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Growing evidence suggests drugs that can activate the glucagon-like peptide 1 receptor can
modulate several pathological processes underlying Parkinson’s disease. Here, we review the

molecular mechanisms underlying these potential neuroprotective effects.
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Growing evidence suggests that agonists of the glucagon-like peptide 1

(GLP-1) receptor provide neuroprotection across a range of experimental

models of Parkinson’s disease (PD) and, recently, a small proof-of-concept,

open-label human trial of exenatide in the treatment moderate severity PD

appeared to show persistent improvements in motor and cognitive

function. The underlying mechanisms of action remain unclear, but as

evidence for the potential use of GLP-1 agonists in treating several

neurodegenerative disease mounts, and with several clinical trials of GLP-1

analogues in PD and Alzheimer’s disease (AD) currently underway, here we

review the molecular mechanisms underlying the neuroprotective effects

of GLP-1 analogues in the laboratory and their potential therapeutic utility

with particular relevance to PD and PD dementia (PDD).

Introduction
Parkinson’s disease (PD) is the second most common neurodegenerative disease and affects 1.5%

of humans over 65 years of age globally. Current treatments are aimed at dopamine (DA)

replacement and, although these treatments can initially be effective in relieving motor symp-

toms, over time complex motor fluctuations and dyskinesias can occur, which negatively impact

patients’ quality of life and mobility. Although more advanced therapies, including continuous

intraduodenal infusion of levodopa, subcutaneous apomorphine infusions, and deep brain

stimulation, have varying levels of success at minimising these motor complications, they

ultimately have no effect on altering the progressive nature of the disease. Furthermore, over

time, the involvement of nondopaminergic systems influences the onset of features such as

depression, gait difficulties, and dementia, which are often refractory to treatment and have

profound effects on patients’ quality of life. Therefore, an urgent goal is to develop effective

neuroprotective treatments that target pathways common to neurodegeneration and affect both

dopaminergic and nondopaminergic systems and, therefore, that could slow the progression of

the disease.

The incretin hormone glucagon-like peptide 1 (GLP-1) is best known for its effects on glucose

homeostasis and facilitation of insulin signalling and, as such, agents that activate the GLP-1
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Amyloid beta (Ab) peptides of 36–43 amino acids that are
the main component of the amyloid plaques found in the
brains of patients with AD.
Alpha-synuclein a major component of Lewy bodies, the
pathological correlate found in the brains of patients with PD.
Insulin resistance a condition describing the reduced
responsiveness of cells to the action of insulin.
Insulin receptor substrate 1 (IRS-1) a critical component of
intact insulin signalling; phosphorylation of IRS-1 on serine
residues prevents insulin/IGF-1 binding to the IR and
subsequent activation of downstream effectors.
Microglial cells resident macrophages in the CNS that
mediate a balance between neuroprotection and
neurotoxicity; when activated, they can express a
cytoprotective M2 phenotype generally providing trophic
support and inhibiting inflammation; however, continuous
exposure to stress and prolonged microglial activation can
lead to polarisation towards the cytotoxic M1 phenotype,
causing production of superoxide proinflammatory cytokines
that leads to progressive oxidative stress cell death.
receptor (GLP-1R), such as GLP-1 analogues or dipeptidyl pepti-

dase 4 (DPP-IV) inhibitors, have been developed for use in the

treatment of type 2 diabetes mellitus (T2DM). Accumulating evi-

dence suggests that these GLP-1 analogues exert several extrapan-

creatic effects independent of glucose homeostasis and can cross

the blood–brain barrier (BBB) to influence several cellular path-

ways, such as neuroinflammation, mitochondrial function, and

cellular proliferation, within the central nervous system (CNS).

Furthermore, a growing number of studies have demonstrated

neuroprotective effects of GLP-1 R stimulation in models of PD,

resulting in improvements in motor and non-motor deficits.

The neuropathophysiology underlying cognitive decline in PD

remains unclear, although deposition of Lewy body-related pa-

thology in neocortical and limbic areas is thought to represent one

of the most significant factors. However, accumulating evidence

suggests that Alzheimer’s disease (AD)-type pathology is undoubt-

edly relevant for at least a subset of individuals with PD dementia

(PDD) due to either superimposed AD-type pathology, or because

of an interaction between amyloid b (Ab) and the rate of progres-

sion of cortical Lewy body and/or alpha synuclein pathology [1].

In this review, we discuss the effects of GLP-1R stimulation with

respect to PD and, where relevant, the evidence emerging from

research into GLP-1 stimulation and AD-related pathology. We

then follow by reviewing the proposed mechanisms underlying its

effects.

The GLP-1 signalling pathway
GLP-1 is an endogenous 30 amino-acid multifunctional peptide

first recognised for its role in mediating the ‘incretin’ effect.

Secreted from L cells in the small intestine in response to food

ingestion, it stimulates glucose-induced insulin secretion, insulin

biosynthesis, slows gut emptying, and inhibits glucagon secretion,

to mediate glucose homeostasis. In additional to its metabolic

effects, it also exerts trophic effects, namely enhancing islet beta

cell proliferation differentiation, inhibiting apoptosis, and en-

hancing cell survival, thus regulating B cell mass [2,3].
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A small amount of GLP-1 is also produced in the brain, released

from hypothalamic nuclei from nerve endings with cell bodies in

the nucleus of the solitary tract and caudal brainstem that project

to cortical, hypothalamic, and hippocampal nuclei. In its role as a

neuropeptide, GLP-1 can diffuse within the brain to regulate many

autonomic and neuroendocrine functions, including promoting

satiety, pancreatic secretions, slowing gastric emptying, and regu-

lating blood pressure and heart rate [4].

The actions of GLP-1 are mediated by GLP-1R, a seven-trans-

membrane spanning G-protein-coupled receptor (GPCR) that,

although mainly expressed in pancreatic islets, is also selectively

expressed throughout the brain, with high densities in the frontal

cortex, hypothalamus, thalamus, hippocampus, cerebellum, and

substantia nigra [5,6]. Similar to islet cells that can upregulate GLP-

1 expression under stressful conditions, such as T2DM [7], it was

recently demonstrated that microglial cells can also increase GLP-1

and GLP-1R expression in response to inflammatory stimuli [8],

suggesting that endogenous GLP-1 is a natural response to limit

harmful stimuli.

Following activation of the alpha subunit of the GPCR, adenyl

cyclase is activated, leading to an increase in intracellular cAMP,

which then activates protein kinase A (PKA) and phosphoinositide

3-kinase (PI3K), which phosphorylates and activates a variety of

downstream signalling pathways. These pathways can be simpli-

fied into two branches: (i) the mitogen-associated protein kinase/

extracellular signal-regulated kinase (MAPK/ERK; also known as

Ras-Raf-MEK-ERK); and (ii) PI3K/protein kinase B (AKT) pathways

[9]. An important downstream target of GLP-1 signalling is the

AKT pathway, which acts as a major regulator of physiological

responses to normal ageing. AKT has the ability to phosphorylate

over 50 substrate proteins, such as glycogen synthase kinase 3 beta

(GSK-3B), Forkhead box protein O1 (FOXO1), and mammalian

target of rapamycin (mTOR), and can modulate several cellular

processes found to be disrupted in PD, such as protein synthesis,

apoptosis, inflammation, mitochondrial biogenesis, and autop-

hagy. Broadly speaking, activation of these pathways promotes

cellular survival, while inhibiting proapoptotic pathways (Fig. 1).

Further details of the relation between these processes and PD

pathogenesis are discussed in subsequent sections of this article.

