as its invariant distribution. The Gibbs
sampler can be applied fairly automatically, as it does not require the design or
tuning of a proposal distribution as in the Metropolis-Hastings algorithm.
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1.7.6 Annealed Importance sampling and Sequential Monte
Carlo

When implementing Bayesian statistics, the aim often is to calculate the expecta-
tion of some function, ϕ(·), with respect to the posterior distribution. If the posterior
distribution is very complex and/or multimodal it may be difficult to generate sam-
ples according to it in a reasonable amount of time as standard MCMC methods
tend to get stuck in one mode. Annealed importance sampling (AIS) (Neal, 2001)
combines importance sampling with the use of Markov chains to overcome these
problems.

In AIS a high-dimensional target distribution which has the posterior as a marginal
distribution is constructed. Importance sampling is then used to estimate the expec-
tation of functions with respect to this distribution.

Denote by p0(x) the distribution of interest, and design a sequence of densities,
p1(x) to pn(x), each of which must be known up to a constant of proportionality,
f1(x) to fn(x) (indexing is consistent with Neal (2001)). There must be available a
Markov chain transition kernel, Tj, that leaves each p j invariant. One suggestion is
to construct the densities as follows

f j(x) = f β j
0 fn(x)1−β j ,

where 1 = β0 > β1 > ... > βn = 0. For Bayesian statistics fn would be the prior
(which can generally be sampled) and f0 would be the unnormalised posterior
(which generally can not).

Next an expanded target density is constructed

p(x0 . . .xn-1) ∝ f0(x0)T̃1(x0,x1)T̃2(x1,x2) . . . T̃n-1(xn-1,xn-1), (1.5)

which has the distribution of interest, p0(x0), as its marginal. T̃1(x0,x1) is the reverse
of transition T1(x1,x0) i.e. T1(x1,x0)p(x1) = T̃1(x0,x1)p(x0). We cannot sample
from (1.5), but we can sample from
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g(x0 . . .xn-1) = fn(xn-1)Tn-1(xn-1,xn-2) . . .T2(x2,x1)T1(x1,x0), (1.6)

by sampling xn from the simple distribution pn and then successively sampling each
x j using the invariant kernel Tj. Expectations can then be computed with respect
to p0 by drawing N samples from the importance density (1.6) and defining an
importance weight

w(i) =
fn−1(xn-1) fn-2(xn-2) . . . f0(x0)

fn(xn-1) fn-1(xn-2) . . . f1(x0)
,

using

Ep0 [ϕ(x)]≈
N

∑
i=1

w(i)
ϕ(x(i))

/ N

∑
i=1

w(i).

Integrating with respect to the importance density, g, shows that the expectation is
correct. An estimate of the normalising term of p0 can also be obtained using

Ẑ=
N

∑
i=1

w(i).

By noting that the definition of the extended target distribution in (1.5) is arbitrary,
a whole range of algorithms can be defined. This is the idea that the more general
algorithm Sequential Monte Carlo (SMC) is based on. In addition to the general-
isation of the target, an extra step, known as resampling takes place at each stage.
The importance samples are resampled according to their normalised weights after
they are sampled from their invariant kernel Tj. This reduces the variance of the
estimate, by removing particles with low weight, whilst still retaining the unbiased-
ness property (Pitt et al., 2012). There is a large literature on the various ways to
implement SMC and in particular on ways to design the high dimensional target
distribution, for example Moral et al. (2006); Cappé et al. (2007).
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1.7.7 Perfect sampling

In MCMC, one attempts to sample from a distribution π by designing a Markov
chain with π as its invariant distribution. However, whilst it is possible in some
cases to bound the mixing time and therefore ensure that the distribution sampled
is close to the target distribution, in most cases this isn’t possible and practitioners
must rely on subjective judgements and heuristics to decide whether or not a chain
has converged.

Perfect sampling or ‘coupling from the past’ (Propp and Wilson, 1996; Fill, 1997)
is a more ambitious idea utilising Markov chains, which aims to draw samples from
the exact target distribution. The idea is to simulate from a Markov chain which has
been running for infinitely long without having to simulate the entire chain.

Assume we wish to sample from a discrete distribution π with a state space S of M

states (work has been done to generalise the method to continuous spaces (Murdoch
and Green, 1998)). In the perfect sampling literature, two Markov chain are ‘cou-
pled’ if they use the same sequence of random numbers. If two chains are coupled
and their trajectories meet, they will follow the same trajectory for all subsequent
time steps, they will ‘coalesce’.

The transitions in the Markov chain can be thought of as a deterministic function of
the current state and the random numbers used in the update. Consider a Markov
chain with a unique stationary distribution, π , and deterministic update function, φ ,
and imagine running the chain from the infinite past up to the present. If this were
possible, we would be drawing samples from π . In reality, we cannot run the chain
from −∞ to t = 0; instead Algorithm 2 is implemented to draw one sample from
π .

Algorithm 2 The Coupling from the Past (CFTP) algorithm
for t = 1 to R (where R is a random variable) do

Start chains from each state in X at time −t and run to time t = 0.
Use the same uniform random variables for each chain.
At time t = 0
if chains have coalesced then

Set t = R, return X0
else

Set t = t +1.
end if

end for
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To see why the algorithm works, we first set up some notation based on the descrip-
tion given in Dimakos (2001). The m-th state of S is denoted xm and X t2(t1,xm)

is the state at time t2 of a chain started in state xm at time t1 < t2. Transitions in
the Markov chain are viewed as deterministic functions of the current state and the
random numbers involved

X0(−t,xm) = φ(φ(· · ·φ(xm,U−t+1), · · ·U−1),U0).

To shorten notation, define the transition function

X t2(t1,xm) = Φ
t2
t1(xm,U t1+1, . . . ,U t2),

and the event

At2
t1 = {Φ

t2
t1(xm,U t1+1, . . . ,U t2) equal the same value for all xm ∈ S}.

For an ergodic Markov chain with P(AL
0) > 0, events A−(k−1)L

−kL , k = 1,2 . . . are in-
dependent and have same positive probability of occurring. As there are an infinite
number of these events, the probability that one of them will occur is 1. Let T ∗ be
the smallest t for which A0

−t occurs. As the same random numbers are used for each
run, A0

−t also occurs for all t > T ∗ including for A0
−∞. Therefore X0(−T ∗,xm) is the

state visited by an infinitely long Markov chain with π as its stationary distribution,
X0(−T ∗,xm)∼ π .

Useful results on monotonicity of the state space mean that for certain models (in-
cluding Ising models) it is only required to start chains in the ‘maximum’ and ‘mini-
mum’ states (Propp and Wilson, 1996), which considerably simplifies the algorithm
and reduces the computation.
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1.8 Approximate Bayesian Computation

The use of standard Markov chain Monte Carlo methods is limited by the require-
ment to compute the likelihood. For many models, computing the likelihood is
infeasible, perhaps for computational reasons or because the model is purely gener-
ative. Approximate Bayesian Computation (ABC) has been developed over the past
20 years to allow inference in situations where data can be simulated according to a
model, but the value of the likelihood cannot be computed (Marjoram et al., 2003;
Fearnhead and Prangle, 2012).

The ABC method stems from Algorithm 3 which draws samples directly from the
true posterior.

Algorithm 3 Likelihood-free rejection algorithm
for n = 1 to N do

Simulate θ
′ from the prior π(·).

Simulate pseudo-data x from the likelihood p(·|θ ′)
Accept θ

′ if x = y.
end for

Whilst Algorithm 3 does not require computation of the likelihood, the acceptance
probability is proportional to p(y) and hence it is often not computationally fea-
sible for discrete data, and cannot be used for continuous data. The algorithm is
therefore ‘made approximate’ by removing the strict requirement that the pseudo-
data equal the observed data, and instead accepting θ

′ if some distance, d, between
the data and pseudo-data d(x,y) < ε , or if the distance between some low dimen-
sional statistics, η , of the data d(η(x),η(y)) < ε . This algorithm draws samples
from p(θ |d(η(x),η(y)) < ε), and the hope is that if the statistics are informative
enough about the parameter values and ε small enough, then the distribution will
approximate the true posterior.

There have been many developments towards making this methodology more effi-
cient and widely applicable, such as the development of likelihood-free MCMC al-
gorithms (Marjoram et al., 2003), the development of SMC methods for ABC (Toni
et al., 2009; Moral et al., 2012) as well as efforts to automate the selection of the
low dimensional statistics (Fearnhead and Prangle, 2012). These will be discussed
in more detail in Chapter 4.
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1.9 Conclusion

This Chapter has summarised and introduced the necessary background for the
main contributions of the thesis. ARC syndrome and what is currently known of
its pathogenesis has been described, as well as the data to be analysed in the next
chapter. Mathematical/computational modelling within Systems Biology has been
introduced and its importance in modern biological research stressed. Finally, the
use of the Bayesian framework to propagate uncertainty through to parameter es-
timates has been justified and the computational techniques used in its application
outlined.





Chapter 2

Multivariate analysis of
transcriptomic and metabolomic
data

2.1 Aims of analysis

The aims of this chapter are to analyse the transcriptomic and metabolomic data
to identify changes in genes/metabolites, pathways and networks of interactors
when the expression of VPS33B, VIPAR and PLOD3 are significantly reduced.
Experimental work suggests that VPS33B and VIPAR form a complex together
and knocking-down/mutating either protein leads to similar cell and disease phe-
notypes, so the first question is how similar are the transcriptomes/metabolomes
of the two knock-downs. Similarly, PLOD3 has been identified as an interactor
of the VPS33B-VIPAR complex and PLOD3 knock-down cell lines have a similar
phenotype to VPS33B/VIPAR knock-downs. Experiments in mouse IMCD cells
suggest that PLOD3 is trafficked to its functional site in collagen secreting carri-
ers via a VPS33B-VIPAR dependent pathway. Hence we might expect a subset of
the changes observed in VPS33B/VIPAR knock-downs to be seen in the PLOD3
knock-down cells. An exploratory data analysis is performed to identify genes,
pathways and networks of interactors which may be relevant to the pathogenesis of
ARC syndrome and which can suggest future avenues for experimental work.

The pipeline followed is shown in Figure 2.1. The first stage is processing the data
so that useful information about the differences between experimental conditions
can be inferred. This is very important as in both cases the measurement process
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Figure 2.1: Flow chart showing initial analysis carried out on transcriptomic data from
knock-down IMCD cell lines.
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is complicated and involves multiple stages. The raw transcriptomic data, for ex-
ample, consists of fluorescence measurements for multiple probes targeting each
mRNA molecule which need to be transformed into an expression level for each
mRNA. The data also needs to be normalised so that measurements across samples
can be compared. Then the quality of the data needs to be assessed to check if any
of the samples are outliers and if samples within the same experimental groups are
similar.

Once pre-processing is complete, hierarchical clustering, correlation measures and
Principal Component Analysis (PCA) projections are used (described in Section
2.3) to assess the similarity of the transcriptomes and metabolomes across sam-
ples.

After this, differentially expressed genes/metabolites are identified. This can be
done using a t-test (modified to account for small sample size and multiple test-
ing) or using multivariate techniques such as PCA or Partial Least Squares (PLS)
(described in Sections 2.4, 2.5 and 2.6). A comprehensive review of the literature
relating to the functions of these genes gives insight into the differences between the
control and knock-down cells, however, in order to better understand which under-
lying biological functions are perturbed, techniques such as Gene Set Enrichment
analysis (GSEA) and functional annotation enrichment can be used. These look at
groups of genes and assess which particular functions or processes are perturbed by
the knock-down (described in more detail in Section 2.7).

Finally network approaches, in which pairwise correlations between gene expres-
sions are used as a proxy for gene interaction, are used to identify nodes or sets
of nodes whose interaction profiles differ between the controls and knock-downs
(more detail in Section 2.8).

Descriptions of the techniques used, results and a discussion are presented in the
remainder of this chapter.

2.2 Initial data processing

2.2.1 Microarrays: initial processing

The raw transcriptomic data consists of fluorescence measurements for multiple
probes (called a ‘probe set’) targeting each mRNA transcript. The initial processing
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aims to provide an expression level for each mRNA molecule in the sample. In
order to do this, fluorescence measurements from each probe set must be combined
in such a way that the result is strongly related to the actual amount of mRNA in
the sample. A technique called Robust Multiarray Average (RMA) (Bolstad et al.,
2003; Bolstad, 2004; Irizarry et al., 2003) is a set of processes which aim to ‘clean
up’ and summarise the data through

1. Background correction

2. Normalisation across arrays

3. Probe summarisation.

Background correction primarily aims to deal with background noise and process-
ing effects, however it can also adjust for cross-hybridisation. The RMA method
assumes that the observed signal (O) is the sum of an exponential true signal (S) and
a truncated normal background (so that the expected value will always be positive).
The expected value of the true signal given the observed signal, E[S|O], can then be
calculated analytically (see Bolstad (2004) for detailed description).

Normalisation removes unwanted variation resulting from non-biological factors
such as machine settings, different amounts of sample etc. To normalise across all
arrays, the assumption is made that only a few genes change their expression signif-
icantly, and therefore that the differences in the expression of most other genes are
due to other factors. Hence, even for different experimental conditions the distribu-
tion of intensities should be the same. In the quantile normalisation used in RMA,
each array (considered as a vector) is sorted so that the entries are in intensity order,
some summary statistic of the n-th entry across arrays (e.g. the mean or the median)
replaces the n-th entry in each vector and then the vectors are sorted again back to
their original order.

The final stage deals with the multiple probes each targeting a different region on the
same mRNA molecule. Probe summarisation requires combining the measurements
from each probe within the set to give one overall value for the expression level of
the mRNA. A robust multi-chip linear model on the log intensities is used to fit the
data.

A multitude of techniques for initial data processing have been developed and there
is no consensus as to which is best. RMA processing was selected as it is the most
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(a) (b)

Figure 2.2: Top row shows log-intensity histograms and bottom row shows box plots of
log-intensity. Figures on the left are before RMA processing while figures on the right are
after. The data is from knock-down IMCD cell lines.

commonly used procedure in the literature and has been shown to be effective in
reducing between-microarray variation (Bolstad, 2004).

The normalisation was found to reduce significantly between-array variation in
terms of both variance and bias (see Figure 2.2), as well as being significantly faster
than competing methods.

2.2.2 Metabolomics: initial processing

The metabolomics data had already been processed such that it consisted of an abun-
dance measure for each metabolite. This data was log-transformed as it was right-
skewed and abundances of individual metabolites varied considerably over several
orders of magnitude. The data was then normalised to enable comparison between
samples by scaling with the median of each sample. As can be seen in Figure 2.3,
samples are more comparable after subtraction of the median (log abundance) for
each sample.

2.3 Extent of similarity between knock-downs

There are several ways to assess the similarity of samples. Here we focus on three
techniques: hierarchical clustering, correlation analysis and PCA.
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(a) (b) (c)

Figure 2.3: The three boxplots show the metabolomic data for each sample (a) log trans-
formed, unnormalised (b) log-transformed, normalised to an internal standard (c) log trans-
formed, normalised to median of each sample.

(a) (b)

Figure 2.4: Hierarchical clustering of (a) transcriptomic and (b) metabolomic samples
based on Euclidean distance.

Hierarchical clustering algorithms can either be agglomerative, in which each sam-
ple is treated as a singleton and pairs are successively merged based on how ‘similar’
they are, or divisive, in which all samples start in one cluster which is split based
on dissimilarity between two subgroups. A variety of different distance measures
can be used to define similarity e.g. Euclidean or the maximum across dimensions
and there are a number of ways to compute the distance between clusters e.g. the
maximum, minimum or average distance between the samples in two clusters.

Agglomerative clustering based on Euclidean distance and average linkage were
used to produce the dendrograms in Figure 2.4 (although other choices produced
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(a) (b)

Figure 2.5: Heatmaps showing Spearman’s rank correlation between (a) transcriptomic and
(b) metabolomic samples.

the same clusters). The transcriptomic data, shown on the left, clusters both into
experimental groups, as well as into larger clusters of knock-downs, which a pri-

ori would be expected to be similar, and controls. One wild type sample appears to
have considerably different expression levels to the other five control samples, how-
ever it is still clustered correctly. The metabolomic data, on the right, also broadly
clusters into experimental groups, although the wild type and control data do not
cluster together and the Vps33b knock-down cells do not cluster as one big group.
From the heat maps in Figures 2.8 and 2.10 (discussed in more detail below) it
seems clear that the transcriptomic samples are more consistent within experimen-
tal groups than the metabolomic samples and that the RNA transcript measurements
are less affected by the transfection process.

The Spearman’s correlation between each pair of samples is shown in Figure 2.5.
This measure of the correlation is based on ranks rather than absolute values to re-
duce the impact of outlier measurements. A similar picture is seen here as for the
hierarchical clustering. For the transcriptomic data shown in (a), stronger correla-
tions are seen within experimental groups and between knock-downs and controls.
Again, one wild type sample appears different to the others. There are also strong
correlations within experimental groups for the metabolomic data, although the wild
type and control samples do not appear to be very well correlated, again imply-
ing that the silencing sh-RNA transfection process affects metabolite measurements
strongly.

Finally, PCA is a technique which can be used to reduce the dimensionality of
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(a) Transcriptomics score plot (b) Metabolomic score plot

Figure 2.6: PCA score plots for (a) transcriptomic data and (b) metabolomic data. The
original high-dimensional data is projected onto two axes which explain variation in the
data.

and visualise high-dimensional data. This will be explained in more detail in Sec-
tion 2.5, however for now it can be viewed as a technique in which the data is
projected onto two orthogonal axes, known as the Principal Components, which ex-
plain large proportions of the variation in the data. From Figure 2.6, similar patterns
to those seen above can be seen for both types of data, with experimental groups
largely clustering together and knock-downs separated from controls by the first
principal component.

Overall, from the hierarchical clustering, correlation analysis and PCA it appears
that, certainly for the transcriptomic data, the VPS33B and VIPAR knock-down cell
lines have very similar expression profiles, distinct from those of the controls. This
certainly does not prove that VPS33B and VIPAR are involved in similar functions
but does mean that this hypothesis is feasible. The PLOD3 knock-down also has
some similarity to the VPS33B/VIPAR knock-downs. The metabolomic data is
considerably more variable and doesn’t show the same level of consistency between
wild type/control cells and VPS33B/VIPAR knock-downs. However, there is still
consistency within groups and so the data can be further investigated for insights
into ARC syndrome.
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2.4 Differentially expressed genes/metabolites

In order to identify genes which are differentially expressed between the knock-
downs and controls, the simplest initial analysis involves using a t-test. A modified
version of the t-test from the limma R package (Smyth, 2005) was used for the
transcriptomic data as the empirical Bayes approach taken stabilises estimates when
the number of samples is small. As many tests are performed at the same time,
the p-values need to be adjusted to avoid a large number of false positives, and
here the Benjamini-Hochberg correction controls the false discovery rate (expected
proportion of false positives in all discoveries).

Lists of differentially expressed (DE) genes for each of the knock-downs were com-
piled, both to see what processes these genes are involved in and to compare how
similar the lists are across the knock-downs. Using a cut-off of FDR< 0.05 there are
53, 233 and 11 DE genes respectively in the VPS33B, VIPAR and PLOD3 knock-
downs. Figure 2.7 (a) shows a Venn diagram of the list overlaps. All of the PLOD3
genes are differentially expressed in at least one of the other two knock-down cell
lines which is compatible with the hypothesis that PLOD3 functions downstream
of VPS33B-VIPAR. A large percentage of the VPS33B genes are also DE in the
VIPAR knock-down cell line with all overlaps highly significant as assessed by hy-
pergeometric test.

It is not clear whether the large number of DE genes in the Vipar knock-down cells
is because the protein levels were reduced more than the other cell lines leading to
more detectably differentially expressed genes, or whether VIPAR has extra func-
tions compared to the other two proteins. Taking the top 100 DE genes in each
knock-down, (shown in Figure 2.7 (b)) the strong overlap between all three cell
lines is maintained implying it may be the former.

Given that VPS33B and VIPAR form a complex, we can combine the data from
these two knock-downs and combine all the controls. This will increase the sta-
tistical power and help to identify genes specifically related to the joint function
of VPS33B/VIPAR. Table 2.1 and Figure 2.8 show the functions of the top 20
down-regulated genes and a heat map of the most differentially expressed genes.
The majority of the top 20 genes were down-regulated, only one was up-regulated:
Galm (Galactose mutarotase) which catalyzes the interconversion of the α- and β -
anomers of either galactose or glucose (Frey, 1996). Of the down-regulated genes,
several have (at least some part of their) function known. Many of these genes are
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(a) (b) (c)

Figure 2.7: Venn diagrams showing the overlap in differentially expressed genes ((a) and
(b)) and metabolites (c). Differentially expressed genes were identified using the limma
package in R and differentially abundant metabolites using a standard t-test. In both cases p-
values were Benjamini-Hochberg corrected for multiple testing and a cut-off of FDR< 0.05
applied. In (a) and FDR cut-off of < 0.05 was used. In (b) the top 100 genes ranked by
p-value were used.

expressed in epithelial cells and are involved in polarity (Ap1m2, Mal2), trafficking
(Cc2d2a, Rab25) or in cell-cell adhesion (Cldn7, Macc1, Sema5a), corroborating
published work stating that these functions are perturbed in patients and cellular
models of ARC syndrome (Gissen et al., 2004, 2006; Cullinane et al., 2010).

