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Abstract
In DiffusionWeighted MR Imaging (DWI), the signal is affected by the biophysical properties

of neuronal cells and their relative placement, as well as extra-cellular tissue compartments.

Typically, microstructural indices, such as fractional anisotropy (FA) and mean diffusivity

(MD), are based on a tensor model that cannot disentangle the influence of these parame-

ters. Recently, Neurite Orientation Dispersion and Density Imaging (NODDI) has exploited

multi-shell acquisition protocols to model the diffusion signal as the contribution of three tis-

sue compartments. NODDI microstructural indices, such as intra-cellular volume fraction

(ICVF) and orientation dispersion index (ODI) are directly related to neuronal density and

orientation dispersion, respectively. One way of examining the neurophysiological role of

these microstructural indices across neuronal fibres is to look into how they relate to brain

function. Here we exploit a statistical framework based on sparse Canonical Correlation

Analysis (sCCA) and randomised Lasso to identify structural connections that are highly

correlated with resting-state functional connectivity measured with simultaneous EEG-

fMRI. Our results reveal distinct structural fingerprints for each microstructural index that

also reflect their inter-relationships.

Introduction
Microstructural indices obtained from Diffusion Weighted Images (DWI) are hard to interpret
because of the difficulties in disentangling the contribution of different tissue compartments
[1, 2]. For example, tensor-based scalar invariants, such as fractional anisotropy (FA) and
mean diffusivity (MD), reflect several biophysical properties of neuronal cells, such as neuronal
density, fibre orientation dispersion, axonal diameter and degree of myelination [3, 4]. Neuro-
physiological interpretation of these parameters is further complicated because of variability in
neuronal packing and dispersion across white matter fibres.
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Recently, more biophysically plausible models have been developed to allow a better
description of the underlying tissue microstructure. Neurite Orientation Dispersion and Den-
sity Imaging (NODDI) exploits multi-shell DW-MRI acquisition protocols to model the diffu-
sion signal as the contribution of three compartments: intracellular, extracellular and
cerebrospinal fluid [5]. NODDI is an attractive biophysical model for describing the diffusion
process because it can be easily adopted and implemented on clinical systems [5–7].

One way of examining the neurophysiological role of these microstructural indices is to
look into how they relate to brain function. In fact, relating functional and structural connec-
tomes has become an increasingly attractive way to explore commonalities between multi-
modal measurements [8–14]. The success of these approaches is underlined by the fact that
there is strong coupling between functional and structural connectivity [11, 15, 16]. Further-
more, these commonalities are driven by neurophysiological factors, and are unlikely to result
from correlated artefacts or noise between the two modalities.

In our previous work, we have used simultaneous recordings of fMRI and EEG to relate
resting-state, whole-brain connectomes across frequency bands [17]. fMRI data represent
blood oxygen level-dependent (BOLD) contrast, which is an indirect measure of brain function
and limits the temporal resolution of neuronal fluctuations observed. On the other hand, EEG
measures electrical activity, which results directly from brain function. However, localising the
signal is challenging and has limited spatial accuracy. Therefore, combined recordings of EEG
and fMRI signals characterise the underlying neurophysiological events more accurately than
either of these modalities separately. We investigated neuronal activity in different frequency
bands because they subserve different roles. For example occipital alpha (α) and beta (β) bands
have been related to resting-state networks observed with fMRI [18, 19]. Filtering of the EEG
signal into different frequency bands also increase the signal-to-noise ratio and improves
source localisation [20].

We have previously derived fMRI connectomes based on the precision matrix of the rs-
fMRI time-series. EEG functional connectomes were derived for each of five frequency bands
(δ (1–4Hz), θ (4–8Hz), α (8–13Hz), β (13–30Hz) and γ (30–70Hz)), based on the inverse
covariance matrix of the band-limited power of the source-localised EEG time series, averaged
within brain regions [17]. In that work, the geodesic distance between fMRI and EEG brain
connectomes was smaller for the θ band. Furthermore, we had exploited a statistical framework
based on sparse Canonical Correlation Analysis (sCCA) to model the relationship between
multi-modal measurements of functional connectivity [21–23]. This allowed us to assign a
probability for each connection in each modality that reflected how significant it was in map-
ping one modality to the other via sCCA. This process is also called model identification in
machine learning, and it is used to select the model parameters, fMRI-EEG links, that we can
reliably consider to be nonzero [14].

