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Decision theoriesmandate that organisms should adjust their behaviour in the light of the contextual reward sta-
tistics. We tested this notion using a gambling choice task involving distinct contexts with different reward dis-
tributions. The best fitting model of subjects' behaviour indicated that the subjective values of options depended
on several factors, including a baseline gambling propensity, a gambling preference dependent on reward
amount, and a contextual reward adaptation factor. Combining this behavioural model with simultaneous func-
tional magnetic resonance imaging we probed neural responses in three key regions linked to reward and value,
namely ventral tegmental area/substantia nigra (VTA/SN), ventromedial prefrontal cortex (vmPFC) and ventral
striatum (VST).We show that activity in the VTA/SN reflected contextual reward statistics to the extent that con-
text affected behaviour, activity in the vmPFC represented a value difference between chosen and unchosen op-
tions while VST responses reflected a non-linear mapping between the actual objective rewards and their
subjective value. Thefindings highlight amultifaceted basis for choice behaviourwith distinctmappings between
components of this behaviour and value sensitive brain regions.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Introduction

Context dramatically affects value-based choice (e.g., Huber et al.
1982; Kahneman and Tversky 1979; Ludvig et al., 2013; Stewart et al.
2003; Tversky and Shafir 1992). A striking example is the so-called fram-
ing effect, in which risky options are preferred more when choices are
framed in terms of losses rather than gains (Kahneman and Tversky
1979). Though contextual effects have been extensively described, we
know little about the mechanisms through which contextual representa-
tions arise and contribute to decision making. One possibility is that pre-
vailing contextual reward statistics influence themapping from objective
to subjective values and in this way affect choice. There are two compet-
inghypotheses about how thismight occur. One is that the contextual sta-
tistics of reward induce a reference point relative to which values are
rescaled (Ludvig et al., 2013; Stewart et al. 2003, 2006). This predicts
that, for example, the same dish is likely to be evaluated as being worse
in a good restaurant than in a bad one. An alternative possibility derives
froma Bayesian perspective that proposes objective reward values are in-
tegratedwith prior subjective value expectations arising fromaprevailing
contextual reward distribution (Seymour and McClure 2008). Posterior
subjective values would be hence estimated in such a way that they in-
crease/decrease in contexts characterized by larger/smaller reward
for Neuroimaging, Institute of
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distributions. This makes an opposite prediction that the same dish will
be evaluated as being better in a good restaurant than a bad one.

We investigated contextual effects on choice by focusing on
decision-making under risk. We designed a paradigm wherein subjects
repeatedly chose between a sure amount of money (called the trial
monetary amount), that varied trial-by-trial, and a gamble associated
with an equal probability of obtaining either double the sure amount
or zero (Fig. 1A). The trial outcome was displayed after each choice
and one randomly selected outcome was paid out to participants at
the end of the experiment. Crucially, trials were arranged in blocks
each associated with one of two subtly different gambling contexts
involving specific, but partially overlapping, distributions of monetary
amounts. A high-value context involved monetary amounts drawn
uniformly from £2–£6, and a low-value context involved monetary
amounts drawn uniformly from £1–£5. In terms of contextual adapta-
tion, for choices that are objectively equivalent across contexts, the
rescaling hypothesis predicts larger subjective values (inferred from
choice behaviour) in a low-value context (Ludvig et al., 2013; Stewart
et al. 2003, 2006), whereas the Bayesian hypothesis predicts larger sub-
jective values in a high-value context (Seymour and McClure 2008).
Note that, since we did not aim to dissociate the effect of average mon-
etary amount and variance of individual gambles on risky choice, we
used simplified options in which these covaried perfectly.

A main goal was to investigate the relationship between behavioural
and neural contextual adaptation effects. It is well-established that re-
sponse in dopaminergic ventral tegmental area/substantia nigra (VTA/
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. A: Experimental paradigm. Participants repeatedly made choices between certain gains (on the left in the example) and gambles (on the right in the example) associated with a
50% probability of either double the certain gain or zero. After a choice, the unchosen option disappeared and 300 ms later the trial outcome was shown for 1 s. The intertrial interval
(ITI) was 1.5 s. At the end of the experiment, a single randomly chosen outcome was paid out to participants. B: Relationship between average gambling percentage (x-axis) and
gambling slope (y-axis). This relationship was not significant (r(21) = −0.06, p = 0.78, non-significant). Note that the gambling slope corresponds to the individual effect (i.e., the
slope of a logistic regression parameter) of monetary amount on gambling, thus positive and negative gambling slopes correspond to increased gambling preference with increasing
and decreasing amounts, respectively. A distribution of subjects (represented as dots)with positive and negative slopes is evident. C: Gambling percentage for differentmonetary amounts
(grouped in 4 increasing magnitude bins: [1 2 3 4]) for each context (low and high). Participants are split in two groups based on their gambling slope (negative gambling slope: n = 9;
positive gambling slope: n= 12). Blue arrows connect equivalent amounts presented in the two contexts. Consistent with a contextual normalization effect, subjects who gambled more
with increasing amounts also gambled more when equivalent choices were relatively larger, that is in the low-value context. By contrast, subjects who gambled more with decreasing
amounts also gambledmorewhen equivalent choices were relatively smaller, that is in the high-value context. D: Relationship between gambling slope (x-axis) and contextual gambling
difference for overlapping amounts (y-axis), corresponding to the gambling percentage in low-valueminus high-value context for equal amounts (r(21)= 0.56, p=0.008). E: Analysis of
the evolution of the context effect over time. Blocks are separated into 7 bins. Values labelled as “contextmeasure” represent an index of the context effect (seemain text to see how this is
obtained). Lines represent average across subjects and error bars represent standard error. The left panel combines all participants and shows that, after bins were aggregated in two sets
(without considering the fourth bin), the values of thefirst three binswere overall not different from the values of the last three bins (t(20)=−1.02; p=0.319). Also, the value of thefirst
bin was not significantly different from the value of the last bin (t(20)=−0.758; p= 0.457) and was significantly larger than zero (t(20)= 2.46, p = 0.023). These data indicate that a
context effect emerged from the very start of a new context presentation and remained stable across the duration of the block. On the middle and right panels, lines represent the risk
preference for overlapping choices in the two contexts. Red and blue lines are for high- and low-value context, respectively. Participants are separated into two groups depending on
whether they have a positive (middle panel) or negative (right panel) gambling slope.
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SN) and ventral striatum (VST) reflect a reward prediction error (RPE)
signal (D'Ardenne et al., 2008; Lak et al. 2014; Niv et al. 2012;
O'Doherty et al., 2003, 2004; Park et al. 2012; Schultz et al. 1997;
Stauffer et al. 2014; Tobler et al. 2005), and evidence indicates that such
a RPE signal adapts to contextual reward availability (Louie and
Glimcher 2012; Park et al. 2012; Rangel and Clithero 2012; Tobler et al.
2005). However, whether such neural adaptation impacts choice behav-
iour remains to be tested, and there is controversy surrounding this
issue (Louie and Glimcher 2012; Padoa-Schioppa and Rustichini 2014;
Rangel and Clithero 2012). We were specifically interested in probing
linkages between behavioural and neural response adaptation in VTA/SN
and VST. Thus we used functional magnetic resonance imaging (fMRI) to
measure neural activity during simultaneous task performance.