Unfortunately, endogenous GLP-1 is rapidly rendered inactive

by circulating enzyme dipeptidyl peptidase IV (DPP-IV) into a

metabolite that has no activity against GLP-1R [10–12]. However,

the discovery of a naturally occurring GLP-1 agonist resistant to

DPP-IV degradation, named exendin-4, in the saliva of the Gila

monster (Heloderma suspectum), a venomous lizard native to the

south-western USA and Mexico, has allowed researchers to cir-

cumvent this obstacle. Subsequently, synthetic versions of exen-

din-4 and several other GLP-1 analogues have since been

developed [13] for use in diabetes to utilise their insulinotrophic

actions and include exenatide, liraglutide, lixisenatide, and dula-

glutide. These GLP-1 analogues have significantly longer half-lives

than endogenous GLP-1 and exert a dose-dependent pharmaco-

logical effect that can raise circulating levels of endogenous GLP-1

levels eightfold [14]. Apart from dulaglutide, these peripherally

administered drugs are all also able to penetrate the BBB to some

degree in experimental models [15,16] to exert central effects.

Representing an alternative approach to GLP-1R stimulation,

orally administered drugs have been developed more recently that
receptor as a therapeutic target in Parkinson’s disease: mechanisms of action, Drug Discov
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FIGURE 1

Glucagon-like peptide 1 (GLP-1) receptor activation in neurons showing the influence of downstream pathways on Parkinson’s disease (PD) pathogenesis.
Stimulation of the GLP-1 receptor (GLP-1R) leads to an increase in intracellular cAMP, which then activates protein kinase A (PKA) and phosphoinositide 3-kinase

(PI3K), which phosphorylate and activate a variety of downstream signalling pathways that can be simplified into two branches: the mitogen-associated protein

kinase/extracellular signal-regulated kinase (MAPK/ERK; also known as Ras-Raf-MEK-ERK) and PI3K/protein kinase B (AKT) pathways, which can modulate
intracellular events, such as activation of calcium channels, enhancing protein synthesis, cellular proliferation, and mitochondrial biogenesis while inducing

inhibition of apoptosis, inflammation, and protein aggregation, leading to improved cell survival. Abbreviations: Bcl-2, B cell lymphoma 2; BAD, (Bcl-2) antagonist of

death; Bcl-XL, B cell lymphoma 2 extra-large; cAMP, cyclic AMP; CREB, cAMP response element-binding protein; FoxO1/O3, Forkhead box O1/O3; GSK-3B, glycogen

synthase 3 beta; LTP, long-term potentiation; mTOR, mammalian target of rapamycin; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells; TNF,
tumour necrosis factor.

R
ev
ie
w
s
�
K
E
Y
N
O
T
E
R
E
V
IE
W

inhibit DPP-IV and can enhance endogenous levels of GLP-1

twofold. This class of drugs is currently used an adjunctive therapy

in diabetes and includes sitagliptin, saxagliptin, vildagliptin, and

linagliptin.

GLP-1R activation in models of PD and AD
In view of the influence that GLP-1R activation has on diverse

cellular processes, it is perhaps not surprising that accumulating

data indicate that agents that can activate GLP-1R have potential

neuroprotective and neurorestorative properties across a range of

experimental models of PD and AD (Tables 1 and 2). In widely used

animal toxin models designed to mimic aspects of nigrostriatal

degeneration seen in PD, exenatide-treated animals can halt 6-

OHDA, MPTP, and lipopolysaccharide (LPS)-induced dopaminer-

gic degeneration and restore DA imbalance, resulting in significant

improvements in behaviour and motor function [17–20]. Interest-

ingly, exenatide was also able to restore levels of other neuro-

transmitters depleted in PD. In a novel rodent model with
Please cite this article in press as: Athauda, D., Foltynie, T. The glucagon-like peptide 1 (GLP) 
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dopaminergic, serotonergic, and noradrenergic deficits, exenatide

administration restored levels of these neurotransmitters, leading

to a reversal of neuropsychiatric dysfunction [21]. Similarly, newer

GLP-1 analogues with longer half-lives (liraglutide and lixisena-

tide) have also demonstrated protective effects and improved

motor function in the MPTP rodent model of PD [22].

However, data from DPP-IV inhibitors in experimental models

of PD are conflicting. Rats pretreated with saxagliptin before the

induction of rotenone-induced nigrostriatal lesions demonstrated

enhanced striatal DA synthesis and reduced dopaminergic neuro-

nal loss, resulting in improved motor performance and coordina-

tion in a rotarod test [23]. However, rats acutely or chronically

pretreated with supramaximal doses of sitagliptin (a DPP-IV in-

hibitor with a substantially longer half-life than saxagliptin) were

not protected against MPTP-induced striatal dopaminergic degen-

eration [24].

GLP-1 analogues have also been studied in experimental models

of AD for their effects on AD-related pathology and cognition. Use
receptor as a therapeutic target in Parkinson’s disease: mechanisms of action, Drug Discov
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TABLE 1

Effects of GLP-1 analogues and DPP-IV inhibitors in models of PD: data from experimental models and clinical trials

Drug Experimental data Results and/or effects Human data Refs

GLP-1 analogue

Exenatide In vitro PC12 cells Promoted NGF-initiated differentiation;

rescued degenerating cells after NGF-

mediated withdrawal

Open-label RCT in 45 patients which led to a

mean advantage of 7.0 points on MDS-UPDRS

Part III, which persisted after a 12-month
‘wash-out’ period, together with

improvements in Mattis Dementia Rating

scale and other non-motor areas [240,241];

Phase II double-blind, placebo controlled trial
underway (Clinicaltrials.gov NCT01971242)

[157]

In vitro 6-OHDA Increased number of TH+ striatal neurons;

elevated antiapoptotic proteins Bcl-2;

reduced expression proapoptotic proteins

caspase-3 and Bax

[16]

Rat LPS Post-lesioning treatment restored depletion

of extracellular DA and TH activity back to

normal levels, increased striatal tissue DA
concentrations and number of nigral TH+

neurons, reduced apomorphine-induced

rotations

[15]

Rat 6-OHDA Post-lesioning treatment protected DA
neurons, increased striatal tissue DA

concentrations and number of nigral TH+

neurons, reduced apomorphine-induced

rotations

[15]

Mouse MPTP Prelesioning treatment preserved TH+

neurons and preserved motor function in

rotarod and pole tests indistinguishable from
controls

Mouse MPTP Prelesioning treatment reduced loss of TH+

striatal neurons, halted microglial activation

and MPTP-induced expression of matrix
metalloproteinase 3, TNF-a and IL1b

[18]

Rat 6-OHDA Increased the number of TH- and VMAT2-

positive neurons in the SN, increased and

normalised amphetamine-induced rotations

[17]

Novel rodent model with

NA, SA and DA deficits

Post-lesioning treatment restored

extracellular/tissue levels of DA, NA and SA

and TH+ cell counts; reversed
neuropsychiatric dysfunction

[19,249]

Liraglutide Mouse MPTP Post-lesioning treatment preserved TH+

neurons in the SN; reduced levels of BAX and

increased Bcl-2; prevented motor impairment
in rotarod, open-field locomotion, catalepsy

tests

No human data currently [20]

Lixisenatide Mouse MPTP Post-lesioning treatment preserved TH+

neurons in the SN; reduced levels of BAX and
increased Bcl-2; prevented motor impairment

in rotarod, open-field locomotion, catalepsy

tests

No human data currently [22]

Dulaglutide No experimental data No experimental data currently No human data currently

DPP-IV inhibitor

Saxagliptin Rat rotenone Preserved SNPc TH+ neurons; decreased NF-

kB, iNOS, TNF-a, ICAM-1, MPO, capase-3,

increased Bcl-2, BDNF

No human data currently [21]

Sitagliptin Mouse MPTP Did not prevent DA degeneration, TH

depletion

No human data currently [22]
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of GLP-1 analogues has demonstrated significant effects on AD-

related pathology and cognition, causing reductions in deposition

of Ab, and Ab-induced proinflammatory responses, enhancing

synaptic plasticity, hippocampal neurogenesis, and long-term

potentiation (LTP), translating to improvements in cognitive def-

icits [25–33].

