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Abstract

Background: Several mapping algorithms have been published with the EORTC-QLQ-C30 for estimating EQ-5D-3L
utilities. However, none are available with EQ-5D-5L. Moreover, a comparison between mapping algorithms in the
same set of patients has not been performed for these two instruments simultaneously. In this prospective data set
of 100 non-small cell lung cancer (NSCLC) patients, we investigate three mapping algorithms using the EQ-5D-3L
and EQ-5D-5L and compare their performance.

Methods: A prospective non-interventional cohort of 100 NSCLC patients were followed up for 12 months. EQ-5D-3L,
EQ-5D-5L and EORTC-QLQ-C30 were assessed monthly. EQ-5D-5L was completed at least 1 week after EQ-5D-3L. A
random effects linear regression model, a beta-binomial (BB) and a Limited Variable Dependent Mixture (LVDM) model
were used to determine a mapping algorithm between EQ-5D-3L, EQ-5D-5L and QLQ-C30. Simulation and cross
validation and other statistical measures were used to compare the performances of the algorithms.

Results: Mapping from the EQ-5D-5L was better: lower AIC, RMSE, MAE and higher R2 were reported with the EQ-5D-5L
than with EQ-5D-3L regardless of the functional form of the algorithm. The BB model proved to be more useful for both
instruments: for the EQ-5D-5L, AIC was –485, R2 of 75 %, MAE of 0.075 and RMSE was 0.092. This was –385, 69 %, 0.099
and 0.113 for EQ-5D-3L respectively. The mean observed vs. predicted utilities were 0.572 vs. 0.577 and 0.515 vs. 0.523 for
EQ-5D-5L and EQ-5D-3L respectively, for OLS; for BB, these were 0.572 vs. 0.575 and 0.515 vs. 0.518 respectively and for
LVDMM 0.532 vs 0.515 and 0.569 vs 0.572 respectively. Less over-prediction at poorer health states was observed with EQ-5D-5L.

Conclusions: The BB mapping algorithm is confirmed to offer a better fit for both EQ-5D-3L and EQ-5D-5L. The results confirm
previous and more recent results on the use of BB type modelling approaches for mapping. It is recommended that in studies
where EQ-5D utilities have not been collected, an EQ-5D-5L mapping algorithm is used.

Background
Health Related Quality of Life (HRQoL) is an important
outcome from both clinical and economic perspectives. For
cancer patients, it can be considered as a measure of the
trade-off between survival benefit, toxicity from treatments
and the physical and emotional well-being of the patients [1].
HRQoL is also considered to be an important predictor of
survival [2]. Furthermore, HRQoL is critical for understanding

the economic value of (cancer) treatments, because some
cancer treatments are not only expensive but also the clinical
benefits are modest and the burden of adverse events
is quite high. Therefore, the risk-benefit relationship
of cancer treatments can be guided by HRQoL outcomes [3].
One feature of health economic evaluation is the use of

generic HRQoL measures to determine patient level health
utilities for adjusting clinical outcomes to generate Quality
Adjusted Life Years (QALYs) [4]. In some cases, utilities from
commonly used generic HRQoL measures such as EQ-5D-
3L or EQ-5D-5L are not always available. Therefore, reliance
is made on alternative approaches to estimate patient level
utilities using ‘mapping’ or ‘cross-walking’ – where a statistical
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algorithm developed from a condition-specific measure (e.g.
such as the cancer specific EORTC-QLQ-C30) is used.
The advantages and limitations of mapping have been

discussed in detail elsewhere (Khan, 2014; Brazier, 2010)
[5, 6]. Recently Crott (2014), Arnold (2015) and Doble
(2015) [7–9] examined the performance of the most com-
mon mapping algorithms applied to the QLQ-C30. Several
limitations of some of the simpler mapping algorithms
from the EQ-5D-3L were noted. These related to unten-
able assumptions of linearity, homoscedasticity, multimod-
ality, skewness, censoring and an over reliance on R2 as the
metric of model performance; and in some cases poor over
prediction, particularly at poorer health states [5, 7, 8, 10,
11]. Mapping algorithms based on EQ-5D-3L have been
shown to consistently over-predict utilities, particularly at
poorer health states [5, 6]. In order to address some of the
limitations, alternative functional and statistical forms of
mapping algorithms were examined (Kharroubi 2007,
Crott, 2010, Khan, 2014, Hernandez, 2012, Sabourin et al.,
2015) [5, 10–13]. These functional forms in some cases
generated improved predictive capability (e.g. Hernandez,
2012, Khan, 2014). In some cases however, changing the
functional form did not offer improved prediction over and
above simpler models [5, 6]. Moreover, when applied to ex-
ternal data, some of the algorithms performed poorly [7, 8].
In addition to the statistical framework of mapping

algorithms, questions have been raised about the usefulness
and indeed validity of mapping (Round, 2012) [14]. It is
suggested that it is unclear as to what exactly is being
predicted from mapping models, because the target is
unknown (Round, 2012) [14]. However, this is precisely what
a mapping model is supposed to do - to estimate the un-
known utilities, which we assume to be ‘knowable’ based on
reasonable assumptions. Although this, among other criti-
cisms of mapping are important [5, 6, 15], they are perhaps
not strong enough to dismiss mapping altogether. Conse-
quently, about 25 % of health technology appraisal (HTA)
submissions to NICE have used mapping (Longworth, 2013)
[16] in the UK; while in Australia, this was reported to be
about 24 % (Suchffham, 2008) [17]. Moreover, the published
mapping models (for the QLQ-C30), suggest the unknown
utilities are likely to be ‘knowable’ to some extent because
some mapping algorithms have shown to yield close
approximates of the target mean utility. Therefore, mapping
can serve a useful purpose for estimating patient level util-
ities and continues to be used in HTAs of cancer drugs for
estimating utilities (or sensitivity analyses) despite these
criticisms.
Separately, concerns have also been raised about the sen-

