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Abstract 

 

An ideal tracheal scaffold must withstand luminal collapse yet be flexible, have a sufficient degree of porosity to 

permit vascular and cellular ingrowth, but also be airtight and must facilitate growth of functional airway 

epithelium to avoid infection and aid in mucocilliary clearance. Finally, the scaffold must also be biocompatible 

to avoid implant rejection. Over the last 40 years, efforts to design and manufacture the airway have been 

undertaken worldwide but success has been limited and far apart. As a result, tracheal resection with primary 

repair remains the Gold Standard of care for patients presenting with airway disorders and malignancies. 

However, the maximum resectable length of the trachea is restricted to 30% of the total length in children or 

50% in adults. Attempts to provide autologous grafts for human application have also been disappointing for a 

host of different reasons, including lack of implant integration, insufficient donor organs and poor mechanical 

strength resulting in an unmet clinical need. The two main approaches researchers have taken to address this 

issue have been the development of synthetic scaffolds and the use of decellularised organs. To date, a number 

of different decellularisation techniques and a variety of materials, including polyglycolic acid  (PGA) and 

nanocomposite polymers have been explored.  The findings thus far have shown great promise, however there 

remain a significant number of caveats accompanying each approach. That being said, the possibilities presented 

by these two approaches could be combined to produce a highly successful, clinically viable hybrid scaffold. 

This article aims to highlight advances in airway tissue engineering and provide an overview of areas to explore 

and utilise in accomplishing the aim of a developing an ideal tracheal prosthesis.  

 

1. Introduction 

Disorders of the trachea can lead to serious health complications, significantly reducing the quality of life for 

patients. These vary but include tracheal carcinoma, tracheo-esophageal fistulae, stenosis, tracheobronchial 

malacia and injury, or the ingestion of harmful substances. Existing treatment options are limited; currently the 

Gold Standard treatment is tracheal resection with a primary reconstruction to restore continuity. Other therapies 

include aortopexy, tracheal stenting, or slide tracheoplasty, but these have mixed levels of success. To date, 

there is no clinically viable option available for patients with long segmental airway disorders. In adults, only 

half of the tracheal length, approximately 6cm, can be successfully treated by resection, and even less in 

children where only one third of the length of the trachea can be reconstructed
1,2

.  

 

Alternative options for trachea replacement are being developed, including autografts, allografts, and 

prosthetics, or a combination of these; but they have limitations including inflammation, infection, improper 

sizing, and a failure to effectively mimic the physiological properties of the original tissue
1–8

. With the 

advancements made in tissue engineering (TE) in the last 40 years
4,9

, researchers are focusing on utilising a 

tracheal scaffold made from a suitable synthetic polymer or a cadaveric allotransplant. To properly engineer a 

functional implant one must understand the physiology of the trachea (Figure 1). 



 

Figure 1: Anatomy of the human trachea. 

 

 

The trachea is a vascularised hollow tube that forms the airway passage between the larynx and the lungs. 

Structurally, it is composed of layers of connective tissue and smooth muscle, supported by U-shaped rings of 

hyaline cartilage that hold it open. Internally it is lined with pseudostratified columnar epithelium, with ciliated, 

brush, basal, and secretory cells on a basement membrane
10

. The trachea develops from the respiratory 

diverticulum. In the third to fourth week of life, the hepatic primordium migrates from the respiratory 

primordium, allowing the respiratory primordium to dilate and bifurcate ventrocaudally into lung buds. The 

lung buds give rise to the trachea, infra- glottis, and the glottic opening. By week 8, the mesenchymal rudiments 

of the tracheal cartilages are present. During the next 2 weeks, the cartilages develop into fibro-elastic tissue, 

and smooth muscle is incorporated into the trachea. 



 

Figure 2: Development of the trachea. A. Lateral view at the end of week 3; B-C. Ventral view of development at week 4. 