Here, we have the opportunity to explore the relationship between functional brain connec-
tomes and structural brain connectomes based on the weighted average of microstructural
indices along fibre pathways, extracted using tractography. FA and MD are derived from the
traditional diffusion tensor model. On the other hand, we use NODDI to derive: i) intra-cellu-
lar volume fraction (ICVF), which is a marker of neuronal density, ii) orientation dispersion
index (ODI), which characterises the angular variation of neurites, iii) the concentration
parameter (κ) that measures the extent of orientation dispersion, and is analytically related to
ODI in a nonlinear way, and iv) the volume fraction of the isotropic compartment (ISO). We
are interested in modelling the relationship between functional and structural connectomes to
understand how different microstructure indices are related to brain function. To this end we
identify the structural connections that are strongly related to functional connectivity, with
selection rate significantly above chance.
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Our model identification results show that in ICVF and MD the structural connections that
mostly underpin functional connectivity are intra-hemispheric connections, whereas in ODI, κ
andWFA, structural connections that underpin functional connectivity are mostly interhemi-
spheric. The structural connections with the highest selection rate in predicting functional con-
nectomes derived from fMRI are also selected with high probability in predicting EEG
connectomes. Further pair-wise correlation analysis of the microstructural indices across white
matter connections demonstrates that FA correlates with ODI (R2 = 0.642), κ (R2 = 0.436),
WICVF (R2 = 0.219) and MD (R2 = 0.122). ODI and κ are correlated (R2 = 0.588), whereas
MD also correlates with ICVF (R2 = 0.49). A relationship also exists between ICVF and ISO
(R2 = 0.131). These relationships between microstructural indices support the model identifica-
tion results obtained.

Methods

Imaging
Imaging data from 17 adult volunteers (11 males, 6 females, mean age: 32.84 ± 8.13 years) were
acquired in a Siemens Avanto 1.5 T clinical scanner using a self-shielded gradient set with max-
imum gradient amplitude of 40 mT m−1. Data were acquired in two sessions:

i) Simultaneous resting-state EEG-fMRI were acquired with a standard 12 channel coil. The
subjects had their eyes open and were asked to remain awake and fixate on a white cross pre-
sented on a black background. Subjects were asked to remain still and their head was immobi-
lised using a vacuum cushion during scanning. The fMRI imaging acquisition was based on a
T2�-weighted gradient-echo EPI sequence with 300 volumes, TR/TE = 2160/30 msec, 30 slices
with thickness 3.0 mm (1mm gap), effective voxel size 3.3 × 3.3 × 4.0 mm, flip angle 75°, FOV
210×210×120 mm. Scalp EEG was recorded during the MRI scanning using a 64 channel MR-
compatible electrode cap (BrainCap MR, Gilching, Germany) at native frequency of 1000 Hz.
The electrodes were arranged according to the modified combinatorial nomenclature, refer-
enced to the FCz electrode. The electrocardiogram (ECG) was recorded, and EEG and MR
scanner clocks were synchronised. A T1-weighted structural image was also obtained.

ii) Structural data were acquired with a 32-channel head coil. The NODDI sequence optimi-
sation on the 1.5 T scanner follows the experiment design procedure in Alexander et al. [24]
with the NODDI model [5]. The a priori model parameter settings are: intracellular volume
fraction f = 0.3, 0.5, 0.7, intrinsic diffusivity d = 1.7 × 10−9 m2 s−1, perpendicular diffusivity set
according to the tortuosity constraint [25], Watson concentration parameter κ = 0.5, 2, 8, 32.
The scanner-specific sequence settings are: T2 = 80m s, Gmax = 40m T/m. Finally, we target a
total of 109 measurements to have a total acquisition time of around 16 minutes. The optimisa-
tion divides the measurements into three HARDI shells with b = 2400 s mm−2 (60 noncollinear
gradient directions and six b = 0 images), b = 800 s mm−2 (30 noncollinear gradient directions
and three b = 0 images) and b = 300 s mm−2 (9 noncollinear gradient directions and one b = 0
image) were acquired with a voxel matrix of 96×96, 60 contiguous axial slices, each 2.5 mm
thick, with 240×240×150 mm field of view (FOV), voxel size of 2.5×2.5×2.5 mm and TR/
TE = 8300/98 ms. We have kept the same TE across shells to avoid differences in T2 effects that
would need to be accounted for the diffusion model, and thus we avoided adding complexity.