sitivity of the EQ-5D-3L and by extension to the derived
mapped utilities [18–21]. Most mapping using the EORTC-
QLQ-C30 (QLQ-C30) are based on EQ-5D-3L. Given the
reported limitations and criticisms levelled against the EQ-
5D-3L and the consequent development of the EQ-5D-5L,

a mapping algorithm for the EQ-5D-5L appears to be the
next logical step in this area of research.
There are two commonly used generic HRQoL measures

for determining utilities used in health economic evaluation -
EQ-5D-3L and the more recent EQ-5D-5L. The main
difference between these two instruments is that the latter
has responses measured on a 5 point scale, with many more
health states [22]. EQ-5D-3L was suggested as having limited
discriminative ability and less power to detect between group
differences compared with EQ-5D-5L [22–24]. Research is
ongoing as to the best value sets for use with EQ-5D-5L.
Meanwhile, an interim scoring is currently available for EQ-
5D-5L using a crosswalk algorithm from EQ-5D-3L to EQ-
5D-5L.
In this research we compare the performance of three

mapping algorithms (from QLQ-C30): a Random Effects
linear model, a Beta-Binomial (BB) and a Limited
Dependent Variable Mixture Model (LDVMM), for each
of two utility measures: EQ-5D-5L and EQ-5D-3L, sep-
arately. To our knowledge, no study of mapping com-
pares algorithms from both instruments in the same set
of patients; and none are available between EQ-5D-5L
and QLQ-C30, particularly from a non-small cell lung
cancer (NSCLC) patient population. Khan & Morris
(2014), using data from a randomized controlled trial
(RCT) [5], showed that a three-part BB model per-
formed best amongst other commonly used algorithms.
This analysis examines mapping models using data from
NSCLC patient in a real world NHS setting. This will
offer researchers a way of computing patient-level util-
ities from the EQ-5D-5L (and EQ-5D-3L) with greater
generalizability than a RCT.

Methods
Study design
A single cohort prospective (non-interventional) follow up
study in 100 NSCLC patients was designed. Patients with
histologically confirmed NSCLC gave informed consent
(for data collection and follow up) and were followed up
during their routine anti-cancer treatment and cancer man-
agement for a period of at least 12 months. Patients were
recruited between March 2014 and July 2015 from the Liv-
erpool and Clatterbridge Cancer Centre. The trial recieved
local ethics approval (Liverpool Central) and research was
conducted in compliance with the Helsinki declaration.
EQ-5D-5L, EQ-5D-3L and QLQ-C30 assessments were

carried out monthly from registration. EQ-5D-3L and EQ-
5D-5L were assessed at least 1 week apart to avoid potential
for ‘carry over’. Patients were given the HRQoL forms to take
home and they returned them by post or when they attended
their next hospital visit. They were instructed to complete
the EQ-5D-3L in the first week and the EQ-5D-5L in the
second (or third) week of each month.
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Instruments
EQ-5D-3L is widely used for economic evaluation, has
243 health states and for each state, a corresponding
utility value is available [5, 6]. In this paper, we use the
UK tariffs based on the Time Trade-Off (TTO) method
[23]. The raw scores from the EQ-5Ds were converted
into an index ranging from -0.549 to 1, where 1 denotes
'perfect' quality of life, 0 for death and values below 0 as
states 'worse than death'. EQ-5D-5L consists of five
questions identical to EQ-5D-3L (mobility, self-care,
usual activities, pain/discomfort, and anxiety/depres-
sion), but with an expanded 5 point scale (compared to
the 3 point scale of EQ-5D-3L) [25]. These are ‘no prob-
lem’, “’slight problems’, ‘moderate problems’ and ‘severe
problems’ in all five dimensions, and ‘unable’ in mobility,
self-care and usual activities or ‘extreme problems’ in
pain/discomfort and anxiety/ depression. The scoring of
EQ-5D-5L uses an interim cross-walk based algorithm
(UK value sets) between EQ-5D-3L and EQ-5D-5L (Van
Hout, 2012) in the absence of a full value set [22, 26].
The EORTC QLQ-C30 is an established instrument for

measuring HRQoL in various cancers [27]. QLQ-C30 has 15
domains, scored on a 0 to 100 scale. The scoring consists of
5 function scales: Physical Function (PF), Role Function
(RF), Emotional Function (EF), Cognitive Function (CF) and
social functioning (SF). There are also 9 symptom scales:
Fatigue (FA), Nausea & Vomiting (NV), Pain (PA), Dyspnoea
(DY), Insomnia (IN), Appetite Loss (AL), Constipation (CO),
Diarrhoea (DI) and Financial Problems (FI); there is also a
global health status score (QL). For the global health and
function domains, high scores indicate better QoL. For the
symptom domains, low scores indicate better symptoms.

Statistical methods
Three models were used to compare the mapping.