 
The view is that the tissue engineered airway will replace the damaged organ, mimic the native extracellular 

matrix (ECM) in structure and function, while also providing support and encouraging cell attachment, 

differentiation, and proliferation
11

. This technique was originally pioneered by Langer and Vacanti 
12

 who 

showed that scaffold composition is a key feature, and can accelerate tissue regeneration even without cells or 

growth factors. Scaffolds may be biological, as a decellurised allotransplant, or composed of a synthetic 

material, which can be non-biodegradable or biodegradable. Synthetic scaffolds have been studied in various 

forms including polyethylene glycol-based hydrogel, polylactic/glycolic acid (PLGA), poly(e-caprolactone) 

(PCL), polyester-urethane, gelatin sponge, Marlex mesh and other modified forms (see table 1).  While many of 

these innovative treatments could potentially be utilised in adults, the treatment options for children are limited 

as the level of complexity increases due to variations in the size of the trachea, and changes over time due to 

growth. Here the focus is to review the application of decellularised scaffolds and synthetic and biodegradable 

polymers in tissue engineered airways, highlighting cellular interaction, and clinical applications.



 

 Species Scaffold Key Findings 

 

Wykoff et al 1973
5
 

 

Nude Mice (10) 

 

2 layers: 

1. Outer layer: PGA non-woven mesh 

seeded with shoulder-derived bovine 

chondrocytes 

2. Inner layer: silastic tube. 

  

 New cartilage formed after 4 weeks in 

vivo. 

  

 Both internal and external surfaces of the 

cylinders lined with vascularised 

connective tissue. 

  

 

Neville et al. 1990
6
 

 

New Zealand White Rabbits 

(17) 

 

3 layers: 

 External: copolymer (L-lactide/ε-

caprolactone) coarse mesh 

 Middle: PGA nonwoven mesh 

 Internal: collagen  

 Expanded chondrocytes seeded onto 

scaffold 24hrs pre-implantation. 

  

  

 Airway structure maintained up to 3 

months post implantation. 

  

 Epithelium regeneration occurred in the 

internal lining. 

  

 Cartilage accumulation observed in the 

tracheal wall. 

  

 No further follow-up data available. 

  

 

Shi et al. 2005
11

 

 

New Zealand White Rabbits 

(10) 

 

3 layers: 

 External surface: lateral thoracic facia 

 Cartilage substitute: polypropylene mesh 

 Inner surface: proximal ear epithelium. 

1.  

2. 3 deaths: 1 pre-anastomotic wound 

infection, 1 post-anastomotic lower 

respiratory tract infection,  

1 detachment of lower proximal 

anastomosis. 

 



 
 

Klin et al. 2007
13

 

 

Human (1: 30 year old female 

patient with end stage 

bronchomalacia) 

  

 DEM decellularisation of female human 

donor trachea. 

  

 Re-seeding with autologous epithelial and 

mesenchymal stem cells 

 Replacement of patient’s left main 

bronchus. 

  

  

 4 months: normal appearance and 

mechanical properties of graft. 

  

 Donor trachea particularly difficult to 

obtain for paediatric application. 

 

Jungebluth et al. 2011
9
 

 

Human (1: 36-year-old male 

patient with recurrent primary 

cancer of the distal trachea 

and main bronchi) 

1.  

2. POSS-PCU (polyhedral oligomeric 

silsesquioxane poly-[carbonate-urea] 

urethane nanocomposite) scaffold seeded 

with autologous bone-marrow mononuclear 

cells in a bioreactor for 36 hours prior to 

implantation. 

3.  

1.  

2. 5 months: patient asymptomatic and 

tumour-free. 

3.  

Partial coverage with nearly healthy 

vascularised mucosa and epithelium.  

Table 1: Cell seeded synthetic tracheal prostheses 



2. Scaffolds 

Tissue engineered scaffolds are designed to act as a supporting structure; maintain an open airway and mimic 

the biological and mechanical function of the native ECM; providing a template for the stem cells until they 

have proliferated, regenerated, and stabilised the damaged area
9
 (Figure 3).  

 

Figure 3: Schematic representation of the relationship between degradable scaffolds and tissue 

regeneration 

 

Most importantly it must be nontoxic, laterally rigid to prevent collapse, while also being flexible to 

accommodate the necks natural movements.  Flow of air into the trachea makes it prone to airborne infections 

such as bacterial and viral infections
13

. In native tissue, cilia provide a barrier and a mechanism for the 

expulsion of particulates. To mimic this action vascularization is needed at the air-tissue interface. A porous 

scaffold allows cell-polymer interactions for the ingrowth of host connective tissue
6,7

. It should also be 

biocompatible in terms of cell type, function, longevity, and immunogenicity. A scaffold that does not initiate a 

secondary immune response would eliminate the risk of implant rejection as well as the need for life-long 

immunosuppression, which is unsuitable in patients with cancers of the trachea. For degradable polymers the 

degradation products must be biologically safe. The scaffold also needs to degrade at an appropriate rate in 

relation to the regeneration of tissue to prevent structural collapse of the trachea. 