We also planned to exploit individual differences in choice preference
to investigate the neural mechanisms underlying risky decision-making.
Previous observations have shown that the degree of behavioural loss
aversion is connected with the individual strength of VST activation for
gains compared to losses (Tom et al. 2007), while the degree of behav-
ioural risk preference is connectedwith a VST response to risky compared
to non-risky options associated with equal average amount (Niv et al.
2012). Additionally, it has been reported that the VST response to reward
probability follows a non-linear probability weighting function akin to
that proposed within Prospect Theory (Hsu et al. 2009). However,
whether the VST response to choice options with different levels of
reward amount/variance reflects a non-linear subjective value function
akin to that predicted by economic theories remains unclear
(D'Acremont and Bossaerts 2008; Kahneman and Tversky 1979;
Schultz et al. 2008; vonNeumannandMorgenstern, 1944).We explored
this question by exploiting the variability in participants' risk preference
as a function of the monetary amounts presented.

Ventromedial prefrontal cortex (vmPFC; as distinct from the adjacent
lateral orbitofrontal cortex which has been the topic of single-cell
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recording studies in non-human primates; Rushworth et al. 2011; Strait
et al. 2014) plays a key role in decision-making by representing aspects
of value (Bartra et al. 2013; Blair et al. 2006; Boorman et al. 2009;
FitzGerald et al. 2009; Plassmann et al. 2007; Tom et al. 2007). However,
the specific nature of signalling in this region is an object of ongoing de-
bate (Rushworth et al. 2011). Recent findings fit with the idea that, at
the time of a decision, activity in vmPFC relates to the subjective value dif-
ference between chosen and unchosen options (Boorman et al. 2009;
FitzGerald et al. 2009; Hunt et al. 2012; Strait et al. 2014). However,
other data support the hypothesis that a response in this region relates
to the average subjective value available across options (Blair et al.
2006), possibly at an earlier time point during the decision phase (Hunt
et al. 2012). One common problem is that subjective value differences
and average values are highly correlated in many paradigms. However,
in our task, these quantities are decorrelated across subjects, since the av-
erage subjective value depends largely on the trial monetary amount,
whereas the subjective value difference depends upon individual gam-
bling preferences. We exploited this feature to test the precise value cor-
relates of the blood-oxygen-level-dependent (BOLD) signal in the vmPFC.

Substantial evidence implicates the anterior insula in representing
stimulus salience as activity in this region can increase for both reward
and punishment (Bartra et al. 2013). In addition, the insula response is
correlated with risk-related variables, such as the entropy of an expect-
ed outcome (Critchley et al. 2001; Preuschoff et al. 2008; Rudorf et al.
2012). However, despite these findings it remains unclear whether
such a signal is associated with risk-taking behaviour per se. For exam-
ple, a report of an insula response linked to switching from choosing
risky options to choosing safer options hints at an association with
risk aversion (Kuhnen and Knutson 2005). However, in this study the
reinforcement history was relevant for behaviour and other studies
also point to a role for the insula in learning from negative experiences
(Palminteri et al. 2012), consistentwith the possibility that insulamight
be activated by negative outcomes after risky choices. Hence it remains
unclear whether reported effects are explained by risk aversion or
learning. To address this issue, we investigated whether insula activity
predicts choice of the gamble or of the safe option using a paradigm
where learning is unnecessary.

Methods

Participants

Twenty-five healthy right-handed adults participated in the experi-
ment. Three subjects were excluded from analyses because theymissed
more than 50 trials (see below). One subject was excluded because he
decided to end the scanning session. Thus, the experimental sample in-
cluded 21 subjects (13 females and 8 males, aged 20–40, mean age 27).
On average, two missed trials were observed for these participants
(range, 0–10). The study was approved by the University College of
London Research Ethics Committee.

Experimental paradigm and procedure

Inside the MRI scanner, participants performed a computer-based
decision-making task lasting approximately 40 min (Fig. 1A). On each
trial, participants chose between a certain monetary amount, which
changed trial-by-trial, and a gamble whose prospects were always
zero and double the certain amount, eachwith equal probability. There-
fore, in every trial the certain option and the gamble always had equal
average amount. Participants completed 4 blocks (140 trials each). In
each block, the certain amount was randomly drawn from a uniform
distribution (with 10 p steps): for two blocks (low-value context) the
range was £1–£5; for the other two blocks (high-value context) it was
£2–£6. Blocks were interleaved with 10 s breaks. Before each block, a
panel showed the upcoming amount distribution. Block order was
counterbalanced across subjects. After a 1.5 s intertrial interval, options
were displayed on the left and right sides of the screen. Participants
chose the left or right option by pressing the corresponding button of
a keypad. Immediately after the choice was made, the unchosen option
disappeared for 300 ms and next the amount gained was displayed for
1 s. Participants had 3 s to make their choices; otherwise the statement
“too late” appeared and they received an outcome of zero. Positions of
the certain and risky options were pseudorandomized, as well as out-
comes of the gamble. At the end of the experiment, one outcome was
randomly selected among those received and added to an initial partic-
ipation payment of £17.