However, studies using DPP-IV inhibitors have somewhat con-

flicting results. Saxagliptin and sitagliptin administration caused

an increase in hippocampal GLP-1 levels in rodents injected with
Please cite this article in press as: Athauda, D., Foltynie, T. The glucagon-like peptide 1 (GLP) 
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intracerebral streptozotocin and transgenic (Tg) AD mice, respec-

tively, accompanied by reduction in AD-related pathology and

inflammatory markers and improvements in memory impair-

ments [34,35]. However, in diabetic rats and primary cortical

neurons, sitagliptin administration caused a paradoxical increase

in tau phosphorylation [36].

Despite the range of neuroprotective effects seen in various

models, there remains an amount of mechanistic uncertainty

regarding the downstream effects of GLP-1R activation. However,
receptor as a therapeutic target in Parkinson’s disease: mechanisms of action, Drug Discov
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TABLE 2

Effects of GLP-1 analogues and DPP-IV inhibitors in models of AD: data from experimental models and clinical trials

Drug Experimental model Results and/or effects Human data Refs

GLP-1 analogue

Exenatide 3 � Tg-AD mice with and

without STZ-induced diabetes.

Protected neurons from Ab oxidative-

induced cell death, lowered brain levels of

APP and Ab in vivo; tau levels unaffected

Phase II trial evaluating

exenatide in 230 patients with

AD or MCI (NCT01255163) is
underway

[29]

ICV-STZ rats Reversed ICV-STZ-induced tau

hyperphosphorylation leading to better

learning and memory performance in Morris

water maze test

[110]

PC12 cells treated with glucose-

bovine serum albumin (BSA)

Protected neurons: reduced cell tau

phosphorylation induced by high glucose

[112]

T2DM rats Prevented hyperphosphorylation of tau in
hippocampus and improved insulin signalling

[109]

In vitro hippocampal neurons and

mice

Reduced levels of Ab in brain in vivo; reduced

levels of APP in cell cultures

[28]

Hippocampal rat neurons; APP/
PSEN1 mutant mice; Ab

oligomer-induced toxicity in

nonhuman primates

Neurons: prevented Ab oligomer-induced
increase in IRS-1pSer, improving impaired

axonal transport; Tg mice: reduced brain

levels of IRS-1pSer636, IRS-1pSer312, and

pJNK, with an improvement in cognition

[201]

Liraglutide T2DM mice Reversed DM-induced brain and peripheral

insulin sensitivity, halted tau

hyperphosphorylation

Randomised, placebo-

controlled Phase II trial

assessing safety and efficacy
of liraglutide in 206 patients

with early AD (NCT018430755)

is underway; trial assessing

effects of liraglutide on
cerebral amyloid deposits

(NCT01469351) is underway;

pilot trial of liraglutide in

patients with DLB is in
planning stages

[114]

ICV-STZ mice Decreased hyperphosphorylation of tau and

neurofilament proteins; improved learning

and memory ability

[250]

Senescence-accelerated mouse
prone 8 (SAMP8) mice

Delayed progressive decline in memory
function; increased memory retention and

total hippocampal CA1 pyramidal neurons

[139]

Db/db mice Prevented hyperphosphorylation of tau

protein in hippocampus

[113]

7-month-old APP/PSEN1 mice Prevented memory impairments in object

recognition and water maze tasks; reduced

synapse loss; reduced amyloid and dense
core plaque load; reduced microglial

activation

[61]

Ab oligomer-induced toxicity in

rats

Improved spatial learning and memory water

maze tests; improved LTP in hippocampal
CA1 region

[26]

Decreased levels of IRS-1pS616; reduced

microglial activation; decreased amyloid

plaque load

[202]

14-month-old APP/PSEN1 mice Improved spatial memory; reduced total

brain APP and Ab levels; increased IDE levels;

increased neuronal progenitor cells and/or

synapses in dentate gyrus

[251]

2-month-old APP/PSEN1 mice Prophylactic treatment improved memory

formation in Morris water maze; prevented

synapse loss; reduced amyloid plaque load,
including dense core congophilic plaques;

reduced activated microglia; enhanced

neurogenesis in dentate gyrus

[252]

Lixisenatide APP/PSEN1 mice Increased LTP; prevented synapse loss;
reduced amyloid plaque load; reduced

microglial activation

[253]

Ab oligomer-induced toxicity in

rats

Prevented Ab-induced decline in spatial

learning; improved LTP

[252]

DPP-IV inhibitor

Saxagliptin ICV-STZ mice Halted Ab, tau phosphorylation; reduced

inflammatory markers; elevated hippocampal

GLP-1; improved memory retention

[32]

Vildagliptin ICV-STZ mice Improved memory retention and dose-

dependent attenuation of Ab, tau

phosphorylation, and inflammatory markers;

elevated GLP-1 levels

[111]
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TABLE 2 (Continued )

Drug Experimental model Results and/or effects Human data Refs

Sitagliptin 7-month-old APP/PSEN1 mice Improved memory impairment in contextual

fear conditioning test; increased brain levels
of GLP-1; reduced inflammation markers;

reduced APP and Ab deposits

[33]

OLETF T2DM rat model Increased tau phosphorylation; increased IRS-
1sP616

[34]

Sprague-Dawley rats Improved working memories; reduced insulin

resistance; increased acetylcholine content of

hypothalamus and Adipo R1 expression

[254]
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growing evidence suggests that GLP-1 analogues and DPP-IV

inhibitors modulate several events that are of relevance to the

pathogenesis of PD (and AD).

Neuroinflammation
Inflammation is increasingly recognised as a key contributor to the

pathogenesis of PD. Epidemiological studies suggest nonsteroidal

anti-inflammatory drug (NSAID) use confers a decreased risk of

developing PD [37]; positron emission tomography (PET) imaging

of patients with early-stage PD showed significantly increased

microglial activation [38], which could drive neuronal loss in both

PDD and AD [39]; sustained expression of the proinflammatory

cytokine tumour necrosis factor alpha (TNF-a) is associated with

neurodegeneration of dopaminergic neurons [40]; and increased

proinflammatory mediators are seen in the substantia nigra on

postmortem examination [41]. Moreover, genome-wide associa-

tion studies (GWAS) have reported an association between certain

human leucocyte anagen (HLA) alleles and the risk of PD.

GLP-1 analogues and DPP-IV inhibitors have demonstrated

anti-inflammatory properties across a range of experimental mod-

els of PD. Saxagliptin treatment in a rat rotenone model supressed

production of TNF-a, inducible nitric oxide synthase (iNOS), and

myeloperoxidase (MPO) [23]. Similarly, administering exendin-4

to rodents following nigrostriatal lesions induced by LPS and

MPTP toxins prevented toxin-induced microglial activation and

suppressed production of proinflammatory cytokines, including

TNF-a and interleukin (IL)-1B. This was associated with restoration

of extracellular DA and tyrosine hydroxylase (TH) activity, with

subsequent motor and behavioural improvements [17,20]. More

recently, in diabetic rat models, exenatide and liraglutide treat-

ment had antipsychotic, anxiolytic, and antidepressant effects

[42–44], which have been speculated to be due, in part, to its

anti-inflammatory effects [45].