The type of scaffold is still an on-going debate but methods for tracheal replacement include the use of 

autologous tissue
14

 autografts
15

, allografts
7
 prosthetic materials

4,16,17
 or a combination of these approaches

1,18
. 

These works have met with limited success due to stenosis, immunological rejection, bacterial infections, graft 

migration and material failure
11

. Tissue engineered polymeric implants are preferable as they do not raise a 



substantial immune response, which can often be seen in allografts. Despite this TE tracheal transplants have 

already been carried out clinically in a few compassionate cases
7,13,19–21

. None of the current scaffold approaches 

have the potential to grow with the patient; therefore, sustainability is limited in growing children
3
. There are 

three areas of focus for scaffolds used in airway tissue engineering: allogenic decellurised tissue, and 

biodegradable, or non-biodegradable synthetic scaffolds. 

 

 

2.1 Decellularised Scaffolds 

Decellularised scaffolds are currently the most widely used TE tracheal implant in the clinical setting. To create 

a decellularised scaffold a donor trachea is harvested from a cadaver, subjected to numerous washing cycles to 

remove donor cells via detergents, salts, enzymes, and/or physical means
22,23

 and is then recellularised with the 

patient’s own cells. This gives a TE trachea good biomechanical properties, functional extracellular matrix 

(ECM), and removes the possibility of an immune response by eliminating major histocompatibility complexes 

class I and II
24

. For the scaffold to fully integrate it must have a healthy ECM composed of proteins, collagen 

subunits, proteoglycans and glycoproteins; all of which the decellularisation process retains, maintaining the 

tissues ability to develop and grow, and also removes immune responsiveness
25

. 

Decellularised tissue engineered tracheas have been investigated in a number of studies to date, with varied rates 

of success
8,25–27

. While good epithelialisation was observed in many, the grafts were structurally unstable 

leading to airway obstruction and subsequent collapse. The first in human tissue-engineered tracheal 

replacement was performed in 2008, on a 30-year old female patient with end-stage bronchomalacia
13

. A donor 

trachea was decellurised via the detergent-enzymatic method
22

 and seeded with epithelial cells and 

mesenchymal stem cell-derived chondrocytes from the recipient. The graft was structurally sound with good 

rates of revascularisation, epithelialsation and no immunological response or serological signs of rejection. On 

follow-up 5 years later the tissue-engineered trachea itself was patent, well vascularised, completely 

recellularised with respiratory epithelium, and had normal ciliary function and mucus clearance
28

. However, 

patency of the lumen was suboptimal with the graft requiring dilatation and stenting intermittently. 

Since this case, there have been several other clinical cases performed worldwide but very few involved children 

receiving a tissue engineered tracheal transplant. One case in 2012 saw the use of a decellularised donor trachea, 

implanted into a 10-year-old boy to repair a 7cm section of damaged trachea, due to long-segment congenital 

tracheal stenosis and pulmonary sling. No seeding with epithelial cells, mesenchymal stem cells (MSC), or 

chondrocyte differentiation occurred before the surgery due to the immediacy of the procedure. Instead an 

intraoperative procedure was used; prior to implantation the donor trachea was saturated with a cell suspension 

of haematopoietic and MSCs and also human recombinant erythropoietin. Granulocyte-colony stimulating 

factor (G-CSF) and transforming growth factor beta (TGF-B) were injected to the tracheal rings to aid MSC 

proliferation and recruitment, chondrocyte differentiation, and angiogenesis. Temporary stenting was required 

following surgery, while bronchoscopy and balloon dilation were carried out regularly to clear mucus build-up. 

Nevertheless, the clinical course was good. At 6 months post-op, the airway was patent and stable, balloon 

dilation was still needed, but at 18 months post-surgery the child was healthy and fit with no signs of 

complication
19

.  



Additionally, a case series of nine adult and paediatric patients were reported in a review by Badylak et al.
29

 in 

2012 which stated that there were no graft related mortalities 12-42 months following surgery, however partial 

graft collapse had occurred in some instances. Unfortunately, these cases have not yet been reported or followed 

up in a formal scientific paper, making it difficult to surmise the outcomes. While decellularised donor implants 

have been successful in certain compassionate cases, the method has not been optimised or clinically trialed yet. 