Participants were tested at theWellcome Trust Centre for Neuroim-
aging at the University College London. Before scanning, theywere fully
instructed about the task and practised for up to 20 unpaid trials. Inside
the scanner, participants performed the task in two separate sessions,
each consisting of one low-value and one high-value context block,
followed by a 12 minute structural scan. After scanning, participants
were debriefed and informed about their total remuneration.

Computational model of choice behaviour

We characterized choice behaviour by fitting a mean-variance re-
turn model that computed subjective values consistent with individual
choices. Note that the experimental design precluded distinguishing
such amodel fromanexpected non-linear utility account, given theper-
fect correlation between the trial monetary amount and the variance. If
the trial monetary amount (i.e., the certain reward) was A, then the
value of the certain optionwasVCERT(A)=A-χτ, whereχ is an indicator
of it being the low-value (χ=0) or high-value context (χ=1), and τ
implements (subtractive) normalization of the certain amount associat-
ed with the latter context. This implies that the mean and variance of
the gamble are A-χτ and (A-χτ)2 respectively, making the value of
the gambling option be VGAMB(A)=A-χτ+α (A-χτ)2+μwhereα de-
termines whether (α N 0) or not (α b 0) reward variance is attractive,
and μ represents a gambling bias parameter. According to the model,
the probability of choosing the gamble is given by a sigmoidal choice
rule σ(VGAMB(A)-VCERT(A))=1/(1+ exp(-VGAMB(A)+VCERT(A))).

fMRI scanning and analysis

The taskwasprogrammedwith the Cogent toolbox (Wellcome Trust
Centre for Neuroimaging) inMatlab. Visual stimuli were back projected
onto a translucent screen positioned behind the bore of themagnet and
viewed via an angled mirror. Blood oxygenation level dependent
(BOLD) contrast functional images were acquired with echo-planar
T2*-weighted (EPI) imaging using a Siemens Trio 3-Tesla MR system
with a 32 channel head coil. To obtain more data in our regions of inter-
est (ROIs), a partial volumeof the ventral part of the brainwas recorded.
Each image volume consisted of 25 interleaved 3-mm-thick sagittal
slices (inplane resolution=3×3mm; time to echo=30ms; repetition
time = 1.75 s). The first six volumes acquired were discarded to allow
for T1 equilibration effects. T1-weighted structural images were
acquired at a 1 × 1 × 1 mm resolution. Functional MRI data
were analysed using Statistical Parametric Mapping (SPM) version 8
(Wellcome Trust Centre for Neuroimaging). Data preprocessing includ-
ed spatial realignment, unwarping using individual field maps, slice
timing correction, normalization and smoothing. Specifically, functional
volumeswere realigned to themean volume, were spatially normalized
to the standard Montreal Neurological Institute (MNI) template with a
3 × 3 × 3 voxel size, and were smoothed with 8 mm Gaussian kernel.
High-passfilteringwith a cutoff of 128 s andAR(1)-modelwere applied.
All general linearmodels (GLMs) included 6movement regressors of no
interest in addition to the regressors described below. EachGLMwas es-
timated separately for each half of each of the two sessions of the task
(corresponding to one single presentation of a context).

We estimated a GLM including a stick function regressor at option
presentation modulated by (i) the average subjective value across
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options, (ii) the subjective value difference between chosen and
unchosen option, (iii) a binary variable indicating whether the gamble
or the certain option was chosen. The subjective value difference be-
tween chosen and unchosen option and the subjective value of the cho-
sen option were estimated with the computational model of choice
behaviour described above. The GLM included also one stick function
regressor at outcome presentation modulated by RPE, computed as
the difference between the subjective value of the obtained outcome
minus the subjective value of the chosen option. Thus, RPEswere equiv-
alent to zero for choices of the certain option and had positive or nega-
tive values for choices of the gamble. Since large average subjective
values were associated both with very positive and very negative
RPEs, the parametric modulators included in the GLM at option presen-
tationwere uncorrelatedwith RPEs. To obtain such decorrelationwe in-
cluded at outcome receipt the RPE instead of including separately the
subjective value of the chosen option and the subjective value of the
outcome.We also estimated another GLMwhere, for each context, trials
were grouped in four bins on the basis of the certain amount, resulting
in 8 bins in total (4 bins for each context). This GLM included separate
stick function regressors at option presentation associated with each
bin, plus a stick function regressor modulated by RPE at outcome time.

For each GLM contrasts of interest were computed subject by sub-
ject, and used for second-level one-sample t-tests and regressions
across subjects. Predictors of regression models were the individual
parameters estimated with the behavioural computational model. The
regression model of the neural activation at option presentation for all
amounts in the low minus high-value context included as predictor
the context coefficient τ and binary variables encoding the indi-
vidual block order condition. Statistical tests focused on the following
ROIs: VST, VTA/SN, vmPFC and anterior insula. For VST and VTA/SN we
used bilateral anatomical masks (defined manually using the software
MRIcro and the mean structural image for the group) and for vmPFC
and anterior insula we used 10 mm spheres centred on coordinates
from a meta-analysis (Bartra et al. 2013). For hypothesis testing, we
adopted voxel-wise Small Volume Correction (SVC) with a p b 0.05
Family Wise Error used as significance criterion.

Results

Behaviour

Across participants, average gambling percentage did not differ from
50% (mean = 51.5; SD = 21.27; t(20) = 0.32, p = 0.75; two-tailed
p b 0.05 is used as the significance criterion for all behavioural tests).
Given the fixed relationship between the gamble and the certain gain,
the only independent measure varying trial-by-trial was the objective
average monetary amount (called the trial monetary amount), which
was equal for both options on a trial. We assessed the impact of this
variable in a logistic regression model of gambling probability, finding
that its influence over choice was statistically significant in 16 (half
with positive and half with negative effect of trial amount on gambling)
of 21 subjects, but with a direction that varied across participants
(t(20) = 0.60, p = 0.55). We found no significant influence of other
possible measures on choice (see supplementary data). There was no
significant correlation between the individual effect of trial monetary
amount (i.e., the slope parameter of the logistic regression model) and
the average gambling percentage (r(21) = −0.06, p = 0.78; Fig. 1B).
This suggests that two partially independent factors contribute to risk
attitude, namely a baseline gambling tendency andan increasingprefer-
ence towards gambling for smaller or larger amounts.