We can perform a similar analysis with the metabolomic data. In this case we use
a standard t-test, with p-values adjusted for multiple testing so that FDR< 0.05.
Figure 2.9 shows all metabolites identified as up (green) or down (red) relative to
mock-injected controls, as well as whether the same metabolites were identified as
up or down in controls compared to wild type cells. Heat maps showing expression
levels of these metabolites are shown in Figure 2.10 and it is clear that some of the
differences detected are very small. The most likely candidates for a true differ-
ence (i.e. those with a small p-value when comparing knock-downs with controls
and with large p-values when comparing controls to wild type) are Serine, Beta
Alanine, Monomethylphosphate, Adenosine-5-monophosphate and Threonine. A
Venn diagram showing the overlap in metabolites identified as differentially abun-
dant in VPS33B and VIPAR knock-downs is shown in Figure 2.7 (c) (overlap not
significant as assessed with a hypergeometric test).
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Symbols Function

Esrp1 Along with Esrp2, regulator of an epithelial splicing regulatory network, in
particular promote splicing of the epithelial variant of the FGFR2, ENAH,
CD44, and CTNND1 transcripts (Warzecha et al., 2009)

Mal2 Membrane protein, part of basolateral-to-apical transcytosis machinery, es-
sential for formation of central lumen (Madrid et al., 2010)

Atp8b1 P-type ATPase, implicated in the inward translocation of phospholipids
in biological membranes. Deficiency causes Progressive Familial Intra-
hepatic Chloestasis Type 1 and Benign Recurrent Intrahepatic Cholestasis
Type 1 (Paulusma et al., 2008)

Tmprss2 Androgen regulated serine protease, may be involved in virus activation
via cleavage (Glowacka et al., 2011)

Cldn7 Tight junction component, loss reduces integrin expression and promotes
mesenchymal traits via regulation of Rab25 (Bhat et al., 2014)

Macc1 Regulator of the HGF/Met signaling pathway which plays an important
role in cell motility, metastatis and invasiveness (Stein et al., 2009)

Nipal2 Mutations in homologue Nipal4 cause autosomal recessive congenital
ichthyosis (RodriguezPazos et al., 2011)

Tmem30b
Tmem184a
Cc2d2a Mutations cause ciliopathy diseases, may facilitate protein transport

through a role in Rab8-dependent vesicle trafficking (Bachmann-Gagescu
et al., 2011)

Fermt1 Involved in organisation and anchorage of the actin cytoskeleton to
integrin-associated platforms (Lai-Cheong et al., 2009; Mas-Vidal et al.,
2010)

Sema5a Membrane protein, involved in axon guidance in neuronal cells and regu-
lates cell adhesion and motility in epithelial cells (Capparuccia and Tam-
agnone, 2009)

Rab25 From family of small GTPases involved in membrane trafficking, specif-
ically involved in sorting of integrin to lysosomes (Dozynkiewicz et al.,
2012)

Epha1 Mainly expressed in epithelial cells where it regulates cell morphology and
motility (Yamazaki et al., 2009)

Ano9
Ehf ETS transcription factor subfamily, expressed in epithelial cells, represses

the expression of key EMT genes such as TWIST1, ZEB2, BMI1, and
POU5F1 (Albino et al., 2012)

Fam132a
Ap1m2 This gene encodes a subunit of the heterotetrameric adaptor-related pro-

tein complex 1 (AP-1), mediates protein sorting to regulate epithelial cell
polarity and proliferation (Hase et al., 2013)

Slit2 May be involved in cell motility and apoptosis in epithelial cells (Alajez
et al., 2011)

Table 2.1: Table showing the top 20 most down-regulated transcripts, as detected by mod-
ified t-test, and some detail on what is known of their function. Wild type and mock-
transfected cells were treated as controls and VPS33B and VIPAR knock-down cell lines as
one class.
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Figure 2.8: Heat maps showing RNA transcripts which are significantly differentially ex-
pressed based on comparing all controls against VIPAR and VPS33B knock-downs. Ex-
pression levels in PLOD3 are shown although this data was not used in the analysis.
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Figure 2.9: Metabolites with significantly different levels in either the VIPAR or VPS33B
knock-down cell lines. Green indicates up compared to control, red down compared to
control. The third column shows metabolites up or down in mock-transfected compared to
wild type cells.
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(a) (b)

Figure 2.10: Heat maps showing metabolites which are significantly differentially ex-
pressed based on comparing (a) all controls against Vipar and Vps33b knock-downs (b)
Mock transfected controls against wild type cells

2.5 Principal component analysis

Principal component analysis (PCA) is an unsupervised exploratory data analysis
technique in which a set of observations are transformed such that the new vari-
ables are linearly uncorrelated and identify the principal directions in which the
data varies. The first principal component is the linear combination of the origi-
nal variables with maximal variance. The second principal component is the linear
combination with second greatest variance, constrained to be orthogonal to the first,
and so on. As the principal components are a linear combination of the original axes
and are mutually orthogonal, the problem involves only a change of basis making
PCA soluble with linear algebra decomposition techniques. The key assumption is
that directions with large variance are believed to be directions of importance, i.e.
representing signal as opposed to noise.

Start with a data matrix, X, with n rows containing samples and p columns con-
taining mean-centred variables, and then take a linear combination of the original
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variables, T = XP. We would like the covariance matrix of T to be diagonal, i.e.
for each of the new variables to be uncorrelated.

Cov(T) =
1

n−1
T′T =

1
n−1

(XP)′(XP) =
1

n−1
P′(X′X)P

From linear algebra, Cov(T) will be diagonal if the matrix P has columns which
are the normalised eigenvectors of 1/(n− 1)X′X, i.e. the eigenvectors of the co-
variance matrix of X. The columns of P are called the principal components of
X. Further, with this choice of P, the diagonal elements of Cov(T), i.e. the vari-
ance of each new variable, are given by the eigenvalues of Cov(X), {λi}p

i=1. Due
to the orthogonality of the new basis, the variance of each component contributes
independently to the overall variance. It is hence possible to compute the explained
variance per component by dividing each individual variance (eigenvalue) by the
trace of Cov(T),

variance accounted for by i-th component =
λi

∑
p
j=1 λ j

.

This is a major benefit of PCA as one of the hopes is that the original high-
dimensional data can be reasonably represented using only a few of the principal
components and hence the dimensionality can be significantly reduced.

2.5.1 PCA results

Figure 2.6 (already discussed) shows the transcriptomic and metabolic scores (trans-
formed variables) projected onto the first two principal components. In both cases
the various experimental groups are well separated and the first principal axis sep-
arates the knockdowns and controls. The second axis separates the three types
of knockdown (not quite so cleanly for the metabolomic data). The first princi-
pal component should therefore be most informative as to the difference between
knock-downs and controls as it explains 32% of the variance in the metabolic data
and 29% in the transcriptomic data.

Figure 2.11 shows the PCA loadings for the metabolic data i.e. the extent to which
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Figure 2.11: Metabolomic PCA loading plot

each original variable contributes to each principal component. As expected, many
of the metabolites with large loadings coincide with metabolites already identified
as having differential abundance, however, now Serine, Cystathionine, Proline and
Gluconic acid contribute most to the first principal component. Given the large
number of variables in the transcriptomic dataset, the loadings are provided in a
table in Appendix A rather than in plot form, but many of the genes with large
loadings overlap with the genes detected by moderated t-test.

2.6 Partial Least Squares

PCA is a useful technique to distill information in high-dimensional data, but it
does not take the response vector into account when computing the principal com-
ponents, and therefore predictive power may be reduced. It could be the case that
a variable which explains very little variance in X is very strongly correlated with
the response, Y. Partial Least Squares (PLS) regression is an alternative approach
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which takes the response variables into account when finding latent variables, so
that they both model the variation and predict the response well (Wold et al., 1984,
2001). Both the dependent and independent variables are projected to a new space.
To understand how PLS works, recall that in a general linear model we have

Y = XB+E,

where Y is a n×m matrix of response variables, X is an n× p matrix of factors or
predictor variables, B is an m× p matrix of parameters and E is an n×m matrix of
errors. The aim is to explain or predict the responses using the measured predictor
variables. If the predictors are few and not collinear, multiple linear regression can
be used. However, with omic data there are often many, correlated predictors. In
this case we may wish to replace the original variables of X with a smaller number
of variables that have better properties. Instead of modelling exclusively the X
variables, both the X and Y variables are modelled as follows:

T = XW∗ scores, T, are a linear combination of X

X = TP′+E X is approximated by the scores multiplied by a loading matrix, P

Y = TC′+F Y is modelled by a multivariate linear regression on the scores, T

PLS estimates the latent variable (LV) model parameters W∗, P and C so as to ob-
tain the linear combination of the x-variables which have maximum covariance with
a certain linear combination of the y-variables (this is slightly different depending
on the algorithm used). Both X and Y are assumed to be functions of a small num-
ber of common LVs T. There are many different algorithms for computing weights,
loadings and scores but one of of the most commonly used is the Non-Linear It-
erative Partial Least Squares (NIPALS) algorithm in which the above matrices are
computed iteratively.

2.6.1 PLS results

Separate PLS models were first fitted for the transcriptomic and metabolomic data
using a univariate response vector, y, with 0s for controls and 1s for knock-downs
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(a) transcriptomic data (b) Metabolomic data

Figure 2.12: Root mean square error in class prediction using PLS with varying numbers
of components for (a) transcriptomic data (b) metabolomic data.

(VPS33B/VIPAR and Control/WT data combined). Figure 2.12 shows the root
mean square prediction error for both models with various numbers of components,
and it was decided based on this data to use two components in the transcriptomic
model and three in the metabolomic model. Fewer predictive components are re-
quired in the PLS model compared to a Principal Component Regression model as
the PLS algorithm takes the variation in y into account (data not shown).

Figure 2.13 shows the scores (T) projected onto the first two PLS components and
clearly the first component separates knock-down cell lines from controls and the
second generally separates the two different knock-downs. Note that both data
types are now well separated by the first component, and so the variables which
contribute to this component should be informative as to the difference between
the knock-downs and controls. The first component explains a large proportion of
the variance in the transcriptomic data, and the two components combined explain
almost 90% of the variation. For the metabolomic data, the variation explained by
the first two components is less, approximately 55%, however, adding more compo-
nents does not increase the prediction error and an inspection of the scores projected
onto higher components does not reveal further components (in addition to the first
one) which separate the controls from the knock-downs.

To interpret the PLS model, the loadings (P) are inspected as these show the de-
gree to which the latent variables contribute to X. The first and second component
loadings for the metabolomic data are plotted in Figure 2.14, with Cystathionine,
Proline and Serine again standing out as the major contributors to the first compo-
nent. Cystathionine is generated from Serine and is an intermediate in the produc-
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(a) transcriptomic data (b) Metabolomic data

Figure 2.13: Scores from the first two components of a PLS model for (a) transcriptomic
data (b) metabolomic data.

tion of Cysteine (both of which have large loadings in Figure 2.14) (Berg et al.,
2002, Chap. 23). Cysteine is an important amino acid structurally due to its ability
to form disulfide bonds which form cross-links between polypeptide chains (Berg
et al., 2002, Chap. 3). This is particularly important in the extracellular matrix
(disulfide bonds are generally not stable in the cytosol). Serine is a non-essential
amino acid which is concentrated in cell membranes due to its involvement in the
production of membrane phospholipids (Berg et al., 2002, Chap. 26). Proline is a
non-essential amino acid which is an essential component of collagen and which
stabilises the collagen triple helix, and hence is important for cell structure and the
proper functioning of joints and tendons (Berg et al., 2002, Chap. 8).

The genes with the top 20 loadings (Mal2, Sema5a, Peg3, Rab25, Fermt1, Cdh1,
Poglut1, Tmprss2, Cldn7, Nipal2, Esrp1, Tmem184a, Tmem54, Cldn8, Cldn4, Ep-
cam, Macc1, Atp8b1, Ap1m2) are heavily biased towards membrane proteins in-
cluding three Claudins (which form the tight junction seal in epithelial tissue) and
Cadherin 1 (one of the most important molecules in epithelial cell adhesion, lo-
cated in the adherens junction (Pećina-Šlaus, 2003)). There are also a number of
regulatory genes including Mal2 which regulates basolateral-to-apical transcyto-
sis (Madrid et al., 2010), Macc1 which regulates the HGF/Met signalling pathway
(Stein et al., 2009), Esrp1 which regulates a splicing network in epithelial cells
(Warzecha et al., 2009) and Ap1m2 which regulates epithelial cell polarity via a
role in protein sorting (Hase et al., 2013). Interestingly, several of the highlighted
transcripts come much further down the list using PCA or univariate approaches,
supporting the existence of variables which contribute little to the variation in X but
which correlate strongly with the response variable.
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Figure 2.14: Loadings from the first two components of a PLS model for metabolomic
data.

Given the nature of the data, we can also define a PLS model in which the transcript
levels are the explanatory variables X, and the metabolomic data is the response,
Y. This reflects the idea that metabolite abundances can be explained by changing
RNA transcript levels. A PLS model was fitted and the root mean square error in
prediction is shown in Figure 2.15 (a) using the median prediction error across the
Y variables. A model was fitted using all the components and Figure 2.15 (b) shows
the scores projected onto the first two components, with the first clearly separating
knock-downs and controls. The top twenty genes are more or less the same as those
identified in the PLS model of transcript levels predicting class membership, albeit
in a slightly different order.

The second component may also be of interest as this separates the VPS33B and
VIPAR samples. The genes with the largest loadings are enriched for glycopro-
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(a) transcriptomic data (b) Metabolomic data

Figure 2.15: (a) Root mean square error of prediction in the full PLS model of metabolomic
data predicted by transcriptome data. The median has been taken across the prediction of
all metabolite abundances. (b) Scores for the first two components in the full PLS model of
metabolomic data predicted by transcriptome data.

teins which are often integral membrane proteins and can play a role in cell-cell
interactions. It could be that one of VPS33B or VIPAR has some unique function
relating to this, or it could be that these genes are variable due to being perturbed by
the transfection method (as the second component also separates the knock-downs
from the control samples).

2.7 Functional analysis

Once lists of differentially expressed genes/metabolites have been compiled, the
objective is to analyse the results further to increase understanding of the biological
themes present. In this part of the analysis we make use of the vast amount of infor-
mation saved in online databases about the cellular function of proteins and groups
of proteins functioning in pathways. One question of interest is: are the differen-
tially expressed genes enriched in any particular functional annotation compared to
the full set of genes. There are multiple tools available to analyse gene lists in this
way, the most commonly used being DAVID (Huang et al., 2008), which annotates
the genes in a list with Gene Ontology (GO) terms and then uses Fisher’s exact
test to test the enrichment compared to a background list. The genes with the top
150 loadings in the full PLS model were input to DAVID, with the Mus Musculus
genome used as the background. The top ten enriched Gene Ontology (GO) anno-
tation terms are shown in Table 2.2 (full list given in Appendix B). The annotation
terms highlighted are functionally relevant to ARC syndrome with the top anno-
tations relating to cell-cell adhesion and junctions. This confirms the assessment
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of the top 20 genes as well as adding weight to the experimental observation that
IMCD cells with lower levels of VPS33B/VIPAR no longer form cohesive epithelial
layers.

Cell line GO annotations P-value Benjamini-
Hochberg
corrected

Cell adhesion 0.0006 0.3
Biological adhesion 0.0006 0.2
Cell-cell adhesion 0.0015 0.3
Apical junction complex 0.0068 0.7
Apicolateral plasma membrane 0.0072 0.4
Plasma membrane part 0.0078 0.3
Cell-cell junction 0.0093 0.3
Calcium-independent cell-cell adhesion 0.012 0.8
Basement membrane 0.017 0.4
Tight junction 0.019 0.4

Table 2.2: Table showing enriched GO annotations for lists of significantly differentially
expressed genes for knock-down cell lines using the 150 genes with the largest loadings in
the first component of a full PLS model.

An alternative approach is to look at pre-defined sets of genes (pathways) and ask:
do any of these sets contain more of the perturbed genes than would be expected
by chance? Statistically, analysing sets of genes rather than individual genes in-
creases power and reduces dimensionality, and biologically, it introduces a more
direct link to disease pathology by analysing whole pathways of known function.
The approach can be summarised as follows:

• Compute a statistic for each gene e.g. fold change or t-test statistic

• Transformation of gene level statistic - e.g. square or rank

• Compute a statistic for each gene set e.g. mean or median of individual gene
statistics

• Assess statistical significance

Ackermann and Strimmer (2009) provide a general overview of the multi-step ap-
proach describing the various options at each step and applying many combinations
to experimental data. Their study found that the use of simple univariate statistics
to summarise genes/sets and permutation to test the significance reliably detected
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gene sets with diverse expression signatures and correlation structures. Based on
their recommendation, the squared loading for each gene in the first component of
the full PLS model was used as the individual gene statistic, the mean was used to
obtain a gene set statistic and permutation was used to assess significance (permut-
ing both the set of genes and the samples).

There are many databases available with collections of gene sets representing cur-
rent knowledge on molecular interactions. A combination of the pathways stored
in Kegg (Kanehisa and Goto, 2000; Kanehisa et al., 2014), Biocarta (Nishimura,
2001) and Reactome (Joshi-Tope et al., 2005) databases was used, as these are kept
up to date and together cover the majority of known pathways.

The 15 most significantly enriched pathways (p-values calculated based on sam-
pling 10000 gene sets of the same size as the set being assessed) are shown in Ta-
ble 2.3. As with the most over-represented GO terms, the most perturbed pathways
relate to cell-cell adhesion and communication. The top gene set is those involved
in cell-cell communication which has as subsets the second and third sets: cell-cell
junction organisation and tight junction interactions, as well as adherens junctions
interactions (lower down the table). These gene sets are most perturbed on average
due to the presence of several genes which have large loadings in the first component
of the PLS model, for example, several Claudins (4,7 and 8) and E-cadherin. There
are also pathways relating to axon guidance, in particular Semaphorin interactions.
At first glance this may seem spurious, as Semaphorins were discovered and are
best known for their role in axon guidance in neuronal growth. However, recent
research has shown that Semaphorins are widely expressed in many cell types and
that through their receptors, Plexins, they can regulate Integrins which are crucial
for transmitting signals from the extracellular matrix to the interior of the cell (Yaz-
dani and Terman, 2006; Capparuccia and Tamagnone, 2009; Tamagnone, 2012).
Finally, several cancer pathways are implicated, likely because cancerous cells of-
ten undergo an epithelial-to-mesenchyme (EMT) transition in which cells become
depolarised and junctions are disrupted, hence exhibiting a similar phenotype to the
VPS33B/VIPAR/PLOD3 knock-down cells.

2.8 Network analysis

The previous approaches all fundamentally rely on identifying genes or metabolites
depending on changes in their levels. If instead, we now view the data as a network
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Pathway p-value FDR

Cell-cell communication (Reactome) 0.0001 0.02
Cell-cell junction organisation (Reactome) 0.0001 0.02
Tight junction interactions (Reactome) 0.0001 0.02
Cell junction organisation (Reactome) 0.0001 0.02
Adhesion molecules (CAMs) (Kegg) 0.0001 0.02
Leukocyte transendothelial migration (Kegg) 0.0001 0.02
Tight junction (Kegg) 0.0004 0.025
Other semaphorin interactions (Reactome) 0.0006 0.04
Apoptotic cleavage of cell adhesion proteins (Reactome) 0.0008 0.06
Axon guidance (Kegg) 0.0008 0.06
Pathways in cancer (Kegg) 0.0015 0.09
Apoptotic cleavage of cellular proteins (Reactome) 0.0017 0.09
Bladder cancer (Kegg) 0.0025 0.09
Adherens junction interactions (Reactome) 0.003 0.09
Downregulated of MTA-3 in ER-negative Breast Tumours (Biocarta) 0.0037 0.1

Table 2.3: Table showing enriched pathways for knock-down cell lines (Vps33b and Vipar
knock-downs analysed together). Gene sets were taken from the Kegg, Biocarta and Reac-
tome online databases.

of protein interactions, we may aim to identify regions of the network whose con-
nectivity or interactions have changed significantly between the knock-downs and
the controls. Many network approaches have been applied to omic data (e.g. Kim
et al., 2011; Komurov et al., 2010) but no definitive way of identifying networks of
differential interaction has been found.

A simple method was developed recently in the study of facioscapulohumeral mus-
cular dystrophy (Banerji et al., 2015), which uses pairwise correlations between
transcript expressions as a proxy for interaction strength and then builds an ‘inter-
action distribution’ for each gene in the control and knock-down states. Figure 2.16
gives an overview of how the method works.

Two things are required to implement the method: data measuring RNA transcript
levels in knock-down/disease samples and control samples, and a database of known
protein-protein interactions. In step 1, correlations between each protein pair are
computed and used to weight the edge between those two proteins in the interac-
tion network. In step 2, two interaction distributions are defined for each gene,
one in the knock-down samples and one in the control samples. The ‘interaction
probability’ is proportional to the absolute value of the correlation, which is then
normalised across all the interactions for each gene. Genes which have very differ-
ent interaction profiles in controls and knock-downs can then be identified by using
the Kullback-Leibler divergence. This yields the original full set of nodes (genes)
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Figure 2.16: Overview of the method developed by Banerji et al. (2015) to detect genes
whose interaction profiles have changed significantly between a healthy and diseased state.
Figure created by C. Banerji and shared under CC BY 4.0.

https://creativecommons.org/licenses/by/4.0/legalcode
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with a measure of how much each one’s interactions have changed. In step 3, the
network is sparsified to retain only interactions in which the pairwise correlation
has changed significantly.

A few changes need to be made in order to make the method suitable for the ARC
cell line data. For example, as relatively little is known about the functions and
interactions of the mutated proteins in ARC syndrome, it seems sensible to not
limit investigated interactions to those already published. Instead we can compute
all pairwise correlations and use the values as a proxy for interaction strength on
a complete graph. Of course, this will identify both direct and indirect interac-
tions.

Another small adaptation to the original version of the method, is to rescale the cor-
relation values by adding one so that they are on a scale [0,2]. This is to avoid taking
the absolute value of the correlation and hence losing considerable amounts of infor-
mation. Before computing correlations, the genes were filtered with a non-stringent
cut-off of p < 0.5 in order to remove genes which have very low probability of be-
ing affected by VPS33B/VIPAR knock-down. Any correlations with these genes
are likely to be noise rather than true signal.

2.8.1 Network: results

The top 20 genes identified as having very different interaction distributions in
knock-downs and controls are listed in Table 2.4, along with a brief description
of what is currently known of their function. As this method identifies genes whose
interactions have changed rather than just those with a different expression level, the
genes could be more functionally relevant to the pathogenesis of ARC syndrome in
the kidney.

Of immediate interest is the fact that two of the genes are Collagen IVα1 and α4,
members of the Collagen IV subfamily which only occur in basement membranes.
Experimental work in the Gissen lab has established that one of the functions of
VPS33B and VIPAR is to traffic PLOD3 to procollagen carrying vesicles so that
it can hydroxylate lysine residues. This is vital for the stability of intermolecular
crosslinks as the resultant hydroxylysyl groups are attachment sites for carbohy-
drates in collagen (Khoshnoodi, 2008). It is therefore striking that these two com-
ponent of Collagen IV have been identified as interacting differently.
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Many of the genes have a role in cellular signalling, for example, Smad2 is a mem-
ber of the Smad family of signalling effectors activated by Transforming growth
factor-β (TGF-β ) or Activin Type I receptors. Smad-2 is a receptor Smad, meaning
that it is released from the receptor complex to translocate to the nucleus where it
acts as a transcriptional repressor (Derynck and Zhang, 2003). Bone morphogenic
protein 7 (BMP7) is a member of the TGF-β superfamily of secreted signalling
molecules, and like other bone morphogenic proteins it can induce ectopic bone
growth. BMP7 induces mesenchyme-to-epithelial transition (MET) in the kidney
which is crucial for the formation of the kidney, and it also functions as an endoge-
nous inhibitor of TGF-β -induced EMT and hence is important for kidney home-
ostasis (Kalluri and Weinberg, 2009).

Pde8a and Akap12 both regulate the second messenger cyclic adenosine monophos-
phate (cAMP), which mediates several intracellular signals. Pde8a is a phosphodi-
esterase which hydrolyses cAMP whereas Akap12 associate with Protein kinases A
and C (PKA and PKC) to compartmentalise cAMP signals. In the collecting duct of
the kidney, cAMP is involved in the regulation of water reabsorption by activating
PKA. This results in apical plasma membrane accumulation of Aquaporin 2 (AQP2)
which allows water to be reabsorbed from urine (Rieg et al., 2010).

There are genes involved in immune response such as the interferon-γ recep-
tor 1 which binds interferon-γ to activate the Jak-Stat pathway which causes the
transcription of various target genes. Traf3 is a Tumour necrosis factor receptor
(TNFR)-associated factor (TRAF) protein which are essential components of sig-
nalling pathways activated by TNFR or Toll-like receptor (TLR) family members.
TRAF3 is a versatile regulator that positively controls type I interferon production,
but negatively regulates mitogen-activated protein kinase activation and alternative
nuclear factor-κB signalling (Häcker et al., 2011).