In the future if a standard framework for this procedure can be identified and tested it is possible these could be 

used clinically, but will still be limited by the shortage of donor tissue. 

 

2.2 Synthetic Scaffolds 

In tissue engineering, one of the most debated issues is the choice of synthetic scaffold. There are numerous 

options for a synthetic scaffold as previously mentioned, but these are generally composed of modified 

polymers, often in combination with biological elements. Studies have shown that inserting chondrocytes for 

cartilage growth in natural materials like gels or sponges, including alginate, collagen and agarose, can help to 

promote collagen type II and proteoglycan synthesis
16

. Omori et al
30

 developed a collagen-conjugated prosthesis 

for tracheal replacement composed of polypropylene Marlex mesh, a spiral ring frame, and collagenous sponge 

extracted from porcine skin. This scaffold was applied to repair the larynx and trachea in 4 adult patients. Post-

operative results were positive, and even though epithelialisation on the luminal surface took some time to 

develop, follow-up studies reported good epithelisation and no signs of graft rejection after three years.  

A novel synthetic nanocomposite polymer reseeded with autologous mononuclear cells was used to create the 

worlds’ first completely synthetic tracheal transplant in 2011
31

. The POSS–PCU nanocomposite material is 

composed of a polycarbonate (urea) urethane soft segment (PCU) and a polyhedral oligomeric silsequioxane 

(POSS) cage attached as a pendant group. This non-biodegradable material is biocompatible, nontoxic, and 

elicits a low inflammatory response in vivo
32

. The recipient, a 36 year-old male, suffered from recurrent primary 

cancer of the distal trachea and main bronchi. As resection was unsuitable in this case, a novel bioartificial 

nanocomposite was designed to replace the section of trachea affected. The initial surgical outcome was 

encouraging, however biopsy samples showed the presence of necrotic connective tissue due to fungal infection. 

Nevertheless, 5 months after transplantation the patient was asymptomatic, did not show signs of rejection, had 

a patent airway and the mucosa was vascularized with a near-normal epithelium.  

While these materials provide researchers with a highly modifiable graft that can be customised according to the 

requirements of the patient, there are still major associated risks. The synthetic materials can be poorly 

incorporated by native tissues; resulting in complications such as graft migration, stenosis, infection and the 

formation of granulation tissue at the anastomosis site. 

 

2.3 Biodegradable Synthetic Scaffolds 

For paediatric applications, the choice of scaffold is a key consideration. Tracheal defects affecting children 

include congenital and pediatric lesions, tracheal stenosis, tracheoesophageal fistulae, complete tracheal rings, 

tracheomalacia, laryngotracheoesophageal cleft, and damage due to prolonged intubation and tracheal trauma
33

. 

The treatment options available to children are even more limited in comparison to adults as the maximum 

resectable length of the trachea is limited to 30% due to the amount of tissue available. Thus, there is currently 

no viable tracheal replacement for children. For paediatrics, the use of a biodegradable scaffold that replaces the 



damaged tracheal section and supports tissue modification, cellular migration and proliferation, while also 

degrading at a suitable rate during growth would be highly desirable, as it would eliminate the need for recurrent 

surgeries. Polymers can degrade in two distinct ways; via surface or bulk degradation. In surface degradation the 

material is eroded layer by layer, reducing in thickness whilst maintaining the original shape, however in bulk 

degradation the polymer is lost through disintegration, weakening the device at unspecified points across the 

surface of the scaffold. This distinction is important when thinking about the structural integrity of the implant, 

because if it degrades at a rate that is too rapid, there is an increased risk of luminal collapse. As the polymer 

erodes, the cells must also be able to withstand the changeable environment. Equally, the degradation products 

must not be toxic, or initiate an immune response. The rate of degradation is malleable as it is dependent on the 

type of chemical bonds in the material, pH of the environment, polymer composition, and water uptake
34

.  

Synthetic scaffolds hold much promise for future directions but problems such as poor biocompatibility, graft 

migration, and insufficient integration with the native tissue, remain unresolved. Furthermore, biodegradable 

scaffolds also have unique complications to overcome, like the release of harmful degradation products and loss 

of mechanical properties over time. The majority of biodegradable polymers being studied for clinical 

application are from the polyester family. These are based on lactic and glycolic acids that degrade in vivo via 

hydrolysis of the ester backbone, producing clean by-products that can be easily excreted by the body. 