Regulation of microglial activity is thought to have a critical role

in neuroinflammation in PD. While microglial activation might

initially be protective in the initial stages, prolonged activation by

alpha-synuclein, proinflammatory cytokines, and neighbouring

neuronal death [46–49] can lead to polarisation towards the cyto-

toxic M1 phenotype. This can be severely damaging as the disease

progresses [50], leading to a continuous and self-perpetuating

persistent inflammatory environment [51,52], and has been iden-

tified as a major factor in driving dopaminergic degeneration in PD

[39]. Correspondingly, strategies to enhance the cytoprotective

M2 microglial response in models of PD have proven to be neu-

roprotective [53,54], highlighting the importance of microglia

regulation.
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The ability of GLP-1 analogues to suppress cytotoxic microglial

responses and enhance cytoprotective phenotypes have demon-

strated benefits across a variety of experimental models. GLP-1-

mediated inhibitory effects on microglia have resulted in: reduced

infarct size and neuronal death in models of stroke [55–59];

reversal of cognitive and behavioural impairments in rodent mod-

els of traumatic brain injury (TBI) [60–62]; prevention of hippo-

campal synapse loss in (APP)/presenilin-1 (PSEN1) and

intracerebroventricular (ICV) streptozotocin (STZ) rodent models

of AD [63,64]; reduced circulating monocyte cytokine production

and psoriatic plaque severity in patients with diabetes and psoria-

sis [65], and attenuation of atherosclerotic lesions in arterial walls

in models of myocardial ischaemia/reperfusion injury (reducing

monocyte and/or macrophage accumulation) [66,67].

The underlying mechanism responsible for GLP-1 analogues

modulation of microglial function remains under debate, but

might involve regulation of the transcription factor nuclear factor

(NF)-kB, an important downstream target of the GLP-1R/PI3K/AKT

pathway, which regulates inflammatory gene expression and med-

iates the proinflammatory response of microglial cells. Perhaps not

unsurprisingly, NF-kB has also been implicated in the pathogene-

sis of PD. Increased NF-kB activity is seen in TH+ dopaminergic

neurons and in astrocytes and microglia in the substantia nigra

pars compacta (SNPc) of patients with PD and in animal models

[68]. By contrast, inhibition of NF-kB is neuroprotective in models

of PD [69,70] and retards ageing and increases lifespan in mice

[71]. Saxagliptin and vildagliptin have both been shown to signif-

icantly suppress NF-kB expression (and subsequent proinflamma-

tory cytokine cascades) in a rotenone rodent model of PD [23,72].

Similarly, exendin-4 administration has been shown to inhibit

activation of NF-kB and the resultant inflammatory response in

endothelial cells [73], rodent models of obesity [73,74], and renal

injury [75,76], resulting in improved cell survival. Although ex-

tensive crosstalk exists because various proinflammatory media-

tors can directly activate NF-kB [77], upregulation of the AKT

pathway also upregulates IkBa, a specific endogenous inhibitor

of NF-kB, resulting in reduced neuroinflammation [78], suggesting

a possible mechanism linking GLP-1R activation and inflamma-

tion.

Mitochondrial function and/or oxidative stress
As regulators of cellular energy homeostasis and cell death signal-

ling, the continued integrity of mitochondria within a cell is

crucial for its sustained health. In particular, dopaminergic neu-

rons of the SNPc have characteristically long-range projections

that require a high rate of mitochondrial oxidative metabolism
receptor as a therapeutic target in Parkinson’s disease: mechanisms of action, Drug Discov
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and, therefore, are vulnerable to events that interfere with mito-

chondrial function. In parallel, significant evidence suggests that

events that affect mitochondrial function, such as defective mito-

phagy, increased accumulation of mtDNA mutations, defects of

complex I of the respiratory chain, accumulation of alpha-synu-

clein, dysregulated mitochondrial calcium homeostasis, and in-

creased oxidative stress, are all involved in the pathogenesis of PD

and, furthermore, can promote further injury to neighbouring

mitochondria, creating a vicious cycle of further degeneration

[79,80].

GLP-1R activation has demonstrated multiple beneficial actions

on mitochondria across a range of experimental models. Saxaglip-

tin preserved mitochondrial function by elevating complex I and

antiapoptotic protein B-cell lymphoma 2 (Bcl-2) in a rat rotenone

model of PD [23] and geniposide, a novel GLP-1 agonist, upregu-

lated expression of Bcl-2 with subsequent reduced caspase 3 acti-

vation, resulting in preservation of dopaminergic neurons in an

MPTP mouse model of PD [81]. Similarly, exendin-4 has been

shown to increase mitochondrial biogenesis, number, and mass

in rat insulinoma cells [82], and to inhibit the mitochondrial

apoptotic pathway, resulting in functional improvements in rat

models of spinal cord injury [83] and protection of retinal cells in

diabetic rats [84]. In addition, exenatide was able to improve

mitochondrial respiration and suppress the opening of the mito-

chondrial permeability transition pore, resulting in attenuation of

myocardial hypertrophy and oxidative stress-induced injury in

rodent models of myocardial ischaemia, leading to increased

survival rates [85].

Recent studies have suggested how GLP-1R activation influ-

ences mitochondrial function. In a mouse model of amyotrophic

lateral sclerosis (ALS), the neuroprotective effects of exendin-4

treatment were associated with modulation of mitochondrial

intracellular calcium [86] and increased expression of mitofusin-

2 (Mfn2), an endoplasmic reticulum (ER)–mitochondria-tethering

protein that enhances ER–mitochondria coupling [87,88]. This is

particularly relevant because a recent study suggested that alpha-

synuclein causes mitochondrial fragmentation and/or damage by

reducing this ER–mitochondrial connectivity [89].

Growing evidence also implicates the PI3K/AKT pathway as

being partly responsible for the effects of GLP-1R activation on

mitochondria [90]. Activation of GLP-1R causes upregulation of

AKT, leading to inhibition of FOXO1 and reduced production of

proapoptotic proteins (BiM and FAS), while concurrent GLP-1R-

induced elevation of cAMP enhances upregulation of antiapopto-

tic proteins (Bcl-2 and Bcl-XL). Together, these actions contribute

to preserving mitochondrial function by helping stabilise the

outer mitochondrial membrane, preventing efflux of cytochrome

c into the cytoplasm and reducing the activation of caspase 9 and

3, subsequently resulting in reduced apoptosis and oxidative stress

[91–93].

In addition, a recent study highlighted another important

pathway that might be involved in mitochondrial biogenesis.

Exendin-4 administration in pancreatic b cells was associated with

a twofold increase in the expression of peroxisome proliferator-

activated receptor-gamma coactivator 1a (PGC-1a) [82], a master

regulator of mitochondrial biogenesis. Perhaps highlighting the

importance of mitochondrial function in the pathogenesis of

PD, growing evidence implicates dysregulated PGC-1a activity
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as playing a critical role in the pathogenesis of PD. GWAS studies

revealed the downregulation of PGC-1a-responsive genes in

patients with early PD [94]; PGC-1a polymorphisms are associated

with increased risk of early-onset PD [95] and in vitro studies

indicate that loss of PGC-1a is associated with increased accumu-

lation of alpha-synuclein [96]. Conversely, overexpression or

activation of PGC-1a protects dopaminergic neurons from

MPTP-induced degeneration in vivo, enhances mitochondrial

biogenesis, and prevents alpha-synuclein-induced dopaminergic

neuronal loss [94].

Importantly, post-translational mechanisms, such as acetyla-

tion and protein phosphorylation, can regulate the activity of

PGC-1a (and hence mitochondrial biogenesis), and can be influ-

enced by genetic and environmental factors.