High resolution T1-weighted whole-brain structural images were also obtained in both ses-
sions with voxel size of 1.0×1.0×1.0 mm, TR/TE = 11/4.94 ms, flip angle 15°, FOV
256×256×256 mm, voxel matrix 176 × 216 and 256 contiguous slices. The mean interscan
interval was 35 ± 41.6 days.

Ethical approval was obtained from the UCL Research Ethics Committee (project ID:4290/
001) and informed written consent was obtained from all subjects.
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Constructing Functional Connectomes
fMRI and EEG connectomes were derived according to our previous work [17]. Briefly, the
two T1-weighted images obtained per subject were processed with FreeSurfer to obtain a grey
matter (GM) parcellation into 68 cortical regions [26]. The first five volumes of the rs-fMRI
were removed to avoid T1 effects and images were preprocessed with FSL [27]. fMRI time-
series were averaged within each GM region and the precision matrix was used to estimate
fMRI functional connectomes [28]. EEG was corrected offline for scanner [29] and cardiac
pulse related artefacts [30] using Brain Vision Analyzer 2 (Brain Products, Gilching, Germany).
Subsequently, it was down-sampled to 250 Hz and further analysis was carried out with
SPM12b (www.fil.ion.ucl.ak.uk) [31]. This analysis included: i) band pass filtering into five
bands: δ (1–4Hz), θ (4–8Hz), α (8–13Hz), β (13–30Hz) and γ (30–70Hz). ii) Segmentation into
(fMRI) TR epochs (2.16 sec). iii) Definition of a head model based on a standard template head
model in SPM. iv) Definition of forward model based on the three-shell boundary element
model. v) Source localisation based on beamforming SPM toolbox [32, 33]. For each GM corti-
cal region, the EEG signal is projected from sensor space to points randomly drawn from the
region, independently for each subject. vi) Estimation of Hilbert envelope across the whole
source-localised time series. vii) Averaging the Hilbert envelopes within each GM region and
estimating the precision matrix to represent EEG functional connectomes.

Functional connectomes across all subjects, derived from both fMRI and EEG data, can be
found in the supplementary material, S1 Data. These are provided as the corresponding preci-
sion matrices.

Constructing Structural Connectomes
We used TractoR for preprocessing of the diffusion weighted images [34]. This involves con-
verting DICOM files into a 4D NIfTI file, identifying the volume with no diffusion weighting
to use as an anatomical reference, creating a mask to identify voxels which are within the brain,
and correcting the data set for eddy current induced distortions. The last two stages are per-
formed using FSL. Furthermore, the gradient vectors are corrected retrospectively to account
for eddy current induced distortions [34].

Fractional anisotropy (FA) and mean diffusivity (MD) were estimated with TractoR based
on a tensor model fitted in each voxel. For the NODDI data we concatenated the three shells
with b-values of 2400 s mm−2, 800 s mm−2 and 300 s mm−2 in one shell, along with the b = 0
images acquired in each shell. Subsequently, we used TractoR, which wraps FSL, for eddy cur-
rent correction along the concatenated volume of images. We used the NODDI Matlab
toolbox to extract ICVF, ODI, ISO and κ[5]. A ball and two sticks multi-compartment fibre
model was fitted to the shell of diffusion data acquired with b = 2400 s mm−2, using the Bayes-
ian Estimation of Diffusion Parameters Obtained using Sampling Techniques (BEDPOSTX)
algorithm in FSL [35]. Subsequently, we ran probabilistic tractography, implemented in Trac-
toR, for each dataset. We seeded 100 streamlines from each white matter voxel, and tracking
was terminated when both ends of a track reached a cortical target region.

Structural brain connectomes are described as graphs, with nodes corresponding to ROIs
and edges defined based on either the number of streamlines or as weighted averages of micro-
structural indices. In weighted averages, weights reflect the number of streamlines that pass
through each voxel of the tract. Weighted averages minimise the influence of voxels that are
unlikely to belong to the tract. Below we describe the construction of each microstructural
index: i) As the number of fibres that connect the regions, divided by the average number of
voxels within the two end-point ROIs (NSTREAMS). ii) As the weighted average of FA along
the streamlines that connect the two regions (WFA). iii) As the weighted average of MD along
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the streamlines that connect the two regions (WMD). iv) As the weighted average of ICVF
along the streamlines that connect the two regions (WICVF). v) As the weighted average of
ODI along the streamlines that connect the two regions (WODI). vi) As the weighted average
of ISO along the streamlines that connect the two regions (WISO). vii) As the weighted average
of the κ along the streamlines that connect the two regions (Wkappa). We used an anisotropy
threshold of FA> 0.2 for seeding in tractography to reduce spurious streamlines. In this way,
we produce seven structural brain connectomes for each subject.