We next tested for a context effect. We found no difference between
contexts in the overall gamblingpercentage (t(20)=0.35; p=0.73), or
in gambling percentage for overlapping amounts (t(20) = 0.37; p =
0.72). However, across individuals a positive correlation was evident
between (i) the differential gambling percentage for overlapping
amounts (i.e., the gambling percentage in low-value minus high-value
context), and (ii) the effect of amount on gambling percentage
(i.e., the slope parameter estimated in a logistic regression; r(21) =
0.56, p = 0.008; Figs. 1C–D). Based on this observation, we multiplied
the effect of trial amount on gambling percentage with the differential
percentage for overlapping amounts and found this variable was sig-
nificantly positive across participants (t(20) = 2.55; p = 0.019). Put
simply this shows that an influence of context interacted with an
individual's propensity to gamble more with large or small amounts.
In other words, participants who risked more with increasing amounts
gambled more when equivalent choices were larger compared to the
context, whereas participants who risked more with decreasing
amounts gambled more when equivalent choices were smaller com-
pared to the context. These findings indicate that subjective values of
equivalent choices are larger in a low-value context (and vice-versa),
and provide support for a contextual rescaling hypothesis (Stewart
et al. 2003, 2006) but no support for a contextual assimilation hypothe-
sis (Seymour and McClure 2008).

In our task, prior to a new block a panel indicated to subjects the
range of trial monetary amounts (i.e., £1–£5 and £2–£6 for the low-
and high-value context respectively; see alsomethods), a procedure de-
signed to induce an immediate contextual adaptation. To examine the
impact of this manipulation we explored the temporal evolution of
the context effect by dividing into seven bins (20 trials each) the blocks
in which a shift of context occurred, and then averaging the gambling
proportions for overlapping trial amounts (after subtracting these to
the final bins of the previous blocks). The middle and right panels of
Fig. 1E show the gambling proportion separately in subjects who pre-
ferred to gamblemorewith larger or smallermonetary amounts respec-
tively, distinguishing between high- and low-value contexts; the left
panel of Fig. 1E aggregates all participants and describes the evolution
of the context effect as the difference in gambling proportions for low
minus high-value contexts for participants who gambled more with
larger amounts, and vice-versa for participants who gambled more
with smaller amounts. It is apparent that there is no systematic change
across blocks on average. We also confirmed this by showing that the
mean value in bins 1–3 did not differ significantly from the mean
value in bins 5–7 (t(20) = −1.02; p = 0.319). Furthermore, the value
of the first bin was not significantly different from the value of the last
bin (t(20) = −0.758; p = 0.457) and was significantly larger than
zero (t(20) = 2.46, p = 0.023). These data support a view that the re-
ported context effect emerged at the very beginning of a new context
presentation and remained stable for the entire duration of the block.

We next characterized choice behaviour by fitting a mean-variance
return model that computed subjective values consistent with individ-
ual choices (see Methods). Using BIC scores for comparison, the best
fittingmodel included a gambling bias parameter μ, a parameterα indi-
cating the preference for gambling with large (α N 0) or small (α b 0)
amounts/variances, and a parameter τ implementing a contextual adap-
tation. This model performed better thanmore complexmodels includ-
ing those whose parameters were estimated independently in each of
the two contexts or in each half of the task, and simpler models in
which some parameters were fixed (Table 1; see also supplementary
data). The context coefficient τwas significantly positive across partici-
pants (Wilcoxon signed-rank Z(21)= 2.03, p= 0.042), consistentwith
the proposal that subjects' choices on averagewere affected by a reward
adaptationmechanism. The value function coefficientα correlatedwith
the individual effect of amount on gambling percentage (r(21) = 0.97,
p b 0.001).

Note that normalization in themodel is subtractive. We also consid-
ered divisive normalization such that, in the high-value context, the pa-
rameter τ was divided by the relevant amounts (parameters μ and α
were also included in the divisive normalization model). The subtrac-
tive normalization model was preferred to the divisive normalization
model by Bayesian model comparison (BIC = 12665 vs 12840).

Finally, to ascertain that the model can reproduce the behavioural
results, we simulated choice data for each subject using their individual



Table 1
Comparison of behavioural models of choice behaviour. The first col-
umn reports the free parameters of each model. For some models,
two different free parameters of the same kind were estimated, sepa-
rated for block 1–2 and block 3–4 (e.g., μ1–2 and μ3–4, respectively) or
for high-value and low-value context (e.g., μHV and μLV, respectively).
BIC was summed across participants.

Free parameters BIC

Random 16245
μ 14481
α 14198
μ, α 12824
μ, α, τ 12665*
μ1–2, μ3–4, α, μ, τ 12675
μHV, μLV, α, μ, τ 12708
μ, α1–2, α3–4, τ 12688
μ, αHV, αLV, τ 12696
μ, α, τ1–2, τ3–4 12709
μ, α, τ (divisive normalization) 12840
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fitted parameters, and re-ran the model-free analysis on that simulated
data. Consistent with our empirical results, in the simulated data we
found (i) no correlation between the effect of trial amount on gambling
and the average gambling proportion (r(21) = −0.12, p = 0.60), and
(ii) a correlation between the effect of trial amount on gambling and
the difference in gambling for overlapping amounts across contexts
(r(21) = 0.64, p = 0.001). By contrast, when we simulated a simpler
model that omitted a baseline gambling parameter μ (based on param-
eters fitted for this model), we found, contrary to the empirical data,
that the effect of trial amount on gambling and the average gambling
proportion were correlated (r(21) = 0.71, p b 0.001). When we simu-
lated a simpler model with no context parameter τ (based on parame-
ters fitted for this model), again contrary to the empirical data, the
effect of trial amount on gambling and the difference in gambling for
overlapping amounts across contexts were not correlated (r(21) =
0.09, p = 0.70). Overall, the analysis on simulated data shows that the
preferredmodel according to the BIC score is consistentwith the behav-
ioural results and simplermodels do not reproduce themain features of
the data.