Finally, Gdpd5 is a glycerophosphocholine phosphodiesterase (GPC-PDE) which
catalyses the degradation of glycerophosphocholine (GPC), an abundant osmopro-
tective renal medullary osmolyte. GPC levels are altered in most cancers although
the mechanism is poorly understood (Moestue et al., 2012; Stewart et al., 2012). It
is of note that Gdpd5 hydrolyses GPC to (Choline and) Glycerol-3-phosphate which
is one of the metabolites with a larger loading in Figure 2.14 (Gallazzini et al., 2008;
Zablocki, 1991).
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2.9 Discussion

The first aim of this analysis was to assess how similar the three knock-downs are
in terms of their transcriptomes and metabolomes. It has already been shown exper-
imentally that reducing the expression of either VPS33B, VIPAR or PLOD3 pro-
duces a similar phenotype; all three cell lines become depolarised and cell adhesion
is disrupted (Cullinane et al., 2010).

Unsupervised hierarchical clustering of the microarray data showed that the knock-
down samples and the control samples clustered into two distinct groups, and that
within these two groups, samples from the same experimental group clustered to-
gether. Correlation analysis and PCA score plots showed similar results, indicating
that not only are the knock-down samples different from the controls, but that there
are very strong similarities between the VPS33B, VIPAR and PLOD3 samples. The
metabolomic data is not quite so clear: whilst samples from the same experimental
group clustered together, there is a lot more variability in the data and correlations
between VPS33B and VIPAR samples were only slightly stronger on average than
those between VPS33B and controls cells. However, the PCA and PLS score plots
(Figures 2.6 and 2.13) show that the first Principal Component does separate con-
trols from knock-downs demonstrating that these multivariate approaches may be
useful to identify relevant metabolites. Overall, the data suggests that knocking
down VPS33B, VIPAR and PLOD3 produces a similar and consistent response,
fitting with the phenotypic observations and other experimental evidence. The sim-
ilarity in the transcriptional response adds weight to the hypothesis that the three
gene products are involved in the same process.

The second aim was to identify which specific genes and pathways are functionally
relevant to the pathology of ARC syndrome to inform future experimental work.
Differentially expressed (DE) genes were first identified using a modified t-test for
each of the knock-downs separately. Corroborating the findings in the first part,
there was a strongly significant overlap in the top 100 DE genes for each knock-
down, with ∼75% of genes in each list also differentially expressed in one or both
other knock-down cells.

To increase statistical power, and to identify genes relevant to the function of
VPS33B/VIPAR in ARC syndrome, the data from the VPS33B and VIPAR knock-
down cell lines was combined, and the data from the controls also combined giving
six biological repeats in each experimental group. The DE genes identified in this
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context were highly relevant to both the pathogenesis of ARC syndrome and to the
observed cellular phenotype. Many are membrane proteins (e.g. Mal2, Sema5a)
and/or involved in processes which maintain cell polarity or junctional integrity
(e.g. Cldn7, Rab25).

Figure 2.17: Schematic of tight junctions, adherent junctions and desmosomes which are
the three main junction complexes connecting adjacent epithelial cells. Reprinted by per-
mission from Macmillan Publishers Ltd, Nature Reviews Gastroenterology and Hepatology,
Neunlist et al. (2013).

A closer look at the functions of these genes provides insight into which biological
processes are disrupted by loss of VPS33B/VIPAR. Claudin 7 is a member of the
Claudin family of proteins which form the major components of tight junctions (see
Figure 2.17 and Krause et al. (2008)). Claudin 7 is expressed in the collecting duct
of the kidneys and is unusual for a Claudin in that it is located in the basolateral
membrane. The function of basolateral claudins is not well known, but recent work
has shown that Cldn7 interacts with Integrinβ1 to maintain epithelial cell attach-
ment in lung cancer cells (Lu et al., 2015).

Semaphorin 5a (Sema5a), is a member of the Semaphorin family, first identified
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as axon guidance factors but now known to have roles outside the nervous system,
including an emerging role in cancer progression (Tamagnone, 2012; Neufeld and
Kessler, 2008). Plexins are the main receptors for Semaphorins and the typical
outcome of Plexin activation is the inhibition of Integrin-mediated cell-substrate
adhesion and cytoskeleton remodelling. The action of Sema5a appears to be con-
text dependent as it has been reported that increased expression of Sema5A and
its receptor PlexinB3 significantly correlates with invasion and metastasis in hu-
man gastric and pancreatic tumours (Pan et al., 2009) whereas others have found
that Sema5A-PlexinB3 signalling inhibits the migration of human glioma cells (Li
et al., 2012).

Mal, T-cell differentiation protein 2 (Mal2) is a transmembrane protein which is
an essential component of the basolateral-to-apical transcytosis machinery in po-
larised HepG2 cells (Madrid et al., 2010; de Marco et al., 2002). After basolateral
endocytosis of apical cargo, a fraction of MAL2 redistributes from the apical re-
gion into peripheral endosomes which concentrates internalised cargo. These endo-
somes then progressively fuse and move toward the apical surface for cargo delivery
(de Marco et al., 2002). Madrid et al. (2010) show that Cell Division Control Pro-
tein 42 homolog (Cdc42) controls apical transcytosis and correct lumen formation
by regulating Mal2 dynamics.

Rab proteins such as Rab25 are members of the RAS superfamily of small GTPases
that are involved in membrane trafficking. Rab25 is a member of the Rab11 family,
which regulate the recycling of internalised membrane molecules. Rab25 is only
expressed in epithelial cells and studies in polarised MDCK cells have indicated
that Rab25 regulates transcytosis of cargo in both directions and therefore is an
important regulator of cell surface composition (Tzaban et al., 2009; Casanova et al.,
1999; Wang et al., 2000). Rab25 has also been shown to regulate the recycling of
Integrin, a large family of transmembrane receptors which enable cells to bind and
respond to other cells and the extracellular matrix (ECM) (Dozynkiewicz et al.,
2012; Agarwal et al., 2009).

Fermitin Family Member 1 (Fermt1) is also involved in Integrin signalling and
hence in the linkage of the cytoskeleton to the ECM. Loss-of-function mutations
cause Kindler Syndrome which is an autosomal recessive disorder characterised by
skin atrophy and blistering. Studies on Kindler Syndrome skin show an altered
distribution of several basement membrane proteins, including types IV, VII, and
XVII collagens, and reduced levels of active Integrin β1 (Mas-Vidal et al., 2010;
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Lai-Cheong et al., 2009).

Results from the multivariate methods such as PLS overlapped considerably with
those found using the univariate methods, however, a number of extra genes were
identified. E-cadherin was identified as a gene with a large loading, a member of
the Cadherin family of transmembrane proteins which form adherens junctions (see
Figure 2.17). Cadherin 1 or E-Cadherin is a classical Cadherin, and its loss or muta-
tion is associated with multiple types of cancer. This is believed to be because loss
of its function reduces the integrity of cell-cell junctions and increases proliferation
(Paredes et al., 2012).

Metabolites highlighted having large loadings in the PLS model were also of in-
terest. Proline is an essential component of collagen and hence required for the
proper functioning of bones and tendons (Grant and Prockop, 1972). Proline has
increased abundance in the knock-down cell lines, fitting with experimental ob-
servations from the lab of increased Collagen deposits in ARC syndrome models.
Cystathionine is an intermediate in the formation of cysteine, and itself is produced
from serine (both of which also have large loadings in the PLS model, all three with
decreased expression). The production of cysteine is important given its ability to
form disulfide bonds which cross-link polypeptide chains, particularly in the ECM
(Berg et al., 2002, Chap. 3). The presence of all three molecules indicates that
this pathway may be disrupted in cells lacking in VPS33B/VIPAR. Serine, is con-
centrated in cell membranes and has a central role in cell proliferation (Berg et al.,
2002, Chap. 26).

The prevalence of membrane and junction proteins is maintained when the top 150
DE genes are interrogated for over represented Gene Ontology (GO) annotation.
Table 2.2 lists the annotations which are most over-represented compared to those
expected for the mouse transcriptome. All terms relate to either cell-cell adhesion
or cell membranes, confirming that the transcriptional signature of cell lines with
reduced VPS33B/VIPAR fits with experimental observations.

The pathways highlighted as perturbed by the GSE analysis are also strongly re-
lated to cell adhesion with ‘Cell-Cell Communication’ and its subsets connected
to cell junctions the most significant results. However, other pathways relating to
Axon Guidance and Semaphorin interactions are also identified. As already dis-
cussed, Semaphorins have recently been described as a family of widely expressed
proteins, which activate Plexin and Neuropilin receptors to transduce signals. These
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molecules carry out diverse roles including cardiovascular development and growth
(Neufeld et al., 2012), tumour progression (Capparuccia and Tamagnone, 2009)
and immune cell regulation (Kumanogoh et al., 2002). Pertinently to ARC syn-
drome, plexin-mediated signalling has been implicated in the inhibition of Integrin-
mediated cellular adhesion and cytoskeletal remodelling (Serini et al., 2003; Taka-
matsu and Kumanogoh, 2012).

In the network approach, relevant genes were identified by computing the difference
between their interaction distribution in control samples and knock-down samples.
The genes identified in this way were also relevant to ARC syndrome but provided
different information on the changes in the transcriptome. For example, the most
obvious finding is two Collagen IV α chains, a major component of the basement
ECM. This directly fits with current experimental work from the Gissen lab which
has found that PLOD3, which hydroxylates lysyl residues in Collagen, requires
VPS33B and VIPAR for its trafficking to vesicles containing procollagen.

A variety of signalling molecules were also pinpointed, such as Smad2 and Bmp7,
both involved in the TGF-β pathway, which transcriptionally regulates the expres-
sion of a wide range of genes involved in many cellular processes. Two proteins in-
volved in the regulation of cAMP, Pde8a and Akap12, were also highlighted. cAMP
is a second messenger which mediates many different cell responses.

The overall picture from the analysis is a strong signature of cell-cell adhesion and
junctions being disrupted in VPS33B and VIPAR knock-downs. The proteins iden-
tified are sometimes directly involved in adhesion, such as Claudins which form
tight junctions, or E-cadherin which form part of adherens junctions. Other pro-
teins are involved in adhesion in a regulatory sense, such as Semaphorin 5a which
has been shown to regulate cell motility and invasiveness in a context dependent
manner (Pan et al., 2009; Li et al., 2012), or Mal2 which regulates basolateral-to-
apical transcytosis in polarised cells (Madrid et al., 2010). Functions and genes
relating to Integrin activation and regulation are repeatedly identified, so further
investigation of its expression, cellular location and function may be of interest. In-
tegrin has already been identified as an interactor of VIPAR in a yeast two-hybrid
screen (unpublished data from lab) adding more weight to the hypothesis that it may
be functionally relevant to the pathogenesis of ARC syndrome.
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2.10 Motivation for the next two chapters

2.10.1 Methodology for Doubly-intractable distributions

In this chapter, transcriptomic and metabolomic data has been analysed to shed light
on the pathogenesis of ARC syndrome and to suggest possible routes for future
experimental work. Standard statistical techniques have been used, largely because
these are the accepted and trusted way of extracting information from Biological
data. However, clearly the identification of the differentially expressed genes could
be carried out in a more sophisticated way. For example, differentially expressed
genes have been identified using only measurements of their abundances. It would
be preferable to incorporate the vast wealth of pathway information in this process,
as these dependencies will enable the detection of smaller changes. This type of
analysis has already been suggested, for example the work of Wei and Li (2007)
uses a Markov Random Field (MRF) to model the dependencies between interacting
genes.

MRF models are probabilistic networks in which each node is a random variable.
Each node has a defined ‘neighbourhood’ or set of nodes on whose values its con-
ditional probability depends. Dependencies can propagate a long way through the
network via these short range connections. In the work of Wei and Li (2007), each
node is a protein, and its neighbourhood is the proteins with which it interacts. Their
work introduces a latent unobserved variable, x, whose dimension equals the total
number of genes, and which takes values xi = 1 if gene i is differentially expressed
and xi = 0 otherwise. yi is the observed mRNA level for gene i. A Markov Random
Field is used to model p(x;θ) such that if a gene is differentially expressed, other
genes in its neighbourhood are also more likely to be differentially expressed. The
conditional likelihood, p(y|x,θ), is then defined as a product of Gamma distribu-
tions, one for each gene, with parameterisation dependent on being differentially or
equally expressed genes.

This approach incorporates more of the available information into the detection of
differentially expressed genes. However, it comes with the drawback that inference
for Markov Random Fields, frequentist or Bayesian, is extremely difficult due to the
presence of an intractable normalising term which cannot be computed. Wei and Li
(2007) use a pseudo-likelihood which is a simple approximation of the MRF; this
removes the computational difficulty but also models the long-range dependencies
poorly.
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In Chapter 3, methodology is developed to enable Bayesian inference for MRFs
and other models with the same drawback of an intractable normalising term,
called ‘doubly-intractable’ distributions. It emerges that these types of models oc-
cur across a wide range of disciplines. The methodology is general and applies
to all models of this form, which means it is applicable in Systems Biology and
beyond.

2.10.2 Methodology for unbiased ABC

At this stage in the molecular study of ARC syndrome, not enough is known of the
interactions and dynamics of the proteins involved to draw up a model of the pro-
cesses involved. However, once further experimental work and analysis has been
carried out, it would be desirable to define a model describing the molecular interac-
tions involved. This would allow simulation and investigation of the system without
having to carry out costly experiments. It is crucial to use stochastic models so that
all the inherent sources of variability in biological systems and experiments are
modelled fully. Use of the more standard deterministic models results in ‘apparent
unpredictability’ (Wilkinson, 2009) and unexplained heterogeneity across biologi-
cal replicates.

However, the price of using more realistic stochastic models is the increased com-
putational complexity involved in fitting them to data. One bonus is that algorithms,
such as the Gillespie algorithm, are available to simulate from these models (Gille-
spie, 1977). However, as the likelihood does not have a tractable form, standard
statistical methods cannot easily be applied. When implementing a Bayesian anal-
ysis, Approximate Bayesian computation (ABC) is often used as a method to draw
samples from a distribution which is ‘close’ to the true Bayesian posterior. No like-
lihood need be computed, but data must be simulated from the model, and hence
this method can be applied to stochastic models of interacting molecules.

The ABC method has permitted inference for a host of complex models for which
statistical analysis was previously difficult. However, as samples are not drawn
from the true posterior distribution, a bias is introduced into Bayesian inference
and this bias is not well characterised. In Chapter 4 methodology is developed to
allow unbiased estimation for models for which no likelihood can be computed but
from which data can be simulated, at the expense of increased computation. The
method utilises Monte Carlo ABC estimates and combines them in such a way that
the overall estimator is unbiased. This allows unbiased estimation for stochastic
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models and hence makes a strong contribution to both Systems Biology and other
areas where such models are used.
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Gene K-L
diver-
gence

P-value
estimate

Function

Epb4.1l3 0.71 0.12 May be involved in tethering the F-actin skeleton to membrane, tu-
mour suppressor activity demonstrated in variety of cancers (Ca-
vanna et al., 2007; Dafou et al., 2010)

Smad2 0.71 0.009 Receptor-regulated SMAD (R-SMAD), an intracellular signal trans-
ducer and transcriptional modulator activated by Activin type 1 re-
ceptor kinases (Derynck and Zhang, 2003)

Tbc1d9 0.70 0.004 GTPase-activating protein for Rab family protein(s), possibly not
expressed in kidney (Nakamura et al., 2015)

Cdcp1 0.69 0.004 Transmembrane protein, involved in cell adhesion and ECM associ-
ation via activation of Src-family kinases (Liu et al., 2011)

Ifngr1 0.69 0.004 Receptor for interferon gamma, a cytokine that is critical for in-
nate and adaptive immunity against infections (Farrar and Schreiber,
1993)

Pde8a 0.68 0.021 Hydrolyzes the second messenger cAMP, a key regulator of many
important physiological processes (Fisher et al., 1998; Patrucco
et al., 2010)

Col4a1 0.68 0.017 On component of Type IV collagen, major structural component of
glomerular basement membranes

Akap12 0.68 0.024 A-kinase anchoring protein, binds to cAMP-dependent protein ki-
nase (PKA) to direct the kinase to discrete intracellular locations
(Colledge and Scott, 1999)

Gdpd5 0.68 0.004 A GPC-PDE which contributes to osmoregulation of GPC in the
renal medulla (Gallazzini et al., 2008)

Syt14 0.68 0.006 May be involved in the trafficking and exocytosis of secretory vesi-
cles in non-neuronal tissues (Pang and Südhof, 2010)

Col4a4 0.68 0.006 On component of Type IV collagen, major structural component of
glomerular basement membranes

Zfp296 0.67 0.003
Anks1 0.67 0.009 Regulator of different signaling pathways via interactions with

Epha2 and Arap3 (Mercurio et al., 2013)
Bmp7 0.67 0.004 Bone morphogenic protein, which induces cartilage and bone for-

mation. Also important in kidney homeostasis by inhibiting EMT
(Zeisberg et al., 2003)

Tiparp 0.67 0.006 Regulator of Ahr, which may have important roles in functions such
as growth, differentiation and immunity (McMillan and Bradfield,
2007; MacPherson et al., 2014)

Traf3 0.67 0.09 TNF receptor associated factor (TRAF) protein, mediates Cd40 sig-
nals important for immune response (Häcker et al., 2011)

Dock5 0.67 0.03 Guanine nucleotide exchange factor (GEF) for small GTPases Rho
and Rac, exchanges bound GDP for free GTP (Vives et al., 2011)

Ppbp 0.67 0.005 Involved in neuro-protection, possibly linked to CREB activation
(Yang and Alkayed, 2009)

Ahr 0.66 0.004 Ligand activated transcription factor which regulates xenobiotic-
metabolising enzymes such as cytochrome P450 (MacPherson et al.,
2014)

B4galt6 0.66 0.005 Type II membrane-bound glycoproteins which have specificity for
the donor substrate UDP-galactose (Tokuda et al., 2013)

Table 2.4: Top 20 genes and their functions as identified by Kullback-Leibler divergence
between their interaction distribution in controls and knock-downs.



Chapter 3

Roulette for Doubly-intractable
distributions

3.1 Introduction

At the end of the previous Chapter, an approach to identifying differentially ex-
pressed genes was introduced which incorporated knowledge of protein interactions
using a probabilistic undirected graphical model. This would allow more subtle
changes to be detected as dependencies in gene expression are fully accounted for.
It was also stated that standard inference techniques cannot be used for these types
of models due to the presence of an intractable normalising term. In this chapter
methodology is developed to enable Bayesian inference for these types of models
which are used in Systems Biology and many other research areas.

The term doubly-intractable has been used to described posterior distributions asso-
ciated with these likelihoods, and this was first coined by Murray et al. (2006). To il-
lustrate what constitutes a doubly-intractable posterior, take some data y∈ Y used to
make posterior inferences about the variables θ ∈ Θ that define a statistical model.
A prior distribution defined by a density π(θ) with respect to Lebesgue measure dθ

is adopted and the data density is given by p(y|θ) = f (y;θ)/Z(θ), where f (y;θ)

is an unnormalised function of the data and parameters, and Z(θ) =
∫

f (x;θ)dx is
the likelihood normalising term which cannot be computed. The posterior density
follows in the usual form as
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π(θ |y) = p(y|θ)×π(θ)

p(y)
=

f (y;θ)

Z(θ)
×π(θ)× 1

p(y)
, (3.1)

where p(y) =
∫

p(y|θ)π(θ)dθ . ‘Doubly-intractable’ refers to the fact that not only
is p(y) intractable (this is common in Bayesian inference and does not generally
present a problem for inference), but Z(θ) is also intractable.

To construct a Markov chain with invariant distribution π(θ |y), the standard re-
course would be to the Metropolis-Hastings algorithm; a transition kernel is con-
structed by designing a proposal distribution q(θ ′|θ) and accepting the proposed
parameter value with probability

α(θ ′,θ) = min
{

1,
π(θ ′|y)q(θ |θ ′)
π(θ |y)q(θ ′|θ)

}
= min

{
1,

f (y;θ
′)π(θ ′)q(θ ′|θ)

f (y;θ)π(θ)q(θ ′|θ)
× Z(θ)

Z(θ ′)

}
.

(3.2)

Clearly a problem arises when the value of the normalising term for the data
density, Z(θ), cannot be obtained either due to it being non-analytic or uncom-
putable with finite computational resource. This situation forms a major challenge
to methodology for computational statistics currently (e.g. Møller et al., 2006;
Besag and Moran, 1975; Besag, 1974; Green and Richardson, 2002; Møller and
Waagepetersen, 2003).

This Chapter is organised as follows. In Section 3.2 examples of doubly-intractable
distributions are described along with current inference approaches. These encom-
pass both approximate and exact methods which have been developed in the Statis-
tics, Epidemiology and Image analysis literature. In Section 3.3 a novel approach
based on Pseudo-marginal MCMC (Beaumont, 2003; Andrieu and Roberts, 2009)
is suggested in which an unbiased estimate of the intractable target distribution is
used in an MCMC scheme to sample from the exact posterior distribution. In Sec-
tions 3.4 and 3.5 we describe how to realise such unbiased estimates of a likelihood
with an intractable normalising term. This is achieved by writing the likelihood as
an infinite series in which each term can be estimated unbiasedly. Then Russian
Roulette techniques are used to truncate the series such that only a finite number
of terms need be estimated whilst maintaining the unbiasedness of the overall esti-



3.2. Inference methods for doubly-intractable distributions 85

mate. Section 3.6 contains experimental results for posterior inference over doubly-
intractable distributions: Ising models and the Fisher-Bingham distribution. Section
3.7 contains a discussion of the method and suggests areas for further work.

3.2 Inference methods for doubly-intractable distri-
butions

3.2.1 Approximate Bayesian inference

Many models describing data with complex dependency structures are doubly-
intractable. Examples which have received attention in the Statistics literature in-
clude:

1. undirected or directed graphical models to incorporate prior knowledge of
genetic dependencies into the detection of differentially expressed genes (Wei
and Li, 2007; Li and Li, 2008; Wei and Pan, 2008)

2. the Ising model (Ising, 1925). Originally formulated in the Physics literature
as a simple model for interacting magnetic spins on a lattice. Spins are binary
random variables which interact with neighbouring spins.

3. the Potts model and autologistic models. Generalisations to the Ising model in
which spins can take more than two values and more complex dependencies
are introduced. Used, inter alia, in image analysis (Besag, 1986; Hughes
et al., 2011), disease mapping (e.g. Green and Richardson, 2002) and to model
cellular adhesion (Turner and Sherratt, 2002).

4. Spatial point processes. Used to model point pattern data for example eco-
logical data (e.g. Silvertown, 2001; Møller and Waagepetersen, 2003) or epi-
demiological data (e.g. Diggle, 1990).

5. Exponential Random Graph (ERG) models. Used to model social network
structure in terms of local graph statistics such as the number of triangles
(e.g. Goodreau et al., 2009).