Structural connectomes across all subjects and microstructural indices can be found in the
supplementary material, S1 Data.

Predictive modelling of functional from structural connectomes based on
sCCA
Building upon our previous work, we are interested in sparse sets of associated variables that
maximise the relationship between functional Y and structural connectomes X across subjects
[17]. Y is an ky ×mmatrix, with ky the number of functional connection across all subjects and
m the number of subjects. X is an kx ×mmatrix with kx the number of structural connections
across subjects. Regularisation via the introduction of sparsity constraints is important in situa-
tions where the number of observations is much lower than the number of variables [14, 21,
36]. Therefore, we adopt sparse CCA (sCCA), which aims to find two sparse canonical vectors,
u and v, subject to L1 penalties, such that the projections of X and Y onto these vectors, respec-
tively, are maximally linearly correlated [21, 22]. More details about this framework can be
found in our previous work [17].

Identification of the most relevant connections based on sCCA. Identification of the
most relevant connections is important to provide biological interpretation of the mapping of
structural to functional connections. However, devising a statistically sound way to accept or reject
the null hypothesis is challenging because of the complexity of the underlying inference problem
[14, 17]. To this end, in [17] we modified sCCA based on the randomised Lasso principle [23].

Here, we adopt this approach and we use bootstrap with resampling to extract the connec-
tions that are consistently selected. In each bootstrap iteration we set the number of canonical
variates to K = 1, which simplifies interpretation. Therefore, we estimate the probability of
selecting a connection as the number of times the connection has been selected over the num-
ber of total bootstrap iterations. Note that the parameters that control sparsity remain the same
through out the bootstrap iterations and across all microstructural indices. In other words, the
sparsity of the sCCA loadings remains constant, and reflects the probability of a connection by
chance. Subsequently, we use the lower and upper tail of the binomial distribution to test
whether a connection is selected or rejected significantly above chance, respectively.

Results
Fig 1 shows the structural connections that are present across all subjects and used in the sCCA
framework. Note that sCCA standardises the connectivity values across each connection, so
that they have zero mean and unit standard deviation. It is not appropriate to represent missing
connections with zeros, since microstructural indices cannot be calculated in these cases.
Instead connections that are missing in any subject are excluded. The remaining connections
are shown with both a symmetric, 68 × 68 binarised connectivity matrix and a three-dimen-
sional graph. In three-dimensional graphs, each region is represented as a blob with size pro-
portional to the corresponding size of the FreeSurfer region. The bottom left matrix quadrant
represents connections within the left hemisphere, the top right represents connections within
the right hemisphere, and the remaining quadrants represent interhemispheric connections.

NODDI and Tensor-Based Microstructural Indices as Predictors of Functional Connectivity
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Figs 2 and 3 show probability maps for tensor and NODDI microstructural indices, respec-
tively. These probability maps are represented as 68 × 68 symmetric, square arrays with a value
in each cell that represents the probability of each structural connection to be selected. The
probability values have been estimated as the ratio of the times each connection has been
selected over 1000 bootstrap with replacement in a sCCA framework with randomised Lasso.

From an average of 453 ± 16 structural connections across bootstrap iterations 20 ± 1.8 are
selected in each iteration. Based on a uniform distribution each connection has a probability of
0.044 to be selected by chance. For each of the probability maps presented in Figs 2 and 3, we
use the upper bound of the lower tail of a binomial distribution to reject connections with
probability significantly lower than chance (p< 0.05). Furthermore, we use the lower bound of
the upper tail of the binomial distribution to highlight connections with probability of selection
significantly above chance (p< 0.05).