Neuroimaging

We used our computational model of choice behaviour to probe the
neural processes underlying risk-based decision-making and its modu-
lation by context. First, we investigated responses in brain regions in-
volved in value-based choice. The fact that risk preferences varied
across individuals allowed us to isolate the contribution of different
value-related variables that many previous paradigms leave correlated.
Thus, by using the behavioural computational model and individual pa-
rameters, for each trial we could estimate the average subjective value
across options, the value of the chosenminus unchosen option, and a bi-
nary variable indicating whether the gamble or the certain option was
selected. Though these variables showed significant within-subject cor-
relations in many participants, their relationship was not systematic
Table 2
Relationship between variables relatedwith value and risk that varied trial-by-trial and across s
computational model of behaviour and the individual parameters. The first column indicates
Pearson correlation between the pair of variables was statistically significant. The third and four
across participants. The fifth and sixth columns report respectively the t-statistic and the p val

Variables N participants

Value of chosen minus unchosen AND average value 18
Average value AND gambling vs certain 14
Value of chosen minus unchosen AND gambling vs certain 21
Value of chosen minus unchosen AND value of chosen 16
Average value AND value of chosen 21
Gambling vs certain AND value of chosen 16
across subjects (see Table 2), allowing us to test their specific impact
on brain activity (see supplementary data for further analyses). We
used a GLM including a stick function regressor at option presentation
modulated by (i) the subjective value averaged across the two options,
(ii) the subjective value of the chosenminus unchosen option and (iii) a
binary variable indicating choice of the gamble or choice of the certain
option.

Activity correlatingwith average value across optionswas seen in bi-
lateral VST (right: 9, 11,−2; Z= 2.68, p= 0.049 SVC; left:−9, 11,−2;
Z = 3.00, p = 0.021 SVC; Fig. 2A; Montreal Neurological Institute coor-
dinate system is used), bilateral anterior insula (right: 30, 26, −2; Z =
3.72, p= 0.007 SVC; left:−30, 29, 1; Z= 3.26, p= 0.025 SVC; Fig. 2A),
and bilateral VTA/SN (right: 6,−22,−11; Z=3.20, p=0.010 SVC; left:
−9, −19, −11; Z = 3.26, p = 0.009 SVC; Fig. 2A), but not in vmPFC
even at p b 0.05 uncorrected. It has been reported that vmPFC is activat-
ed maximally at the start of a task, when subjects are not over-trained
(Hunt et al. 2012). To explore the possibility that vmPFC encodes aver-
age subjective value across options at the beginning of our task alone,
we tested for an association between this variable and a vmPFC re-
sponse separately for each of four blocks as a function of time. For no
block (including the first one in the sequence) could we find a relation-
ship between this variable and vmPFC activation, even at p b 0.05uncor-
rected. Instead we found that the value of the chosen minus unchosen
option correlated with activity in both vmPFC (0, 56, −5; Z = 2.92,
p = 0.042 SVC; Fig. 2B) and right VST (3, 11, −5; Z = 2.76, p = 0.033
SVC; Fig. 2B).When comparing risky against non-risky choices, right an-
terior insula was more activated for the former (33, 23, −5; Z = 3.02,
p = 0.033 SVC; Fig. 2C) whereas vmPFC was more activated for the lat-
ter (3, 56,−11; Z= 3.09; p= 0.045 SVC; Fig. 2D). We re-ran this anal-
ysis including reaction times (RTs) as an additional predictor and
obtained similar results.

We next investigated the relationship between a behavioural and
neural adaptation to context. Substantial evidence indicates that an
RPE response in VTA/SN andVST adapts to a contextual reward distribu-
tion (Park et al. 2012; Tobler et al. 2005). However, from this previous
literature it remains unclear whether this neural adaptation is connect-
edwith behaviour. Herewe hypothesized that a behavioural context ef-
fect would be reflected in a reward adaptation expressed in VST and
VTA/SN. In our task larger amounts of money, on average, were avail-
able in the high- compared to the low-value context. Therefore, we pre-
dicted that at the time of option presentation, context-insensitive
participants should show a greater response in VST and VTA/SN within
a high compared to low-value context. Conversely, context-sensitive
participants who engage in more reward adaptation, should exhibit
more similar VST and VTA/SN activation in the two contexts. To test
these predictions, we focused on VST and VTA/SN voxels where activa-
tion correlated with the average subjective value across options in the
very first analysis (at an uncorrected threshold of p b 0.05; SVCwas per-
formed on these voxels alone).We estimated a second GLM that includ-
ed, for each context, four regressors associated with bins of increasing
monetary amount (i.e., the vector [1 2 3 4]). Consistentwith our predic-
tion, we found that at option presentation a differential activation
(across all amounts) in right VTA/SN contrasting the low-value minus
ubjects. For each subject, the values of the variables were estimated trial-by-trial using the
pairs of variable. The second column indicates the number of participants for which the
th columns report respectively themean and standard deviation of the Pearson coefficient
ue relative to the one sample t-test on the Pearson coefficients.

Mean (r) SD (r) t-statistic (r) p value (r)

−0.05 0.47 −0.47 p = 0.64
0.12 0.32 1.72 p = 0.1
0.20 0.69 1.30 p = 0.21
0.36 0.42 3.97 p b 0.001
0.79 0.48 7.44 p b 0.001
0.16 0.35 2.11 p = 0.05



Fig. 2. A: Brain activation correlating with average subjective value across options in (from top to bottom) VST (right: 9, 11,−2; Z = 2.68, p = 0.049 SVC; left: -9, 11,−2; Z= 3.00, p =
0.021 SVC), VTA/SN (right: 6,−22,−11; Z= 3.20, p= 0.010 SVC; left: -9,−19,−11; Z= 3.26, p= 0.009 SVC) and anterior insula (right: 30, 26,−2; Z= 3.72, p= 0.007 SVC; left: -30,
29, 1; Z= 3.26, p= 0.025 SVC). B: Brain activation correlating with the value of the chosen optionminus the value of the unchosen option in vmPFC (0, 56,−5; Z= 2.92, p= 0.042 SVC)
and right VST (3, 11,−5; Z=2.76, p=0.033 SVC). C: Increased response for gambling choices compared to certain option choices in right anterior insula (33, 23,−5; Z=3.02, p=0.033
SVC; the effect in left insula did not survive correction formultiple comparison). D: Increased response for certain option choices compared to gambling choices in vmPFC (3, 56,−11; Z=
3.09; p= 0.045 SVC). These resultswere obtained using a GLM including a regressor at option presentationmodulated by the average subjective value across options, the subjective value
difference for the chosen minus unchosen option, and a binary variable indicating whether the gamble or the certain option was chosen. These variables were uncorrelated across
participants, allowing us to separate their specific impact on brain activity.
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high-value context significantly correlated with the context coefficient
τ (15,−16,−11; Z=4.23, p b 0.001 SVC; Fig. 3). However, no such cor-
relation was found in left VTA/SN and VST.