Linear random effects model
The linear model with a random effect is an extension of
the ordinary least squares (OLS) model. One importance
difference is that subject level effects are included (some-
times called a mixed effects model). In the context of map-
ping, because utility scores are observed for each subject on
more than one occasion, the responses are not independent.
The subject level differences (between subject variability)
can be modelled with a random effect. For this reason the
model is termed a mixed effects model because variability of
utilities occurs between and within subjects. This model is
relatively easy to use when applied to an external data set to
predict patient level utilities. This is important because, in
practice, a mapping algorithm should also have a feature
that it can be used practically and as simply as possible.
Overly complicated models require more assumptions and
hence introduce greater uncertainty. The principle of
parsimony should be adopted when developing a mapping

model. The model form in a general linear mixed model
framework is:

Y ¼ Xβþ Z � u þ ε

Where β is a matrix with the fixed effects parameters
(e.g. the 15 coefficients of the QLQ-C30) and u is a matrix
(or vector) with the random (subject) terms and ε is the ex-
perimental error term (corresponding to the fixed effects).

Limited dependent variable mixture model (LDVMM)
A second model proposed by Hernandez et al. [10]
belonging to the class of limited dependent variable
(LDV) models is the so-called Adjusted Limited Variable
Dependent Mixture Model (ALVDMM) [10]. This par-
ticular model has several noteworthy features. The first is
that it assumes additivity of effects (as in a linear model).
The second is that it involves a latent variable that is cen-
sored. The censoring occurs (similarly applied in a TOBIT
model) because there are considered to be unobservable
values. Hernandez et al. [10] noted that since there is a
gap in utilities between the values 0.833 and 1 for the EQ-
5D-3L, the preferences for health states are in effect
‘cut-off ’ on the higher side of values at (or above) 0.833 to
a value of 1 (we essentially capture the ceiling effect). That
is, if a patient’s (true) utility is >0.833, the instrument
(EQ-5D) cannot capture this and we assume a value of 1.
The LDV type models generate predicted estimates in a

more complex way which involve finding the probability that
the unobserved (latent) value is above or below the censored
threshold value (e.g. 0.833) using the ratio of the probability
density function (PDF) to cumulative density functions
(CDF). This feature of the LDVs allow the possibility to
model the presence of several distributions simultaneously.
Hernandez et al. [10] modelled data against the (simpler)
health assessment questionnaire (HAQ) in an arthritis popu-
lation. The greater the number of latent classes, the greater
the complexity of interpretation. Application of 3 classes in
the context of 15 QLQ-C30 domain parameters is likely to
lead to a much more complex latent class structure and
therefore two classes (two mixed distributions) are used for
both the EQ-5D-3L and EQ-5D-5L in this analysis. This is
justified by observing the kernel density estimates which sug-
gest a bimodal distribution for EQ-5D-3L (values between
about –0.549 to 0.3 and 0.3 to 1) in this data set (see Fig. 1).
For the EQ-5D-5L, the mixture of distributions is not obvi-
ous, although there is marked skewness.
The model form for the mixture model used in this

context is now described in further detail:
Assuming responses Y (i.e. EQ-5D utilities), whose distri-

bution depends on an unobservable random variable S; S
can occupy one of k states (k= 2 in this example), the num-
ber of which might be unknown but is at least known to be
finite. Since S is not observable, it is referred to as a latent
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variable. Let πj denote the probability that S takes on state j.
For example, in the case of the EQ-5D-3L for the
ALVDMM, j = 1 might refer to values of EQ-5D-3L < 0.833
and j = 2 would refer to states such that EQ-5D-3L utilities
are > 0.833.
Conditional on S, the distribution of the response Y is as-

sumed to be fj(y;αj, β j| S = j). What this expression (i.e.
(fj(y;αj, β j| S = j)) means is that depending on the number
of states (S), a model (with a form fj(y;αj, β) can be used to
determine the relationship between Y (the EQ-5D) and a
set of predictors, β (e.g. the 15 QLQ-C30 coefficients). For
example, for j = 1 (values of EQ-5D-3L between -0.549 and
0.3), the EQ-5D-3L are assumed to follow a Normal distri-
bution. For values between 0.3 and 1 (j = 2), the data can be
considered to follow a Beta Binomial (BB) distribution. In
another scenario, for j = 1, a Weibull function could be
used, and for j = 2 a Normal distribution used; there would
6 parameters to estimate (2 parameters for the Weibull, 2
parameters for the Normal and consequently two mixing
probabilities (π1 and π2), the probability of observations be-
longing to one or another class. The 6 parameters to be
predicted do not include any of the QLQ-C30 predictors
(parameters), where a further, 16 parameters are estimated.
The following mixture models were simultaneously fitted:

(i) EQ-5D as a function of 15 QLQ-C30 domain scores
(Normal Distribution assumed between -0.549 and
0.30 for example)

(ii) EQ-5D as a function of 15 QLQ-C30 domain scores
(Beta Binomial distribution assumed between 0.30
and 1 for example)

(iii)The Mixing probabilities as a function of the 15
QLQ-C30 domain scores (two mixing probabilities
which classify observations as belonging to distribu-
tions in (i) or (ii))

Clearly, the above modelling approach is complex,
perhaps unnecessary and can lead to model non
convergence. Its practical implementation as an exter-
nal algorithm is therefore an important consideration.
A transformation may be carried out if specific distri-
butions are assumed (e.g. modelling negative values).
For example, for values between -0.549 and 0.30, a
Gamma (or Beta Binomial) distribution would not be
possible.
Therefore, in this analysis two distributions are consid-

ered for modelling:

(i) Assume Normality between -0.549 and <0.30 for the
15 predictor variables

(ii) Assume Beta Binomial between >=30 and 1.0 for
the 15 predictor variables

The predicted estimates are determined in a com-
plicated way from the ratio of the CDF to the PDF of
the EQ-5D responses and using the estimated mixing
probabilities. The mixing probabilities can be inter-
preted as the ratio of observations belonging to one
of two distributions. If the mixing probabilities were
0.5, then 50 % of the EQ-5D-3L might be considered
to follow a Normal distribution and the remaining
50 % a different distribution. A useful exposition of
finite mixture models can be found in Schlattman
(2009) [28].
A maximum likelihood estimation for continuous and

discrete response distributions is used based on a dual
quasi-Newton optimization algorithm using the SAS®
software [29]. A global maxima was sought using initial
starting values to search for a local maxima, followed by
re-running the model using estimates generated from
previous model runs.

Fig. 1 Distribution of EQ-5D-3L (left) and EQ-5D-5L utilities
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Beta binomial model
For the ALVDMM previously used, censoring occurs for
values at 0.833 for the EQ-5D-3L. This is not the case
for the EQ-5D-5L, where values between 0.833 and 1 do
exist. For this reason (Fig. 1) the distribution of the EQ-
5D-5L can be considered appropriate for modelling on a
continuous type scale between -0.549 and 1.0 (after a
transformation of Y-a/b-a), and therefore the BB model
is the third model that is considered for mapping. The
details of the BB model are elaborated and discussed in
Khan & Morris (2014) [5] and show an improved fit
compared with simpler linear and LDV type models (e.g.
TOBIT and CLAD).

Model performance criteria
Several model performance statistics were used in-
cluding the root mean square error (RMSE) which
is a measure of model fit (lower values indicate bet-
ter fit), mean prediction error, R2, mean absolute
error (MAE), and percent predicted >1 and < -0.594
were. Chai (2014) argues that the RMSE is more
appropriate than the MAE, particularly if the error
distribution is Normally distributed [30]. In
addition, the Aikakes Information Criteria (AIC)
values and percent predicted within a target range
(e.g. ±5 %, ±10 %) of the observed values were
determined.

Simulation and cross validation
Multivariate simulation (1,000 simulations using
Fleishman methods) [31, 32] were used to test the
uncertainty of the models. The method of Fleishman
uses higher order moments (e.g. kurtosis and skew-
ness) to generate correlated simulated data regardless
of the distribution of each of the original variables.
The steps involved in simulation require computing
the mean, SD, skewness and kurtosis for each of the
observed 15 QLQ-C30 domain scores. Using the
Fleishman (1978) [31] power transform:

Y ¼ αþ β � Z þ δ � Z2 þ γ � Z3;

The values of α, β, δ and γ are estimated from ran-
domly generated data Z, normally distributed with
mean of zero and a variance of 1 and the observed
measures for kurtosis and skewness. The values of α,
β, δ and γ are estimated through a process of iter-
ation so that Y can be determined. The derived Y
(e.g. 15 QLQ-C30 scores) are simulated (correlated)
responses which are not necessarily normally distrib-
uted. Khan et al. [5] have shown that the QLQ-C30
scores are unlikely to follow a Normal distribution in
most cases.

For each simulated data set, cross validation was
used. Half (50 %) of the simulated dataset (randomly
selected) was used to develop the mapping model and
the other half used to test the model (out of sample
predictions). For each realization (i.e. dataset simu-
lated), the model performance statistics (e.g. RMSE
and R2) were generated and reported. Although, there
is no theoretical reason for 50 % of the data used for
developing the model, other cut-offs (e.g. 75 % vs
25 %) were also considered.

Results
Between March 2014 and July 2015, a total of 100
patients were registered for follow up, out of whom,
two patients withdrew before follow up started. Con-
sequently, 98 (98 %) were followed up and included
in the statistical analysis; 23 patients (23 %) died
during the follow up and 2 patients (2 %) dropped
out due to personal reasons (Fig. 2 CONSORT).
There were a total of 985 observations (responses)
across 98 patients for EQ-5D-5L and EQ-5D-3L
HRQoL forms, respectively; HRQoL forms were
completed by 97/98 (99 %) patients at baseline;
completion rates at 3 and 6 months were 78/98
(79 %) and 41/98 (55 %) respectively. Completion
rates were, therefore, similar for all three (EQ-5D-
5L, EQ-5D-3L and QLQ-C30) instruments. There

Registered with informed 
consent (N=100)

Withdrew before 
follow up started for

personal reasons (n=2)

[N=98]

Followed up for 3 
months (n=78)

Followed up for 6 
months (n=54)

Followed up for 12 
months (n=32)

Included in this analysis

N=98

Fig. 2 CONSORT
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were 146 observed health states (5 % of all possible health
states) observed with EQ-5D-5L and 62 (26 %) for EQ-
5D-3L. The most frequent health states with the EQ-5D-
5L were 11111 (6 %), followed by 21222 (5 %), 43533
(3 %) and 31331 (3 %). For EQ-5D-3L these were 21222
(11 %), followed by 22222 (10 %), 22221 (7 %), 22322
(6 %) and 11111 (6 %).