Fig 4 shows a representative example of the application of the binomial distribution on the
probabilities of structural connections derived with sCCA across all bootstrap iterations. In
particular, we show structural WICVF-weighted connections derived with sCCA between
WICVF and the δ EEG connectomes. We show the average canonical correlation coefficient
weights of the structural connections. From left to right, we see all the connections, Fig 4a, the
connections that are rejected with probability significant above chance, Fig 4b, the remaining
connections once we remove the rejected connections, Fig 4c and the connection that are
selected with probability significantly above chance, Fig 4d.

We follow this process for each combination of electrophysiological band and microstruc-
tural index. Fig 5 summarises the structural connections that have been selected with probabil-
ity significant above chance. We observe that in WMD andWICVF the relationship between
function and structure is mediated by intra-hemispheric connections, whereas in WFA, WODI
andWkappa interhemispheric connections play a significant role. Similar patterns of selected
structural connections emerge when we examine the pair-wise relationships of microstructural
indices and rs-fRMI connectomes, Fig 6.

Fig 1. Structural connections that are present across all subjects and used in the sCCA framework.
The subfigure on the left shows the structural connections represented as a symmetric, 68 × 68 binarised
connectivity matrix. The bottom left matrix quadrant represents connections within the left hemisphere, the
top right represents connections within the right hemisphere, and the remaining quadrants represent
interhemispheric connections. The subfigure on the right shows the same connections represented as a
three-dimensional graph. Each region is represented as a blob with size proportional to the corresponding
size of the FreeSurfer region.

doi:10.1371/journal.pone.0153404.g001
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To better understand how microstructural indices relate across subjects, we concatenated
the connectivity values across all subjects into columnwise vectors for each index. Fig 7 shows a
scatter plot of each pair of microstructural indices. We observe that WFA is relatively corre-
lated with Wkappa and anti-correlated with WODI, whereas WMD is anti-correlated with
WICVF. In particular, pair-wise correlation analysis of the averaged microstructural indices
across white matter connections demonstrates that FA correlates with ODI (R2 = 0.642), κ (R2

= 0.436), WICVF (R2 = 0.219) and MD (R2 = 0.122). ODI and κ are correlated (R2 = 0.588),
whereas MD also correlates with ICVF (R2 = 0.49). A relationship also exists between ICVF
and ISO (R2 = 0.131).

Discussion
We have developed a framework based on statistical prediction to relate functional and struc-
tural connectomes across microstructural indices. We used a multivariate approach based on
sCCA that allows detection of linear relationships between two sets of variables and it is closely
related to multivariate multiple regression analysis [37]. sCCA only encodes linear relation-
ships between structure and function. An advantage of this is that it enables a considerable
reduction in computational complexity. Recent work also supports the idea that linearisation
allows a compact relationship between the covariance matrix of functional and structural con-
nectivity and it results in statistically meaningful conclusions [11, 14]. Note that a linear

Fig 2. Probability maps for tensor-basedmicrostructural indices, respectively. These probability maps are represented as 68 × 68 square arrays with a
value in each cell that represents the probability of each structural connection to be selected during randomised Lasso bootstrap iterations. NSTREAMS
represent that the underlying structural connectivity matrices were derived based on the number of streamlines divided by the average number of voxels
within the two end-point ROIs. WFA andWMD reflect that the underlying structural connectivity matrices are derived as a weighted average of the fractional
anisotropy (FA) and the mean diffusivity (MD) along the streamlines, respectively. On the other hand, δ, θ, α, β and γ represent that the underlying EEG
functional connectivity matrices have been derived based on bandpass filtering in five frequency bands 1–4Hz, 4–8Hz, 8–13Hz, 13–30Hz and 30–70Hz,
respectively.

doi:10.1371/journal.pone.0153404.g002
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relationship has also been found between in vivo measurements of axon diameter from
DW-MRI and conduction velocity from electrophysiological data [38].

Since only a few measurements/subjects are available to infer relationships for hundreds of
connections, we chose sparse CCA for regularisation. Regularisation is introduced via sparsity
constraints for both the prediction and the predicted variables. Here, variables are the struc-
tural and functional brain connections derived from the vectorisation of the upper triangular
part of the corresponding connectivity matrices.