6. Massive Gaussian Markov random field (GMRF) models. Used in image
analysis and spatial statistics, amongst others (e.g. Rue and Held, 2005).
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Standard Bayesian inference techniques such as drawing samples from the poste-
rior using MCMC cannot be used due to the intractability of the likelihood nor-
malising term, and hence a number of approximate inference methods have been
developed. A common approach when the full likelihood cannot be computed is
to use a pseudo-likelihood (Besag, 1974; Besag and Moran, 1975), in which an ap-
proximation to the true likelihood is formed using the product of the conditional
probabilities for each variable. This can normally be computed efficiently and can
therefore replace the full likelihood in an otherwise standard inference strategy to
sample from the posterior (e.g. Heikkinen and Hogmander, 1994; Zhou and Schmi-
dler, 2009). This approach scales well with the size of the data and can give a
reasonable approximation to the true posterior, but inferences may be significantly
biased as long range interactions are not taken into account (this has been shown
to be the case for ERG models (Duijn et al., 2009), hidden Markov random fields
(Friel et al., 2009) and autologistic models (Friel and Pettitt, 2004)). Methods based
on composite likelihoods have also been used for inference in massive scale GMRF
models, in which an approximation to the likelihood is based on the joint density
of spatially adjacent blocks (Eidsvik and Shaby, 2014). This has the advantage
that the separate parts of the likelihood can be computed more efficiently and in
parallel.

Another pragmatic approach is that of Green and Richardson (2002), in which the
interaction parameter in the Potts model is discretised to a grid of closely spaced
points and then a prior is set over these values. Estimates of the normalising term
are then pre-computed using thermodynamic integration (as described by Gelman
and Meng (1998)) so that no expensive computation is required during the MCMC
run. This allowed inference to be carried out over a model for which it would not
otherwise have been possible. However it is not clear what impact this discretisation
and use of approximate normalising terms has on parameter inference and it seems
preferable, if possible, to retain the continuous nature of the variable and to not use
approximations unless justified.

Approximate Bayesian Computation (ABC) (Marin et al., 2012; Tavaré et al., 1997;
Beaumont et al., 2002) has already been briefly described in the Introduction and
at the end of the previous chapter, and as it is a technique which does not require
the computation of the likelihood, it can also be used for doubly intractable models.
The types of models for which ABC was originally developed are implicit; meaning
data can be simulated from the likelihood but the likelihood cannot be written down.



3.2. Inference methods for doubly-intractable distributions 87

In its simplest form it proceeds by proposing an approximate sample from the joint
distribution, p(y,θ), by first proposing θ

′ from the prior and then generating a
dataset from the model likelihood conditional on θ

′. This data set is compared to
the observed data and the proposed parameter value accepted if the generated data
is ‘similar’ enough to the observed data. An obvious drawback to the method is that
it does not sample from the exact posterior, although it has been shown to produce
comparable results to other approximate methods and recent advances mean that it
can be scaled up to very large datasets (Moores et al., 2014; Grelaud et al., 2009;
Everitt, 2012).

Several approximate but consistent algorithms have been developed based on Monte
Carlo approximations within MCMC methods. For example, an approach was de-
veloped by Atchadé et al. (2013) in which a sequence of transition kernels are
constructed using a consistent estimate of Z(θ) from the Wang-Landau algorithm
(Wang and Landau, 2001). The estimates of the normalising term converge to the
true value as the number of iterations increases and the overall algorithm gives
a consistent approximation to the posterior. Bayesian Stochastic Approximation
Monte Carlo (Jin and Liang, 2014) works in a similar fashion, sampling from a se-
ries of approximations to the posterior using the stochastic approximation Monte
Carlo algorithm (Liang et al., 2007) which is based on the Wang-Landau algo-
rithm. These algorithms avoid the need to sample from the model likelihood but
in practice suffer from the curse of dimensionality as the quality of the importance
sampling estimate depends on the number and location of the grid points. These
points need to grow exponentially with the dimension of the space limiting the ap-
plicability of this methodology. They also require a significant amount of tuning to
attain good approximations to the normalising term, and hence ensure convergence
is achieved.

Alternative methodologies have avoided sampling altogether and instead used de-
terministic approximations to the posterior distribution. This is particularly the case
for GMRF models which often have complex parameter dependencies and are very
large in scale, rendering MCMC difficult to apply. INLA (integrated nested Laplace
approximations) (Rue et al., 2009) was designed to analyse latent Gaussian models
and has been applied to massive GMRFs in diverse areas such as spatio-temporal
disease mapping (Schrödle and Held, 2011) and point processes describing the lo-
cations of muskoxen (Illian et al., 2012). By using Laplace approximations to the
posterior and an efficient programming implementation, fast Bayesian inference can
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be carried out for large models. However, this benefit also constitutes a drawback
in that users must rely on standard software, and therefore model extensions which
could be tested simply when using an MCMC approach are not easy to handle. Fur-
ther, it is of course necessary to ensure that the assumptions inherent in the method
apply so that the approximations used are accurate. It should also be noted that
the work of Taylor and Diggle (2014) found that in the case of spatial prediction
for log-Gaussian Cox processes, an MCMC method using the Metropolis-adjusted
Langevin Algorithm (MALA) algorithm gave comparable results in terms of predic-
tive accuracy and was actually slightly more efficient than the INLA method.

3.2.2 Exact MCMC methods

As well as approximate inference methods, a small number of exact algorithms have
been developed to sample from doubly-intractable posteriors. These are described
below as well as advice as to when these algorithms can be used. ‘Exact’ in this con-
text means that the Markov chain has the true posterior distribution as its invariant
distribution.

3.2.2.1 Introducing auxiliary variables

An exact sampling methodology for doubly-intractable distributions is proposed in
Walker (2011), which uses a similar approach to those described in Adams et al.
(2009) and Section 9 of Beskos et al. (2006). A Reversible-Jump MCMC (RJM-
CMC) sampling scheme is developed that cleverly gets around the intractable nature
of the normalising term. Consider the univariate distribution p(y|θ)= f (y;θ)/Z(θ)

where N independent and identically distributed (i.i.d.) observations, yi are avail-
able. In its most general form, it is required that y belongs to some bounded in-
terval [a,b], and that there exists a constant M < +∞ such that f (y;θ) < M for
all θ and y (it is assumed that [a,b] = [0,1], and M = 1 in the following ex-
position). The method introduces auxiliary variables ν ∈ (0,∞), k ∈ {0,1, . . .},
{s}(k) = (s1, . . . ,sk), to form the joint density

f (ν ,k,{s}(k),y|θ) ∝
exp(−ν)νk+N−1

k!

k

∏
j=1

(
1− f (s j;θ)

)
1(0 < s j < 1)

N

∏
i=1

f (yi;θ).

Integrating out ν and s(k) and summing over all k returns the data distribution

∏
N
i=1 p(yi|θ). An RJMCMC scheme is proposed to sample from the joint den-

sity f (ν ,k,{s}(k),y|θ) and this successfully gets around the intractable nature of
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the normalising term. The scheme has been used to sample from the posterior of a
Bingham distribution (Walker, 2014).

However the methodology has some limitations to its generality. Firstly, the unnor-
malised density function must be strictly bounded from above to ensure the posi-
tivity of the terms in the first product. This obviously limits the generality of the
methodology to the class of strictly bounded functions, however this is not overly
restrictive as many functional forms for f (yi;θ) are bounded e.g. when there is
finite support, or when f (yi;θ) takes an exponential form with strictly negative ar-
gument. Even if the function to be sampled is bounded, finding bounds that are tight
is extremely difficult and the choice of the bound directly impacts the efficiency of
the sampling scheme constructed, see e.g. El Ghaoui and Gueye (2008) for bounds
on binary lattice models. Ideally we would wish to relax the requirement for the
data, y, to belong to a bounded interval, but if we integrate with respect to each s j

over an unbounded interval then we can no longer return 1−Z(θ) and the sum over
k will therefore no longer define a convergent geometric series equaling Z(θ). This
last requirement particularly restricts the generality and further use of this specific
sampling method for intractable distributions.

3.2.3 Valid Metropolis-Hastings-type transition kernels

An ingenious MCMC solution to the doubly-intractable problem was proposed by
Møller et al. (2006) in which the posterior state space is extended as follows

π(θ ,x|y) ∝ p(x|θ ,y)π(θ) f (y;θ)

Z(θ)
. (3.3)

This extended distribution retains the posterior as a marginal. The method pro-
ceeds by taking the proposal for x,θ to be q(x′,θ ′|x,θ) = f (x;θ ′)

Z(θ ′)
q(θ ′|θ) so that at

each iteration the intractable normalising terms cancel in the Metropolis-Hastings
acceptance ratio. This algorithm has been named the Single Auxiliary Variable
Method (SAVM). A drawback of the algorithm is the need to choose the marginal
for x, p(x|θ ,y), particularly as the authors suggest that ideally this distribution
would approximate the likelihood, thereby reintroducing the intractable normalising
term.

Murray et al. (2006), simplified and extended the algorithm to the Exchange algo-
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rithm, and in the process removed this difficulty, by defining a joint distribution as
follows

p(x,y,θ ,θ ′) ∝
f (y;θ)

Z(θ)
π(θ)q(θ ′|θ) f (x;θ

′)

Z(θ ′)
,

which also has the posterior as a marginal. At each iteration, MCMC proceeds by
first Gibbs sampling θ

′ and x, and then proposing to swap the values of θ and θ
′

using Metropolis-Hastings. Again, the intractable normalising terms cancel in the
acceptance ratio.

Both of these algorithms use only valid MCMC moves and therefore target the
exact posterior. However they both require the capability to sample from the like-
lihood using a method such as perfect sampling (Propp and Wilson, 1996; Kendall,
2005). This can be considered a restriction to the widespread applicability of this
class of methods as for many models this is not possible e.g. ERG models in so-
cial networks. Even when perfect sampling is possible, e.g. for the Ising and Potts
models, it becomes prohibitively slow as the size of the model increases. Attempts
have been made to relax the requirement to perfectly sample by instead using an
auxiliary Markov chain to sample approximately from the model at each iteration
(Caimo and Friel, 2011; Liang, 2010; Everitt, 2012; Alquier et al., 2014). Theo-
retical justification for this approach is given in Everitt (2012), where it is shown
that as the number of auxiliary MCMC iterations is increased, the invariant distri-
bution of the approximate chain becomes ‘closer’ to the true posterior distribution,
under certain conditions. The paper by Alquier et al. (2014) analyses and suggests
multiple approximate MCMC algorithms for doubly-intractable distributions and
then applies results from Markov chain theory to bound the total variation distance
between the approximate chains and a hypothetical exact chain. These types of ap-
proximate algorithms were in use due to their computational feasibility and so it is
pleasing to see some theoretical justification for their use emerging in the Statistics
literature.
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3.3 An alternative approach using Pseudo-marginal
MCMC

As has been seen, there are many approximate methods for sampling from doubly-
intractable posteriors. There are also exact methods available, but these can only
be applied when it is possible to perfectly sample from the data model and hence
can only be applied to small datasets and certain models. Now we would like to
approach the question of whether it is possible to relax this requirement and develop
methodology for ‘exact’ MCMC sampling of the posterior when perfect sampling
is not possible. To do so an approach is developed based on the Pseudo-marginal
methodology (Beaumont, 2003; Andrieu and Roberts, 2009; Doucet et al., 2012),
and hence the algorithm is now described.

The Pseudo-marginal class of methods is particularly appealing in that they have the
least number of restrictions placed upon them and provide one of the most general
MCMC methods for intractable distributions. They are sometimes referred to as
Exact-approximate methods, based on the property that the invariant distribution
of the Markov chain produced is the exact target distribution despite the use of
an approximation in the Metropolis-Hastings acceptance probability. To use the
scheme, an unbiased and positive estimate of the target density is substituted for the
true density giving an acceptance probability of the form

α(θ ′,θ) = min
{

1,
π̂(θ ′|y)
π̂(θ |y)

× q(θ |θ ′)
q(θ ′|θ)

}
= min

{
1,

p̂(y|θ ′)π(θ ′)
p̂(y|θ)π(θ)

× q(θ |θ ′)
q(θ ′|θ)

}
,

(3.4)

where the estimate at each proposal is propagated forward as described in Beaumont
(2003); Andrieu and Roberts (2009). For the case of doubly-intractable distribu-
tions, assuming the prior is tractable, this equates to a requirement for an unbiased
estimate of the likelihood as seen on the right in (3.4) above. The remarkable feature
of this scheme is that the corresponding transition kernel has an invariant distribu-
tion with θ -marginal given precisely by the desired posterior distribution, π(θ |y).
To see this, denote all the random variables generated in the construction of the
likelihood estimator by the vector u, and its density p(u). These random variables
are, for example, those used when generating an importance sampling estimate of
the target. The estimator of the likelihood is denoted p̂N(y|θ ,u) with N symbol-
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ising, for example, the number of Monte Carlo samples used in the estimate. The
estimator of the likelihood must be unbiased i.e.

∫
p̂N(y|θ ,u)p(u)du = p(y|θ). (3.5)

A joint density for θ and u is now defined which returns the posterior distribution
after integrating over u

πN(θ ,u|y) ∝ p̂N(y|θ ,u)π(θ)p(u)

=
p̂N(y|θ ,u)π(θ)p(u)

p(y)
.

It is simple to show using Equation (3.5) that πN(θ ,u|y) integrates to 1 and has
the desired marginal distribution for θ |y. Now consider sampling from πN(θ ,u|y)
using the Metropolis-Hastings algorithm, with the proposal distribution for u′ being
p(u′). In this case the densities for u and u′ cancel and we are using the acceptance
probability in (3.4). Hence, this algorithm samples from πN(θ ,u|y) and the samples
of θ obtained are distributed according to the posterior.

This is a result that was highlighted in the statistical genetics literature (Beaumont,
2003) then popularised and formally analysed in Andrieu and Roberts (2009), with
important developments such as Particle MCMC (Doucet et al., 2012) proving to
be extremely powerful and useful in a large class of statistical models. Due to its
wide applicability, the Pseudo-marginal algorithm has been the subject of several
recent papers in the statistical literature, increasing understanding of the method-
ology. These have covered how to select the number of samples in the unbiased
estimate to minimise the computational time (Doucet et al., 2012), optimal vari-
ance and acceptance rates to maximise efficiency of the chain (Sherlock and Thiery,
2014) and results to order two different pseudo-marginal implementations in terms
of the acceptance probability and asymptotic variance (Andrieu and Vihola, 2014).
It is interesting to note that the problem of Exact-Approximate inference was first
considered in the Quantum Chromodynamics literature almost thirty years ago, see
for example Kennedy and Kuti (1985); Bhanot and Kennedy (1985); Bakeyev and
Forcrand (2001); Lin et al. (2000); Joo et al. (2003).
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Note that the approach of Møller et al. (2006) is a Pseudo-marginal type algorithm.
In order to sample from a doubly-intractable posterior using the Pseudo-marginal
algorithm, an unbiased estimate of 1/Z(θ) is required. This can be achieved by
introducing an auxiliary density as in Equation (3.3), p(x|y,θ), and rewriting as
follows

1
Z(θ)

=
1

Z(θ)

∫
p(x|y,θ) dx =

∫ p(x|y,θ)
f (x;θ)

f (x;θ)

Z(θ)
dx

≈ 1
N

N

∑
i=1

p(xi|y,θ)
f (xi;θ)

xi ∼ p(·|θ).

Setting N = 1, and drawing one sample from the likelihood at each iteration, this is
then equivalent to the Møller et al. (2006) algorithm. The algorithm remains valid if
N > 1, and this should improve the mixing of the resulting Markov chain (although
not necessarily the efficiency).

Note further, that in the Exchange algorithm, the intractable ratio Z(θ)/Z(θ ′), is
replaced by f (x;θ)/ f (x;θ

′) with x simulated from the likelihood, which can also
be viewed as a one-sample importance estimate. However, as the estimate is a
function of both θ and θ

′, the Exchange algorithm is not an implementation of the
Pseudo-marginal algorithm and more than one sample cannot be used to improve
mixing.

3.3.1 Proposed methodology

The aim of this Chapter is to develop a pseudo-marginal MCMC algorithm to carry
out exact Bayesian inference for doubly-intractable models of a range of sizes.
Hence we require unbiased estimates of the likelihood. For each θ and y, it is
shown that one can construct random variables {V ( j)

θ
, j ≥ 0} (where dependence

on y is omitted) such that the series defined as

π(θ ,{V ( j)
θ
}|y) :=

∞

∑
j=0

V ( j)
θ
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is finite almost surely, has finite expectation, and E
(

π(θ ,{V ( j)
θ
}|y)

)
= π(θ |y). We

propose a number of ways to construct such series. Although unbiased, these esti-
mators are not practical as they involve infinite series. A computationally feasible
truncation of the infinite sum is therefore employed which, crucially, remains unbi-
ased. This is achieved using Russian Roulette procedures well-known in the Physics
literature (Hendricks and Booth, 1985; Carter and Cashwell, 1975). More precisely,
a random time τθ is introduced, such that with u := (τθ ,{V

( j)
θ

, 0≤ j ≤ τθ}) the es-
timate

π(θ ,u|y) :
τθ

∑
j=0

V ( j)
θ

satisfies E
[
π(θ ,u|y)|{V ( j)

θ
, j ≥ 0}

]
=

∞

∑
j=0

V ( j)
θ

.

As in the notation used previously, u is a vector of all the random variables used in
the unbiased estimate, i.e. those used to estimate terms in the series, as well as those
used in the roulette methods to truncate the series. As the posterior is only required
up to a normalising constant in y and the prior is assumed tractable, in reality we
require an unbiased estimate of the likelihood.

3.3.2 The Sign Problem

If the known function f (y;θ) forming the estimate of the target is bounded then the
whole procedure can proceed without difficulty, assuming the bound provides effi-
ciency of sampling. However in the more general situation where the function is not
bounded there is a complication here in that the unbiased estimate π(θ ,u|y) is not
guaranteed to be positive (although its expectation is non-negative). This issue pre-
vents us from plugging-in directly the estimator π(θ ,u|y) in the Pseudo-marginal
framework for the case of unbounded functions. The problem of such unbiased esti-
mators returning negative valued estimates turns out to be a well-studied issue in the
Quantum Monte Carlo literature, see e.g. (Lin et al., 2000). The problem is known
as the Sign Problem which in its most general form is NP-hard (non-deterministic
polynomial time hard) (Troyer and Wiese, 2005) and at present no general and prac-
tical solution is available. Indeed, recent work by Jacob and Thiery (2013) showed
that given unbiased estimators of λ ∈ R, no algorithm exists to yield an unbiased
estimate of f (λ ) ∈ R+, where f is a non-constant real-valued function. Therefore,
we will need to apply a different approach to this problem.
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We apply methodology developed in Lin et al. (2000) and show that with a
weighting of expectations it is still possible to compute any integral of the form∫

h(θ)π(θ |y)dθ by Markov Chain Monte Carlo.

Suppose that we have an unbiased, but not necessarily positive, estimate of the like-
lihood p̂(y|θ ,u) and we wish to sample from π(θ ,u|y) = p̂(y|θ ,u)π(θ)p(u)/p(y)
where p(y) =

∫ ∫
p(y|θ ,u)π(θ)p(u)dθdu is an intractable normaliser. Although

π(θ ,u|y) integrates to one, it is not a probability as it is not necessarily positive.
Define σ(y|θ ,u) := sign(p̂(y|θ ,u)), where sign(x) = 1 when x > 0, sign(x) =−1
if x < 0 and sign(x) = 0 if x = 0. Furthermore denote |p̂(y|θ ,u)| as the absolute
value of the estimate, then we have p̂(y|θ ,u) = σ(y|θ ,u) |p̂(y|θ ,u)|.

Suppose that we wish to compute the expectation

∫
h(θ)π(θ |y)dθ =

∫ ∫
h(θ) π(θ ,u|y)du dθ . (3.6)

The above integral can be written

∫
h(θ)π(θ |y)dθ =

∫ ∫
h(θ) π(θ ,u|y)du dθ

=
1

p(y)

∫ ∫
h(θ) p̂(y|θ ,u)π(θ)p(u) du dθ

=

∫ ∫
h(θ)σ(y|θ ,u) |p̂(y|θ ,u)| π(θ)p(u) du dθ∫ ∫

σ(y|θ ,u) |p̂(y|θ ,u)| π(θ)p(u) du dθ

=

∫ ∫
h(θ)σ(y|θ ,u) π̌(θ ,u|y) du dθ∫ ∫

σ(y|θ ,u) π̌(θ ,u|y) du dθ
, (3.7)

where π̌(θ ,u|y) is the distribution

π̌(θ ,u|y) :=
|p̂(y|θ ,u)|π(θ)p(u)∫ ∫
|p̂(y|θ ,u)|π(θ)p(u) du dθ

.

We can sample from π̌(θ ,u|y) using a Pseudo-marginal scheme. At each itera-
tion we propose a new value θ

′, generate an unbiased estimate of the likelihood
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p(y|θ ′,u′), and accept it with probability

min
{

1,
|p̂(y|θ ′,u′)|π(θ ′)
|p̂(y|θ ,u)|π(θ)

× q(θ |θ ′)
q(θ ′|θ)

}
,

remembering to save the value and sign of the accepted estimate. We can then use
Monte Carlo to estimate the expectation in (3.6) using (3.7) with

∫
h(θ)π(θ |y)dθ =

∑
N
i=1 h(θ i)σ(y|θ i,ui)

∑
N
i=1 σ(y|θ i,ui)

. (3.8)

The output of this MCMC procedure gives an importance-sampling-type estimate
for the desired expectation

∫
h(θ)π(θ |y)dθ , which is consistent but biased (as

with estimates from all MCMC methods). Importantly, this methodology gives
us freedom to use unbiased estimators which may occasionally return negative esti-
mates.

It is important to note that without a strictly positive unbiased estimator to plug
into the Pseudo-marginal acceptance ratio, the samples are drawn from π̌(θ ,u|y)
and not the true posterior. However, consistent expectations with respect to the true
posterior can still be computed using the importance sampling-style estimator in
(3.8).

The following section addresses the issue of constructing the unbiased estimator to
be used in the overall MCMC scheme.

3.4 Pseudo-marginal MCMC for doubly-intractable
distributions

The foundational component of Pseudo-marginal MCMC is the unbiased and pos-
itive estimator of the target density. In the methodology developed here, it is not
essential for the estimate of the intractable distribution to be strictly positive and
we exploit this characteristic. Note, that whilst there are many methods for unbias-
edly estimating Z(θ) such as importance sampling, Sequential Monte Carlo (SMC)
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(Moral et al., 2006) and Annealed Importance Sampling (AIS) (Neal, 2001), if we
then take some non-linear function of the estimate, for example the reciprocal, the
overall estimate of the likelihood is no longer unbiased.

It is possible to directly construct an estimator of 1/Z(θ) using an instrumental
density q(y) as follows

1
Z(θ)

=
1

Z(θ)

∫
q(y)dy =

∫ q(y)
f (y;θ)

p(y|θ)dy≈ 1
N

N

∑
i=1

q(yi)

f (yi;θ)
yi ∼ p(·|θ),

however this requires the ability to sample from the likelihood, and if we can do
this then we can implement the Exchange algorithm. Further, the variance of the
estimate depends strongly on the choice of the instrumental density. A biased es-
timator can be constructed by sampling the likelihood using MCMC (e.g. Zhang
et al., 2012), but a Pseudo-marginal scheme based on this estimate will not target
the correct posterior distribution. Very few methods to estimate 1/Z(θ) can be
found in the Statistics or Physics literature, presumably because in most situations
a consistent estimate will suffice. Therefore, we have to look for other ways to
generate an unbiased estimate of the likelihood.

