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Identifying local extinctions is integral to estimating species richness and geo-

graphic range changes and informing extinction risk assessments. However,

the species occurrence records underpinning these estimates are frequently

compromised by a lack of recorded species absences making it impossible to

distinguish between local extinction and lack of survey effort—for a rigorously

compiled database of European and Asian Galliformes, approximately 40% of

half-degree cells contain records from before but not after 1980. We investigate

the distribution of these cells, finding differences between the Palaearctic

(forests, low mean human influence index (HII), outside protected areas

(PAs)) and Indo-Malaya (grassland, high mean HII, outside PAs). Such cells

also occur more in less peaceful countries. We show that different interpret-

ations of these cells can lead to large over/under-estimations of species

richness and extent of occurrences, potentially misleading prioritization and

extinction risk assessment schemes. To avoid mistakes, local extinctions

inferred from sightings records need to account for the history of survey

effort in a locality.
1. Introduction
Identifying local extinctions is central to documenting changing geographic

ranges and informing assessments of species extinction risk. However, species

records are frequently collected opportunistically, and so tend to be presence-

only, i.e. recorders report what they see but do not record what they did not

see/where they did not survey. It is then impossible to establish if a species

is present but not recorded, or genuinely absent.

Local extinction can be inferred using a time-series of sightings, providing the

area has experienced some continuing survey effort [1]. However, survey effort is

often heavily biased in time and space [2] and, in the past 40 years or so, biodiver-

sity records have become increasingly focused on areas of high biodiversity,

conservation value and protection [3]. In the absence of any information on

survey effort, assumptions have to be made about data-absences, either that

no local extinctions have occurred, or that all recent data-absences reflect local

extinction. Alternative assumptions can use records of other species to estimate

the survey effort. These assumptions have potentially significant impacts on

biodiversity metrics such as species richness or range area.
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Survey effort may vary predictably. For example, it might

be lower in areas where there are few national resources for

monitoring, high levels of warfare/political instability, low

human influence (e.g. low human population density, lack of

transport infrastructure) and low levels of biodiversity. It

might vary with vegetation type, with some biomes being

easier to survey and more commonly visited. On the other

hand, destruction of natural vegetation or areas of high

human influence might be an indication of true local extinction.

Here, we test these predictions using a near-exhaustively

compiled database of historical and contemporary location

records of species in the avian order Galliformes [3]. We

(i) explore the distribution of missing data in relation to

geographical, ecological and socio-political factors and

(ii) investigate the effect that the uncertainty over local extinction

has on estimates of species richness and geographic range size

calculated under four alternative assumptions about missing

presence/absence information.
2. Material and methods
(a) Species occurrence and distribution data
Species occurrence data were collected for the 126 species of

Galliformes found in the Palaearctic and Indo-Malaya ([3,4];

electronic supplementary material, S3). The database contained

153 150 records, dating from 1727 to 2008, although records increase

markedly through time (electronic supplementary material, S4).

Records of species sightings at a point locality (there is no non-

sighting information) were included only if they could be accurately

dated to within +10 years, or if the record was known with

confidence to have been made before or after 1980. 1980 was

chosen as it represents a period of rapid change in many anthropo-

genic processes [5] and provides a good sample of before and

after observations. We aggregated the point locality data into a

Behrmann equal area projection, using a grid with cells measuring

48.24 � 48.24 km (approx. half-degree resolution). Grid cell

size was chosen to maximize spatial resolution within the

constraints of the spatial accuracy of our data, which was

approximately half-degree.
(b) Spatial distribution of data-absent cells
We defined a ‘data-absent’ cell as one that contained at least one

record of one species pre-1980, but no records of any species after

1 January 1980, and we studied their distribution at two spatial

scales: local- and country-level.

Local-level processes were explored using half-degree cells.

We hypothesized that the occurrence of data-absent cells

would be affected by (i) biogeographic realm (via a differing

history of anthropogenic land conversion and scientific infra-

structure); (ii) land cover type (via ease of access for both

habitat conversion and conducting surveys); (iii) protected area

(PA) status (local extinctions may be more likely to occur outside

PAs, PAs may be more attractive to recorders owing to high bio-

diversity and greater accessibility) and (iv) mean human

influence index (HII) [6] per cell (areas of high HII are likely to

be both more accessible and more closely associated with local

extinction). Cells were allocated to the biogeographic realm,

country and land cover type (forest, grassland/shrubland and

anthrome, as estimated for 1970, by the HYDE 2.0 model [7])

in which their centroid fell, meaning some coastal cells were

excluded. A cell was designated as being within a PA if any

part overlapped a PA [8].