Subsequently, we used a randomised Lasso procedure to assign a probability for each con-
nection, which reflects the fraction of times it has been selected during all bootstrap iterations.
Randomised Lasso improves the sparse recovery properties of Lasso because it decreases the
dependence of the selected coefficients on the initial choice of regularisation parameters.
Finally, we devised a null hypothesis based on the binomial distribution, which allows us to

Fig 3. Probability maps for NODDI-basedmicrostructural indices, respectively. These probability maps are represented as 68 × 68 square arrays with a
value in each cell that represents the probability of each structural connection to be selected during randomised Lasso bootstrap iterations. WICVF, WODI,
WISO andWkappa reflect that the underlying structural connectivity matrices are derived as a weighted average of the intra-cellular volume fraction (ICVF),
the orientation distribution index (ODI), the isotropic compartment (ISO) and the kappa parameter, respectively, along the streamlines. On the other hand, δ,
θ, α, β and γ represent that the underlying EEG functional connectivity matrices have been derived based on bandpass filtering in five frequency bands
1–4Hz, 4–8Hz, 8–13Hz, 13–30Hz and 30–70Hz, respectively.

doi:10.1371/journal.pone.0153404.g003
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Fig 4. An example of the application of the binomial distribution on the structural WICVF-weighted
connections derived with sCCA betweenWICVF and the δ EEG connectomes.We show the averaged
canonical correlation coefficient weights of the structural connections. Fig 4a shows all the available
structural connection, Fig 4b shows the connections that are rejected with probability significant above
chance, Fig 4c shows the remaining connections once we remove the rejected connections and Fig 4d
shows the connections that are selected with probability significantly above chance.

doi:10.1371/journal.pone.0153404.g004

Fig 5. Structural connections that have been selected with probability significant above chance for
each pair of electrophysiological band andmicrostructural index.

doi:10.1371/journal.pone.0153404.g005
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both identify connections that are selected significantly above chance and to also reject connec-
tions with a probability significantly lower than chance. This is a contribution that improves
upon our previous work as it introduces an objective way to control the false positive rate.

Our results show that there is a strong relationship between WODI and WFA as well as
between WICVF andWMD. In fact, pairwise correlations of the microstructural indices reveal
that FA is related to ODI and κ, whereas MD is related both to ICVF and ISO. These are

Fig 6. Structural connections that have been selected with probability significant above chance for rs-
fMRI connectomes and eachmicrostructural index.

doi:10.1371/journal.pone.0153404.g006

Fig 7. Pairwise relationships of microstructural indices.

doi:10.1371/journal.pone.0153404.g007
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expected results given what these parameters measure, which it is highlighted further below.
Note also that ODI is related to κ via a nonlinear relationship: ODI = 2/π � arctan(1/κ).

It is significant that these relationships between microstructural indices also emerge in the
spatial pattern of structural brain connections selected as the most predictive of functional con-
nectivity. For example, the structural brain connections derived from either WICVF or WMD
that contribute mostly to the prediction of functional connectomes are predominately intrahe-
mispheric connections. On the other hand, the structural brain connections derived from
either WODI, Wkappa andWFA that contribute the most to the prediction of functional con-
nectomes are predominately interhemispheric connections. The fact that these relationships
emerge from a data-driven analysis of the relationship between functional and structural con-
nectomes for both fMRI and EEG brain connectomes provides substantial evidence for the face
validity of the suggested approach.

Our analysis is important for several reasons. It highlights that FA and MD as well as ICVF,
ODI and ISO provide complementary information, since the identified structural fingerprints
are substantially different. Pair-wise correlations of microstructural indices offer limited infor-
mation about brain connectivity. It is only indicative of averaged whole-brain relationships of
structural connectivity. The proposed methodology not only relates structural with functional
brain connectivity but it also provides information about which specific connections are
involved in this relationship.

These results are consistent with literature that shows that interhemispheric FA correlates
with the underlying resting-state functional connectivity in several types of pathological net-
works, such as in Alzheimer’s disease [39] and migraine patients [40]. In previous work, we
have also found that interhemispheric connections were most influential in the principal com-
ponent that predicted IQ across late childhood and adolescence, irrespective of age or gender
[41]. Although, FA has been used extensively as a measure of white matter integrity, it is under
debate what are the exact neurophysiological factors that contribute to the anisotropy observed
[42]. For example, cell membranes, myelin sheath, axonal density and axonal diameter as well
as structure of surrounding tissues all have an impact on anisotropy. Recent literature also sup-
ports the idea that FA is sensitive both to the cells anisotropic structure and their orientation
dispersion [43].