GLP-1 analogues have not been shown to interact with PGC-1a

directly, but studies suggest that GLP-1R activation can influence

PGC-1a activity indirectly. In models of liver disease, exendin-4

treatment led to upregulation of Sirtuin 1 (SIRT1; an NAD-depen-

dent protein deacetylase and known upstream regulator of PGC-1a

activation) [97,98], which, together with AMPK activation,

resulted in enhanced PGC-1a activity, improvements in mito-

chondrial function, and reduction in ER stress and inflammation

[99,100]. Similar results demonstrated in models of CNS disease

suggest that GLP-1 analogues also modulate the expression of

SIRT1 in neurons. In mice fed a high-fat diet, liraglutide decreased

oxidative stress and inflammation, which was associated with

increased expression of SIRT1 [101]. Encouragingly, studies indi-

cate that SIRT1 overexpression is protective in many cell and

animal models of PD [102]. Similarly, regular exercise, known to

reduce the risk of PD and improve function outcomes in patients

with PD, induces upregulation of SIRT1 and, as a result, increases

PGC-1a activity. In addition, resveratrol, a potent activator of

SIRT1, protects against 3-nitropropanoic acid (3-NP)-induced

motor and behavioural deficits and improved motor function in

mice via increased PGC-1a activity and increased mitochondrial

biogenesis [103,104]. Taken together, there is accumulating evi-

dence linking GLP-1R activation and mitochondrial function.

Protein aggregation
Dysfunction of lysosomal systems, disruption of normal processes

through which cells degrade abnormal proteins and/or cellular

constituents (autophagy), and the aggregation of alpha-synuclein

into toxic fibrils, are thought to be crucial steps in the process

leading to the degeneration of dopaminergic neurons in PD, and

are also implicated in PDD and Dementia with Lewy bodies (DLB).

Recent studies indicate that 50% of patients with PDD also have Ab

plaques and hyperphosphorylated tau-containing neurofibrillary

tangles, which are usually seen in the brains of patients with AD.

Furthermore, Ab is an independent predictor of cognitive decline

in PD [105] and this co-morbid pathology might act synergistically

with Lewy bodies and Lewy neurites to lead to toxic gain of

function and confer a worse prognosis [106–109]. This has led

some to suggest that agents that can influence the development of

AD-related pathology would be beneficial in a subset of patients

with PDD.

In vitro studies show that GLP-1 analogues can alter the cellular

production and accumulation of Ab deposits, reduce Ab-induced

cell death and toxicity and levels of amyloid precursor protein
receptor as a therapeutic target in Parkinson’s disease: mechanisms of action, Drug Discov

www.drugdiscoverytoday.com 7

http://dx.doi.org/10.1016/j.drudis.2016.01.013


REVIEWS Drug Discovery Today � Volume 00, Number 00 � February 2016

DRUDIS-1744; No of Pages 17

R
eview

s
�K

E
Y
N
O
T
E
R
E
V
IE
W

(APP) [30,110], and decrease levels of secreted Ab in human

neuroblastoma cultures [111]. Similarly, in vivo treatment with

the GLP-1 analogues exenatide, liraglutide and lixisenatide has

been shown to reduce tau hyperphosphorylation [112,113], amy-

loid plaque load, and soluble Ab levels across a range of models of

AD, counteracting their toxic effects and leading to improvements

in memory performance and learning. Data regarding the effects of

DPP-IV inhibitors on AD-related pathology are conflicting: while

saxagliptin, vildagliptin, and sitagliptin were shown to reduce tau

and Ab deposits in ICV STZ and APP/PSEN1 mice models of AD

[34,35,114], in a Otsuka Long-Evans Tokushima fatty (OLETF)

T2DM rat model, sitagliptin paradoxically increased tau phosphor-

ylation, although differences in methodology might account for

these observations [36].

Studies indicate that the effects of GLP-1 analogues on amyloid

aggregation are at least partially due to activation of the PI3K/AKT

pathway, resulting in increased phosphorylation (and inactiva-

tion) of downstream target Glycogen synthase kinase 3 beta (GSK-

3B) [115–117]. GSK-3B is a major kinase involved in promoting

phosphorylation of tau and aggregation of Ab through modula-

tion of APP processing [118] and, correspondingly, inhibition of

GSK-3B activity has been linked with neuroprotection and reduced

AD pathology. GSK-3B is also involved in modulating autophagy,

and dysregulated GSK-3B activity is implicated in PD pathogenesis

and promotion of Lewy body formation [119]. Correspondingly,

studies demonstrate that inhibition of GSK-3B can promote autop-

hagy and halt the expression and aggregation of alpha-synuclein

and its subsequent neurotoxic effects in vitro and in vivo [120,121].

GLP-1R activation-induced upregulation of SIRT1 in neurons

might also contribute to beneficial effects on protein aggregation

[101]. As well as influencing mitochondrial function via modula-

tion of PGC-1a, SIRT1 is also involved in the regulation of autop-

hagy. In models of PD, increased expression of SIRT1 activated

heat shock protein 70 (Hsp70), a molecular chaperone that pro-

motes normal folding of alpha-synuclein. Furthermore, in models

of AD, SIRT1 reduced plaque formation by activation of retinoic

acid receptor b, which activates ADAM10 to facilitate processing of

APP along a nonamyloidogenic pathway, and can directly deace-

tylate tau, enabling ubiquitin ligases to promote its clearance

[102,122,123]. Correspondingly, in experimental models of PD

and AD, compounds that increase SIRT1 expression can reduce

alpha-synuclein aggregation, and Ab and neurofibrillary tau pa-

thology, respectively, resulting in improved behaviour [102].

Recently, geniposide was shown to upregulate expression of

insulin-degrading enzyme (IDE), a zinc-metalloendopeptidase

that can degrade insulin and other small peptides that can form

b-pleated sheets. IDE is activated by PI3K and was recently shown

to inhibit alpha-synuclein fibril formation in vitro by binding to

alpha-synuclein oligomers, blocking them from forming fibres

[127]. IDE can also bind and degrade Ab, halting their neurotoxic

toxic effects [128–130], and recent studies showed that upregula-

tion of IDE by geniposide antagonised cell damage induced by

Ab1–42 exposure in primary cultured cortical neurons [124] and

reduced Ab1–42 levels in diabetic rats [125] (reviewed in [126]).

A recent study also showed that, via an increase in cAMP

response element-binding protein (CREB; a downstream effector

of the PI3K/AKT pathway), exendin-4 caused upregulation of

ADAM10 at the plasma membrane in adult mice, which promoted
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a nonamyloidogenic APP-processing pathway, potentially repre-

senting another mechanism responsible for reducing levels of Ab

in vivo [131].

Neurogenesis
Neurogenesis continues to occur throughout adulthood in the

subgranular zone of the dentate gyrus in the hippocampus and the

subventricular zone (SVZ) near the lateral ventricle, although its

levels decline with age. These endogenous stem cells can migrate

into the granule cell layer of the dentate gyrus, develop neuronal

markers, and eventually become integrated within local circuits

[132]. In particular, it is thought that the SVZ continually provides

GABA- and DA-containing interneurons for the olfactory bulb.

However, postmortem studies suggest that the age-related decline

in adult neurogenesis is accelerated in patients with PD [133,134],

possibly due to dopaminergic depletion having a negative effect

on cellular proliferation [135,136]. Although the relations are not

entirely understood, altered neurogenesis in the hippocampus in

PD [133] might be linked with impairments not only in memory

processing, but also in olfaction and depression [135,137].

GLP-1R are expressed in the hippocampus and SVZ and exen-

din-4 treatment has been shown not only to stimulate cellular

proliferation in human neuronal cell cultures [138–140], but to

also promote differentiation into more mature neuronal pheno-

types [19,111,138,141]. In experimental models of PD, exendin-4

treatment 1 week after 6-OHDA-induced nigrostriatal degenera-

tion stimulated neurogenesis in the SVZ of the rat brain and

improved dopaminergic markers, leading to functional motor

improvements and normalisation of behaviour [19]. Similarly,

chronic treatment of rodents with exendin-4 enhanced hippo-

campal neurogenesis and led to improvements in reference mem-

ory performance and decreased immobility in the forced swim test,

suggesting improvements in cognitive function and mood disor-

ders [141]. In both studies, these effects persisted weeks after

cessation of treatment, or became apparent only after chronic

administration, suggesting possible neuroregenerative effects.