Demographics
Median age was 69 years (range 39 to 86); 55/98
(56 %) were male, 67/98 (68 %) were ex-smokers

and 19/98 (19 %) current smokers. There were 61/98
(64 %) patients who were Easter Co-operative Oncol-
ogy Group (ECOG) (0-2) and the remaining with
ECOG >2; ECOG is used as a measure of well-being
(and prognosis), with higher values suggesting poorer
prognosis; 15/98 (15 %) were Stage I-II and 83/98
(85 %) were Stage III and higher; Histology subtypes
were 43/98 (44 %) with adenocarcinoma and 36/98
(37 %) with squamous cell. The remainder were of
varying subtypes (Table 1).

Performance of EQ-5D-5L and EQ-5D-3L Mapping
Algorithms
Overall
The best performing model regardless of EQ-5D-3L
or EQ-5D-5L was the BB model (Table 2 & Fig. 3):
this had AIC, R2, RMSE, MAE and % predicted to
within ±5 % and ±10 % of -485.3, 75 %, 0.092,
0.075, 29 % and 59 %; for EQ-5D-3L and were
-385.4, 69 %, 0.113, 0.099, 21 % and 47 % for
EQ-5D-5L respectively. The BB therefore had good
model fit characteristics and predicted more
utilities to within ±10 % of the observed value
compared to other models, particularly for the EQ-
5D-5L.

Random effects model
The performance of the random effects model was
comparable to the LDVMM. Table 3 shows the par-
ameter estimates for the 15 QLQ-C30 coefficients. If
all scores for the functional domain, Global score and
Finance score are assumed to be perfect (i.e. score of
100) and no signs and symptoms are present (i.e.
score of 0), the predicted EQ-5D-3L and EQ-5D-5L
scores are estimated to be about 0.89 and 0.96
respectively. On the other hand, if symptom and
functional scores are the worst possible (scores of 0

Table 1 Baseline and demographics characteristics

(N = 98)

Age (Median years, Range) 69 (39-86)

Gender: 55 (56 %)

Male 43 (44 %)

Female

Smoking Status

Current Smoker 19 (19 %)

Ex-Smoker 67 (68 %)

Never 5 (5 %)

Unknown 7 (7 %)

Stage

I -II 26 (27 %)

III 31 (32 %)

IV 37 (38 %)

Unknown 4 (4 %)

Histology

Adenocarcinoma 43 (44 %)

Squamous 36 (37 %)

Mesothelioma 5 (5 %)

Other 14 (14 %)

Table 2 Comparison of Model Performance

EQ-5D-5L EQ-5D-3L

Random effect Beta binomial LVDMa Random effect Beta binomial LVDMa

R2 72 % 75 % 70 % 67 % 69 % 67 %

AIC -365.3 -485.3 -383.2 -291.4 -385.4 -189.1

RMSE 0.152 0.092 0.153 0.183 0.113 0.179

MAE 0.114 0.075 0.115 0.141 0.099 0.139

Predicted Mean (SD) 0.577 (0.241) 0.575 (0.211) 0.569 (0.217) 0.523 (0.252) 0.518 (0.183) 0.532 (0.252)

Observed Mean (SD) 0.572 (0.224) 0.572 (0.224) 0.572 (0.224) 0.515 (0.308) 0.515 (0.308) 0.515 (0.308)

%predicted outside range <1 % 0 0 <1 % 0 0

Predicted within ±5 % 19 % 29 % 20 % 19 % 21 % 20 %

Predicted within ±5 % 38 % 59 % 42 % 37 % 47 % 35 %
aNormal + Beta Mixture
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and 100 for function and symptoms respectively), the
predicted EQ-5D-3L and EQ-5D-5L falls to about
0.10 and 0.09 respectively. EQ-5D-5L therefore pre-
dicts better at both extremes Table 5.

Beta binomial model
Following on from above, the BB can be used to
predict the EQ-5D using a standard logit link: P/1-P
= exp (-α + βX), such that P = 1/1 + exp (-α + βX), where
P are the predicted EQ-5D and X are the QLQ-C30
scores.
The first step is to predict the EQ-5D using the

estimates in Table 4. Setting the functional scores

of the EQ-5D-3L to perfect HRQoL for the two
function and symptom scores (score = 100 and 0
respectively), the predicted EQ-5D-5L is estimated
as:
1/[1 + exp(‐ α + βX) = exp[0.2255 + (100 * PF + 100 *

SF +…… + 0 * FA …. + 0 * FI)] = 0.983. Hence, the pre-
dicted EQ-5D-5L are 0.983, approximating the value
1.00. Table 5 below shows results from scenarios be-
tween the 3 models.

LDVM
The LDVM model estimates are more complicated
to generate as they involve two distributions and
two mixing probabilities. Consequently more than 32
parameters are involved in determining predictions
for the best and worst case scenarios (Table 6). The
LDVMM also predicts well at extremes, despite simi-
lar R2 and RMSE to the random effects model
(Table 5 and Table 7). However, the LDVMM is
much more complex to use as an algorithm. Users
would also need to know details of the mixing prob-
abilities as well as make stronger assumptions about
the mixed distribution. Other mixtures were also
considered but the Normal/Beta mixture offered the
best (smallest AIC) fitting model.