In outline, the intractable distribution is first written in terms of a nonlinear func-
tion of the intractable normalising term. For example, in Equation (3.1), the non-
linear function is the reciprocal 1/Z(θ), and an equivalent representation would be
exp(− logZ(θ)). This function is then represented by a convergent Maclaurin ex-
pansion which has the property that each term can be estimated unbiasedly using the
available unbiased estimates of Ẑ(θ). The infinite series expansion is then stochas-
tically truncated without introducing bias so that only a finite number of terms need
be computed. These two components—(1) unbiased independent estimates of the
normalising constant, and (2) unbiased stochastic truncation of the infinite series
representation—then produce an unbiased, though not strictly positive, estimate of
the intractable distribution. The final two components of the overall methodology
consist of (3) constructing an MCMC scheme which targets a distribution propor-
tional to the absolute value of the unbiased estimator, and then (4) computing Monte
Carlo estimates with respect to the desired posterior distribution as detailed in the
previous section.
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This method draws together ideas from several places in the Statistics and Physics
literature. In the Physics literature, researchers used a similar method to obtain unbi-
ased estimates of exp(−U(x)) when only unbiased estimates of U(x) were available
(Kennedy and Kuti, 1985; Bhanot and Kennedy, 1985). They further showed that
even when using such unbiased estimates in place of the true value, detailed bal-
ance still held. The method for realising the unbiased estimates at each iteration is
also similar to that suggested by Booth (2007), in which he described a method for
unbiasedly estimating the reciprocal of an integral, which is of obvious relevance
to our case. In the Statistics literature, Douc and Robert (2011) used a geometric
series to estimate an inverse probability, and Beskos et al. (2006); Fearnhead et al.
(2008) also used techniques to truncate a series unbiasedly in their work on likeli-
hood estimation for stochastic diffusions. Finally both Rhee and Glynn (2012) and
McLeish (2011) use roulette methods to realise an unbiased estimate when only bi-
ased but consistent estimates are available. This is achieved by writing the quantity
to be unbiasedly estimated as an infinite series in which each term is a function of
the consistent estimates which can be generated, and then truncating the series using
roulette methods. However, they do not utilise these estimates in a Pseudo-marginal
MCMC scheme.

In the following sections, two series expansions of a doubly-intractable likelihood
are presented, in which each term can be estimated unbiasedly using unbiased es-
timates of Z(θ). Following this comes a description of unbiased truncation meth-
ods.

3.4.1 Geometric Series Estimator

In this subsection we show how the intractable likelihood can be written as a geo-
metric series in which each term can be estimated unbiasedly. Take a biased esti-
mate of the likelihood p̃(y|θ) = f (y;θ)/Z̃(θ), where Z̃(θ)> 0 is ideally an upper
bound on Z(θ), or alternatively an unbiased importance sampling estimate or a de-
terministic approximation. Then, using a multiplicative correction

p(y|θ) = p̃(y|θ)× c(θ)

[
1+

∞

∑
n=1

κ(θ)n

]
, (3.9)

where κ(θ) = 1− c(θ)Z(θ)/Z̃(θ) and c(θ) ensures |κ(θ)| < 1, the convergence
of a geometric series gives
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p̃(y|θ)× c(θ)

[
1+

∞

∑
n=1

κ(θ)n

]
= p̃(y|θ)× c(θ)

1−κ(θ)
= p̃(y|θ)× Z̃(θ)

Z(θ)
= p(y|θ).

Based on this equality, and with an infinite number of independent unbiased es-
timates of Z(θ) each denoted Ẑi(θ), an unbiased estimate of the target density
is

π̂(θ |y) = π(θ)p̃(y|θ)
p(y)

× c(θ)

[
1+

∞

∑
n=1

n

∏
i=1

(
1− c(θ)

Ẑi(θ)

Z̃(θ)

)]
. (3.10)

Notice that the series in (3.10) is finite a.s. and we can interchange summation and
expectation if

E

(∣∣∣∣∣1− c(θ)
Ẑi(θ)

Z̃(θ)

∣∣∣∣∣
)

< 1.

Since E(|X |) ≤ E1/2(|X |2), a sufficient condition for this is 0 < c(θ) <

2Z̃(θ)Z(θ)/E
(
Ẑ2

1(θ)
)

, which is slightly more stringent than |κ(θ)| < 1. Un-
der this assumption, the expectation of π̂(θ |y) is

E
{

π̂(θ |y)|Z̃(θ)
}

=
π(θ)p̃(y|θ)

p(y)
× c(θ)

1+
∞

∑
n=1

n

∏
i=1

1− c(θ)
E
{
Ẑi(θ)

}
Z̃(θ)


=

π(θ)p̃(y|θ)
p(y)

× c(θ)

[
1+

∞

∑
n=1

κ(θ)n

]
= π(θ |y).

Therefore, the essential property E {π̂(θ |y)} = π(θ |y) required for Exact-
Approximate MCMC is satisfied by this geometric correction. However, there
are difficulties with this estimator. It will be difficult in practice to find c(θ) that
ensures the series in (3.10) is convergent in the absence of knowledge of the actual
value of Z(θ). By ensuring that Z̃(θ)/c(θ) is a strict upper-bound on Z(θ), denoted
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by ZU , guaranteed convergence of the geometric series is established. Even if an
upper bound is available, it may not be computationally practical as upper bounds
on normalising constants are typically loose (see, for example El Ghaoui and Gu-
eye, 2008), making the ratio Z(θ)/ZU extremely small, and, therefore, κ(θ) ≈ 1;
in this case, the convergence of the geometric series will be slow. A more pragmatic
approach is to use a pilot run at the start of each iteration to characterise the location
and variance of the Z(θ) estimates, and use this to conservatively select Z̃(θ)/c(θ)

such that the series converges. Of course, if the distribution of the estimates is not
well enough characterised then we may not be able to guarantee with probability 1
that |κ(θ)|< 1 and hence approximation will be introduced into the chain.

In the next section we describe an alternative to the geometric series estimator which
does not have the practical issue of ensuring the region of convergence is main-
tained.

3.4.2 Unbiased estimators using an exponential auxiliary vari-
able

In this section we show how the introduction of an auxiliary variable can enable the
posterior density to be written in terms of a Taylor series expansion of the exponen-
tial function. The introduction of ν ∼ Expon(Z(θ)) defines a joint distribution of
the form of

π(θ ,ν |y) = [Z(θ)exp(−νZ(θ))]× f (y;θ)

Z(θ)
×π(θ)× 1

p(y)

= exp(−νZ(θ))× f (y;θ)×π(θ)× 1
p(y)

=

[
1+

∞

∑
n=1

(−νZ(θ))n

n!

]
× f (y;θ)×π(θ)× 1

p(y)
.

Integrating over ν returns the posterior distribution and therefore if we sample from
this joint distribution, our θ samples will be distributed according to the posterior.
As hinted at in the previous section, the methods used to truncate the series are more
computationally feasible if the series converges quickly. Therefore, we introduce
Z̃(θ) which is preferably an upper bound on Z(θ) or if unavailable, some other
approximation. The exponential can then be expanded as follows
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exp(−νZ(θ)) = exp(−νZ̃(θ))× exp
(
ν(Z̃(θ)−Z(θ))

)
= exp(−νZ̃(θ))×

(
1+

∞

∑
n=1

νn

n!
(
Z̃(θ)−Z(θ)

)n
)
.

If Z̃(θ) is an upper bound on Z(θ) then its introduction prevents the terms in the
Taylor series from alternating in sign, by ensuring the exponent is positive; this
helps to reduce the impact of returning negative estimates. Even if Z̃(θ) is not a
strict upper bound, its presence reduces the absolute value of the exponent which
improves the convergence properties of the series, and therefore makes the trunca-
tion methods described in the next section more efficient.

An unbiased estimator of the series is

̂exp(−νZ(θ)) = exp(−νZ̃(θ))

[
1+

∞

∑
n=1

νn

n!

n

∏
i=1

(Z̃(θ)− Ẑi(θ))

]
, (3.11)

where {Ẑi(θ), i ≥ 1} are i.i.d. random variables with expectation equal to Z(θ).
The magnitude of the exponent can present computational barriers to the imple-
mentation of this scheme. If Z(θ) is very large it is easier to carry out the division
Ẑ(θ)/Z(θ) in (3.10) (which can be computed in log space), than the subtraction
Z(θ)− Ẑ(θ) in (3.11). On the other hand, since n! grows faster than the exponen-
tial, this series is always well defined (finite almost surely).

In Fearnhead et al. (2008), the Generalised Poisson Estimator, originally proposed
in Beskos et al. (2006), is employed to estimate transition functions that are similar
to (3.11). Here again, this series is finite almost surely with finite expectation. The
choice of which estimator to employ will be problem dependent and, in situations
where it is difficult to guarantee convergence of the geometric series, this form of
estimator may be more suitable.

3.4.3 Possible choices for Ẑi(θ) and Z̃(θ)

At this point, it is useful to describe in a bit more detail the possible choices for
Ẑi(θ) and Z̃(θ). For the unbiased estimates of the normalising term, some form of
Monte Carlo estimator is envisaged, either simple importance sampling or Sequen-
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tial Monte Carlo (SMC). These methods produce unbiased estimates, of which the
variance can easily be estimated and controlled. Whilst in theory the variance, and
hence efficiency, of Monte Carlo methods is independent of dimension, in practice
the variance is highly influenced by the dimension as it becomes more difficult to
design good importance distributions as the dimension increases. The methodology
therefore suffers to some extent from the same problem as the Wang-Landau type
methods. The advantage of our method, however, is that the equilibrium distribu-
tion of the Markov chain is constant throughout the process and so all the samples
can be used, whereas for the Wang-Landau methods, the equilibrium distribution
converges to the desired posterior as the chain is run, and it is this convergence that
is slowed as the dimension increases.

If an upper bound is available for all all the estimates of Z(θ), then it is possible
to produce a strictly positive estimate of 1/Z(θ) and hence the true posterior can
be sampled from. The data for many doubly-intractable models e.g. Ising and
Potts models are discrete, and in these cases it is often possible to find an upper
bound. However, it will often be the case that an upper bound of this nature is
not available, and so the estimates returned will sometimes be negative and the
distribution sampled will not be the true posterior. This is obviously a drawback to
the methodology as one of the major benefits of Bayesian methodology is obtaining
probability distributions for parameters as opposed to point estimates. However, it
is still possible to obtain consistent estimates of functions with respect to the true
posterior, including functions such as the second moment, and often this together
with a mean is all that is required.

For Z̃(θ), a range of options is available. In the best case scenario, an upper bound
is available on Z(θ) and the geometric series construction can then be used with
a guarantee of convergence. Upper bounds are most likely to be available in the
case where the state space is finite or the data is confined to a bounded interval. For
example, a naive bound for the Ising model can be found by setting all spins to +1
and multiplying by the total number of graphs in the state space. Tighter bounds,
which require more computation, have been found by Wainwright et al. (2005); Liu
and Ihler (2011); Ghaoui and Gueye (2008) amongst others.

In other cases, such as the Fisher-Bingham distribution introduced later in the Chap-
ter, the unnormalised function, f (y;θ), is an exponential function with a convex
sum i.e. ∑

M
i=1 aixi where the xi are real vectors and ai > 0 for all i and ∑

M
i=1 ai = 1.

An upper bound can therefore be determined by giving a weight of 1 to the largest
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xi.

It is also possible prior to the MCMC run to estimate values of Z(θ) for a grid of
θ points and use sample estimates of the mean and variance to determine empirical
upper bounds with very high probability. This is obviously a more feasible approach
when the dimension of the parameter space is low, however, this is often the case
with Markov Random Field models as inference is even more challenging when the
parameter space becomes large.

In the following section, the final element of the proposed methodology is dis-
cussed: unbiased truncation of the infinite series estimators.

3.5 Unbiased Truncation of Infinite Sums: Russian
Roulette

Two unbiased estimators of nonlinear functions of a normalising constant have been
considered. Both of them rely on the availability of an unbiased estimator for Z(θ)
and a series representation of the nonlinear function. We now require a computa-
tionally feasible means of realising the desired estimator without explicitly com-
puting the infinite sum and without introducing any bias into the final estimate. It
transpires that there are a number of ways to randomly truncate the convergent in-
finite sum S(θ) = ∑

∞
i=0 φi(θ) in an unbiased manner; these stem from work by von

Neumann and Ulam in the 1940s, see Papaspiliopoulos (2009) for a good review of
such methods.

3.5.1 Single Term Weighted Truncation

The simplest unbiased truncation method is to define a set of probabilities and draw
an integer index k with probability qk then return φk(θ)/qk as the estimator. It is
easy to see that the estimator is unbiased as E{Ŝ(θ)} = ∑k qkφk(θ)/qk = S(θ).
The definition of the probabilities should be chosen to minimise the variance of
the estimator, see e.g. Fearnhead et al. (2008). An example could be that each
index is drawn from a Poisson distribution k∼ Poiss(λ ) with qk = λ k exp(−λ )/k!.
However in the case of a geometric series where φk(θ) = φ k(θ), the variance of
the estimator will be infinite with this choice since the factorial function k! grows
faster than the exponential. Using the geometric distribution as our importance
distribution, the variance is finite subject to some conditions on the choice of p, the
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parameter of the geometric distribution. To see this, note that, as k is chosen with
probability qk = pk(1− p), the second moment,

E[Ŝ2] =
∞

∑
k=0

E[Ŝ2
k ] qk =

∞

∑
k=0

E[φ 2
k ]

pk(1− p)

is finite if

lim
k→∞

∣∣∣∣∣E[φ 2
k+1]

pE[φ 2
k ]

∣∣∣∣∣ < 1. (3.12)

As the values of φk are unknown, the best way to design the probabilities qk is to
precompute some estimates of the first few φk and then choose the tail probabilities
to be geometric such that the overall estimator has finite variance.

3.5.2 Russian Roulette

An alternative unbiased truncation that exhibits superior performance in practice is
based on a classic Monte Carlo scheme, known as Russian Roulette in the Physics
literature (Lux and Koblinger, 1991; Carter and Cashwell, 1975). The procedure is
based on the simulation of a finite random variable (stopping time) τ according to
some probabilities pn = P(τ ≥ n)> 0 for all n≥ 0 with p0 = 1. Define the weighted
partial sums as S0 = φ0 and for k ≥ 1

Sk = φ0 +
k

∑
j=1

φ j

p j
.

The Russian Roulette estimate of S is Ŝ = Sτ . Russian Roulette implementations in
the Physics literature commonly choose a stopping time of the form

τ = inf{k ≥ 1 : Uk ≥ qk} ,
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where {U j, j ≥ 1} are i.i.d. U(0,1), q j ∈ (0,1] and Ŝ = Sτ−1. In this case pn =

∏
n−1
j=1 q j.

It can be shown that the expectation of the estimate is as required

n

∑
k=0

SkP(τ = k) =
n

∑
k=0

Sk(pk− pk+1) = φ0 +
n−1

∑
k=0

Sk+1 pk+1−
n

∑
k=0

Sk pk+1 =
n

∑
k=0

φk−Sn pn+1.

By Kronecker’s lemma limn→∞ pnSn = 0, and |pn+1Sn| = (pn+1/pn)pn|Sn| ≤
pn|Sn| → 0, as n→ ∞. We conclude that E[Ŝ(θ)] = ∑

∞
k=0 SkP(τ = k) = ∑

∞
k=0 φk =

S(θ). Refer to Appendix C for a more detailed discussion of the variance of such
an estimator and how to design the sequence of probabilities (pn).

Based on results presented in the Appendix, for a geometric series where φk(θ) =

φ k(θ), if one chooses q j = q, then the variance will be finite provided q > φ(θ)2.
In general there is a trade-off between the computing time of the scheme and the
variance of the returned estimate. If the selected q j’s are close to unity, the variance
is small, but the computing time is high. But if q j’s are close to zero, the computing
time is fast but the variance can be very high, possibly infinite. In the case of the
geometric series, φk(θ) = φ k(θ), choosing q j = q = φ(θ) works reasonably well in
practice.

Results from Rhee and Glynn (2013), where a similar construction is analysed tak-
ing full account of the random nature of each φk, show that the variance of the
estimator will be finite if

∞

∑
i=0

E[(φi−S)2]

pi
< ∞. (3.13)

For some series, properties of the numerator of (3.13) may be known, in which case
the probabilities pi can be designed to ensure the second moment of the estimator
is finite. If this is not the case, then pre-computation may be used to estimate the
magnitude of the expectations in (3.13) and then design the probabilities such that
they decay more slowly than the expectations.

As an illustrative example, consider the joint density
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p(θ ,ν ,u|y)= exp(−νZ̃(θ))×

(
1+

τθ

∑
n=1

νn

qnn!

n

∏
i=1

(
Z̃(θ)− Ẑi(θ)

))
× f (y;θ)π(θ)

p(y)
,

(3.14)

where the random variable u represents the random variables in the estimates Ẑi(θ)

and the random variable used in Russian roulette truncation, and qn = ∏
n
l=1 ql de-

notes the probabilities in the Russian Roulette truncation. If we define a proposal
for ν ′ as q(ν ′|θ ′) = Z̃(θ ′)exp(−ν ′Z̃(θ ′)) and a proposal for θ

′ as q(θ ′|θ) then
the Hastings ratio for a transition kernel with invariant density π(θ ,ν ,u|y) follows
as

f (y;θ
′)

f (y;θ)
× Z̃(θ)

Z̃(θ ′)
× π(θ ′)

π(θ)
× q(θ |θ ′)

q(θ ′|θ)
×φ(ν ,ν ′,θ ,θ ′) (3.15)

where

φ(ν ,ν ′,θ ,θ ′) =
1+∑

τ
θ ′

m=1
(ν ′)m

qmm! ∏
m
j=1

(
Z̃(θ ′)− Ẑ j(θ

′)
)

1+∑
τθ

n=1
νn

qnn! ∏
n
i=1

(
Z̃(θ)− Ẑi(θ)

) . (3.16)

It is interesting to note that φ(ν ,ν ′,θ ,θ ′) acts as a multiplicative correction for
the Hastings ratio that uses the approximate normalising term Z̃(θ) rather than the
actual Z(θ). The required marginal π(θ |y) follows due to the unbiased nature of
the estimator.

The Russian roulette methodology has been used in various places in the litera-
ture. McLeish (2011) and Rhee and Glynn (2012); Glynn and Rhee (2014) use
the Russian roulette estimator to ‘debias’ a biased but consistent estimator. In their
construction the aim is to unbiasedly estimate X , for which only a sequence of ap-
proximations is available, Xi, with E[Xi]→ E[X ] as i→ ∞. Define an infinite series,
S = X0 +∑

∞
n=1(Xn−Xn−1); an unbiased estimate of S is an unbiased estimate of X ,

assuming that the estimates are good enough to interchange expectation and sum-
mation. To achieve a computationally feasible and unbiased estimator of X , the
Roulette or Poisson truncation schemes can be applied. In the context of our work
this provides an alternative to the geometric or exponential series described above,
in which only a consistent estimator is required. One drawback to this ‘debiasing’
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scheme for use in Pseudo-marginal MCMC is that there is no obvious way to reduce
the probability of the final estimate being negative.

3.5.3 Comparison with current algorithms

Both the Exchange and SAVM can also be used to sample from doubly-intractable
posteriors, however the main drawback of these methods is that they can only be
implemented when it is possible to sample from the likelihood. On the other hand,
the methodology described above, can be implemented whenever an unbiased or
consistent estimate of Z(θ) is available. This means that this new methodology can
be applied to a wider class of problems.

The cost of this increased applicability is computational; for problems where it is
possible to sample from the likelihood, the Exchange algorithm will generally be
least computationally intensive of the exact methods, as only one sample from the
likelihood is required per iteration. However, this computational advantage can also
be a disadvantage as the Markov chain can mix badly as a result.

The SAVM can also be applied with only one sample, however, the mixing can be
improved by averaging more than one estimate. This algorithm has the additional
drawback of the need to design the auxiliary distribution p(x|y,θ) which has a large
impact on the efficiency. If this auxiliary density is not designed well enough, more
likelihood samples will be required in order to reduce the variance of the importance
sampling estimate and to improve the mixing.

3.5.4 Computational Complexity

The number of terms required for the unbiased estimate at each iteration is ran-
dom, and therefore the running time for a given number of samples is also random.
However, it is possible to look at the expected computation for each iteration. The
computation required to produce each unbiased estimate depends on:

1. the expected value of the random variable used to truncate the series,

2. the amount of computation required per term in the infinite series.

However, both of these depend in some way on the intrinsic ‘difficulty’ of the
problem, and it is therefore difficult to give general results on the computational
complexity of the methodology. If it is possible to produce low variance estimates
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(either unbiased or consistent) of the normalising term, Z(θ), then the amount of
computation required for each series term will be low and the random variable used
to truncate can have a low expected value. If, on the other hand, it is difficult to
produce low variance estimates of Z(θ), then each series term will require a large
amount of computation and the optimum truncation distribution will have a high
expectation.

One specific example is now investigated to illustrate these points: the geometric
series estimator with Single Term Weighted Truncation using a geometric stochastic
truncation variable, N, parameterised by p. It was shown in Section 3.5.1 that the
variance will be finite if

E[(1− Ẑ

Z̃
)2] = Var(1− Ẑ

Z̃
)+E[(1− Ẑ

Z̃
)]2 < p. (3.17)

Recall that in the geometric construction, the n-th series term is the product of
n independent estimates of 1−Z/Z̃, and that when using Single Term Weighted
Truncation only one series term is computed per likelihood estimate. Therefore,
the expected computation per likelihood estimate is simply the expectation of N

multiplied by the work required to produce one estimate Ẑ, denoted by w. The
expectation of the geometric random variable N is p/(1− p), and therefore the
expected compute time for each unbiased estimate is pw/(1− p). Clearly smaller
values of p result in lower computational costs, and from 3.17 it can be seen that
both the variability of the estimates, Ẑ, and the ‘tightness’ of the upper bound, Z̃,
impact how low p can be set and hence the computation required per likelihood
estimate.

The size of w, the computation required to compute each Monte Carlo estimate,
1− Ẑ/Z̃, varies depending on the specific model. Agapiou and Papaspiliopoulos
(2015) suggest that the number of samples required for accurate importance sam-
pling scales exponentially with the Kullback-Leibler divergence between the pro-
posal and target distributions, and therefore the computational complexity of this
methodology depends strongly on whether a proposal distribution close to the like-
lihood can be found. They further show that the number of samples required for ac-
curate importance sampling increases exponentially with the dimension of the state
space, and therefore the number of data points also strongly impacts the amount of
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computation required for one estimate of 1− Ẑ/Z̃.

Now that the complete Exact-Approximate MCMC scheme has been detailed, the
following section illustrates the methodology on some models that are doubly-
intractable, considering the strengths and weaknesses.

3.6 Experimental Evaluation

3.6.1 Simple example

We start by using a simple example from Murray et al. (2006) so as to compare
the various algorithms available. Consider sampling from the posterior distribution
of the precision parameter of a univariate normal distribution which has a conju-
gate gamma prior distribution. With N i.i.d. data points, the model is specified as
follows:

p(y|θ) =
N

∏
i=1

N(yi;0,1/θ) p(θ |α,β ) = Gamma(α,β ).

