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Visualising inter-subject variability 
in fMRI using threshold-weighted 
overlap maps
Mohamed L. Seghier1,2 & Cathy J. Price1

Functional neuroimaging studies are revealing the neural systems sustaining many sensory, motor and 
cognitive abilities. A proper understanding of these systems requires an appreciation of the degree to 
which they vary across subjects. Some sources of inter-subject variability might be easy to measure 
(demographics, behavioural scores, or experimental factors), while others are more difficult (cognitive 
strategies, learning effects, and other hidden sources). Here, we introduce a simple way of visualising 
whole-brain consistency and variability in brain responses across subjects using threshold-weighted 
voxel-based overlap maps. The output quantifies the proportion of subjects activating a particular voxel 
or region over a wide range of statistical thresholds. The sensitivity of our approach was assessed in 
30 healthy adults performing a matching task with their dominant hand. We show how overlap maps 
revealed many effects that were only present in a subsample of our group; we discuss how overlap maps 
can provide information that may be missed or misrepresented by standard group analysis, and how 
this information can help users to understand their data. In particular, we emphasize that functional 
overlap maps can be particularly useful when it comes to explaining typical (or atypical) compensatory 
mechanisms used by patients following brain damage.

In multi-subject fMRI studies of brain function, effects of interest are commonly expressed in terms of significant 
mean group effects (i.e. a measure of central tendency). However, standard group effects do not always tell the 
whole story, as inferences at the group level are not always relevant (or valid) at the individual subject level1–3. For 
instance, Fig. 1 illustrates the not unusual situation where group effects are not even representative of the individ-
uals that belong to that group: in (a) a significant group effect is driven by a few subjects only, in (b) a statistically 
significant group effect is not significant in any single subject, and in (c) a non-significant group effect reflects 
heterogeneity in the population with one subgroup of subjects responding differently to other subjects. Together, 
these examples illustrate why it would make sense to complement standard (random) group analyses with some 
relevant measures of consistency across subjects. Here we introduce a simple and intuitive way to visualise con-
sistency (or variability) in individual activation maps using threshold-weighted voxel-based overlaps.

Previous analysis methods for estimating a representative group map in a multi-subject fMRI study, vary 
from conservative methods that down-weight the significance of an activation when there is too much variability, 
to more liberal methods that may reveal responses even when activation is not present in the majority of sub-
jects; for more details see4–8. Other approaches have suggested that variability is treated as data rather than just 
noise, and that population heterogeneity can be characterised by searching for atypical subjects and clustering 
individuals into relatively homogenous subgroups with segregated neural systems9–14. However, the output from 
these methods is not always related to the individual effect in a straightforward manner, particularly for patient 
data when a distinction is required between an abnormal response and a noisy measurement. Indeed, in clinical 
fMRI, characterising atypical/abnormal patient responses requires precise knowledge of what can be considered 
as normal/typical in controls, which critically depends on how inter-subject variability is explained and modelled.

Beyond clinical fMRI, characterising variability in brain function is particularly useful for analyses of 
individual-differences15 that aim to look at associations between brain activations and behaviour, genetic or per-
sonality traits. Those associations may strongly depend on how effects of interest were selected. For instance, it 
has been shown that most brain areas that predicted the effects of practice on performance were not those that 
were highly activated in standard group analyses16. This is why others have stressed the importance of identifying 
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‘regions of variance’17, that is brain regions with the most variability across subjects, with the assumption that 
these regions are potentially relevant to understanding individual-differences.