However, it is unclear whether the reduced TH+ staining seen

in the striatum following initial neurotoxin administration in

these models represents a phenotypical shift in protein expression

rather than cell loss, and whether exendin-4 is able to ‘restore’ the

phenotypic expression as a result of trophic effects rather than to

stimulate the generation of new neurons. In addition, improve-

ments in cognitive performance following liraglutide administra-

tion in rodent models of AD were associated with increases in

hippocampal CA1 neuronal numbers [32,142–144].

How GLP-1R activation influences neurogenesis is unclear, but

studies indicate that activation of the PI3K/AKT pathway is needed

for many of the effects on cellular proliferation and differentiation

[145–148]. Recent studies showed that liraglutide-induced hippo-

campal neurogenesis is accompanied by increased expression of

Mash1, an important regulator of neuronal precursor production

[142,149] that is required for AKT-induced neuronal differentia-

tion [150]. However, because neurogenesis can be stimulated by

diverse factors, such as exercise [151], antidepressants [152], and

neurotrophic factors [153], and is also decreased by ageing, insulin

resistance [154], microglial activation [155], loss of DA neurons

[156], and aggregation of alpha-synuclein [135], it might be rea-

sonable to suggest that activation of GLP-1R indirectly influences
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neurogenesis through limiting effects on other pathogenic pro-

cesses. For example, the inhibitory effects of exendin-4 on micro-

glial activation were associated with increased stem and/or

progenitor cell proliferation in the SVZ and neuroblast production

in the striatum in a rodent model of stroke [59].

Trophic factors
Trophic factors can influence cell survival and axonal growth and

have the potential to protect degenerating DA neurons as well as to

promote regeneration of the nigrostriatal DA system [157]. There-

fore, the exogenous administration of neurotrophic factors to the

PD midbrain and/or striatum to slow or halt degeneration of

dopaminergic neurons has become a promising active area of

research. However, despite the potential of this method, current

studies have been hampered by the inherent poor ability of trophic

factors to cross the BBB, leading to alternative methods of admin-

istration using viral vectors [158] or intranasal delivery [159] being

explored.

Despite their large molecular size, peripherally administered

GLP-1 analogues can cross the BBB to facilitate trophic factor

expression. Brain-derived neurotrophic factor (BDNF), a trophic

factor that can rescue dopaminergic neurons, reverse synapse loss

after disease onset [160], and promote neural progenitor cell

differentiation and survival, was shown to be upregulated by

intraperitoneal exendin-4 administration in adult mice [131].

Similarly, the neuroprotective effects of saxagliptin in a rotenone

model of PD were accompanied by an increase in striatal BDNF

[23].

Studies show that GLP-1 analogues might also directly act as a

neurotrophic factor. In PC12 cells, exendin-4 exposure induced

neurite outgrowth in a manner similar to nerve growth factor

(NGF) [138,161] and, furthermore, these effects on neurite out-

growth translated to functional improvements in sensory electro-

physiology and behavioural sensory loss in models of diabetic

polyneuropathy [162,163]. Importantly, these studies showed that

GLP-1R activation was able to rescue degenerating cells after NGF-

mediated withdrawal, suggesting independent trophic effects

[164,165]. Furthermore, in different tissue models, pretreatment

with exendin-4 improved the survival, adhesion, and therapeutic

efficacy of transplanted adipose-derived stem cells (ADSCs) in

ischaemic myocardium [166–168] and islet cell transplants [169].

These trophic effects might be mediated by activation of the

AKT pathway and increases in intracellular cAMP, given that BDNF

is a transcriptional target of cAMP response element-binding

protein (CREB), which are both elevated in response to GLP-1R

activation. Similar effects on neurite outgrowth effects are thought

to be mediated via the rise in intracellular cAMP and induction of

the MAPK/ERK pathway, which promotes neuronal survival in

response to nutrient depletion [161,170].

Learning and memory
The clinical phenotype of PD evolves due not only to neurode-

generation, but also to abnormal patterns of firing of intercon-

nected neuronal pathways. Dysfunctional synaptic plasticity has

been implicated in the initial onset of PD [171,172], has relevance

in the development of the motor complications of PD, such

as dyskinesias [172,173], and also might partially contribute to

the complex evolution of cognitive impairment. Dementia is
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common in the advanced stages of PD, affecting up to 80% of

patients [174], and often heralds impending residential care and

mortality; however, mild cognitive impairment (MCI) can occur in

early stages and a quarter of patients already have evidence of

cognitive deficits at diagnosis [175,176].

Given its role as an integrator of memory formation, alterations

in hippocampal structure and function are implicated in cognitive

decline in PD [177,178], correlate with memory defects and beha-

vioural abnormalities [178,179], and might predict progression to

PDD [180]. GLP-1R-activated signalling appears to be involved

in memory. GLP-1Rs are present in the CA2–CA3 region of the

hippocampus in abundance [181] and studies have shown that

mice lacking GLP-1R have learning deficits and their neurons

display impaired LTP (the cellular correlate of memory formation)

[182]. Conversely, GLP-1 analogue administration in rodents and

rats overexpressing GLP-1R demonstrate improved hippocampal

CA1 LTP and synaptic plasticity, resulting in subsequent improved

spatial learning and memory performance [26,144,183], effects

that were blocked in the presence of a GLP-1R antagonist.

Significant evidence also implicates the cholinergic system

arising from the substantia innominate of the basal forebrain as

having a key role in cognitive decline in PD. Imaging combining

PET with N-[11C]-methyl-4-piperidyl acetate (MP4A) and 18F-

fluorodopa (FDOPA) showed severe cholinergic deficit in temporal

and parietal regions in patients with PDD compared with patients

with PD [184]. In addition, postmortem studies showed that

patients with PDD and AD had lost >90% of neurons in the

nucleus basalis of Meynert (NBM) compared with age-matched

controls, resulting in a cortical cholinergic deficit [185,186]. More

recent in vivo studies using PET and volumetric magnetic reso-

nance imaging (MRI) confirmed that this cortical cholinergic

deficit is greater in patients with PDD (or AD) compared with

controls [187], and correlates to the degree of cognitive im-

pairment [188,189]. Whereas augmentation of these neurotrans-

mitter deficits with rivastigmine, an acetylcholinesterase inhibitor

(and the only licensed treatment for PDD and DLB), has positive

effects on cognition and behavioural disturbance, it can often

worsen motor deficits [190].

GLP-1 analogues can improve the functionality of cholinergic

neurons; exendin-4 was shown to enhance acetylcholine produc-

tion [identified through elevated choline acetyltransferase (ChAT)

activity] in NSC19 cells [165]. Furthermore, in studies using ChAT-

positive immunoreactivity as a marker for cholinergic cell bodies

in vivo, exendin-4 significantly reduced ibotenic acid-induced loss

of cell bodies in NBM cholinergic neurons within the basal fore-

brain in a rat compared with controls, demonstrating its ability to

restore cholinergic marker function following excitotoxic damage

[164].

In conclusion, activation of GLP-1R via GLP-1 analogues or

indirectly via DPP-IV inhibition has a remarkable array of protec-

tive effects on cellular proliferation, differentiation, inflamma-

tion, and mitochondrial function, and also might be associated

with reduced levels of alpha-synuclein and amyloid plaques in the

brain.