The corresponding posterior distribution is

p(θ |y) = Gamma(N/2+α,∑
n

y2/2+β ),

which can be sampled easily using standard methods, however we pretend in this
example that the normalising term in the likelihood is unknown.

As the posterior distribution has an analytic form, the mean and the variance of
the parameter with respect to the posterior are known, enabling comparison with
our approximate methods. The Exchange algorithm can easily be implemented as
all that is required at each MCMC iteration is a draw from a normal distribution. A
standard MCMC chain assuming the normalising constant is known was also run for
comparison. Our methodology was implemented with importance sampling used to
estimate the normalising term and Russian roulette used to terminate the infinite se-
ries. For all three methods, the chain was run for 100,000 iterations and the second
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Roulette Exchange Metropolis Exact
Mean 0.9988 1.0021 0.9995 1
Variance 0.6642 0.6602 0.6614 2/3
Relative CPU time 1.23 1 1.02 NA

Table 3.1: Table showing the exact posterior mean and variance of the parameter θ from
the simple example in Murray et al. (2006), as well as the estimates from the three sampling
methods: Roulette, Exchange and standard Metropolis.

(a) Roulette (b) Exchange (c) Metropolis

Figure 3.1: MCMC traces for 2000 samples using three different methods to sample from
the posterior of the example from Murray et al. (2006).

half of the samples used to estimate the means and variances. A normal distribution
was used as the proposal and acceptance rates tuned to around 40%.

Standard importance sampling estimates were used for the Ẑi(θ) with a Gaussian
importance distribution and 10 samples per estimate. At each iteration five prelimi-
nary estimates were computed, and the maximum of these was used as Z̃(θ).

The distribution is univariate and unimodal and hence all three methods easily sam-
ple from the posterior and take much the same time. From Table 3.1 it is clear that
all three methods estimate the mean and variance well. The computational time is
also shown; for this example the Exchange algorithm takes about the same amount
of time as the standard Metropolis-Hastings algorithm as drawing a sample from
a normal distribution does not require much additional computation. The Roulette
algorithm takes the longest amount of time as at each iteration at least one estimate
of the normalising term is required. From the histogram in Figure 3.2 however, it is
clear that at most iterations, only one estimate is required. Figures 3.1 and 3.4 show
traces and running means from the three methods respectively. The only difference
between the three methods is that the Exchange samples have stronger autocorrela-
tions (Figure 3.3) than the other two methods meaning that for the same number of
samples there are fewer independent samples.
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Figure 3.2: Histogram showing number of unbiased estimates required at each MCMC
iteration when using Roulette method on example in Murray et al. (2006).

(a) Roulette (b) Exchange (c) Metropolis

Figure 3.3: Autocorrelation function up to lag 20 for three different methods for samples
from example in Murray et al. (2006).

(a) Roulette (b) Exchange (c) Metropolis

Figure 3.4: Running mean of 10,000 MCMC samples from posterior from example in
Murray et al. (2006) using three different methods.
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3.6.2 Ising Lattice Spin Models

Ising models are examples of doubly-intractable distributions over which it is chal-
lenging to perform inference. They form a prototype for priors for image segmen-
tation and autologistic models e.g. (Hughes et al., 2011; Gu and Zhu, 2001; Møller
et al., 2006). Current exact methods such as the Exchange algorithm (Murray et al.,
2006) require access to a perfect sampler (Propp and Wilson, 1996) which, while
feasible for small grids, cannot be scaled up. A practical alternative is employed in
(Caimo and Friel, 2011), where an auxiliary MCMC run is used to approximately
simulate from the model. This is inexact and introduces bias, but it is hoped that
the bias has little practical impact. In this section, the Exchange algorithm and its
approximate version are compared with our Pseudo-marginal methodology.

For an N ×N grid of spins, y = (y1, . . .yN2), y ∈ {+1,−1}, the Ising model has
likelihood

p(y;α,β ) =
1

Z(α,β )
exp

(
α

N2

∑
i

yi +β ∑
i∼ j

yiy j

)
, (3.18)

where i and j index the rows and column of the lattice and the notation i∼ j denotes
summation over nearest neighbours. Periodic boundary conditions are used in all
subsequent computation. The parameters α and β indicate the strength of the ex-
ternal field and the interactions between neighbours respectively. The normalising
constant,

Z(α,β ) = ∑
Y

exp

(
α

N2

∑
i

yi +β ∑
i∼ j

yiy j

)
, (3.19)

requires summation over all 2N2
possible configurations of the model, which is com-

putationally infeasible even for moderately sized lattices. This is, in fact, a naive
bound as the transfer matrix method (see for example MacKay (2003)) which has
complexity N2N can also be used to compute the partition function.

Experiments were carried out on a small 10 × 10 lattice to enable a detailed com-
parison of the various algorithms. A configuration was simulated using a perfect
sampler with parameters set at α = 0 and β = 0.2. Inference was carried out over
the posterior distribution p(β |y) (α = 0 was fixed). A standard Metropolis-Hastings
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sampling scheme was used to sample the posterior, with a normal proposal distri-
bution centred at the current value and acceptance rates tuned to around 40%. A
uniform prior on [0,1] was set over β . As no tight upper bound is available on the
normalising term Z(θ), the debiasing series construction of McLeish (2011) and
Glynn and Rhee (2014) described at the end of Section 3.5.2, was used to construct
an unbiased estimate of the likelihood. The sequence of biased but consistent esti-
mates of 1/Z(θ) was produced by taking the reciprocal of unbiased SMC estimates
of Z(θ) with an increasing number of importance samples and temperatures (see
Moral et al. (2006) for a good introduction to SMC). SMC proceeds by defining
a high-dimensional importance density which is sampled sequentially, and in this
case we used a geometric schedule (Gelman and Meng, 1998; Neal, 2001) to define
the sequence of distributions

p(y|θ)n ∝ p(y|θ)φnU(y)1−φn,

with 0 ≤ φ1 < .. .φp = 1 and U(·) a uniform distribution over all the grids in Y.
A Gibbs transition kernel, in which one spin was randomly selected and updated
according to its conditional distribution, was used to sequentially sample the high-
dimensional space. The initial estimate, 1/Z(θ)0, used 100 temperatures and 100
importance samples; the i-th estimate used 100× 2i temperatures and importance
samples.

The infinite series was truncated unbiasedly using both Poisson truncation and Rus-
sian Roulette. A geometric distribution was used as the stopping distribution in
both cases with p = 0.7, chosen such that the variance of the log estimator was ap-
proximately 1 as suggested by Doucet et al. (2012). For comparison, the posterior
distribution was also sampled using the Exchange algorithm, the approximate form
of the Exchange algorithm (Caimo and Friel, 2011) with an auxiliary Gibbs sampler
run for 50,000 steps at each iteration, and an ‘exact’ MCMC chain using the matrix
transfer method to calculate the partition function at each iteration. All chains were
run for 20,000 iterations and the second half of the samples used for Monte Carlo
estimates.

The exact posterior mean and standard deviation are not available for comparison
but the estimates from the five methods agree well (Table 3.2). The traces in Fig-
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(a) Russian roulette (b) Poisson truncation (c) approximate Exchange

(d) Exchange algorithm (e) Exact MCMC chain

Figure 3.5: Traces of samples using the debiasing infinite series with (a) Russian Roulette,
(b) Poisson truncation, and (c) the approximate Exchange algorithm (d) the Exchange algo-
rithm using perfect samples and (e) an MCMC chain with the partition function calculated
using the matrix transfer method. Note in (a) and (b) the samples are not drawn from the
posterior distribution, p(β |y), but from the (normalised) absolute value of the estimated
density.

ure 3.5 show that the algorithms mix well and Figures 3.7 and 3.8 show that the
estimates of the mean and standard deviation agree well. Estimates of the Effective
sample size (ESS) are also included in Table 3.2, which give an idea of how many
independent samples are obtained from each method per 10,000 samples.

Approximately 5% of estimates were negative when using roulette truncation and
10% when using Poisson truncation, however using the correction in Equation (3.8),
expectations with respect to the posterior still converge to the correct values. If we
had opted to implement the geometric series construction of Section 3.4.1 in order
to reduce the number of negative estimates, we have available only a naive upper
bound for the partition function corresponding to setting all spins to +1. This bound
is very loose and therefore impractical, as the series converges very slowly. Hence
the availability of a method to deal with negative estimates frees us from atrocious
upper bounds that would explode the asymptotic variance of the chains.
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Roulette Poisson Exchange
(approx)

Exchange
(exact)

Exact

Mean 0.2004 0.2005 0.2013 0.2010 0.2008
Standard deviation 0.0625 0.0626 0.0626 0.0626 0.0625
ESS 2538 2660 1727 1732 3058
Relative CPU time 2.31 3.85 1 1.12 45.8

Table 3.2: Monte Carlo estimates of the mean and standard deviation of the posterior
distribution p(β |y) using the five algorithms described. The debiasing series estimates have
been corrected for negative estimates. The exact chain was run for 100,000 iterations and
then the second half of samples used to achieve a ‘gold standard’ estimate. An estimate of
the effective sample size (ESS) is also shown based on 10,000 MCMC samples.

The autocorrelation functions (Figure 3.6) and the effective sample size (Table 3.2)
of both Russian Roulette and Poisson truncation outperform the approximate and
exact Exchange algorithm in this example and are comparable to the exact imple-
mentation; of course it is possible to improve the performance of our algorithm by
using more computation, whereas this is not possible with the Exchange algorithm.
It should be noted that the Exchange algorithm in this guise is less computation-
ally intensive. However, it becomes impossible to perfectly sample as the size of
the lattice increases, whereas our algorithm can still be implemented, albeit with
considerable computational expense. Note that even at this small lattice size, the
approximate version of Exchange looks noticeably less stable.

We have further experimented on larger lattices, for example both the Exchange
algorithm and our methodology have been used to carry out inference over a 40×40
grid. At this size it is not possible to use the matrix transfer method to run an ‘exact’
chain. Sequential Monte Carlo (SMC) was used to estimate Zi(θ) at each iteration
in the Roulette implementation. Again, the estimates of the means and the standard
deviations from both methods agreed well. We have also carried out inference over
a 60× 60 grid, however it is no longer possible to perfectly sample at this size,
particularly for parameter values near the critical value.

3.6.3 The Fisher-Bingham Distribution on a Sphere

The Fisher-Bingham distribution (Kent, 1982) is constructed by constraining a mul-
tivariate Gaussian vector to lie on the surface of a d-dimensional unit radius sphere,
Sd . Its form is
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(a) Russian roulette (b) Poisson truncation (c) approximate Exchange

(d) Exchange algorithm (e) Exact MCMC

Figure 3.6: Autocorrelation plots for samples drawn from the posterior distribution p(β |y)
of a 10 × 10 Ising model using five methods: (a) Debiasing series with roulette truncation,
(b) Debiasing series with Poisson truncation (c) approximate Exchange (d) the Exchange
algorithm using perfect samples and (e) an MCMC chain with the partition function calcu-
lated using the matrix transfer method.

p(y|A) ∝ exp{y′Ay},

where A is a d × d symmetric matrix and, from here on, we take d = 3. After
rotation to principal axes, A is diagonal and so the probability density can be written
as

p(y|λ ) ∝ exp

{
d

∑
i=1

λiy2
i

}
.

This is invariant under addition of a constant factor to each λi so for identifiability
we take 0 = λ1 ≥ λ2 ≥ λ3. The normalising constant, Z(λ ) is given by
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(a) Russian roulette (b) Poisson truncation (c) approximate Exchange

(d) Exchange algorithm (e) Exact MCMC

Figure 3.7: Plots of the running mean for the posterior distribution p(β |y) of a 10 × 10
Ising model using three methods: (a) Debiasing series with roulette truncation, (b) Debi-
asing series with Poisson truncation (c) approximate Exchange (d) the Exchange algorithm
using perfect samples and (e) an MCMC chain with the partition function calculated using
the matrix transfer method.

Z(λ ) =
∫
S

exp

{
d

∑
i=1

λiy2
i }

}
µ(dy)

where µ(dy) represents Hausdorff measure on the surface of a sphere. Very few
papers have presented Bayesian posterior inference over the distribution due to the
intractable nature of Z(λ ). However in a recent paper, Walker uses an auxiliary
variable method (Walker, 2011) outlined in Section 3.2 to sample from p(λ |y).
We can apply our version of the Exact-Approximate methodology as we can use
importance sampling to get unbiased estimates of the normalising constant.

Twenty data points were simulated using an MCMC sampler with λ = [0,0,−2]
and posterior inference was carried out by drawing samples from p(λ3|y) i.e. it was
assumed λ1 = λ2 = 0. Our Exact-Approximate methodology was applied using the
geometric construction with Russian Roulette truncation. A geometric distribution
was used as the stopping distribution with p = 0.7, chosen such that the variance
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(a) Russian roulette (b) Poisson truncation (c) approximate Exchange

(d) Exchange algorithm (e) Exact MCMC

Figure 3.8: Plots of the running standard deviation for the posterior distribution p(β |y) of a
10 × 10 Ising model using three methods: (a) Debiasing series with roulette truncation, (b)
Debiasing series with Poisson truncation (c) approximate Exchange (d) the Exchange algo-
rithm using perfect samples and (e) an MCMC chain with the partition function calculated
using the matrix transfer method.

of the log estimator was approximately 1 as suggested by Doucet et al. (2012).
A uniform distribution on the surface of a sphere was used to draw importance
samples for the estimates of Z(λ ). Prior to the MCMC run, estimates of Z(λ ) were
computed for a grid of points and an empirical upper bound set based on the mean
and standard deviation of the estimates.

The proposal distribution for the parameters was Gaussian with mean given by the
current value, a uniform prior on [−5,0] was set over λ3, and the chain was run
for 20,000 iterations. Walker’s auxiliary variable technique was also implemented
for comparison using the same prior but with the chain run for 200,000 samples and
then the chain thinned by taking every 10th sample to reduce strong autocorrelations
between samples. In each case the final 10,000 samples were then used for Monte
Carlo estimates.

In the Russian Roulette method, six negative estimates were observed in 10,000 esti-
mates. The estimates of the mean and standard deviation of the posterior agree well
(Table 3.3), however the effective sample size and autocorrelation of the Russian
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(a) Russian roulette trace (b) Russian roulette autocorrelation

(c) Auxiliary variable trace (d) Auxiliary variable autocorrelation

Figure 3.9: Sample traces and autocorrelation plots for the Fisher-Bingham distribution for
the geometric tilting with Russian Roulette truncation ((a) and (b)) and Walker’s auxiliary
variable method ((c) and (d)).)

Roulette Walker

Estimate of mean -2.377 -2.334
Estimate of standard deviation 1.0622 1.024

ESS 1356 212
Relative CPU time 2.54 1

Table 3.3: Estimates of the posterior mean and standard deviation of the posterior distribu-
tion using roulette and Walker’s method for the Fisher-Bingham distribution. An estimate
of the effective sample size (ESS) is also shown based on 10,000 MCMC samples.
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Roulette method are superior as seen in Figure 3.9. Note that it is also possible to
get an upper bound on the importance sampling estimates for the Fisher-Bingham
distribution. If we change our identifiability constraint to be 0 = λ1 ≤ λ2 ≤ λ3,
we now have a convex sum in the exponent which can be maximised by giving
unity weight to the largest λ i.e. ∑

d
i=1 λiy2

i < λmax. We can compute Z̃(θ) as
1/N ∑n exp(λmax)/g(yn), where g(y) is the importance distribution.

3.7 Discussion and Conclusion

The capability to perform Pseudo-marginal MCMC on a class of doubly-intractable
distributions has been established in this chapter. The methods described are not re-
liant on the ability to simulate exactly from the underlying model, only on the avail-
ability of unbiased or consistent estimates of the normalising term, which makes
them applicable to a wider range of problems than has been the case to date.

The methodology is based on the stochastic truncation of a series expansion of the
desired density. If the intractable likelihood is composed of a bounded function and
non-analytic normalising term, then the proposed methodology can proceed to full
MCMC with no further restriction. However, in the more general case, where an
unbounded function forms the likelihood, then the almost sure guarantee of positive

unbiased estimates is lost. The potential bias induced due to this lack of strict
positivity is dealt with by adopting a scheme employed in the QCD literature where
an absolute measure target distribution is used in the MCMC and the final Monte
Carlo estimate is ‘sign corrected’ to ensure that expectations with respect to the
posterior are preserved. What has been observed in the experimental evaluation is
that, for the examples considered, the sign problem is not such a practical issue
when the variance of the estimates of the normalising terms is well controlled and
this has been achieved by employing Sequential Monte Carlo estimates in some
of the examples. Hence one of the areas for future work is efficient estimators
of the normalising term, which can be either unbiased or merely consistent. The
inherent computational parallelism of the methodology, due to it only requiring a
number of independent estimates of normalising constants, indicates that it should
be possible to implement this form of inference on larger models than currently
possible, however it is also clear that there is some limit to how much the method
can be scaled up.

It has been shown (Jacob and Thiery, 2015) that it is not possible to realise strictly
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positive estimates of the target distribution using the series expansions described in
this paper, unless the estimates of the normalising term lie in a bounded interval.
In its most general representation it is recognised that the sign problem is NP-hard
implying that a practical and elegant solution may remain elusive for some time
to come. However, other ideas from the literature, such as the absolute measure
approach (Lin et al., 2000) can be used to tackle the sign problem.

The motivation for this methodology development was to use a Markov Random
Field to model known dependencies in gene expression for the ARC syndrome data.
In order for models on the scale of the number of genes to be analysed, the method
needs to be optimised and in particular, techniques for generating low variance es-
timates of partition functions need to be developed. Further, the inherent parallel
nature of the scheme must be more fully utilised to compute multiple estimates
simultaneously. Methods such as the delayed acceptance scheme of Christen and
Fox (2005) can also be used to improve efficiency. The methodology described in
this chapter provides a general scheme with which Exact-Approximate MCMC for
Bayesian inference can be deployed on a large class of statistical models, including
those used to model dependencies in Systems Biology and other areas.





Chapter 4

Unbiased posterior estimation using
ABC

4.1 Introduction

The previous chapter dealt with Bayesian inference for doubly-intractable distri-
butions, models for which the likelihood normalising term was a function of the
parameters and could not be computed. In this chapter we deal with a further level
of intractability: models which can be simulated but for which the likelihood can-
not be computed at all. This situation is common for many complex models in
the Biological sciences, particularly in genetics (Siegmund et al., 2008), epidemi-
ology (Blum and Tran, 2010) and population biology (Ratmann et al., 2007). As
already mentioned in the Introduction, it is also the case for stochastic models of
molecular interactions, which must be used in order to model all sources of variabil-
ity. For these types of models, neither standard frequentist nor standard Bayesian
techniques are available, and hence methods such as Approximate Bayesian Com-
putation (ABC) have been developed. ABC requires only the ability to simulate
from the data model, at the expense of introducing a bias into parameter estima-
tion. Despite a growing amount of literature analysing and utilising ABC methods
(see Beaumont (2010); Csilléry and Blum (2010); Marin et al. (2012) for recent
reviews), this bias is not well characterised.

In this chapter, methodology is developed to enable unbiased likelihood-free
Bayesian parameter estimation. The methodology utilises Monte Carlo estimates
using samples from an ABC posterior. It also builds on work by Rhee and Glynn
(2012) and McLeish (2011), analysed in detail by Agapiou et al. (2014). In these
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papers, an unbiased infinite series estimator is constructed from consistent estimates
and then unbiasedly truncated. This is a very similar approach to that of the pre-
vious chapter, but with the considerable advantage that only consistent estimates
are required. The overall unbiased estimate can either be used directly to estimate
expectations with respect to the posterior or in a Pseudo-marginal MCMC scheme.
This novel approach allows unbiased parameter estimation with respect to the true
posterior distribution, something previously not possible without making additional
assumptions.

In the next section, stochastic models which are commonly used as a modelling
tool in Systems Biology are introduced. These models are relevant to the ARC syn-
drome study as they will be used in a later stage of the analysis. They are also an
example of models for which inference is difficult due to an intractable likelihood.
In Section 4.3 Approximate Bayesian Computation is described in detail, including
a review of some of the extensions to the method which have been published in re-
cent years. In Section 4.4, a simple ‘debiasing’ method is described for obtaining an
unbiased estimate when a sequence of consistent estimates are available, based on
the work of Rhee and Glynn (2012) and McLeish (2011). In Section 4.5 these ideas
are combined and developed to enable unbiased parameter and function estimates
with respect to the true posterior distribution. The method is then illustrated on a
simple example in Section 4.6 before being discussed and concluded in the final
section.

4.2 Stochastic models in Systems Biology

Thanks to modern experimental methods, most of the molecular building blocks
of life have been recorded, so the challenge now is to explain how they interact to
produce the versatile yet robust range of behaviours exhibited by living organisms.
Interacting systems can exhibit a range of behaviours and so mathematical models
are required to investigate the dynamics fully. Models of biological systems can
operate at a range of scales, from the cellular level right up to the large-scale move-
ment of animals; in this exposition, we focus on biochemical reaction kinetics at the
single cell level.

The two main approaches to modelling biochemical kinetics are

1. Deterministic, continuous models using ordinary differential equations
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2. Stochastic, discrete models in which state changes occur probabilistically.

In the first, it is assumed that all the reactants are abundant and that their concentra-
tion can therefore be measured on a continuous scale. If this assumption is met, and
interest is only in the broad behaviour of the system, then this course of action can
provide accurate solutions. If, on the other hand, molecular numbers are low and the
behaviour is inherently stochastic, then the model will not reproduce the observed
variability of the biological system, and the second approach is required. Figure 4.1
shows realisations of a simple reaction network in which one species, X , is pro-
duced and degraded at rates α and µ respectively. The deterministic simulation is
clearly unrealistically smooth and simplistic.

(a) Stochastic (b) Deterministic

Figure 4.1: Realisations of (a) continuous deterministic and (b) discrete stochastic pro-
cesses for a simple model in which a single protein is produced and degraded with rates
α and µ respectively. Reproduced by permission from Macmillan Publishers Ltd, Nature
Reviews Genetics, Wilkinson (2009).

In the second, probabilistic approach, numbers of molecules are discrete and
changes occur randomly with probability determined by the current state. This
is known as a Markov jump process. Consider a reaction in which two chemical
species react to form a third

X + Y → Z.

In a container of fixed volume and in a small time interval, dt, the probability of
a reaction occurring is proportional to cxydt, for some constant c and where x and
y are the number of molecules of X and Y respectively. This probability depends
only on the current state of the system and hence satisfies the Markov property.
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The constant, c, is a rate constant specific to the particular reaction. Changes to
the system occur at random times, with probability also dependent on the current
state.