On the other hand, ODI is designed to capture mainly the orientation dispersion of neurites.
Some dependence of ODI on axon diameter might still exist, since NODDI has simplified the
diffusion model by omitting the axon diameter of neurites in order to achieve a clinically feasi-
ble imaging protocol [5, 44]. Here we demonstrated that both neurite density and dispersion
contribute to FA, whereas ODI resolves this dependency.

We observed profound similarity between MD and ICVF structural fingerprints related to
resting-state function. MD changes have been related to neural plasticity, though the cellular
underpinnings are also unknown. Several studies provide evidence of experience-dependent
white matter changes that may not be driven by changes to myelination but probably reflect
cellular adaptations, such as astrocyte swelling, synaptic changes, dendritic spine changes, and
so on [45, 46].

Our results might indicate that depending on neuronal packing and orientation dispersion,
different parameters of the same diffusion model become more or less relevant in characteris-
ing the link between function and structure. This might have important implications for stud-
ies that examine brain connectivity based on tractography and demonstrate differences in FA
due to a disease process or ageing. For example, if FA characterises function better in inter-
hemispheric connections then results might be biased towards finding differences in those con-
nections. This does not preclude that differences in actual tissue microstructure do not exist in
other connections. But it rather indicates that FA is not sensitive enough to capture them.

NODDI and Tensor-Based Microstructural Indices as Predictors of Functional Connectivity
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Furthermore, recent evidence suggests that the relationship between functional and struc-
tural connectomes changes during disease processes. For example, in Alzheimer disease a sig-
nificant decrease in the coupling between functional and structural connectivity was observed
[47]. In schizophrenia, this coupling was increased though there was significant reduction in
both functional and structural connectivity [48]. These results may reflect disease-specific
mechanisms but their interpretation is not trivial. Most of these studies estimate the coupling
between function and structure based on the correlation coefficient across all connections. This
approach ignores the network organisation of the human brain that results in multivariate
interactions among connections, ie. the influence that one connection exerts over another [14,
49]. Our work can account for these because we have built a multivariate intersubject predic-
tion framework that could capture the influences one connection has over another.

Interpreting structural connectivity correctly is challenging for several reasons and below
we discuss further some of these challenges with relation to our work. Firstly, more than 90%
of white matter voxels contain information from multiple distinct fibre populations [50].
Therefore, constructing structural connectivity maps by averaging DTI-derived measures, such
as FA and MD, across streamlines is not accurate. A number of alternative approaches have
been proposed, such as the apparent fibre density, which is based on the assumption that intra-
axonal water is restricted in the radial direction [50]. Furthermore, the hindrance-modulated
orientation anisotropy has been introduced, which is defined as the absolute amplitude of each
lobe of the fiber orientation distribution [51]. There is a fundamental difference between these
previous approaches and our work. Both of these measurements are derived from the high b-
value HARDI shell alone, and share much of the information contained already within the
derived tractogram. Here we aimed towards a more independent measure of tissue microstruc-
ture based on NODDI, which is a tissue compartment-based modeling technique that makes
use of multi-shell diffusion data.

On the other hand, it has been suggested to retrospectively improving the reconstruction of
streamlines to address the limited biological accuracy of structural brain networks derived
from DWI [52]. Selective filtering of the streamlines derived from the tractogram is applied, so
that the fit between the streamline reconstruction and underlying diffusion images is improved.
This approach has some similarities with the idea behind global tractography [53], which fits
the signal across the whole streamline and results in more accurately structural brain networks
at the expense of complexity and time required to run the algorithm [54]. This limits the num-
ber of streamlines that can be generated. Therefore, it has been suggested to generate a large
number of streamlines with the traditional approaches and then choose a subset that best
matches the diffusion signal, to improve the accuracy of the derived structural connectomes.
Similarly, to apparent fiber density and the hindrance-modulated orientation anisotropy, the
derived tractograms does not result in independent measurements of structural brain connec-
tivity. Furthermore, this approach cannot improve the false negative rate, which results in
sparse inter-hemispheric connectivity.

Independence between the tractograms and the microstructural measurements becomes
important when we examine their pairwise relationship, Fig 7. These correlations should be
indicative of the inherent relationship of the microstructural indices. Subsequently, the identifi-
cation of relevant connections derived for each microstructural index, Figs 5 and 6, reflects
how well the index can characterize the underlying connection independently of the tracto-
gram used. We speculate that some indices may be able to characterize some functional con-
nections better than others and vice-versa. Nevertheless, we do not claim that our results are
fully independent of the tractograms. Future work should focus on eliminating false negative
connections and investigating how this affects the results. Furthermore, our work does not aim
to exhaustively compare microstructural indices and it likely that other metrics could provide
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more direct measurements [50, 51]. Here, we have set a general modeling framework of func-
tional from structural connectivity that could facilitate towards this direction.