We next tested whether a VST response to different levels of trial
amount/variance reflected a non-linear subjective value function akin
to that predicted by economic theories (D'Acremont and Bossaerts
2008; Kahneman and Tversky 1979; Schultz et al. 2008; von Neumann
and Morgenstern, 1944). We focused on VST voxels where activation
correlated with the average subjective value across options in the very
first analysis (at an uncorrected threshold of p b 0.05; SVC refers to
these voxels alone). We then considered the subject-specific non-
linearity of the mapping from reward amounts/variances to subjective
values. Fig. 4A shows how this is captured for four rewards of increasing
amount (normalized across contexts) by the value function parameter
α, with a clear neural difference for participants who had concave
(value function parameter α b 0) and convex (α N 0) value functions,
as derived from their choice behaviour. We examined these non-
linearities of subjective value coding in the VST in a two-step analysis
using the same GLM as for the context effect analysis. For each context,
this included four regressors associated with bins of increasing amount
(i.e., the vector [1 2 3 4]; see Fig. 4A). As a first step, we computed the
contrast [4–2]–[3–1] that is independent of any correlation with objec-
tive monetary amount. Under the hypothesis that VST activity covaried
with the subjective value, we expected this contrast to be positive and
negative for subjects with behaviourally estimated convex and concave
functions, respectively. Consistent with this, we found a significant cor-
relationwith the value function coefficientα in bilateral VST (right: 6, 5,
−2; Z = 3.02, p = 0.025 SVC; left: -3, 5, 1, Z = 3.53, p = 0.005 SVC;
Figs. 4B–D; this result remained statistically significant when neural
data were transformed according to a commonly used square root
transformation, which is less affected by outliers (r = 0.561, p =
0.012)). As a second step of the analysis, we extracted the weights



Fig. 3.A:Activation in right VTA/SN showing, at option presentation, a correlation between the context coefficient τ (implementing a context effect by representing a parameter subtracted
from the amount of the certain option in the high-value context) and a neural response for the contrast of low-value minus high-value context across all amounts. B: Results from this
analysis are plotted for the right VTA/SN peak voxel (15, −16, −11; Z = 4.23, p b 0.001 SVC). Note that this graph is solely for the purposes of display; no further statistical analysis is
conducted on it. C: VTA/SN activation (beta weights are standardized for each subject computing z-scores using the individual mean and standard deviation) as a function of monetary
amount, separately for participants with negative (left, n = 5) and positive (right, n = 16) context parameter τ. Amounts are organized in two bins separately for each context.
Activations are displayed for the peak VTA/SN voxel. Note that this graph is solely for the purposes of display; no statistical analysis is conducted on it.
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(i.e., the beta regressor coefficients) from the peak-activation voxel
within this region of the four monetary amount-related bins and stan-
dardized these for each subject by computing z-scores with respect to
the individual means and standard deviations. Then, in each subject,
we estimated the second-order (i.e., quadratic) coefficient ϑ of a poly-
nomial function mapping the amount-related bins (i.e., the vector [1 2
3 4]) to the corresponding standardized weights associated with VST
activation. The quadratic coefficient ϑ was positively correlated with
the behavioural value function parameter α (r(21) = 0.49, p = 0.023;
Fig 4D right; this result remained statistically significant when neural
data were transformed according to a commonly used square root
transformation, which is less affected by outliers (r = 0.508, p =
0.022)). Altogether, these results support the idea that VST response
to different levels of amount/variance can be characterized by a non-
linear function estimated from behaviour.

Discussion

It is well-established that decision-making is context-dependent
(e.g., De Martino et al. 2006; Guitart-Masip et al. 2010; Huber et al.
1982; Kahneman and Tversky 1979; Kolling et al. 2014; Ludvig et al.,
2013; Stewart et al. 2003; Tversky and Shafir 1992; Wright et al. 2012,
2013), though the specific mechanisms for this influence remain un-
clear. One possibility is that choices are influenced because subjective
values are rescaled with respect to the contextual reward distribution
so that they decrease and increase in high and low-value contexts re-
spectively (Ludvig et al., 2013; Stewart et al. 2003, 2006). An alternative
idea is that the prevailing contextual reward distribution is to some ex-
tent assimilated with objective reward values which would therefore
subjectively increase and decrease in high and low-value contexts re-
spectively (Seymour and McClure 2008). We compared these possibili-
ties in a risky decision-making task inwhichparticipants chose between
a certain monetary gain and a gamble associated with equal probability
of getting either double that gain or zero. Crucially, the reward distri-
bution varied across blocks such that, in different blocks, trial rewards
were picked from one of two different, but partially overlapping,
distributions.