One intuitive way to visualize variability across subjects at each voxel of the brain consists of generating an 
overlap or a frequency map over individual functional maps. Classical whole-brain overlap maps code, at each 
voxel, the proportion of subjects who activated that voxel at a given statistical threshold7,18–21. Practically, indi-
vidual statistical maps are first thresholded and then summed across all subjects, so that a very consistent voxel 
activated in almost all subjects would appear with a high value in the generated overlap map. However, computing 
an overlap map necessitates the definition of an arbitrary threshold on each individual map and it can be ham-
pered by variability in the spatial location of activated voxels across subjects7. Here we propose a practical solution 

Figure 1.  Illustrates a hypothetical example (synthetic data) of three group effects across 30 subjects where 
overlap maps can be very handy. (top) A significant group effect driven by a few subjects with atypically strong 
activation; (middle) a significant group effect due to consistent but small effects in each individual; (bottom) 
a non-significant group effect caused by huge heterogeneity as half of the subjects responded completely 
differently to the other half.
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that allows threshold-weighted overlaps to be generated at any spatial scale. We illustrate the robustness and the 
usefulness of such maps using real data from a group of left-handed (n =  15) and right-handed (n =  15) healthy 
subjects who performed a perceptual matching task on unfamiliar visual stimuli using either their left or right 
hand. This provided a known source of variance11 to illustrate the power of the functional overlap maps. We also 
included data from a similar task, in which participants saw the same stimuli as in the perceptual matching task 
but were asked to generate a consistent speech response (Say 1–2–3). For this task, there was no known source of 
inter-subject variability, therefore we expected the functional overlap maps to reveal consistent activation across 
participants.

Materials and Methods
The protocol for this study was approved by the Ethics Committee for London Queen Square Research, and all 
methods and protocol were carried out in accordance with the approved guidelines. All participants provided 
written informed consent according to institutional guidelines.

Subjects.  30 healthy subjects (18 females, 12 males, aged 34 ±  14 years) participated in our study. According 
to the Edinburgh handedness questionnaire22, 15 were right-handed and 15 were left-handed. All subjects were 
native English speakers, had normal or corrected-to-normal vision, and had no history of neurological or psy-
chiatric disorders. They were selected, chronologically, from a large cohort of neurologically normal subjects that 
were included in our previous studies23.

Experimental design in the fMRI experiment.  To illustrate the utility of the functional overlap approach, 
we focus on two tasks. A perceptual matching task and a speech articulation task. Both tasks were performed, in 
separate scanning runs, in response to the same unfamiliar stimuli. Each stimulus presented 3 different visual 
items, one above the central fixation point and two below (one to the left and one to the right). For the perceptual 
task, the participants had to indicate with a button press whether the item on the left or the right was perceptually 
identical to the item above. For right handed subjects (n =  15), a response indicating the selected stimulus was on 
the left, was made with the right index finger and a response indicating the selected stimulus was on the right was 
made with the right middle finger. For left handed subjects (n =  15), responses were made with the left middle 
finger and left index finger respectively. The choice of fingers was therefore congruent with the choice of response. 
For the speaking tasks, the participants were simply requested to look at the stimuli and say “1–2–3”.

There were two runs of matching and two runs of speaking. In the matching runs, the perceptual task of inter-
est was alternated with semantic matching on familiar words and objects. In the speaking runs, the articulation 
task of interest was alternated with object naming and reading. Effects related to these additional tasks have been 
reported elsewhere and are not the focus of the current study.

Within each scanning run, there were four blocks of pictures of unfamiliar (meaningless) symbols or non-
objects. Each block lasted 18s, with 12 stimuli per block presented at a rate of three stimuli every 4.5s. There 
were six blocks of fixation, each lasting 14.4s. To minimize artefacts from head motion and airflow caused by the 
mouth opening and closing, subjects were instructed to whisper their response with minimal mouth movement. 
Stimulus presentation was via a video projector, a front-projection screen and a system of mirrors fastened to a 
head coil. Additional details about the paradigm and stimuli can be found in our previous work23–25.