Fig. 3 Scatter Plot of Observed vs. Predicted Values (EQ-5D-5L, EQ-5D-3L) – BB Model. Note: at lower utility scores (poorer health), over –predictions is
greater with the EQ-5D-3L compared with EQ-5D-5L

Table 3 Comparison of model performance of other mixture
models

Mixture AIC

EQ-5D-5L EQ-5D-3L

Normal /Beta -383.2 -189.1

Normal/Gammaa -250.5 -250.5

Normal/Weibulla -252.4 -128.4

Normal/Log Normal -242.0 -124.4
amodel convergence problems resulted in some parameters not estimated
and/or mixing probabilities not calculable
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Health states
EQ-5D-3L prediction by health state were generally as
observed in literature (Khan & Morris 2014) [5]: over-
prediction at poorer health states. There does however
appear to be some evidence that mapping algorithms
based on EQ-5D-5L may yield improved predicted
utilities at poorer health states. In particular, the BB
model showed improved predictions regardless of the
instrument.
The predictions at poorer health states (Fig. 4)

present some interesting findings. Modelling with
the LDVMM consisted of a BB and Normal distribu-
tion. Values >0.30 were modelled assuming a BB dis-
tribution. Predictions at poorer health states
(assumed to be -0549 to 0.30) appear slightly worse.
Better predictions with the LDVM after EQ-5D

values >=0.30 are observed. This supports a BB algo-
rithm as a plausible model for developing a mapping
algorithm.
The predicted values are notably worse for the

EQ-5D-3L. About 50 % of predicted utilities were
over-predictions (higher than the observed value
by any amount) with the EQ-5D-5L; for EQ-5D-3L
this was 67 %; 93 % vs 97 % of utilities were over-
predictions for the EQ-5D-5L vs EQ-5D-3L
respectively.

Simulation and cross validation
Each simulated data set of 985 observations for EQ-
5D-5L and EQ-5D-3L were subject to a cross valid-
ation using a 50 % random sample (about 492
observations each for EQ-5D-5L and EQ-5D-3L
respectively) for the BB model. Hence, a total of
1,000 R2, RMSE and mean predicted values were
observed (Table 8 and Figures. 5.4 – 5.7). For EQ-
5D-5L and EQ-5D-3L respectively, the average
(mean) R2 from the BB model was 76 % (range
51 % to 89 %) and 68 % (range 38 % to 79 %);
RMSEs averaged around 0.099 (range 0.069 to
0.155) and 0.113 (range 0.058 to 0.177). Simulations
from the Random Effects and LDVM models
showed similar performance but were both worse
compared to the BB.

Table 4 Results from statistical modelling (Random effects Model)

EQ-5D-5L EQ-5D-3L

Estimate SE P-value Estimate SE P-value

Intercept 0.2255 0.09157 0.0142 0.08046 0.08507 0.3450

Physical Functioning 0.006418* 0.000676 <.0001 0.006137* 0.000620 <.0001

Role Functioning -0.00032 0.000591 0.5935 0.001392* 0.000509 0.0066

Emotional Functioning 0.001871* 0.000554 0.0008 0.001949* 0.000481 <.0001

Cognitive Functioning -0.00057 0.000491 0.2436 -0.00073 0.000448 0.1024

Social Functioning 0.000387 0.000530 0.4664 0.000516 0.000462 0.2652

Global health status / QoL -0.00109* 0.000409 0.0082 -0.00043 0.000401 0.2853

Fatigue 0.000324 0.000696 0.6420 0.000993 0.000647 0.1261

Nausea / Vomiting -0.00041 0.000600 0.4990 0.000276 0.000524 0.5993

Pain -0.00311* 0.000495 <.0001 -0.00215* 0.000427 <.0001

Dyspnoea 0.000368 0.000464 0.4287 -0.00011 0.000421 0.7915

Insomnia -0.00017 0.000338 0.6218 -0.00004 0.000313 0.9053

Appetite loss -0.00030 0.000328 0.3673 0.000341 0.000295 0.2488

Constipation -0.00013 0.000359 0.7139 0.000524 0.000306 0.0877

Diarhoea 0.001155* 0.000438 0.0087 0.000499 0.000425 0.2409

Financial Problems 0.000345 0.000334 0.3019 -0.00004 0.000297 0.9039

*Statistically significant at the two-sided 5 % level

Table 5 Predicted utilities from 3 scenarios

Possible QLQ-C30 Score Predicted

Model Function Symptom EQ-5D-3L EQ-5D-5L

Random effects Best (100) Best (0) 0.89 0.96

Worst (0) Worst (100) 0.10 0.019

Beta Binomial Best (100) Best (0) 0.901 0.983

Worst (0) Worst (100) 0.097 0.0094

LDVMM Best (100) Best (0) 0.884 0.972

Worst (0) Worst (100) 0.055 0.008
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Table 7 Results from statistical modelling (LDVMM: Normal + Beta)

EQ-5D-5L EQ-5D-3L

Normal Beta Normal Beta

Estimate SE Estimate SE Estimate SE Estimate SE

Intercept 0.07353 0.05925 -0.7052 0.4046 0.1032 0.1008 0.1579 0.8373

Physical Functioning 0.008668* 0.000515 0.01394* 0.002851 0.007667* 0.000771 -0.01009 0.005942

Role Functioning 0.000340 0.000439 0.01271* 0.002239 0.000961 0.000943 0.01046* 0.003785

Emotional Functioning 0.002680* 0.000457 0.003145 0.002045 0.001808* 0.000593 -0.00191 0.004717

Cognitive Functioning -0.00141* 0.000367 -0.00521* 0.001998 -0.00127* 0.000603 0.000919 0.003645