We showed that whether participants gambled more or less for
equivalent choices depended on participants' specific gambling prefer-
ences for different reward amounts. Participants who gambled more
for larger amounts also risked more when equivalent choices were rel-
atively larger within the context, while participants who gambledmore
for smaller amounts also riskedmorewhen equivalent choiceswere rel-
atively smaller within the context. This finding is at oddswith a propos-
al that subjective values are assimilated to the contextual reward
distribution (Seymour and McClure 2008). Neither is it well explained
by the original proposal of Prospect Theory (Kahneman and Tversky
1979), which does not consider context effects beyond those emerging



Fig. 4. A: For convex (on the right, α N 0) and concave (on the left,α b 0) value function participants, predicted VST activation as a function of monetary amount, represented as four bins
normalized across contexts. B: VST activation (right: 6, 5,−2; Z=3.02, p=0.025 SVC; left: -3, 5, 1, Z=3.53, p=0.005 SVC) for the correlation between the coefficientα, determining the
concavity or convexity of the individual subjective value function, and the contrast [4–2]-[3–1]. C: Observed VST activation (beta weights are standardized for each subject computing z-
scores using the individual mean and standard deviation; the standardized beta associatedwith standardized amount= 1 is next subtracted to all other standardized betas) as a function
ofmonetary amount, for concave (α b 0) and convex (α N 0) value function participants (error bars indicate standard errors). Activations are displayed for thepeakVST voxel. Concave and
convex subjective value functions estimated from behaviour were associated respectively with concave and convex neural responses with increasing amounts. D: On left, relationship
between the coefficient α and the contrast [4–2]-[3–1] for the peak VST voxel (−3, 5, 1, Z = 3.53, p = 0.005 SVC); on right, relationship between the behavioural value function
coefficient α and the coefficient ϑ, corresponding to the second-order coefficient of a polynomial function fitted to the peak VST response (standardized betas) with different amounts
(r(21) = 0.49, p = 0.023). Note these correlations remain statistically significant when neural data are transformed according to a square root transformation, rendering the analysis
less affected by outliers (r = 0.561, p = 0.012 for the analysis correlating the value function coefficient α and the contrast [4–2]-[3–1] in ventral striatum; r = 0.508, p = 0.022 for the
analysis correlating the value function coefficient α and the quadratic component of the ventral striatal response). These graphs are solely for the purposes of display; no further
statistical analysis has been conducted on them.
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from framing choices in terms of losses or gains (note that here all
choices were in the gain domain). These data are not easily explained
by Prospect Theory even if the safe amount is conceived as reference
point. Indeed, in this instance prospect theory would predict that, due
to loss aversion, risk aversion would increase with trial amount for all
participants. This does not correspond to the pattern seen in the data
which show individual differences in baseline gambling and individual
differences in the preference to gamble with increasing trial amount.

Our results are consistent with the idea that subjective values are
rescaled with respect to the contextual reward distribution. This is in
keeping with a previous report regarding simultaneously presented
options (Stewart et al. 2003) which we extend here into the temporal
domain by showing a value rescaling affected by the distribution of re-
ward within the temporal context (see also Ludvig et al., 2013). This is
important because such a temporal factor is ubiquitous in ecological
contexts (Stewart et al. 2006).

fMRI enabled us to examine the link between behavioural and neu-
ral adaptation to context. Our focus on VTA/SN was motivated by evi-
dence indicating that a RPE signal in this area adapts to the current
reward expectancy (Tobler et al. 2005). However, previous literature
did not resolve whether the neural adaptation in VTA/SN is linked
with contextual behavioural effects. At the time of option presentation,
context-insensitive participants showed an increased VTA/SN response
in the high-value compared to low-value context, while context-
sensitive participants did not. This observation highlights a linkbetween
subjective value rescaling to the contextual reward distribution (as in-
ferred frombehaviour) and brain response adaptation in VTA/SN. Though
caution needs to be exercised inmaking causal inferences from fMRI data,
the results are consistent with a proposal that a VTA/SN reward
adaptation process mediates an influence of context on risk preference.
One potential mechanism underlying the effects we report derives from
a theoretical proposal that tonic VTA/SN activity encodes an average
reward representation (Niv et al. 2007) which might operate as a
reference point against which option values are compared. Within this
framework, our data indicate that an individual sensitivity to changes in
tonic VTA/SN activity could influence learning of average reward
representations that in turn determines neural and behavioural adapta-
tion to context. Another possible mechanism is that the contextual
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reward statistics are processed in areas involved in representingmore ab-
stract contextual information, for example in the hippocampus and
parahippocampal gyrus (Aminoff et al. 2013; Holland and Bouton
1999), which would in turn modulate a response of neurons in VTA/SN
according to the reward context. A recent study fromour lab has reported
contextual modulation for pain evaluation in orbitofrontal cortex
(Winston et al., 2014). Although our main focus here was on VTA/SN
and ventral striatum in the context of reward, investigating the relation-
ship between VTA/SN and orbitofrontal cortex in both reward and pun-
ishment contextual adaptation is an important question for future
research.

The nature of our designmeantwewere able to dissociate a baseline
gambling tendency from a preference to gamble for large or small re-
ward amounts/variances. These two components had an independent
influence on behaviour, a novel finding at odds with some influential
theories (D'Acremont and Bossaerts 2008; Kahneman and Tversky
1979; Schultz et al. 2008; von Neumann and Morgenstern, 1944) be-
cause it implies that a single factor, such as a value function or a variance
sensitivity, is insufficient to capture risk preferences. A baseline gam-
bling tendencymight depend on a specific preference towards choosing
a certain rather than a risky option, possibly related to psychological
constructs such as novelty seeking (Cloninger, 1985; Friston et al. 2013).

Our design also permitted a test of a hypothesis that the VST re-
sponse to different levels of reward amount/variance could be charac-
terized by a non-linear function akin to that proposed by economic
theories (D'Acremont and Bossaerts 2008; Kahneman and Tversky
1979; Schultz et al. 2008; Von Neumann and Morgenstern, 1944). Con-
trary to two previous studies (Christopoulos et al. 2009; Niv et al. 2012),
we found evidence supporting this hypothesis. One previous study
(Levy et al. 2010) has reported that VST response to different reward
amounts can be described with a non-linear function, but this fit was
not significantly better than the fit for a linear function, thus rendering
these prior results inconclusive on this point. Several characteristics
also distinguish our study from that of Niv et al. (2012), including the
fact that in the former gamble probabilities were learned rather than
instructed (Hertwig and Erev 2009) and the inclusion of trials with no
decision in the analysis (as opposed to choice trials). Furthermore, an
amount-dependent risk preference was not estimated separately from
a baseline gambling tendency, a procedure that might add noise or
bias to the behavioural risk parameter estimation when these two var-
iables are uncorrelated, as indeed we observed here. Our paradigm is
also distinct from Christopoulos et al. (2009) who found no difference
in VST activation for gamble choices associatedwith equivalent average
magnitudes but different subjective values. In this study the procedure
adopted might conceivably have increased attention towards the cer-
tain option and, together with evidence showing that attention influ-
ences VST value responses (FitzGerald et al. 2014), this might explain
the observation that VST encoded the subjective value of the certain op-
tion alone. Indeed, in the former study the certain option varied more
frequently than the gamble, and varied according to a partially predict-
able staircase procedure that might also have induced a motivation for
subjects to predict future certain options. Our data better fit with the
general proposal that VST represents subjective rather than objective
value (Hsu et al. 2009; Kable and Glimcher 2007; Niv et al. 2012; Pine
et al. 2009; Tom et al. 2007).