MRI acquisition.  Experiments were performed on a 1.5T Siemens system (Siemens Medical Systems, 
Erlangen, Germany). Functional imaging consisted of an EPI GRE sequence (TR/TE/Flip =  3600 ms/50 ms/90°, 
FOV =  192 mm, matrix =  64 ×  64, 40 axial slices, 2 mm thick with 1 mm gap). Functional scanning was always 
preceded by 14.4s of dummy scans to insure tissue steady-state magnetization. An anatomical scan was also 
acquired and later used for spatial normalization as described below. This was a 3D T1-weighted, modi-
fied equilibrium Fourier transform sequence with the following parameters: TR =  12.24 ms, TE =  3.56 ms, 
TI =  530 ms, FOV =  256 mm ×  224 mm, acquisition matrix =  256 ×  224, 1 mm slice thickness for 1 mm3 iso-
tropic voxels.

fMRI Data analysis.  Data processing and statistical analyses were performed with the Statistical Parametric 
Mapping SPM5 software package (Wellcome Trust Centre for Neuroimaging, London UK, http://www.fil.ion.ucl.
ac.uk/spm/). All functional volumes were spatially realigned, un-warped, normalized to the MNI space using the 
unified normalisation-segmentation procedure of SPM5, and smoothed with an isotropic 6-mm FWHM Gaussian 
kernel, with resulting voxels size of 2 ×  2 ×  2 mm3. Time-series from each voxel were high-pass filtered (1/128 Hz 
cut-off) to remove low-frequency noise and signal drift. The pre-processed functional volumes of each subject were 
then submitted to a fixed-effects analysis, using the general linear model at each voxel. Each stimulus onset was 
modelled as an event encoded in condition-specific ‘stick-functions’ with an inter-stimulus interval of 4.5 sec and 
duration of 4.32 sec per trial. Trials were grouped by blocks of 4 events (near to a configuration of a block design). 
The resulting stimulus functions were convolved with a canonical hemodynamic response function to form regres-
sors for the linear model.

For each subject, we computed the contrast images for perceptual matching on unfamiliar meaningless stim-
uli versus saying “1,2,3” to the same stimuli. These images were then entered into a second-level analysis (i.e. 
random-effects analysis in SPM) so that we could identify robust and consistent activations over all our 30 sub-
jects, with the expectation that the speech motor responses are likely to be more consistent (i.e. bilateral irre-
spective of handedness) compared to motor responses for finger presses (i.e. left versus right lateralization in the 
primary motor cortices depending on handedness).

Voxel-based threshold-weighted overlap maps.  An overlap map (OM), also called a conjunction 
map20, codes the number (i.e. percentage, proportion, frequency) of subjects that activated a given voxel, during 
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a particular task at a given statistical threshold. It represents a practical and intuitive way to visualise consistency 
in activation over a given cohort of subjects7,18,20, and can also be considered as a measure of reliability across 
subjects26. What is attractive about an overlap map is that it does not, statistically speaking, assume homogeneity 
within the population. In its simplest form, it is defined as the proportion of subjects (out of S subjects) that acti-
vated a given voxel v (v =  1 … V; where V is the total number of voxels) at a given statistical threshold th:
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where Tn,v is the statistical score (e.g. a t or z value) of the nth subject at the vth voxel. As has been shown previously, 
this measure suffers from three main drawbacks: (1) its dependency on the arbitrary statistical threshold th, (2) 
anatomical variability between subjects, and (3) the spatial dependency between neighbouring voxels (e.g. voxel 
v and its nearest neighbours; see7).

Dependency on an arbitrary statistical threshold th is an issue that is shared by any similarity measure based 
on overlap between maps (see illustrations in27,28). We propose a simple and practical way that can generate 
threshold-weighted overlap maps at any spatial definition. We will first explain how this can be formulated in an 
intuitive way that can be easily implemented when using the individual SPM{t} maps as inputs. For convenience, 
these SPM{t} maps can be transformed into Z-maps via the corresponding p values, although this is not manda-
tory. Our multi-step procedure is as follows (illustrated in Fig. 2).