Insulin resistance
A growing body of data suggests that T2DM and PD share common

pathological mechanisms. Epidemiological studies suggest that
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T2DM increases the risk of developing PD by 40%, whereas pe-

ripheral insulin resistance, broadly defined as reduced tissue re-

sponsiveness to insulin, is associated with a more severe clinical

phenotype, accelerated disease progression, and increased risk of

cognitive decline [191]. Furthermore, studies indicate that a pro-

cess analogous to peripheral insulin resistance occurs in the brains

of patients with PD and might be responsible for initiating and/or

exacerbating neurodegeneration (F. Bassil, unpublished data,

2015) [192–195].

Within the CNS, although not directly involved in glucose

uptake, insulin is able to modulate many processes disrupted in

PD, including apoptosis, autophagy, mitochondrial biogenesis,

oxidative stress, neuroinflammation, protein synthesis, alpha-synu-

clein aggregation, and synaptic plasticity [80,196]. These effects are

mainly via activation of two pathways (MAPK/ERK and PI3K/AKT)

and, accordingly, experimental models of insulin resistance dem-

onstrate enhanced nigrostriatal neurodegeneration, accelerated

microglia cell activation, and alpha-synuclein aggregation in both

pancreas and midbrain [197] and altered DA turnover resulting

in enhanced motor deficits, impaired cognition, and behavioural

disorders compared with matched controls [198–201].

The relation between insulin resistance and neurodegeneration

is not limited to PD, and similar links exist in AD, where studies

suggest prolonged metabolic stress and Ab induce production of

proinflammatory cytokines that can phosphorylate and activate

insulin receptor substrate 1 (IRS-1) serine kinases IkB kinase (IKK),

Janus kinase (JNK), and Erk2. In turn, these kinases ultimately

phosphorylate IRS-1 at serine residues, causing inactivation and

inhibition of downstream insulin signalling [202–205].

Although the cause of insulin resistance in PD is still be eluci-

dated, recent studies suggest that alpha-synuclein negatively reg-

ulates insulin signalling in a similar manner. Either through

inhibition of protein phosphatase (PP)2A activity, sustaining

mTORC1 activation, enhancing an insulin-signalling negative

feedback loop, and increasing degradation of IRS-1 [206] or via

alpha-synuclein-induced microglial production of proinflamma-

tory cytokines, leading to activation of IKK or JNK, and ultimately

phosphorylation and inactivation of IRS-1 at serine residues,

thereby sustaining a vicious cycle of aggregation and neurodegen-

eration.

Consequently, because GLP-1R stimulation activates similar

pathways ‘de-activated’ as a consequence of insulin resistance,

some have suggested that it is the ability to restore brain insulin

sensitivity that is responsible for the diverse range of its pleotropic

effects. Exenatide and liraglutide have been shown to reduce levels

of IRS-1pS616 and IRS-1pS36 (putative biomarkers of neuronal

insulin resistance in AD) in the APP/PSEN1 model of AD and

diabetic mice, leading not only to facilitation of insulin signalling,

but also the restoration of normal tissue responses to insulin

[116,207,208], resulting in improvements in AD pathology and

functional improvements in cognition. Similarly, a novel GLP-1R

agonist, geniposide, attenuated insulin deficiency-induced Ab

accumulation in a APP/PSEN1 Tg model of AD [209].

GLP-1Rs are also ubiquitously distributed throughout the body

and, as such, GLP-1R stimulation has an array of systemic effects

that might also be of relevance in regards to limiting neurode-

generation based on reducing insulin resistance. Ageing, obesity

(or rather increased adiposity), and metabolic stress (such as
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peripheral insulin resistance) are risk factors for PD and contribute

to a state of chronic systemic inflammation [198]. Furthermore,

studies indicate that proinflammatory cytokines can cross the BBB

to directly induce cell death and/or activate IRS serine kinases,

such as JNK, in a similar manner to activated microglia to induce

and/or exacerbate neuronal insulin resistance [210,211].

Weight loss is an effective method in reducing the development

of peripheral insulin resistance and GLP-1 analogues have long-

lasting anorexic effects. The mechanism is uncertain but might

involve increasing energy expenditure [212–214], reducing gastric

emptying, decreasing nutrient absorption, inducing nausea, or

promoting satiety through stimulation of hypocretin and/or

orexin neurons in the lateral hypothalamus [213,215,216], which

ultimately can result in reduced levels of systemic inflammatory

markers (as observed in patients with psoriasis) [65].

As well as driving systemic inflammation, excessive peripheral

adipose tissue can alter lipid composition and function of hippo-

campal synapses [217]. GLP-1 analogues can improve insulin

sensitivity in obese mouse models by directly inhibiting inflam-

matory pathways in adipocytes and, via upregulation of the tran-

scription factor peroxisome proliferator-activated receptor gamma

(PPAR-y), can regulate adipogenesis, promoting preadipocyte pro-

liferation, which reduces apoptosis [74,218,219]. Dysregulation of

ceramides (lipids derived from fatty acid metabolism) is altered in

patients with PD and is associated with worse cognition [220,221].

Studies show that they can cross the BBB to activate microglia,

inducing central inflammation and cell death [222], and also

directly inhibit central insulin signalling leading to enhanced

nigrostriatal degeneration [223]. In addition alterations in their

metabolism are associated with the misfolding and aggregation of

alpha-synuclein [224]. Nonalcoholic steatohepatitis (NASH)

occurs frequently with T2DM and obesity, contributes to periph-

eral insulin resistance, and, via increased endogenous hepatic TNF-

a expression, can increase the production of peripheral ceramides

in adipose tissue. This has been shown to contribute to CNS

oxidative stress, insulin resistance, and neuronal cytoskeletal col-

lapse [223]. Recent studies have shown that exenatide reversed

hepatosteatosis-induced cognitive and behavioural deficits in rats,

which were accompanied by reduced levels of brain TNF-a [225].

These effects were thought to be mediated by increased expression

of SIRT1 and activation of the AMPK pathway, leading to beneficial

effects on mitochondrial function, reduction in ER stress, and

reduced lipogenesis, fat storage, and inflammation [99,100].

Taken together, due to the distribution of GLP-1Rs, stimulation

with analogues or indirectly with DPP-IV inhibitors can lead to

wide-ranging systemic effects on whole-body metabolism, im-

proving peripheral and central insulin resistance.

The AKT pathway
Studies have implicated the involvement of PI3K/ERK/MAPK and

PI3K/AKT-dependent pathways as being important in GLP-1R

activation in terms of diverting signalling away from apoptosis

towards cell survival. Although it difficult to separate the relative

contribution of each pathway because extensive crosstalk exists,

some studies that utilise selective AKT inhibitors suggest that the

AKT pathway is at least partially responsible for the effects of GLP-

1R stimulation on cellular proliferation [226], trophic effects [90],

and antiapoptotic effects [227,228].
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Able to phosphorylate over 50 downstream protein substrates,

AKT acts as a master regulator of cellular function [229]. The AKT

pathway has been identified as a central hub that might be

responsible for degenerating dopaminergic neurons in PD

[230,231] and some important downstream effectors, such as

GSK-3B, mTOR, caspase-9, and the transcription factor FOXO1,

have themselves been identified as novel targets for halting neu-

rodegeneration in PD. Substantial evidence suggests that loss of

control of AKT signalling is involved in several age-related dis-

eases, including AD [232], and growing evidence suggests that

altered AKT signalling is also a key component of PD pathogenesis

and influences alpha-synuclein aggregation [233], providing a

possible link between insulin resistance and neurodegeneration

in PD [229,230,233–237]. In parallel, studies using trophic factors

or small molecules to activate AKT appear to slow neurodegenera-

tion in PD [238–240]. However, as with any biological system,

negative feedback control of AKT is essential to maintain optimal

tissue function; for example, although AKT usually inactivates

FOXO, physiological FOXO activity is a critical counterbalance

to allow necessary transcription of stress-response genes and repair

systems [241,242], and studies show that elevated AKT phosphor-

ylation is associated with levodopa (L-DOPA)-induced dyskinesias

in MPTP-treated monkeys [243].