We used a binomial generalized linear model with post-

1980-data-absence as the binomial response and land cover type
(categorical), PA coverage (binomial) and mean HII (continuous)

as the explanatory variables (electronic supplementary material,

S1). Owing to their different histories of anthropogenic transform-

ation [9], we did not expect the same model to fit the Palaearctic and

Indo-Malaya, thus we performed individual analyses for each

realm. All statistical analyses were performed in R [10].

At the country level, we hypothesized that data-absent cells

would be more likely to occur in countries with fewer financial

resources, greater levels of violence/political instability and with

an official language that was not English (in collating the data,

we might have missed foreign language literature). We performed

a generalized linear model on the proportion of data-absent cells

per country relative to total cells surveyed against the log of

gross domestic product (GDP) per capita for 2008 [11,12], the

global peace index (GPI) (compiled from 23 indicators such as

homicide rates, UN peacekeeping funding) [13], and the binary

variable of English as an official language [14] (electronic

supplementary material, S2). Covariates were checked for colli-

nearity. We took an information-theoretic approach, ranking

possible models by AICc values using R’s MuMIn package [15].

Models that were within two AICc units of the top ranked model

were examined but were not interpreted as being truly competitive

if they differed from the best model by one parameter and had

essentially the same values of the maximized log-likelihood as

the best model [16].

(c) The effect of uncertainty on biodiversity metrics
We estimated the two biodiversity metrics, (i) species richness

(no. species per cell) and (ii) species geographic range size (via

extent of occurrence (EOO), calculated in ARCGIS v. 10.0 using

a convex hull) for the post-1980 period. We chose EOO as a

measure of range, because it should be more robust than area

of occupancy to alternative interpretations of data-absence.

These two biodiversity metrics were compared using four

different assumptions about the status of species in data-absent

cells. Assume

(i) all species that were recorded historically remain extant,

i.e. there has been no local extinction, and data-absence

is owing to lack of recording effort.

(ii) the likelihood of the species remaining extant within each

cell can be inferred from the prior pattern of observations

(see electronic supplementary material, S5). Unlike almost

all published sighting-rate models [1], our method allows

survey effort to fall to zero at any period in the time-

series. Sightings occur in a Poisson process with a rate

depending on both species presence and survey effort,

enabling a resighting probability to be calculated that is

used with a threshold of 0.5.

(iii) the species is locally extinct if there is no record of it after

1980 but at least one other species has been recorded in

the cell in this time period.

(iv) a species is locally extinct unless it has been recorded

post-1980.

3. Results
In total, 8672 cells had at least one record from any point in

time. Of these cells, almost 40% (3493) were ‘data-absent’

cells, i.e. contained records before but not after 01 January

1980 (figure 1).

(a) Spatial distribution of data-absent cells
In the Palaearctic, data-absent cells, i.e. cells with records

dating from before but not after 1980, were significantly more

likely to occur outside PAs, in anthromes and grasslands as

http://rsbl.royalsocietypublishing.org/


Figure 1. The distribution of data-absent cells, i.e. cells containing at least one record from before 1 January 1980, but no records after this time.
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opposed to forests and in areas of lower mean HII (electronic

supplementary material, S6). In Indo-Malaya, data-absent

cells were also significantly more likely to be found outside

PAs but in contrast to the Palaearctic, data-absent cells were

more likely to be found in areas of high mean HII and in

grassland (electronic supplementary material, S6).

The lowest AICc model contained one predictor, GPI

rank, with more peaceful countries having proportionately

fewer data-absent cells (b ¼ 0.305+ 0.066; electronic sup-

plementary material, S7). GPI rank was also included in the

two models that were within two AICc units of the lowest

AICc model (electronic supplementary material, S7). These

models give weak support to the hypotheses that the percen-

tage of data-absent cells within a country decreases as GDP

increases and is lower for countries with an official language

that is not English. However, we did not interpret these

models as competing with the lowest AICc model, because

the addition of one parameter did not make a difference to

the log-likelihood [16].

(b) Species richness
Species richness per cell differed markedly depending on the

assumption made about local extinction (electronic supplemen-

tary material, S8). For example, the number of cells with five or

more species present post-1980 (approx. the 10% most species-

rich cells) under each assumption is as follows (i) 1153; (ii) 833;

(iii) 682 and (iv) 631. Such species richness counts are particu-

larly strongly affected in the Himalayas, central India and

Southeast Asia (electronic supplementary material, S9).