Social Functioning -0.00085 0.000475 0.001153 0.001935 0.000355 0.000651 0.009044* 0.003982

Global Health Status / QoL 0.000250 0.000236 -0.00051 0.002030 -0.00151* 0.000424 0.001184 0.004713

Fatigue 0.000698 0.000519 -0.00074 0.002929 0.002149* 0.000875 -0.01064 0.006315

Nausea / Vomiting -0.00063* 0.000368 0.001293 0.002378 0.000278 0.000649 -0.00853 0.006210

Pain -0.00662* 0.000343 -0.00094 0.001835 -0.00584* 0.000568 0.01325* 0.005386

Dyspnoea 0.001407* 0.000476 -0.00576* 0.001807 0.000640 0.000488 -0.00791* 0.004004

Insomnia 0.000180 0.000239 -0.00156 0.001351 0.000290 0.000384 -0.00656* 0.002875

Appetite loss -0.00085* 0.000253 0.008535* 0.001406 -0.00081* 0.000388 0.009893* 0.002344

Constipation 0.002190* 0.000261 -0.00215 0.001445 0.001571* 0.000382 -0.00631* 0.003363

Diarrhoea 0.001377* 0.000289 -0.00265 0.001942 0.000749 0.000563 0.005638 0.004770

Financial Problems -0.00102* 0.000260 0.001778 0.001291 0.000539 0.000337 0.004688 0.002820

*statistically significant at the 2 sided 5 % level

Table 6 Results from Statistical Modelling (BB Model)

EQ-5D-5L EQ-5D-3L

Estimate SE P-value Estimate SE P-value

Intercept -1.51144 0.000060 <0.001 -0.0123 .003893 0.00248

Physical Functioning 0.02254* 0.004666 <0.001 0.08711 .002940 <0.001*

Role Functioning 0.009619* 0.004550 0.03867 0.00421 .002685 0.12215

Emotional Functioning 0.01904* 0.003192 <0.0001 0.00661 .002007 0.00166*

Cognitive Functioning -0.00633 0.003312 0.06076 -0.00425 .002111 0.04858*

Social Functioning -0.00013 0.002758 0.97120 -0.00035 .001973 0.85980

Global Health Status / QoL 0.001652 0.002772 0.55344 -0.00197 .001913 0.30724

Fatigue 0.003561 0.005282 0.50279 0.00443 .002979 0.14223

Nausea / Vomiting 0.000452 0.004514 0.92057 -0.00146 .002700 0.59069

Pain -0.03479* 0.003512 <0.001 -0.01039 .001910 <0.001*

Dyspnoea -0.00806* 0.002800 0.00553 0.00015 .001759 0.93233

Insomnia 0.002047 0.002388 0.39474 0.00193 .001491 0.20048

Appetite loss 0.005383* 0.002446 0.03161 0.0002 .001415 0.88807

Constipation 0.000454 0.002052 0.82565 0.0014 .001386 0.31650

Diarrhoea 0.000353 0.00274 0.20705 0.00393 .001841 0.03688*

Financial Problems -0.004324 0.002182 0.07174 -0.00113 .001292 0.38527

*Statistically significant at the two-sided 5 % level
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Predicted mean utilities were closer to the observed
for the EQ-5D-5L: 0.572 vs. 0.575 whereas, for the EQ-
5D-3L these were 0.515 vs. 0.518 (Table 8 and Figs 5, 6,
7 and 8). Hence, out of sample predictions for the EQ-

5D-5L appeared more accurate than those of the EQ-
5D-3L, particularly with the BB model. When a different
cut-off was used (e.g. 75 % to model the data and 25 %
for prediction), there were no changes in conclusions.

Fig. 4 Observed vs. Predicted Values by Health States. a. EQ-5D-5L. b. EQ-5D-3L
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Discussion
We have developed and compared three mapping algo-
rithms for the EQ-5D-5L and EQ-5D-3L using contem-
porary and novel modelling methods. We have shown
that EQ-5D-5L may offer better prediction at poorer
health states where several previous algorithms with EQ-
5D-3L have, by and large, over-predicted. Modest im-
provements of an algorithm based on EQ-5D-5L over one
based on EQ-5D-3L in terms of statistical metrics (e.g. R2,
percent predicted) have been confirmed with a BB model
in this and previous analyses [5]. Young et al. [33]

Fig. 5 Distribution of R2 and RMSE for Each of (a) EQ-5D-5L and (b) EQ-5D-3L after Cross Validation Models (50 % Holdout Sample) : Random
Effects Model

Table 8 Results of Simulation and Cross Validation (BB Model)

Algorithm Parameter Mean Lower 95 % Upper 95 % Range

EQ-5D-5L R2 0.76 0.69 0.82 (0.51, 0.89)

RMSE 0.099 0.075 0.121 (0.069,0.155)

Observed 0.572 -0.018 1.00 (-0.436,1.00)

Predicted 0.575 0.198 0.950 (0, 1)

EQ-5D-3L R2 0.68 0.58 0.78 (0.38, 0.79)

RMSE 0.113 0.103 0.120 (0.058, 0.177)

Observed 0.515 -0.07 1.00 (-0.594, 1.00)