An important limitation in our work is that we have excluded the connections that were
absent in one or more subjects, as it is unclear how to handle missing values in the sCCA
framework. This mostly affects interhemispheric connectivity, because interhemispheric con-
nections are long connections. This is in agreement with literature that reports that tractogra-
phy algorithms underestimate long-range connectivity [42, 55, 56]. These studies
demonstrated that probabilistic tractography algorithms favour the shortest, simplest and
straightest paths. We should point out that this lack of inter-hemispheric structural connectiv-
ity is not unique to the tractography algorithm we have used in this study. In fact, it has been
also replicated independently with other state-of-the-art tractography approaches that model
the fibre orientation density function from diffusion-weighted MRI data using constrained
spherical deconvolution (CSD) [57].

We used the two compartments ball-and-sticks model. This fiber orientation model is still
considered a state-of-the-art approach and it compares well with CSD approaches [58].
Although, spherical deconvolution approaches have higher fiber detection rate, we do not
expect substantial changes to the results. Moreover, our previous work has shown that there is
considerable agreement between the connectomes derived with CSD approaches and the ball-
and-sticks connectomes [59].

Partial volume effects caused by non-WM tissue at the boundaries between WM and GM
are apparent in both CSD and ball-and-sticks approaches [60]. Recently, multi-shell CSD
methods have been proposed to address limitations of CSD in voxels containing GM and cere-
brospinal fluid [61]. This is likely to affect the termination of streamlines. In our study, we used
prior anatomical knowledge based on T1-weighted images, which have been preprocessed with
FreeSurfer to accurately segment white matter, gray matter and CSF, and parcellate gray matter
regions of interest. Subsequently, we transfer this parcellation to Diffusion Weighted space
with non-rigid registration. Streamlines are terminated when they reach a gray matter region
based on anatomical prior similar to previous work. This is a relatively accurate approach that
has been used in several clinical studies. It has been reported that further upsampling in the dif-
fusion weighted images reduces partial volume effects [62]. Their results show to improve the
recovery of streamlines unilaterally in specific areas. Nevertheless, this funding could not
explain why inter-hemispheric connectivity is sparser than intra-hemispheric connectivity.

We chose to use only cortical gray matter regions for three major reasons. Firstly, adding
more brain regions to the brain connectivity model increases the complexity quadratically,
whereas the number of available observations/subjects remains the same. Therefore, including
more regions it is likely to result in substantial reduction of the sensitivity of the proposed
framework. Secondly, the accuracy of source reconstruction of EEG signals in deep gray matter
regions is substantially less accurate, with a major decrease to the signal to noise ratio [17].
This will further complicate the interpretation of the results. Finally, appropriate determination
of streamline termination in deep gray matter region is also more challenging. Therefore, limit-
ing the current study to cortical regions is a reasonable choice.

Although, the signal to noise ratio (SNR) at 1.5T is less than in higher fields, it is unlikely to
cause a large difference in the results. Firstly, the SNR in fMRI is dominated by factors associ-
ated with temporal stability and physiological noise, which reduces the advantage of higher
field strengths. In fact, fMRI signal degradation due to the EEG cap is lessened at 1.5T [63].
The low magnetic field at 1.5T is also advantageous for EEG quality due to the reduction in car-
diac-related and motion artefacts. Note that our specialized EEG equipment is designed to lim-
its artefacts at 1.5 and 3T to the skull and skin [64, 65]. Finally, one of the advantages of 1.5T
for diffusion imaging is the longer T2 than at 3 T. This turns out to not only compensate for the
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reduction in SNR due to field strength difference, but also supports the larger b-value of 2400,
higher than the corresponding value at 3 T, which is 2000.

Supporting Information
S1 Data. The supplementary data file contains. a) Functional connectivity matrices, both
fMRI and EEG connectomes across all subjects, in the form of precision matrices and b) struc-
tural brain connectivity matrices across all subjects and microstructural indices. Columns and
rows are named according to the corresponding brain region that represent.
(ZIP)
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