Thus, the protective effects of restoration of insulin signalling

might be due, in part, to an increase in the basal activation of the

AKT pathway, restoring the balance and activating signalling

cascades that ultimately promote cellular survival.

The therapeutic potential of GLP-1R activation
In regards to their potential utility in PD, GLP-1 analogues and

DPP-IV are emerging as promising therapeutic agents in PD,

regardless of whether their useful mechanisms of action in

neurodegeneration are via an insulinotrophic effect, an effect

on IRS-1 phosphorylation, or GLP-1 receptor action on AKT.

However, maximising the translational potential of this ap-

proach is crucial, and significant differences regarding their

pharmacodynamics and pharmacokinetic properties exist be-

tween not only the drug classes, but also compounds of the

same class, which is reflected in variations in their efficacy in

glycaemic control in diabetes. Thus, it might be reasonable to

assume that some might exert greater neuroprotective effects in

PD than others, although current comparable data in PD are

sparse. Studies from diabetic populations suggest that the risk of

inducing hypoglycaemia with either GLP-1 analogues or DPP-IV

inhibitors in a nondiabetic population is low; however, weight

loss and gastrointestinal adverse effects are less common with

DPP-IV inhibitors than with GLP-1 analogues [244], which is

potentially significant if utilising these drugs in older, often frail,

populations.

Although no clinical data yet exist, extrapolating the more

positive results of DPP-IV inhibition seen in animal models to

humans might be difficult: doses of DPP-IV inhibitors used in these

animal models are 10–20 times higher than those used in T2DM

and, as such, the high levels of brain GLP-1 in rats produced by

DPP-IV inhibition might be difficult to reproduce in humans.

Similarly, DPP-IV inhibitors have low penetration of the BBB.

Conversely, GLP-1 analogues, with the exception of dulaglutide,

are all able to penetrate the BBB to some degree in experimental
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models [15,16] and exert central effects in doses comparable to

those in humans [9].

Similarly, data regarding the comparison between individual

GLP-1 analogues in models of PD are limited. Data from diabetic

studies suggest that liraglutide is associated with greater effects on

glucose homeostasis than exenatide, but has greater incidence of

adverse gastrointestinal effects [245], whereas exenatide has been

linked to a small increased risk of pancreatitis in patients with

diabetes (although subsequent meta-analysis has not supported

this link). Few studies have attempted to compare the effects of

GLP-1 analogues in models of PD: a recent study indicated that, in

comparison to liraglutide and lixisenatide, exenatide was unable

to offer protection against MPTP-induced dopaminergic degener-

ation in a mouse model [22] (which could be explained by differ-

ences in equivalent dosing). Similarly, in mice, whereas liraglutide

and lixisenatide were both able to cross the BBB and enhance

neurogenesis in the dentate gyrus, lixisenatide achieved signifi-

cantly higher increases in cAMP compared with liraglutide, and at

lower doses [16].

Data regarding GLP-1 analogues and/or DPP-IV inhibitor

use in clinical trials of PD are limited but encouragingly: exena-

tide exposure in a small, open-label randomised controlled trial

in 45 patients with PD led to a mean advantage of 7.0 points on

the MDS-UPDRS Part III, which persisted after a 12-month

‘wash-out’ period, together with improvements in the Mattis

Dementia Rating scale and well as other non-motor areas

[246,247]. The single-blind design of this trial does not yet

confirm proof of efficacy, but the encouraging results have

prompted conduct of a larger, double-blind trial using a once-

weekly, long-acting form of exenatide in moderate-stage PD,

with results expected in May 2016 (Clinicaltrials.gov identifier

NCT01971242).

In parallel, encouraging results from an double-blind random-

ised controlled trial assessing the effects of liraglutide on cerebral

amyloid deposits in patients with AD have recently been reported,

suggesting that liraglutide treatment halted decline of the cerebral

glucose metabolism compared with controls. This hints at an

ability of liraglutide to stabilise energy metabolism in areas of

the brain that have been shown to correlate with cognitive decline

in patients with AD [248]. Similar trials evaluating GLP-1 analo-

gues in AD are ongoing: a Phase II trial evaluating exenatide in 230

patients with AD or MCI (NCT01255163) is currently underway

and a randomised placebo-controlled Phase II trial assessing the

safety and efficacy of liraglutide in 206 patients with early AD

(NCT018430755) is continuing.

In terms of future directions, although the current crop of GLP-

1 analogues (exenatide, liraglutide, and lixisenatide) are effective

in reducing insulin resistance, newer molecules, such as unim-

olecular dual GLP-1/glucose-dependent insulinotrophic polypep-

tide (GIP) agonists or triple GLP-1/GIP/glucagon receptor

agonists, have been shown to have superior efficacy in reducing

peripheral insulin resistance compared with conventional

‘mono’ GLP-1 agonists [249,250] with additional benefits of

reduction of adverse gastrointestinal effects. A novel dual GLP-

1/GIP receptor agonist was recently shown to attenuate dopami-

nergic cell death in an MPTP mouse model of PD [251] and these

newer agents might also deserve to have their potential effects

explored in PD.
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Concluding remarks
GLP-1R stimulation is associated with an impressive array of

positive actions that are relevant to PD pathogenesis, such as

enhancing mitochondrial biogenesis, suppressing microglial acti-

vation and inflammation, enhancing autophagy, and clearance of

aggregated proteins, and it is probably that it is this combination

of actions that accounts for its positive effects in models of not

only PD, but also AD, Huntington’s disease, TBI, and ALS.

Further research will clarify whether insulin resistance is a cause

or consequence of neurodegeneration in PD, but, if confirmed, this

might offer clinicians a useful window to try to identify high-risk

individuals (e.g. those with metabolic syndrome or other genetic

risk factors) and offer appropriate measures to slow this process

(and thus neurodegeneration).

It is also becoming increasing clear that the pathophysiology of

PD is not confined to a limited range of organs or cell systems, but

is rather a system-wide disorder, with complex interplay between

peripheral and central organs. This is supported by evidence of

systemic dysregulated metabolism in patients often years before

motor symptoms become apparent, which more importantly can

impact the course of degeneration within the CNS, suggesting a

common pathological signalling system and/or axis (such as a

ligand–receptor axis) present centrally and peripherally, which,

when disrupted by an initiating factor, leads to system-wide

pathophysiological disruption. This implies that a suitable agent

might be able to modulate and restore these dysregulated networks
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in a whole-body approach, which by its nature is more efficient

and likely to be more successful than an agent specially targeting

one aspect of the neurodegenerative pathway [252].

Given its expression in a variety of tissues throughout the body

and involvement in mediating systemic and peripheral inflamma-

tion, metabolic homeostasis, gut–brain signalling, cardiovascular

activity, and circadian rhythms [253], GLP-1/GLP1R has been

proposed as a likely candidate for one of the ligand–receptor

signalling axes exerting multiple effects in PD [252]. Therefore,

GLP-1R activation by agonists could explain the range of systemic

and neuroprotective effects of GLP-1 stimulation seen in models of

PD.

In future, research is focus on developing nonpeptidergic li-

gands that can modify the activity of the GLP-1R itself, which,

theoretically, would be able to exert more potent effects on GLP-1R

at multiple levels, thus maximising their effects. Although some

novel compounds have been developed with evidence of efficacy

at increasing cAMP and insulin potentiation [254,255], further

research will be needed to ascertain whether maximising exploi-

tation of this newly discovered signalling axis would offer greater

benefits in the treatment of neurodegenerative diseases.
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