Poly(glycolic acid) (PGA), poly (lactic acid) (PLA), Poly(caprolactone) (PCL) and their copolymers are the 

most widely used biodegradable polymers in tissue engineering 
35

. 

 

 

3. Biodegradable Tissue Engineered Airways 

Poly(glycolic acid) (PGA) has excellent properties for use in tissue engineering. Its degradation product, 

glycolic acid, is converted to carbon dioxide and water; these can then be excreted through the lungs or kidneys, 

making it non-toxic and non-immunogenic. As a material, PGA serves as a conducive environment for cell 

growth, its degradation rate can be adapted, and porosity modified to encourage ECM formation and 

vascularisation through cell-polymer interactions
36

. Since the 1970s, the main use of PGA has been to produce 

resorbable sutures, but it is now being used in mesh-form for tissue engineering purposes
35

.  

Polylactic acid (PLA) is commonly used in scaffolds, drug delivery systems, bone fixation devices such as 

screws and plates, surgical sutures, and meshes. PLA’s degradation product is lactic acid, which naturally occurs 

in the body. Due to the similarities between PLA and PGA, scaffolds are often formed from a copolymer of 

these. Since PLA is more hydrophobic than PGA, this changes the rate of degradation and mechanical stability 

of the scaffold as the ester bonds in PLA are more resistant to hydrolysis
35

. When degrading, PLA and PGA can 

produce high concentrations of lactic and glycolic acids, these can negatively impact on the local environment 

due to the acidic content. 

With a degradation time between two to three years, Poly(caprolactone) (PCL) is useful as a base polymer for 

long-term biodegradable implants, as it degrades at a slower rate than PLA or PGA
37

. Polyurethanes were once 

unsuitable for use in vivo due to the toxicity of their degradation product (2,4- diaminotoluene). Since then, 

biodegradable polymers have been modified such that degradation products are now non-toxic
38

. The 

incorporation of polyhedral oligomeric silsesquioxane (POSS) into poly (Ɛ-caprolactone) (PCL) has improved 

the polymers mechanical properties further, preventing the ester bonds in PCL from degrading through 



enzymatic attack to the same extent. The properties of these nanocomposite materials lend themselves to the 

development of a multitude of scaffolds and organs. Biodegradable polymers have been used to create vascular 

grafts
39

, resorbable sutures, drug delivery systems, orthopaedic fixtures
35

, artificial skin, even bone substitutes
40

. 

One of the most applicable uses for biodegradable polymers has been to create resorbable stents. Stents are 

currently manufactured from non-resorbable materials, like plastic and metal. These lead to patient discomfort, 

and significant clinical complications such as migration, haemorrhage, infection, stenosis, and tissue 

granulation. Biodegradable stents have already been developed for oesophageal, intestinal, urethral, biliary duct, 

vascular stenosis and more recently for airway stenosis, therefore could be modified to produce larger constructs 

like tracheal scaffolds
41

. 

 

In paediatric cases the use of biodegradable scaffolds, rather than an allotransplant, is also preferable for 

tracheal replacement, which becomes obvious when the following factors are considered. The use of tracheal 

allotransplants has had a certain amount of success clinically for both adults and children, but the sustainability 

of such implants is limited. The availability of donor tissue is a rate-limiting step in the process, one that also 

requires the tissue to be compatible in terms of size and suitability. The long-term outcomes from the use of 

decellurised donor scaffolds are not known yet, and it remains to be seen if the detergent-enzymatic method 

(DEM) removes all potential immune responses, or if the stringent chemical processes raise any complications 

in vivo. DEM is not a quick process; to fully remove the MHC antigens class I and II along with the DNA and 

leukocytes requires 25 washing cycles. Donor scaffolds are not available on demand and the time taken to 

prepare a scaffold, even when expedited, requires 5 weeks
42

. For use in paediatric cases finding a size match 

adds another level of complexity. A biodegradable scaffold would provide an alternative, sustainable option, 

which can degrade as the child grows and the native tissue regenerates. If the scaffold could be optimised it 

could mean being able to repair a defect in one procedure, a feature allotransplants cannot currently offer. 