To define threshold-weighted overlap maps, a complementary cumulative histogram of the number of subjects 
against the statistical threshold th is assessed at each voxel v (i.e. the cumulative histogram is equivalent to assess-
ing OMv,th over a wider range of th). This idea is borrowed from the laterality index literature29 that has proposed 
ways to compute threshold-weighted laterality indices where the number of activated voxels in a given region 
of interest is assessed at different statistical thresholds30–34. The histogram can be assessed between a minimum  

Figure 2.  An illustration of our multi-step procedure. At each voxel, or within a VOI, (i) individual statistical 
values are extracted, which are (ii) transformed into a complementary cumulative histogram that is (iii) multiplied 
by a weighting function. The area under the curve of the weighted histogram is computed and is used to provide a 
measure of consistency.
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Tmin (e.g. Tmin =  0) and a maximum Tmax (e.g. Tmax set at p <  0.001 uncorrected or p <  0.05 FWE-corrected). 
Setting a lower limit Tmin on th excludes effects of non-interest (e.g. subjects showing deactivations). Conversely, 
setting an upper limit Tmax on th minimises the effect of outliers at a given voxel (e.g. the case of a subject with 
extremely high t values that may dominate the histogram at high th if no upper limit was defined).

To reduce the information in the complementary cumulative histogram into a single useful number, we took 
the area under the curve of the histogram as a measure of consistency across subjects. A voxel that was activated 
in each subject irrespective of threshold th (Tmin <  th < Tmax) would display an area of 1 (expressed as a frequency 
or a proportion of the total number of subjects S). A voxel with intermediate area (< 1) would either mean (1) 
activated in almost all subjects at lower thresholds but only survived higher thresholds (close to Tmax) in fewer 
subjects, or (2) consistently activated in a subgroup of subjects only irrespective of th. In order to assign more 
weight to individual effects at higher statistical thresholds, the generated histograms were subsequently multiplied 
by a weighting function Wth that monotonically increased with th. This weighting function, applied before esti-
mating the area under the histogram, can be linear or nonlinear (e.g. any polynomial or exponential function). 
Here we used a simple linear function that increased with the threshold th:
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This particular shape ensured that the area of the weighted histogram fell within the range of 0 to 1 (Fig. 2). 
Accordingly, a threshold-weighted overlap map can be assessed at each voxel OMv as following:
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Turning now to the problem of spatial dependency between voxels and their functional/anatomical variability 
across subjects35, we need to relax the assumption that a voxel v is activated in each subject at exactly the same 
location, and allow a degree of spatial variability (or uncertainty) in the functional location of a given voxel v 
across different subjects. Such spatial variability can emerge at a larger scale than that which is typically accounted 
for by standard smoothing of the functional volumes during data preprocessing. Thus, our approach allows OMv 
to be expressed at a local or regional level for tasks with known inter-subject variability in functional anatomy21,36. 
Functional regions can be defined by selecting the target voxel as well as its nearest neighbours (e.g. 18-connected 
neighbourhood); see example in7. Alternatively, any volume of interest (VOI) centred at each voxel v, with arbitrary 
shape and size, could be predefined and then searched for individual peaks. In this case, OMv,th of Equation (3)  
can be substituted by:
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Thus, the generated histogram at a given voxel v summarizes the effect at that voxel plus its neighbours within 
the predefined VOI.

A practical advantage of working with binarised images (i.e. thresholded SPM{t} maps) is that simple mor-
phological operations37 can be used to generate the overlap map. For instance, a morphological dilation is applied 
on each individual map, using the predefined VOI as a structural element, and then an overlap map is generated 
by summing the individually dilated maps. Here, to illustrate the impact of spatial variability on the generated 
overlap maps, we used spherical VOI with radius of 0 mm (limited to the voxel itself), 2 mm (the voxel itself plus 
its closest’s 6 neighbours) or 4 mm (the voxel itself plus its nearest 32 neighbours).