An area of key importance and interest is statistical inference for reaction networks
so that parameters such as rate constants and initial conditions can be inferred from
experimental data. As already discussed, the Bayesian paradigm, in which prior
beliefs, observed data and other sources of uncertainty can all be jointly modelled
and propagated through to inferences made, is a particularly beneficial approach.
However, as the likelihood has no simple tractable form, most attempts at infer-
ence have followed an ad hoc procedure in which parameter values are tuned to
match experimental data (e.g. Arkin et al., 1998). New developments in Bayesian
inference have allowed inference to be carried out when simulation methods are
available (e.g. Boys et al., 2008; Golightly and Wilkinson, 2006, 2008). However,
the algorithms are computationally intensive and generally require approximations
to be introduced (Wilkinson, 2009). Approximate Bayesian Computation is one
way to carry out Bayesian inference when no likelihood is available, and this is
reviewed in the next section.

4.3 Approximate Bayesian Computation

Approximate Bayesian Computation (ABC) methods have been developed over the
last 15 years to deal with Bayesian inference problems in which the likelihood,
p(y|θ), is unavailable. The method was originally developed around fifteen years
ago starting with the work of Marjoram et al. (2003); Tavaré et al. (1997); Pritchard
et al. (1999).

Take a Bayesian inference problem in which we would like to find the expectation
of the model parameters or some function of the model parameters with respect
to the posterior distribution. The data y ∈ Y is used to make posterior inferences
about the variables θ ∈ Θ which define the data density given by p(y|θ). A prior
distribution defined by π(θ) is adopted and the posterior is defined as

π(θ |y) ∝ p(y|θ)π(θ).
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The likelihood could be unavailable for one of several reasons. A process may
be described by a generative model involving unknown parameters, for which it is
not possible to write down or compute a likelihood e.g. stochastic kinetic models
of chemical reactions (Wilkinson, 2009, 2007) or models of the domestication of
plants and animal (Gerbault et al., 2014). It may not be available in closed form,
as is sometimes the case when the likelihood is a marginal distribution of a higher-
dimensional distribution

p(y|θ) =
∫

p(y,u|θ)du,

where u is a latent vector. Often the dimensionality of u is so high that includ-
ing these variables in the likelihood prohibits the use of standard Markov chain
Monte Carlo approaches, but the integral above cannot be computed analytically,
see for example inference for coalescent models in population genetics (Tavaré
et al., 1997). Alternatively, the likelihood may have an intractable normalising term,
Z(θ)

p(y|θ) = f (y|θ)
Z(θ)

,

which cannot be computed because the sum or integral of the unnormalised func-
tion f (y|θ), over Y cannot be computed. This case was seen in the previous chap-
ter.

Approximate Bayesian Computation has been developed as a method to carry out
parameter inference when it is not possible to compute a likelihood but when a
generative model is available. A simple implementation of the method is outlined
in Algorithm 4, often referred to as rejection ABC. Values of θ

′ are simulated from
the prior and then pseudo-data, x, is simulated from the likelihood as a function of
θ
′. In the final step, the pseudo-data is compared to the real data via some summary

statistics, and the proposed values of θ
′ are accepted or rejected based on a user

defined distance, d, and threshold, ε .

If the summary statistics used to compare the true data to the simulated pseudo-data
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Algorithm 4 Rejection ABC
for n = 1 to N do

repeat
Sample θ

′ from the prior π(·)
Generate x from the likelihood p(·|θ ′)

until d(η(x),η(y))< ε

Set θ n = θ
′.

end for

are sufficient for the parameters to be estimated or the identity (i.e. the distance
is computed directly between the data and the pseudo-data), then as the threshold
ε→ 0, ABC estimates tend to the true value (Barber et al., 2015). For some models,
in which the data is discrete, ε can be set to zero and the method can be used to
sample from the exact posterior. However, in most cases, this is not possible as
the acceptance rate becomes prohibitively low, and this cannot be done when the
data is continuous. A further complication is that sufficient statistics are generally
not available so less informative summary statistics, η(y), are often used instead,
and much research has focused on how to choose these summary statistics (e.g.
Fearnhead and Prangle, 2012; Beaumont et al., 2002; Nunes and Balding, 2010).
In the majority of implementations ε is set to some non-zero value and samples are
drawn from a distribution, π(θ |d(η(x),η(y))< ε), which it is hoped approximates
the true posterior well.

The rejection ABC algorithm outlined above works well if areas of high density
in the prior and posterior coincide, but this is often not the case. If, for example,
non-informative priors are used, then most of the pseudo-data sets will be very
different to the observed data, and the acceptance rate will be very low. For this
reason, MCMC algorithms have been developed (Marjoram et al., 2003) which have
considerably higher acceptance rates because the Markov chain spends the majority
of its time in regions of high posterior probability. An implementation is outlined
in Algorithm 5; the Markov chain has π(θ |d(η(x),η(y)) < ε) as its stationary
distribution and, as with all MCMC algorithms, produces correlated samples.

When ε 6= 0, ABC estimates are biased. The aim of this work is to combine these
biased ABC estimates such that the bias is removed. The next section therefore,
introduces a simple ‘debiasing’ method which does just this, albeit at the expense
of added randomness.
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Algorithm 5 MCMC ABC
Initialise θ 0
for n = 1 to N do

Propose θ
′ from the proposal distribution q(·|θ n−1)

Generate x from the likelihood p(·|θ ′)
if d(η(x),η(y))< ε then

Set θ n = θ
′ with probability α = min

[
1, π(θ ′)q(θ |θ ′)

π(θ)q(θ ′|θ)

]
else

Set θ n = θ n−1
end if

end for

4.4 Unbiased estimation using biased estimates

In this section, a simple method is described for producing an unbiased estimate
when only a sequence of biased but consistent estimators is available. The method
has recently received attention in the literature (e.g. Agapiou et al., 2014; Glynn,
1984; Glynn and Rhee, 2014; Rhee and Glynn, 2013; McLeish, 2011; Strathmann
et al., 2015) and stems from a method for unbiasedly estimating infinite sums used
by von Neumann and Ulam in the 1950s.

The following exposition is based on results from Rhee and Glynn (2013). We
would like to unbiasedly estimate the expectation of some random variable Y , E[Y ],
and we have available a sequence of approximations, Yi, such that E[Yi]→ E[Y ] as
i→ ∞. Define the random variable

X =
∞

∑
i=0

Yi−Yi−1, (4.1)

(Y−1 , 0), and if the approximations are good enough that Fubini’s theorem applies,
then X is an unbiased estimate of E[Y ]. In this form, the estimate requires an infinite
amount of computation, and therefore is not useful. To circumvent this problem, a
non-negative integer-valued random variable, N, is introduced such that the random
variable,
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Z =
N

∑
i=0

Yi−Yi−1

P(N ≥ i)
, (4.2)

is a computationally realisable, unbiased estimate of E[Y ]. If condition (4.3) is
met:

∞

∑
i=1

E[(Yi−1−Y )2]

P(N ≥ i)
< ∞, (4.3)

then the estimator, Z, has finite variance and the expected value of Z2 is

E[Z2] =
∞

∑
i=0

E[(Yn−1−Y )2]−E[(Yn−Y )2]

P(N ≥ i)
, (4.4)

(see Rhee and Glynn (2013) for proof). If in addition, the estimator also has finite
expected compute time, τ

E[τ] =
∞

∑
j=0

(
j

∑
i=0

ti)P(N = j) =
∞

∑
j=0

t̄ jP(N ≥ j),

where t̄i is the incremental work required to compute Yi, then a central limit theorem
result holds as follows

c1/2(ᾱ(c)−E[Y ])∼ (E[τ]Var(Z))1/2N(0,1),

where ᾱ(c) is the estimator available after c units of computer time have been ex-
pended (Glynn and Whitt, 1992). This is desirable so that the estimator, Z, has the
canonical square root convergence rate.
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From the forms of Equations 4.1 and 4.1, it is clear that there is a trade-off when
designing P(N ≥ n) to ensure that it decays fast enough to give finite and reasonable
computing time, but slow enough to ensure the variance is finite. Note that only
the finiteness of Var(Z) is required to build confidence intervals for the estimator
Z.

Further results from Rhee and Glynn (2013) provide insight into designing the opti-
mal probability distribution when both the variance and expected compute time are
finite, by minimising the product of the variance and the expected work.

4.5 Unbiased estimation using ABC estimates

It is reasonable to assume that the scheme described above can be applied to esti-
mates obtained using an ABC method. For any non-zero value of the tolerance, ε ,
estimates based on samples from the ABC posterior are biased, but the estimates
converge in expectation to the true value as ε → 0. These consistent estimates
can therefore be combined as described in the previous section, to produce an un-
biased estimator. Note that this is only the case when the summary statistics are
either the identity (i.e. the distance d is directly between the data and the simulated
pseudo-data) or sufficient for the parameters to be estimated. In the case where
non-sufficient statistics are used, the estimation will be unbiased with respect to
π(θ |d(η(x),η(y))< ε).

In the next following subsections, two methods for unbiased estimation with respect
to the posterior distribution are described: unbiased rejection ABC and unbiased
pseudo-marginal MCMC ABC.

4.5.1 Unbiased rejection ABC

This method combines the simple debiasing scheme of the previous section with
the rejection ABC algorithm described in Algorithm 4. To implement the debiasing
scheme, we need to design a sequence of estimators, {Yi}∞

i=0, satisfying E[Yi]→
E[Y ]. The random variable Y is either the parameter of interest or some function of
it, and expectations are with respect to the posterior distribution.

The sequence can be designed by setting each random variable, Yi to be the mean of
f (i) samples from the ABC posterior π(θ |d(η(x),η(y))< εi), where the summary
statistics are either the identity or sufficient. f (i) is an increasing schedule for the
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number of samples to be drawn from the i-th ABC posterior, defined by a tolerance
εi which tends to zero as i→ ∞. Therefore, in the limit i→ ∞, an infinite number
of samples are drawn from the true posterior, and Y∞ is a constant equal to the
expectation we wish to estimate.

To produce one unbiased estimate, the random variable, N, is drawn, estimates
{Yi}N

i=0 are produced, and finally combined as in (4.2). An implementation to pro-
duce one unbiased estimate of E[θ ] is outlined in Algorithm 6, and this procedure
can then be repeated M times and the estimates averaged to produce an unbiased
estimator of lower variance.

Algorithm 6 Unbiased estimation with ABC

Design sequences { f (i)}∞
i=0 and {εi}∞

i=0 for the number of samples and value of
ε at each level respectively.
Sample k ∼ P(N = k)
for j = 0 to k do

for m = 1 to f ( j) do
repeat
Sample θ

′ from the prior π(·)
Generate x from the likelihood p(·|θ ′)

until d(η(x),η(y))< ε j

Set θ
( j)
m = θ

′.
end for

end for
Compute Z = ∑

k
j=0

Y j−Y j−1
P(N≥ j) , where Yj is the mean of f ( j) samples from the ABC

posterior π(θ |d(η(y),η(x))< ε j), with η either the identity or sufficient for θ .

Ideally this estimator would have both finite variance and finite expected compute
time. In order for the variance to be finite, condition (4.3) must be met. To verify
that this can be achieved, results from work by Barber et al. (2015) can be applied.
They study the mean square error of Monte Carlo estimates based on samples from
an ABC posterior as ε → 0 and n→ ∞ where n is the number of Monte Carlo
samples. Their results are therefore directly applicable as this is the function in the
numerator of each term in (4.3).

They prove that for the optimal schedule of εn ∝ n−1/4, in the limit ε→ 0, the com-
putational cost is ∝ nε−q = n(q+4)/4 and the mean square error is ∝ cost−2/(q+4) =

n−1/2 where q is the dimension of the observation (or sufficient statistic, if used).
Therefore, setting a sequence in which the number of samples doubles with each
successive term, f (i) = 2i, and setting the sequence εi according to the optimal
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schedule, it is possible to design P(N ≥ i) such that the overall estimator, Z, has
finite variance. For example, P(N ≥ i) = 2−pi with p < 1 leads to the series in (4.3)
being convergent.

Unfortunately, by comparing the conditions for finite variance and finite expected
compute time, it is clear that both cannot be true. For the estimator to have finite
variance, it must be true that

∞

∑
i=1

E[(Yi−1−Y )2]

P(N ≥ i)
=

∞

∑
i=1

(
ε

q
i−1

f (i-1)

) 2
q+4 1

P(N ≥ i)
< ∞,

and if this is a convergent series then necessarily

lim
i→∞

(
ε

q
i−1

f (i-1)

) 2
q+4 1

P(N ≥ i)
= 0.

Note that as limi→∞

ε
q
i−1

f (i-1) < 1 and 2/(q+4)< 1, then also

lim
i→∞

(
ε

q
i−1

f (i-1)

)
1

P(N ≥ i)
= 0. (4.5)

Now looking at the form of the expected compute time, and using the expressions
from Barber et al. (2015) with t̄ j denoting the incremental compute time for term j,
we have

E[τ] =
∞

∑
j=0

t̄ jP(N ≥ j) =
f (0)
ε

q
0

P(N ≥ 0)+
∞

∑
j=1

(
f ( j)
ε

q
j
− f ( j-1)

ε
q
j−1

)
P(N ≥ j)

>
f (0)
ε

q
0

P(N ≥ 0)+
∞

∑
j=1

(
f ( j)
ε

q
j

P(N ≥ j+1)− f ( j-1)
ε

q
j−1

P(N ≥ j)

)
.
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If the final series on the right is to be convergent, the sequence of its partial
sums

f (0)
ε

q
0

P(N ≥ 0)+
m

∑
j=1

(
f ( j)
ε

q
j

P(N ≥ j+1)− f ( j-1)
ε

q
j−1

P(N ≥ j)

)
=

f (m)

ε
q
m

P(N ≥ m+1)

should converge. Clearly comparing with (4.5) shows that, in fact, the partial sums
diverge. When using ABC estimates in the debiasing series, if the variance is finite
then the expected compute time is not. A similar result was found by Rhee and
Glynn (2013) in the context of unbiased estimation for stochastic differential equa-
tions for which only discretisation schemes with a strong order greater than 1/2 can
have finite expected compute time. This unfortunately means that the central limit
theorem results do not apply.

Of course, once a value for N has been sampled, the time taken to compute that
estimate is finite, and the mean of k estimates will be unbiased even if the rate of
convergence is not the canonical Monte Carlo rate of k−1/2. Further, asymptoti-
cally valid confidence intervals can still be built along standard lines, however the
estimator is likely to be computationally costly.

The scheme is a valid way to obtain unbiased estimates with respect to the true pos-
terior distribution when the likelihood cannot be computed. However, it will inherit
the disadvantages associated with the original ABC rejection scheme, namely that
if the priors are uninformative or have mass in a different location to the mass of
the posterior, then the rejection rate will be high. The simulation load will therefore
be high whenever a high value of N is drawn. A simple way to reduce this impact
is to sample from an importance distribution instead of from the prior and weight
the samples accordingly as described in Fearnhead and Prangle (2012). This sig-
nificantly increases the efficiency by proposing parameter values in regions of high
posterior probability.

4.5.2 Pseudo-marginal MCMC ABC

As already described, MCMC ABC schemes can improve efficiency, as the Markov
chain spends the majority of its time in regions of high posterior probability. A
pseudo-marginal MCMC scheme (Andrieu and Roberts, 2009), in which an unbi-
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ased estimate of the likelihood is substituted for the true value, can also be imple-
mented here. The substituted estimates need only be unbiased with finite variance
and do not require a central limit theorem result.

As in the previous subsection, a sequence of consistent estimates is required, but
this time the estimates should be of the likelihood itself. To see how this may
be achieved, note that the approximation to the likelihood used in ABC is as fol-
lows:

pε(y|θ) = 1
V (ε)

∫
1(y ∈ Bε,x)p(x|θ)dx,

where Br,z denotes a ball of radius r around z, and V (r) =
∫
1(x ∈ Br,0)dx is the

volume of the ball centred at 0. An unbiased estimate of this artificial likelihood,
p̂ε(y|θ), can be computed via Monte Carlo by generating pseudo-data according to
the likelihood and assigning the sample a weight of 1 if the pseudo-data is within a
ball of radius ε of the data, and 0 if not.

p̂ε(y|θ) = 1
V (ε)

1
M

M

∑
i=1

1(y ∈ Bε,x) x∼ p(·|θ).

The value of V (ε) is also required, however if Euclidean distance is used, then this
is simply the volume of a hypersphere in N-space.

A sequence of converging likelihood estimates can therefore be constructed by de-
signing a decreasing schedule for εi such that εi → 0 as i→ ∞, and an increasing
schedule for the number of samples. These can then be combined as previously
described to produce an unbiased estimate of the likelihood, which can then be
substituted in the Metropolis-Hasting acceptance ratio in order to sample from the
posterior distribution. As was the case for the unbiased series estimator used in the
doubly-intractable case, these unbiased estimates can be negative, and hence the
absolute-measure MCMC methodology described in the previous chapter is again
utilised. Algorithm 7 outlines the steps in the method.

A similar result is found here with regards to the variance and expected compute
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Algorithm 7 Pseudo-marginal MCMC using ABC
Initialise θ 0
for n = 1 to N do

Propose a value of θ
′ ∼ q(·|θ n−1)

Sample k ∼ P(N = k)
for i = 0 to k do

Generate f (i) pseudo-data samples from the likelihood p(·|θ ′)
end for
Compute f̂ (y|θ ′) = ∑

k
i=0

Yi−Yi−1
P(N≥i) , where Yi is the mean of f (i) indicator vari-

ables with tolerance εi

Set θ n = θ
′ with probability α = min

[
1, |p̂(y|θ

′)|π(θ ′)q(θ |θ ′)
|p̂(y|θ)|π(θ)q(θ ′|θ)

]
Otherwise set θ n = θ n−1. Save θ n, |p̂(y|θ n)| and sign(p̂(y|θ n))

end for

time of the overall estimator. Schedules for εi, f (i) and P(N ≥ i) can be found such
that the variance of the estimator is finite. But if it is, then the expected compute
time is not finite. Whilst this means that the method will be computationally in-
tensive, it is still valid in that consistent expectations with respect to the posterior
distribution can be computed. It is also expected that the method will be more ef-
ficient than the unbiased rejection ABC method, as simulated pseudo-data is more
likely to be similar to the true data when the parameter value is in a region of high
posterior probability.

4.5.3 Designing truncation distributions

It has been shown that stopping distributions can be designed such that the overall
variance is finite, but that this will result in infinite expected compute time. There-
fore, the key concern when designing stopping distributions is to reduce the com-
putational time as much as possible. The results of Barber et al. (2015) can be used
to inform the schedules for εi, f (i) and P(N ≥ i). If, for simplicity, we choose a
schedule in which the number of samples doubles for each estimate, then the opti-
mal way to decrease ε so as to minimise the mean square error is ∼ 2−i/4. Then,
as described in Section 4.5.1, the variance of the overall unbiased estimator is finite
for P(N ≥ i) = 2−ip with p < 1. So, in this case, it would be sensible to set p just
below 1 in order to keep the computation as low as possible.

It should be noted, that as there is no requirement for the approximations to be
independent, subsets of the pseudo-data simulated for the final series term can be
re-used for the estimates of earlier terms in Russian roulette-type estimates, which
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reduces computation considerably.

Due to the strong dependence of the computational cost of estimate Y εn
n on the

dimension of the data, E[cost Y εn
n ] ∼ nε

q
n , where n is the number of samples, the

method is likely to work best in cases where the size of the dataset is small. How-
ever, the methodology can be easily parallelised, either by computing unbiased es-
timates in parallel and averaging over them afterwards, or by simulating the many
independent pseudo-datasets required at a specific value of θ ′ in parallel.

4.5.4 Debiasing with low dimensional sufficient statistics

It is very rare in practice to have sufficient statistics available for complex mod-
els, so this subsection is included more for interest than practicality. If sufficient
statistics, T (y), are available, then due to the factorisation theorem the posterior
depends on the data only through the sufficient statistics (e.g. Rice, 2006, Chap-
ter 8). The posterior may be computed or sampled directly in terms of p(T (y)|θ)
so that p(θ |y) = p(θ |T (y)) ∝ p(T (y)|θ)π(θ). Therefore, both of the debiasing al-
gorithms described above can be implemented with a distance between T (yobs) and
T (x) substituted for one directly between yobs and x, and this will allow unbiased
(for Algorithm 6) or consistent (Algorithm 7) estimation with respect to the poste-
rior distribution. In the case of the unbiased rejection algorithm, Barber et al. (2015)
showed that the computation required to draw one sample from the ABC posterior
as ε → 0 is ε−q where q is the dimension of the data or sufficient statistic if used.
Therefore, the use of lower dimensional statistics to summarise the data will lead to
significant computational savings.

4.6 Experimental validation

4.6.1 Toy example

The methodology is demonstrated on a toy example from Murray et al. (2006)
in which the posterior distribution and relevant expectations of the parameter are
known analytically. The data consists of M i.i.d. data points from a zero-mean
Gaussian p(yi|θ) = N(0,1/θ) with unknown precision, θ . A conjugate prior
π(θ |α,β ) = Gamma(α,β ) is set over θ . The posterior is given by p(θ |y) =
Gamma(α + M/2,β + ∑i y2

i /2). We pretend that we cannot compute the likeli-
hood but that we can simulate from it. Two datasets are used, N = 1, y = 1 as in



138 Chapter 4. Unbiased posterior estimation using ABC

Murray et al. (2006) and a dataset with N = 10 in which independent data points
are simulated ∼N(0,1/1.5).

We aim to compute the expectation and standard deviation of the posterior distribu-
tion, π(θ |y), which can be computed analytically. Both schemes are implemented:
unbiased ABC rejection and pseudo-marginal MCMC. The schedule for the num-
ber of Monte Carlo samples in each estimate was set as f (i) ∝ 2i. The schedule
for εi was set as εi = 2−i/4. The probability distribution was designed such that the
estimator had finite variance, P(N ≥ i) = 2−im, with m < 1. For the Markov chain,
a normal proposal distribution was used with acceptance rate tuned to 30%.

Figure 4.2 shows the running mean (top row) and standard deviation (bottom row)
estimates for the unbiased ABC rejection algorithm. Each individual estimate is
independent, and the standard error of the mean is used to indicate the uncertainty.
Clearly the estimates converge to the correct values, although as expected the es-
timate of the standard deviation takes longer to converge than the estimate of the
mean. The running time was 40 seconds for 10,000 unbiased estimates.

Figure 4.3 shows running estimates of the mean (left) and standard deviation (right)
for the Pseudo-marginal unbiased ABC algorithm. As the unbiased estimates can
be negative (∼20% were negative), and the samples were not drawn from the true
posterior, the estimates of the running mean and running standard deviation were
computed using the sign corrected formulae from the previous chapter. A simple
estimate of the uncertainty was based on the standard error of the mean using effec-
tive sample size rather than the iteration number. The trace of the MCMC samples
and the autocorrelation are shown on the bottom row. The estimates clearly con-
verge to the correct values, the trace shows little sticking and the autocorrelation
between samples is low. It took 50 minutes to complete 500,000 samples, so in
comparison to the unbiased ABC rejection, each sample can be produced much
more quickly, but as the overall Markov chain converges slowly, many more sam-
ples are required.