 

4. Cell Interactions 

4.1 Cell Selection 

Two cell types essential for the success of a synthetic trachea are epithelial cells to line the airway, and 

chondrocytes to form new tracheal cartilage. Cell populations that make up this ciliated pseudostratified 

columnar epithelium include ciliated, goblet, and basal cells. As the trachea is exposed to the external 

environment through the passage of air, respiratory epithelium provides essential protection and maintains 

homeostasis. This cell network produces mucosal layers to trap particulates and pathogens, clear mucus, 

maintain the water/ion balance, and sustain a healthy epithelium throughout the repair and regeneration process.  

Chondrocytes produce and conserve the extracellular matrix of cartilage. The main sources for chondrocytes are 

auricular, nasal, tracheal, and costal cartilage. The U-shaped rings of the trachea are formed from hyaline 

cartilage, which is only present in the joints, the respiratory tract, and the immature skeleton. The distinction 

between the types of cartilage (hyaline, elastic and fibrocartilage) can be problematic when sourcing and 

culturing chondrocytes for a specific purpose. Chondrocytes have proven more difficult to harvest and grow 

than epithelial cells. To address this issue, bone marrow mesenchymal stem cells (MSCs) can be employed and 

subsequently differentiated into chondrocytes as well as epithelial cells. Over time, chondrocytes cultured in 

vitro, irrespective of their source, change their gene expression and effectively dediffrentiate. To account for this 



behaviour, chondrocytes are often seeded onto or within gels like agarose or collagen, as the three dimensional 

environment appears to better support their differentiation into hyaline cartilage
3,24,43

. 

Cell sources available for use in tissue engineering include induced pluripotent stem cells, adult stem and 

progenitor cells, and lineage-committed and differentiated adult tissue cells. Cell choice is dependent on 

availability, expansion capacity, accessibility, and its potential for tumorgenicity through differentiation.  

Embryonic stem cells are the undifferentiated inner mass cells of a human embryo. As the earliest pluripotent 

stem cells, they have the potential to differentiate into multiple lineages. Alternatively, cells can be sourced from 

foetal, umbilical cord, or placental tissue. These cell populations also have a high expansion capacity but the cell 

fates are already somewhat defined and long-term they have the tendency to become cancerous. While they have 

unrivaled potential, there are tight ethical regulations surrounding the use of embryonic or foetal stem cells 

making them unsuitable for regular use in the seeding of tracheal scaffolds.  

Induced pluripotent stem cells (iPSCs) generated from adult cell populations are an attractive alternative to 

embryonic or foetal stem cells. These iPSCs exhibit the same morphology, expansion and differentiation 

properties, and also express the same cell marker genes as embryonic stem cells. Adult somatic cells are 

essentially reset to progenitor cells, driven by a series of transcription factors
44

.  However, this technique is yet 

to be refined as iPSCs have failed to fully commit to their reprogrammed cell lineage and have a tendency for 

tumorgenicity.  Techniques are still improving for creating iPSCs and there is great potential for them to be a 

valuable source of stem cells in the future. 

Adult stem cells comprise somatic cells with the ability to self renew. These can be derived from many adult 

tissues including adipose tissue, bone marrow, and peripheral blood. The use of an autologous stem cell 

population is a more viable choice when repopulating any tracheal implant, as immune matching reduces the 

probability of graft failure and rejection. However, harvesting these cells from the patient may prove difficult as 

this can be quite an invasive procedure. Though some adult stem cells have failed to proliferate fully when 

trialed in animal models, bone marrow mesenchymal stem cells are used regularly in clinical applications, 

including for tracheal scaffold reseeding. Autologous MSCs are easily accessible from the bone marrow, have 

no potential for immunogenicity, have a much lower incidence of tumorgenicity, and expansion rates are 

favourable. MSCs have the ability to differentiate into various cell types in vitro and are also involved in tissue 

repair. This makes them an excellent candidate for tissue engineered airways, as MSCs have been shown to 

differentiate into endothelial lineages
23

. 

Fibroblasts synthesise the extracellular matrix and collagen network that forms the basic structure for all tissues.  

They play a key role in epithelial-mesenchymal cell interactions and have been shown to support epithelial and 

mesenchymal cell growth through the reconstruction of the basement membrane
45

. Fibroblasts also improve cell 

migration, proliferation, and differentiation into ciliated, goblet and basal cells, allowing for the reconstruction 

of a pseudostratified ciliated epithelium similar to a native epithelium.
45

 They’ve also been shown to increase 

the rate of epithelial cell growth, although the source of fibroblasts is a determining factor; gingival fibroblasts 

were indicated to be better than nasal and dermal fibroblasts
45,46

. The range of cells applicable to airway tissue 

engineering suggests that the development of a seeded constructs is a viable option, therefore this is a promising 

experimental approach. 