Predicted 0.518 0.112 0.89 (0, 1)
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suggested that two-part models may offer a way to predict
the different parts of the distribution in the context of
mapping with improved performance for handling over-
prediction. More recently, Crott [34] confirms the suitabil-
ity of the BB type models over other models. In this
analysis we have confirmed the bimodal nature of the EQ-
5D-5L value sets noted earlier (Oppe et al.) [24] (Fig. 6).
This is the first time to our knowledge a mapping al-

gorithm has been developed simultaneously from EQ-
5D-5L and EQ-5D-3L in the same lung cancer patients
using EORTC-QLQ-C30 and compared with each other
in a real world NHS setting. Previous works with the
EQ-5D-5L highlighted some of the limitations of the
EQ-5D-3L relating to aspects such as bi-modality of util-
ities and a lack of sensitivity to detect differences be-
tween treatment groups [35–37]. Some earlier mapping

models did not take this into account. Cheung et al. [25]
for example, report an algorithm using the FACT-B in a
breast cancer population with R2 of around 48 % (AIC
was not reported).
In this analysis, over-prediction at poorer health states

still exists with EQ-5D-5L, although it is not as marked
as EQ-5D-3L. It is yet to be seen whether the final value
sets (Oppe et al.) [24] currently being developed and val-
idated will impact predictions at poorer health states.
The reasons for over-prediction may be due to several
factors, including the functional form of the model, the
range of the scale (5 point vs 3 point scale), number of
health states and other clinical characteristics. Khan &
Morris [5] previously suggested over-estimates at poorer
health states may be related to other factors such as
poorer prognosis. Preliminary evidence of this is shown

Fig. 6 Distribution of Predicted Means (a) EQ-5D-5L and (b) EQ-5D-3L after Cross Validation Models (50 % Holdout Sample): Random Effects
Model. a. EQ-5D-3L Predicted Mean. b. EQ-5D-5L
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by observing the relationship between ECOG per-
formance and EQ-5D utilities (Table 9). It is possible
a further complexity is required in the modelling by
using the joint distribution of utilities and other out-
comes (e.g. Adverse events) to model the QLQ-C30
scores.
In this study, the EQ-5D-5L and 3L assessments were

taken close together in time. Therefore, there may be
some concern about ‘carryover’ or recall bias. To check
this, we determined whether health state responses were
recorded similarly. For example, if a response of 11112
was observed for EQ-5D-3L, we checked whether this
was also observed for EQ-5D-5L (responses >3 are not
possible for EQ-5D-3L). We noted that for 15 of the 146
(EQ-5D-5L) health states, the responses for EQ-5D-5L
and EQ-5D-3L were the same - for example, patients
with responses of 11111 to both EQ-5D-5L and EQ-5D-
3L in 18 of the 985 (pairs) of observations (<2 %). In the
vast majority of cases the responses were different. This
suggests that patients did not recall the previous
responses and the presence of carryovermay be
unlikely.
There are several limitations of this research. The

first is that this is a small sample size with relatively
few health states, although the sample size is larger

than the algorithm reported by Kontodimopoulous
(2009) [38]. Secondly, inferences need to be re-
stricted to a similar NSCLC population until further
evidence emerges of wider applicability across
tumour types. Thirdly, external validity was not pos-
sible in an independent data set and therefore cross-
validation was used as a ‘second best’ accompanied
by simulation for out of sample predictions. Fifthly,
insufficient numbers of events were available for reli-
able computation of QALYs and therefore the impact
on QALYs could not be reliably observed at this
time (a sufficient number of events are not yet avail-
able for this to be estimated reliably). Finally, the
values of the EQ-5D-5L are cross-walked from the
EQ-5D-3L and are therefore subject to uncertainty.
However, in the absence of a readily identified set of
value sets, and given that the EQ-5D-5L is being
used in current clinical research, using the EQ-5D-
3L cross-walk sets should be considered acceptable
in the interim.
Despite these limitations, this is the first mapping

algorithm for the EQ-5D-5L using real world data
with enhanced generalizability outside the RCT con-
text. That further research is required, is consequently
inevitable.

Fig. 7 Distribution of R2 and RMSE for Each of (a) EQ-5D-5L and (b) EQ-5D-3L after Cross Validation Models (50 % Holdout Sample): BB Model.
a. R2 EQ-5D-5L. b. RMSE 5 L. c. R2 3 L. d. RMSE 3 L
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Conclusion
Mapping algorithms developed from EQ-5D-5L appear
to provide improved estimates of utilities compared with
EQ-5D-3L, particularly at poorer health states. Two part
models fit the data well and this result confirms earlier
and more recent work. It is recommended that in stud-
ies where EQ-5D utilities have not been collected, an
EQ-5D-5L mapping algorithm is used.

Panel: research in context
Systematic review
We carried out an extensive review of the literature
before designing this study. At the time no comparison of
HRQoL responses across several important HRQoL in-
struments were made in a lung cancer patient population,
particularly the EQ-5D-3L and EQ-5D-5L. Understanding
HRQoL continues to be an important aspect of managing
NSCLC patients and this research will be valuable for
future economic evaluations and understanding the
way different HRQoL instruments measure utility.

Interpretation
We have demonstrated that the EQ-5D-5L can be
mapped from the EORTC-QLQ-C30 successfully. Our
findings suggest that the EQ-5D-5L may be a preferred
choice of mapping in NSCLC patients due to its higher
R2, improved prediction in general and at poorer health
states, where EQ-5D-3L algorithms have shown to over
predict. The results of this study may lead to wider use
of the EQ-5D-5L.
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