For the N = 10 analysis, both sets of samples were produced using parallel com-
putation to reduce the running time. For the unbiased ABC rejection algorithm,
simulation can easily be spread across multiple compute nodes as each node can in-
dependently simulate from the prior, simulate corresponding pseudo-data and com-
pare the pseudo-data to the true data. These results can then be sent back to a central
node and combined to produce unbiased estimates. For the unbiased MCMC ver-
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(a) (b)

(c) (d)

Figure 4.2: Running estimates of (a) the mean and (c) standard deviation of the toy exam-
ple posterior with N = 1 using unbiased rejection ABC. Error estimates are based on the
distribution of sample means and standard deviations. (b) and (d) give histograms of the

sion, simulation of pseudo-data can also be shared across many nodes once a value
has been proposed for θ ′. In each case 20 nodes were used to parallelise compu-
tation and the algorithms ran for 3hrs (unbiased ABC rejection) and 1hr 40mins
(Pseudo-marginal).

Results for the N = 10 example are shown in Figure 4.4. The MCMC chain mixes
well, although a small amount of sticking is seen, as is to be expected from a
Pseudo-marginal chain. On the higher-dimensional example, the Pseudo-marginal
algorithm is considerably more efficient. This is because the chain spends the ma-
jority of its time in regions of high posterior probability, and therefore the generated
pseudo-data has a higher probability of being accepted, so overall fewer pseudo-data
simulations are required. In the unbiased rejection algorithm, many of the prior
samples are rejected because the posterior mass becomes more concentrated when
additional data is available. This discrepancy in running time depends strongly on
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(a) (b)

(c) (d)

Figure 4.3: Running estimates of (a) the mean and (b) the standard deviation of the toy
example posterior with N = 1 using pseudo-marginal MCMC ABC. Error estimates are
based on the distribution of sample means and standard deviations using an estimate of
the effective sample size as the number of samples. (c) shows the trace and (d) shows the
autocorrelation between MCMC samples.

the shape of the prior compared to the posterior, as the pseudo-data has a higher
chance of being accepted if the prior and posterior distributions have a similar scale
and location.

4.6.2 Simple molecular system

Consider a reversible dimerisation reaction in which two molecules, A and B, react
to form a dimer AB. k1 and k2 are the rate constant associated with dimerisation and
disassociation respectively. This is a simple example of a model for which data can
be simulated, but no likelihood can be computed.
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(a) (b)

(c) (d)

Figure 4.4: Running estimates of the mean of the toy example posterior with N = 10 using
independent debiased estimates (top row) and pseudo-marginal MCMC ABC (bottom row).
Error estimates are based on the distribution of sample mean using either the number of
samples for (a) or an estimate of the effective sample size as the number of samples for (c).
(b) shows a histogram of the debiased estimates and (d) shows the MCMC trace.

A+B
k1−⇀↽−
k2

AB

Data was simulated for measurements of A and AB with initial values, A0 = B0 =

20, AB = 0 and k1 = 1.5 and k2 = 1. As the molecule numbers are low, the fluc-
tuations are relatively large as can be seen in Figure 4.5, where the data points are
denoted by large circles. We now proceed to carry out Bayesian posterior inference
for the rate parameters k1 and k2.

Gamma priors were set over the rate constants with shape parameter α = 2 and
inverse scale parameter β = 2. A Pseudo-marginal MCMC algorithm was run as
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Figure 4.5: Data simulated for the simple dimerisation model using the Gillespie algorithm.
Eight data points were used for species A and AB, shown as the large circles.

described in Section 4.5.2. The schedule for εi was set as εi = e/(1+ iξ ) with e = 3
and ξ = 0.02. The number of samples was doubled for each successive Monte Carlo
ABC estimate. A pre-run was used to estimate the numerator of each term in the
finite variance condition (4.3), and the probability distribution P(N ≥ i) was then
set so as to ensure the series was convergent. The MCMC proposal distribution was
a normal distribution with mean as the current value and standard deviation set to
achieve an acceptance rate of 25%. At each iteration, simulations of pseudo-data
were performed in parallel spread over 20 cores and the overall running time to
produce 30,000 samples was 2hrs.

Results for the Pseudo-marginal MCMC run are shown in Figure 4.6. No obvious
sticking is seen in the chain, but the samples had quite high autocorrelations so the
chain was run for 30,000 iterations and then thinned by taking every third sample.
All plots were produced with the thinned samples. The running posterior mean of
the rate constants k1 and k2 are shown on the top row, as expected these are close to
the simulation values, but not exactly the same as this depends on the specific data
simulated. Error estimates in grey are based on the standard error of the mean using
the iteration number corrected for effective sample size. Standard rejection ABC
was also used to analyse the data, with a large number of samples and a small value
of ε = 2, and the posterior means were very similar.
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(a) (b)

(c) (d)

Figure 4.6: (a) and (b) Running mean for parameters k1 and k2 for stochastic dimerisation
model. Note that the red lines denote the values used to simulate the data, not the true mean
of the posterior. (c) MCMC trace for the Pseudo-marginal samples. (d) Autocorrelation for
MCMC samples.

4.7 Discussion and Conclusions

In this chapter, a method has been developed to enable the unbiased estimation of
parameters or functions with respect to the Bayesian posterior distribution when a
likelihood is unavailable. The approach only requires the ability to simulate from
the likelihood, and therefore can be implemented in situations which previously
only had ABC methods available. In all work published to date, Bayesian parame-
ter estimation in the likelihood-free context has always introduced some bias, unless
further assumptions are made (for example Wilkinson (2013)’s work showed that
ABC gives unbiased results under the assumption of a uniform additive model er-
ror). The work in this chapter shows that a theoretically valid method is available
to unbiasedly estimate parameter values with respect to the posterior distribution
without making this assumption.



144 Chapter 4. Unbiased posterior estimation using ABC

The methodology is based on the stochastic truncation of an infinite series, con-
structed from a sequence of biased but consistent estimators. This sequence of bi-
ased estimates can be formulated using a sequence of Monte Carlo ABC estimates
with an increasing schedule for the number of Monte Carlo samples and a decreas-
ing schedule for ε . The infinite series is then constructed from the sum of the
differences between successive estimates such that the expectation of the series is
the required expectation which cannot be simulated (Rhee and Glynn, 2013). These
unbiased estimates can either be used directly to estimate posterior expectations, or
used in a Pseudo-marginal MCMC scheme. The MCMC scheme is preferable in
terms of efficiency as the main computational cost comes from generating pseudo-
data which matches the observed data, and this is more likely for parameter values
of high posterior probability. However, as the unbiased estimates cannot be guaran-
teed to be positive, the absolute measure approach described in the previous chapter
needs to be implemented.

The main drawback to the scheme, as shown in this Chapter, is that if the variance
of the unbiased estimator is finite, then the expected compute time is not. This
means that the central limit results derived in Glynn and Whitt (1992) do not apply,
and the method will have high compute time. However, as long as the variance is fi-
nite, theoretically valid confidence intervals can still be computed based on standard
asymptotic arguments to give an indication of its variability. The Pseudo-marginal
scheme does not require anything other than the unbiasedness property for its theo-
retical validity (Andrieu and Roberts, 2009).

Models for which no likelihood is available are common in Systems Biology, with
examples including stochastic models of chemical reactions (Wilkinson, 2009), ge-
netic evolution (Ratmann et al., 2007), population genetics (Tavaré et al., 1997)
and parasitology (Drovandi and Pettitt, 2011). This method therefore represents
an important step forward in allowing unbiased estimation for many models where
previously an uncharacterised bias was unavoidable.

The method has been demonstrated on a two toy examples, although as expected
the computational load was high. The most important part of further work is to
optimise the procedure to reduce computation. The choice of schedules for ε and
number of Monte Carlo samples are all left to the practitioner and therefore can
be optimised. It has also been shown that ABC SMC (Toni et al., 2009; Moral
et al., 2012) can be used to draw samples from the ABC posterior more efficiently
than naively simulating from it. In this technique a sequence of target distributions
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is designed and sampled successively. This could therefore form the basis of the
consistent estimate in each series term.





Chapter 5

General Conclusions

The research presented in this PhD thesis focuses on statistical analysis and method-
ology for Systems Biology. High-throughput data is analysed to extract information
about the pathogenesis of ARC syndrome and methodology is developed to enable
Bayesian inference for intractable models used to describe complex, dynamic sys-
tems. Both of these are key parts in a systems analysis of a genetic disease.

In the second chapter, transcriptomic and metabolomic data were analysed to gain
insight into ARC syndrome, a rare autosomal genetic disorder. Three different
knock-down cell lines were analysed and compared to controls. It was confirmed
that the transcriptomes of the three knock-downs were very similar, a finding which
fits with experimental evidence that the three genes, VPS33B, VIPAR and PLOD3
are involved in the same process. Genes/metabolites with differential expression
and interaction profiles were identified and found to be largely involved in mem-
brane and trafficking processes. Over-represented Gene Ontology analysis found
that annotations pertaining to cell-cell adhesion and junction complexes were most
over-represented compared to the background gene set. The analysis is validated by
microscopy experiments which have shown that cell-cell adhesion is disrupted and
that the IMCD-3 cells no longer form a cohesive epithelial layer. The suggestions
for future experimental work, such as investigating the role of Mal2 in epithelial po-
larisation and examining changes in Integrin interactions, are therefore extremely
valuable.

The detection of differentially expressed genes was implemented using only mRNA
expression levels, and the idea of using a Markov Random Field (MRF) to model
known genetic dependencies motivated the methodology development of the next
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chapter. MRFs are doubly-intractable, meaning the likelihood normalising term is a
function of the unknown parameters and cannot be computed. This makes Bayesian
inference difficult, a problem which is encountered in a multitude of modelling
scenarios from social networks to modelling of disease outbreaks.

The approach developed used Pseudo-marginal MCMC and hence required an un-
biased estimate of the likelihood. This could not be done simply using Monte Carlo
as an estimate of the reciprocal of the normalising term was required. A series
construction was implemented in which multiple unbiased estimates of the normal-
ising term were combined to produce an unbiased estimate of the reciprocal of the
normalising term. As the estimates cannot be guaranteed to be positive without
the availability of a bound on the normalising term, a weighted sum of estimates
was used to ensure expectations with respect to the posterior could still be realised.
The method was demonstrated on several examples, including Ising models and the
Fisher-Bingham distribution. This is a general contribution to Bayesian methodol-
ogy and allows posterior inference to be carried out even when perfect simulation
from the model is not available.

Future work involves scaling up the methodology and implementing it on more real-
istic examples. Central to achieving this goal is developing methods for estimating
normalising terms, as well as fully utilising the parallel nature of the algorithm in
computation. The largest model on which the methodology was demonstrated was
an Ising model of 3,600 spins, and this was implemented by computing unbiased
estimates in parallel at each MCMC iteration. Whilst this dataset is close to the
order of magnitude required for analysis of mRNA expression levels, applying the
methodology to a more complex MRF modelling genetic dependencies will require
a combination of parallel computation and state-of-the-art Sequential Monte Carlo
estimation. It will also be prudent to make use of other developments in the MCMC
literature, such as adaptive proposals (Roberts and Rosenthal, 2007) and delayed
acceptance (Christen and Fox, 2005), to reduce the computation as much as possi-
ble.

It is crucial to use stochastic models to characterise all the sources of variability
in biological systems. Indeed, once further experimental results including time-
course data are available for the molecular species involved in ARC syndrome, the
aim would be to build a stochastic model to investigate and simulate its behaviour.
However, the price to pay for the use of realistic, stochastic models is increased dif-
ficulty in fitting the models to data. The final contribution of this thesis, therefore,
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concentrated on unbiased inference for models with no tractable likelihood. This
situation is common across the sciences where complex generative models can often
be defined but the likelihood cannot be easily computed. In particular, the biolog-
ical sciences have produced many models where likelihoods cannot be computed,
for example population genetic models, epidemiological models, or agent-based
models in ecology.

The aim of this chapter was to develop methodology for unbiased Bayesian param-
eter estimation when the likelihood cannot be computed. The approach taken was
similar to that in the doubly-intractable case, except this time the infinite series used
was based on the work of Rhee and Glynn (2013) as only consistent (not unbiased)
estimates were available. It was shown that these consistent ABC estimates, which
use a decreasing schedule of ε and an increasing number of Monte Carlo samples,
can be combined to produce an unbiased estimate with finite variance. However,
it was also shown that if the variance is finite, then the expected compute time is
not. Unbiased estimates with respect to the posterior can therefore be produced
for stochastic models where previously some bias had to be accepted, albeit with
the acceptance of a high computational load. Reducing this computational cost by
optimising the user-specified parts of the method, and generating the Monte Carlo
estimates as efficiently as possible are the key areas for future work.

In conclusion, this thesis has made contributions to the area of Systems Biology
and Statistical methodology through the analysis and interpretation of data relating
to ARC syndrome and the development of methodology for Bayesian inference
of commonly used models with intractable likelihoods. The methods have been
investigated empirically and theoretically on multiple examples. Ultimately, the
key area for future work is the application of the methods to large-scale real-world
problems.





Appendix A

Top 100 PCA loadings for
transcriptomic data for Principal
Components 1 and 2

Gene PC 1 PC 2

Tmem54 -0.9931513 0.0182024
Esrp2 -0.9927839 0.01846715
Sema5a -0.987471 0.00755073
9930014A18Rik -0.9861582 -0.0313508
Fhdc1 -0.9859477 -0.0388543
Fam84b -0.9858694 -0.0205286
Btd 0.98449204 0.06327265
Fermt1 -0.9843311 0.08087599
Snhg18 -0.9832074 0.06438172
Cldn4 -0.9829758 -0.030578
Il18r1 -0.9826365 0.06004387
Hspbap1 -0.9821981 0.07215234
Dapk1 -0.9816951 0.12889227
Tom1l1 -0.9811454 -0.1818591
Fam198b -0.9808098 -0.0124572
Exoc2 0.98055516 -0.0269386
Rad51c 0.980277 0.06377451
Pxk 0.98011253 -0.0068555

Continued on next page
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Gene PC 1 PC 2

Cldn8 -0.9801095 0.05194399
Prim1 0.98006869 -0.0227844
Esrp1 -0.980058 0.10675977
Mctp2 -0.9798622 -0.1289667
Peg3 -0.9795938 -0.0087553
Igf2bp3 -0.9790267 -0.1057278
Tfrc -0.9786331 0.06099299
Atp8b1 -0.9782377 0.11606252
Limch1 -0.9779123 -0.0638448
Tmsb4x -0.9778612 0.04164798
Aldh3b1 0.97680755 -0.1782945
Slc25a17 0.97660151 -0.0237803
Ano9 -0.9762801 0.09946054
Nol7 0.9762221 0.01135309
Adssl1 0.97616967 0.00757651
Fam132a -0.9752967 0.02541575
Marveld3 -0.9751795 0.08197014
Noa1 -0.9747917 0.026807
Pole2 0.97469755 0.06337233
Sim2 -0.9745076 -0.0119788
Cpn1 0.97412192 -0.0835262
Epha1 -0.9739234 0.11725178
Mfsd12 0.97372093 0.17203841
Lypd6b -0.973235 -0.0136111
Faxc -0.9731959 -0.1148237
Tmem184a -0.9730842 0.11936074
Etl4 -0.9727828 -0.0314996
Nipal2 -0.9725023 0.12816219
Cyp2s1 0.9724902 -0.0282878
Phf19 0.97245229 -0.0525579
Nolc1 -0.9722985 0.00374698
Obfc1 0.97212305 -0.0902529
Elfn1 0.97197699 -0.0609808
Ripk4 -0.9719298 0.04252755

Continued on next page
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Gene PC 1 PC 2

Ica1 -0.9715738 -0.1625626
Zfp72 -0.9707526 0.03359738
Zak -0.9702061 -0.0082185
Snta1 0.96990495 -0.0590663
Spdya 0.96962669 0.1296889
Evc2 -0.9695774 0.17541329
Igsf5 -0.9692433 -0.1427075
Cdh1 -0.9687867 0.185722
Fut11 0.96850057 0.14306967
Tmem39a -0.9684142 -0.0091815
Mettl7a1 0.96828986 0.03673417
Egln3 0.96747923 0.03681717
Lonrf3 0.96744486 0.14691301
Mxd3 0.96718427 0.06619411
Tspan17 0.96712937 -0.1411708
Palm 0.96702226 0.06184463
Cerk 0.96698977 -0.0391274
Kremen1 -0.9669527 0.00110735
Grhl2 -0.9667478 0.18045015
Lgals8 0.96668103 -0.0030784
Mkl2 -0.9664827 0.04349228
Zfp141 -0.9664672 0.07133049
Lman2 0.9661122 0.06430423
Ngly1 0.96592995 0.08012644
Aldh7a1 -0.965575 -0.1331071
Efna2 0.96534501 0.06586912
Tgm2 0.96500224 -0.0047286
Lbp 0.96462453 0.19427303
Polr1b -0.9644367 -0.0759986
Mum1l1 0.96440604 0.06391846
Adamts5 -0.9643612 -0.0565225
Tcta 0.96414569 -0.0560248
Igsf9 -0.9640769 -0.1396267
Marveld1 0.96398097 0.19587427

Continued on next page
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Gene PC 1 PC 2

Abcd4 0.96372524 -0.0800626
Idnk 0.96366777 -0.0001867
Arfgap3 0.96362895 0.12339597
Zfp605 -0.9635515 0.08820809
Inadl -0.9634451 0.00081499
Dnajc9 0.96298761 -0.101629
Abt1 0.96293616 -0.0714704
Zfp459 -0.962836 -0.0457722
Amot -0.9627988 0.1433027
Abcd1 0.96276412 -0.1284864
Sh3kbp1 0.96268241 -0.0355288
Rala 0.96223109 -0.0218123
Myzap -0.9620316 0.00055472
Usp16 -0.9618319 -0.0712475



Appendix B

Enriched DAVID annotations for
transcriptomic data

Figure B.1: Full list of enriched Gene Ontology annotations for 150 genes with largest
loadings in the full PLS model using online software DAVID.





Appendix C

Russian Roulette

Consider approximating the finite sum S = ∑k≥0 αk. Let τ denote a finite random
time taking positive integer values such that pn := P(τ ≥ n)> 0 for all n≥ 0. The
fact that τ is finite almost surely means that

P(τ = ∞) = lim
n→∞

pn = 0. (C.1)

We consider the weighted partial sums with S0 = α0, and for k ≥ 1,

Sk = α0 +
k

∑
j=1

α j

p j
.

For completeness, we set S∞ = ∞. The Russian roulette random truncation approx-
imation of S is Ŝ = Sτ .

If τ can be easily simulated and the probabilities pn are available then Ŝ can be
computed. The next result states that Ŝ is an unbiased estimator of S.
Proposition C.0.1. The random variable Ŝ has finite expectation, and E(Ŝ) = S.

Proof. Set S̄0 = |α0|, and S̄k = |α0|+∑
k
j=1 |α j|/p j. Then for all n≥ 1
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n

∑
k=0
|Sk|P(τ = k)≤

n

∑
k=0

S̄kP(τ = k) =
n

∑
k=0

S̄k (pk− pk+1)

= S̄0 p0 +
n

∑
k=1

(
S̄k− S̄k−1

)
pk +

n

∑
k=1

S̄k−1 pk−
n

∑
k=0

S̄k pk+1

=
n

∑
k=0
|αk|− S̄n pn+1 ≤

n

∑
k=0
|αk|.

Since ∑n |αn| < ∞, we conclude that ∑n |Sn|P(τ = n) < ∞, hence E(|Ŝ|) < ∞. A
similar calculation as above gives for all n≥ 1,

n

∑
k=0

SkP(τ = k) =
n

∑
k=0

αk−Sn pn+1.

By Kronecker’s lemma limn→∞ pnSn = 0, and |pn+1Sn| = (pn+1/pn)pn|Sn| ≤
pn|Sn| → 0, as n→ ∞. We conclude that E(Ŝ) = ∑

∞
k=0 SkP(τ = k) = ∑

∞
k=0 αk.

This random truncation approximation of the series ∑n αn is known in the Physics
literature as Russian roulette. It has been independently re-derived by McLeish
(2011). In the Physics literature it is common to choose τ as a stopping time of the
form

τ = inf{k ≥ 1 : Uk ≥ qk} ,

where {U j, j ≥ 1} are i.i.d. U(0,1), q j ∈ (0,1] and Ŝ = Sτ−1. In this case pn =

∏
n−1
j=1 q j. The random time τ can be thought of as the running time of the algorithm.

It is tempting to choose τ such that the Russian roulette terminates very quickly. The
next result shows that the resulting variance will be high, possibly infinite.
Proposition C.0.2. If

∑
n≥1

|αn|
pn

sup
j≥n

∣∣∣∣∣ j

∑
`=n

α`

∣∣∣∣∣< ∞,
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then Var(Ŝ)< ∞ and

Var(Ŝ) = α
2
0 + ∑

n≥1

α2
n

pn
+2 ∑

n≥1
αnSn−1−S2.

If {αn} is a sequence of nonnegative numbers and ∑n≥1 αnSn−1 = ∞, then Var(Ŝ) =
∞.

Proof. Var(Ŝ) = E(Ŝ2) − S2. So it suffices to work with E(Ŝ2). E(Ŝ2) =

∑
∞
k=0 S2

kP(τ = k) = limn→∞ ∑
n
k=0 S2

kP(τ = k). For any n ≥ 1, we use the same tele-
scoping trick used in Proposition C.0.1 to get

n

∑
k=0

S2
kP(τ = k) =

n

∑
k=0

S2
k−1 (pk− pk+1)

= α
2
0 +

n

∑
k=1

α2
k

pk
+2

n

∑
k=1

αkSk−1−S2
n pn+1. (C.2)

By Jensen’s inequality S2
n ≤

(
∑

n
k=1 p−1

k

)(
∑

n
k=1 p−1

k α2
k

)
. Hence, using Kronecker’s

lemma, we see that

pn+1S2
n ≤ pnS2

n ≤

(
pn

n

∑
k=1

1
pk

)(
n

∑
k=1

α2
k

pk

)
= o

(
n

∑
k=1

α2
k

pk

)
, as n→ ∞. (C.3)

so it suffices to show that the sequence ∑
n
k=1

α2
k

pk
+∑

n
k=1 αkSk−1 is bounded. But

∣∣∣∣∣ n

∑
j=1

α2
k

pk
+

n

∑
k=1

αkSk−1

∣∣∣∣∣=
∣∣∣∣∣α0

n

∑
j=0

α j +
n

∑
j=1

α j

p j

(
n

∑
k= j

αk

)∣∣∣∣∣
≤ |α0|∑

j≥0
|α j|+ sup

n

n

∑
j=1

|α j|
p j

∣∣∣∣∣ n

∑
k= j

αk

∣∣∣∣∣ ,
and the two terms on the right-hand-side are bounded under the stated assumptions.
Therefore the series ∑n S2

nP(τ = n) is summable and the variance formula follows
by taking the limit as n→ ∞ in (C.2).
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To establish the rest of the proposition, we deduce from (C.3) that for n large enough

n

∑
k=1

S2
kP(τ = k)≥ α

2
0 +2

n

∑
k=1

αkSk−1,

which implies the statement.

Remark C.0.1. As an example, for a geometric sequence αi =α i for α ∈ (0,1), and

we choose qi = q for some q∈ (0,1), then for α2/q< 1, the condition of Proposition

C.0.2 is satisfied and var(Ŝ) < ∞. If q > α2 the variance is infinite. The average

computing time of the algorithm is E(τ̂) = 1
1−q . Although this variance/computing

speed trade-off can be investigate analytically, a rule of thumb that works well in

simulations is to choose q = α .
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