 

 



7. Experimental approach 

In addition to decellularised and seeded scaffolds, 3D printing and bioprinting have become highly adaptable 

techniques for creating bespoke tissue engineered scaffolds. This technique permits the production of 3D solid 

scaffolds of any shape from digital images i.e. CT scans, giving a high level of reproducibility and control over 

the material properties of the scaffold, such as porosity and surface roughness. Advancements have been made 

with the development of bioprinting; allowing for both the printing of a support structure on which the cells can 

proliferate, and the incorporation of cell populations and biological cues into the ink, resulting in a completely 

cohesive scaffold.  

The methods for 3D printing vary; they include inkjet, laser-induced forward transfer, microextrusion or 

stereolithography and projection pattern formats
47

. Each method comes with its own pros and cons, such as 

mechanical stress, cost, clogging, or limited material use. One of the main benefits in 3D printing scaffolds is 

the accuracy and reproducibility compared to traditional procedures, so material printability and printer method 

must be carefully considered. However, a key notation is that despite the advantages, the issue of selecting a 

suitable printing material to mimic the native tissue remains. Natural materials have an inferior structural 

integrity in comparison to the synthetic materials, but do provide a superior biocompatible environment. The 

opposite can be said for synthetic polymers, which show higher mechanical strength, but have a limited degree 

of biocompatibility. For this reason the combination of natural and synthetic materials into a hybrid scaffold 

would result in a prosthesis which satisfies the desired parameters.  

The choice of cells is dependent on the target application; in this case epithelial cells and mesenchymal cells to 

generate airway epithelium and cartilage. However, another selection factor to consider is the robustness of the 

cells as they have to withstand stresses from the bioprinting process. Encapsulating cells in hydrogels creates a 

tissue-like environment increasing viability, which is often is often affected in bioprinting. A 3D printed PCL 

scaffold coated with mesenchymal stem cells seeded in fibrin was tested for the repair of partial tracheal defects 

in vivo
48

. The 3D printed scaffold integrated well with the native tissue. The reconstructed trachea was 

successfully covered with regenerated respiratory epithelium, neo-cartilage formed and minimal granulation 

tissue was seen at suture points.  

The potential of bioprinting is undeniable; however as a relatively new approach for the development of tissue 

engineered scaffolds, refinements are needed in printing methods, ink compositions and scaffold properties. 

 

8. Conclusion 

After decades of research, there now appear to be promising avenues to explore in order to successfully tissue 

engineer the airway.  As highlighted in this article, published research suggests that a promising approach may 

be to decellularise a cadaveric trachea and recellularise it with the patient’s own cells
24

. This option has been 

applied clinically, with successful outcomes recorded from patient reports
13,19

. However, most published follow-

up papers report weak mechanical properties, at least for the initial months post-implantation, with most cases 

requiring stenting to maintain patency
19,28,29

. Another issue with this approach is that it is not time efficient as 

the duration required find a donor and decellularise the scaffold may be problematic, specifically for cancer and 

trauma patients where a rapid replacement may be required. Additionally, a standard decellularisation protocol 

must be vigorously validated to prepare for potential variance between donor tissues. Turning to synthetic 

scaffolds appears to offer some theoretical advantages over scaffolds of biologic origin. These include the lack 



of an allorejection response rendering immunosuppressive therapy unnecessary, the potential to be tailor-made 

and/or 3D printed to each individual patient’s specific requirements and dimensions and a high degree of 

malleability allowing for good control of the strength, microstructure, degradation rate and porosity of the 

scaffold. These scaffolds may be ‘off the shelf’ accessible for urgent cases, without waiting for donor tissue. 

High-throughput production can also be tightly regulated and the constructs sterilised with ease. The 

disadvantages of this approach, on the other hand, include mechanical mismatch and poor integration resulting 

in formation of granulation tissue at the anastomosis sites.  With advances in 3D bioprinting technology, the 

combination of synthetic materials and printable biological components appears to be feasible and the most 

rational approach to achieving success in airway tissue engineering within the next decade.  
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