At least two kinds of neural computations might underlie a prefer-
ence to gamble more with large or small amounts, namely an imple-
mentation of a function mapping of reward amount to subjective
value (Kahneman and Tversky 1979; Von Neumann and Morgenstern,
1944; Kable and Glimcher 2009; Padoa-Schioppa and Assad 2006), or
an integration of information about reward amount and
risk associated with measures of reward variability such as variance
(D'Acremont and Bossaerts 2008; Preuschoff et al. 2006; Schultz et al.
2008). Our task cannot dissociate these twomechanisms since variance
perfectly correlated with monetary amount. This consideration also af-
fects the interpretation of subjective value computations in VST. It is
important to stress that the response we observed in this region is
inconsistent with an encoding of subjective value associated with vari-
ance alone, as this hypothesis predicts a decreased response with larger
monetary amounts in subjectswith a negative value function coefficient
α. In fact we observed an increase with larger monetary amounts in all
subjects, a finding in line with previous evidence (e.g., Christopoulos
et al. 2009; Niv et al. 2012; O'Doherty et al., 2003, 2004).

The specific nature of signalling in VST at option presentation is
unclear, with candidate variables including average subjective value
across options and subjective value of the chosen option. These vari-
ables co-varied systematically across our participants rendering the cur-
rent data uninformative on this issue. However, our test of a non-linear
function mapping reward amount/variance to VST activity is not affect-
ed bywhether VST signals average value, the value of the chosen option,
or both.Notablywe also observed a response in VST that correlatedwith
the subjective value difference between the chosen and unchosen op-
tion, which in our task was orthogonal across subjects with respect to
the average value across options. This suggests that VST might play a
role in value comparison across options. Despite a tight coupling be-
tween VTA/SN and VST, we found evidence of contextual adaptation
in the former but not in the latter region. Though absence of evidence
should be considered weak evidence of absence, future research should
also explore the hypothesis that these two regions might operate ac-
cording to different reference points.

Substantial human and non-human evidence has highlighted an im-
portant role for vmPFC in value-based choice (Bartra et al. 2013; Blair
et al. 2006; Boorman et al. 2009; FitzGerald et al. 2009; Plassmann
et al. 2007; Strait et al. 2014; Tom et al. 2007). However, what variable
is represented in this area during choice behaviour remains contentious.
A subjective value difference between the chosen and unchosen option
(Boorman et al. 2009; FitzGerald et al. 2009; Hunt et al. 2012; Strait et al.
2014) and the average subjective value across options (Blair et al.
2006; Hunt et al. 2012) are two candidate quantities. However, these
are highly correlated in many previous designs. In our task design, we
could decorrelate these quantities since the average subjective value
depended largely on the trial monetary amount that was the same for
all participants, whereas the subjective value difference between cho-
sen and unchosen option depended on individual preferences. While
we found a vmPFC signal correlating with the latter variable, we did
not find any relationship with the former variable. A recent study on
value-based choicewithmagnetoencaphalography (MEG) has reported
an early vmPFC signal correlating with average value after option
presentation, followed by a later signal correlatingwith value difference
between chosen and unchosen option (Hunt et al. 2012). An advantage
of our design is that it allowed us to decorrelate these two measures.
However, an apparent discrepancy between the two studies might be
explained by several factors, including the possibility that an early
vmPFC response to average value has only a marginal impact on BOLD
signal. In addition, in our task the monetary amount alone is a salient
feature, whereas the task used in Hunt et al. (2012) involves both
reward amount and probability. This differencemight explain a discrep-
ancy between the two studies coupled with the fact that vmPFC re-
sponse to average subjective value across options might emerge only
when different dimensions need to be integrated. It is noteworthy
that vmPFC was systematically more active during certain compared
to risky choices. This hints that vmPFC activity might be biased towards
representing safe choices independent of considerations related to indi-
vidual risk preferences.

In line with substantial evidence indicating that activity in anterior
insula correlates with stimulus salience, and therefore with subjective
value in appetitive domains (Bartra et al. 2013), we observed an associ-
ation between a response in this region and average subjective value
across options. Data from a passive risk-return task also indicate that
activation in anterior insula increases with the entropy of the distribu-
tion of rewards (Critchley et al. 2001; Preuschoff et al. 2008; Rudorf
et al. 2012), a variable closely associatedwith risk. However, it is unclear
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whether such entropy-related responses are linked with choice. We
observed that BOLD signal in insula was stronger when participants
chose the gamble (associated with increased entropy) compared to
when they chose the certain option. These results might appear incon-
sistent with a previous study showing insula response associated with
switching from choosing risky to choosing safe options (Kuhnen and
Knutson 2005). However, in this study, the history of reinforcement
was relevant and therefore learningmight have influenced the reported
effect (Palminteri et al. 2012). We found no evidence of learning influ-
ences in our task, and hence our findings suggest that insula activity
increases for choices of risky options, independent of any learning effect.

In sum, our findings show that choice behaviour adapts to the tem-
poral contextual reward distribution and that VTA/SN response is linked
with this adaptation process. This is in line with evidence that human
preferences are often inconsistent across situations, but at the same
time suggests such inconsistencies might be adaptive to environmental
demands. This raises an intriguing possibility that syndromes character-
ized by dysfunctional decision-making, such as drug abuse and mood
and anxiety disorders, might be linked to impairments in adapting
choice strategies to context.
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