(c) Geographic range size
While 30 species’ distributions were sufficiently evenly

sampled for the most pessimistic assumption (iv) of their geo-

graphical range size to be more than 90% of the most optimistic

assumption (i), the EOO estimates were under half the size of

their upper limit for 21 species in assumption (ii) (electronic

supplementary material, S10); 23 species in assumption

(iii) and 28 species in assumption (iv) (figure 2). The EOO esti-

mates were particularly affected in central India, Southeast

Asia and the eastern Palaearctic.
4. Discussion
Our first analysis examined factors associated with high fre-

quencies of data-absent cells in our database and showed

that their distribution differs between the Palaearctic and

Indo-Malaya. By 1700, land in Europe was mostly trans-

formed, whereas Asia was only just beginning to undergo

conversion that intensified in the twentieth century [9]. The

first wave of Palaearctic local extinctions thus occurred

much earlier, whereas our analysis should have captured

the Indo-Malayan events. The association of data-absence

with low mean HII in the Palaearctic may therefore be

explained by low survey effort and the association with

high mean HII in Indo-Malaya by local extinctions. More

difficult to explain is the effect of land cover on data-absence.

In the Palaearctic, data-absence was associated with forest but

in Indo-Malaya, with grassland. Forests, as the least accessi-

ble vegetation, may be more likely to experience low survey

effort, whereas data-absence in grasslands, a far greater pro-

portion of which experienced conversion [17], is more likely

to be owing to local extinction. However, following this logic,

we would expect a high number of local extinctions to occur

in Indo-Malayan anthromes, of which we found no evidence.

Data-absent cells were more likely to occur outside PAs

in both realms, presumably, because (i) PAs should be prevent-

ing local extinctions and (ii) scientists and eco-tourists are

more likely to visit PAs owing to their greater abundance of

biodiversity and accessibility.

At the country-scale, higher proportions of data-absent

cells occurred in less peaceful countries, perhaps owing to

lower survey effort. Although GDP per capita and English-

as-an-official-language were not in the best-ranked model,

including them as covariates did not increase the model’s

AICc substantially and thus, there is some weak support for

them as predictors. Lower GDP per capita was associated

with data-absence, perhaps owing to lower scientific resources

that could lead to both lower survey efforts and conservation

outcomes. Countries with English as an official language had

a lower percentage of data-absent cells, and it is possible that

we missed records because of language constraints.

Our analysis showed that different assumptions about data-

absent cells can strongly affect estimates of local species richness

http://rsbl.royalsocietypublishing.org/
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Figure 2. The size of the area of each species’ EOO under each assumption as
a percentage of its most conservative value (assumption (i)). The thick black
line shows the median values.
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and geographic range size. In the biodiversity-rich areas of the

Himalayas and Southeast Asia, species counts per cell differed

by up to 17 species (100%) depending on how the data-absences

were treated, compromising the designation of local richness

hotspots. EOO estimates were particularly affected by data-

absent cells in central India, Southeast Asia and the eastern

Palaearctic. Using time-series data to infer extinction (assump-

tion (ii)) yielded approximately 28% fewer species-rich cells
than assuming no local extinction (assumption (i)) but nearly

25% more species-rich cells compared with relying on recent

data alone (assumption (iv)) and approximately 18% more

than assumption (iii), thus in the absence of more complete

data seems a sensible compromise. The difference between

assumptions (ii) and (iii) with respect to EOO was far less pro-

nounced, with a mean difference in area of only 4%, suggesting

that for this measure, at least, a very simple extinction inference

model such as assumption (ii) may suffice. However, an under-

standing of the history of survey effort in an area (as in

assumptions (ii) and (iii)) is required for species data to be

interpreted for conservation planning.

If the current spatial bias in biodiversity monitoring is not

resolved, then inferring future extinctions will become even

more problematic in the absence of a spatially representative

present-day biodiversity baseline. If monitoring efforts were

to be expanded, then one sensible priority would be in

areas with accessible historical data.

Overall, our analyses show that the assumptions used to

infer local extinction can have a large impact on estimates

of species richness and geographic range change. Ultimately,

it is critical to ensure that survey effort is accounted for, and

that any uncertainties are transparently represented.
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