Using this multi-step procedure, threshold-weighted overlap maps were generated across our 30 healthy sub-
jects for both contrasts of interest (i.e. perceptual matching versus saying 1–2–3, and the reverse contrast). As 
overlap maps are not designed to make statistical inferences on whether to retain or reject an effect (i.e. they can 
be shown in parallel with standard group SPM{t} maps), thresholding OMv is optional. It does nonetheless provide 
insightful information of the level of consistency or variability in the population. A low value (OMv towards 0)  
means that voxel v was consistently not activated in almost all subjects, a high value (OMv towards 1) means that 
particular voxel was activated in almost all subjects irrespective of threshold th (th <  Tmax), and a moderate value 
either means that voxel was activated in almost all subjects at lower thresholds but not at higher thresholds (close 
to Tmax) or consistently activated in a subgroup of subjects only irrespective of th. Our OM approach was designed 
to operate on the same set of voxels as in SPM. However, OM can also process voxels with missing data in some 
subjects. This can be handy for instance for datasets that do have identical brain coverage across subjects or for 
datasets from patients with variable lesion sites. To make statistical inferences on those voxels with missing data, 
users can run second-level group analyses using alternative approaches such as the GLM Flex tool (cf. http://
mrtools.mgh.harvard.edu/index.php/GLM_Flex).

To minimise the risk of looking at OMv values that were only due to chance, we generated OM maps for 
random responses. Practically, S synthetic datasets (S =  30) of V voxels (V =  100,000) with Gaussian noise were 
simulated and then the distribution of OMv over all voxels were estimated at three different Tmax thresholds (eq. to 
p <  0.01, p <  0.001 and p <  0.0001 uncorrected). As illustrated in Fig. 3, OM distribution was Gamma-like with 
OM values becoming smaller when Tmax increased (compare red and green curves to the blue curve in Fig. 3). 
For instance, a threshold of 0.2 (i.e. OMv >  0.2) on overlap maps with the same Tmax value (red curve in Fig. 3), 
would ensure that consistent effects in our tasks across subjects cannot be due to chance only. For other datasets 
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and parameterisations, permutation procedures can be used to set an appropriate threshold for OM visualisation, 
though this is optional.

Finally, defining a benchmark for “good consistency” depends on whether users are interested in looking at 
consistency or variability across subjects. These are two sides of the same coin. Obviously, an overlap of 100% 
(OM =  1) is good consistency, but intermediate OM values can be more difficult to interpret and motivate post 
hoc analyses to investigate whether they indicate meaningful variability (e.g. different subjects are using different 
strategies to perform the same task) or uninteresting variability (e.g. head motion artefacts correlating with task 
in some subjects).

Results
Figure 4 illustrates a threshold-weighted overlap map for perceptual matching and saying “1–2–3”. Consistent 
voxels across our 30 subjects were detected in bilateral motor and somatosensory regions for both tasks with, as 
expected, lower consistency in the overlap map for perceptual matching because we knew a priori that subjects 
used either their left or right hand to do the task. The consistency of the speech motor regions was nearly 100% 
(Fig. 4, bottom map), suggesting that the same voxel in the speech motor regions was activated in all subjects 
irrespective of threshold th (Tmin <  th < Tmax).

Although the SPM{t} and overlap maps are very similar, there were notable differences (Fig. 5). First, voxels 
in the primary motor cortex (M1) were missing from the group SPM{t} but clearly visible in the overlap map 
with nearly 50% subjects activating the left and right M1 regions (see bar plots of left and right M1 in Fig. 5). 
This was predicted a priori because we deliberately omitted to model a known source of variability (i.e. which 
hand the subjects were using to make a response) in order to illustrate the point. When the SPM{t} analysis is 
repeated with handedness as a factor, the left and right primary motor activations are uncovered (see coronal 
views, top-right panel in Fig. 5). The point is that inconsistency in the overlap maps can indicate where the 
standard GLM approach might be improved by modelling known sources of between-subject variance. It is not 
necessarily indicating a problem with the GLM approach per se.

On the other hand, a significant cluster in the superior parietal lobule (Z-score =  5.5, p <  0.05 FWE-corrected) 
in the group SPM{t} map did not show up with high consistency in the overlap map (Fig. 6), because it was weakly 
activated or absent in the majority of subjects. It reached significance in the SPM{t} map because variance was 
very low with positive activation in 28/30 subjects, even though this only surpassed a threshold of p <  0.05 uncor-
rected in 4 subjects (cf. bar plot in Fig. 6).

Last but not least, the consistency across subjects and maps is improved by taking into account variability in 
the location of activated voxels across subjects (by including neighbouring voxels). This is illustrated with the cer-
ebellar regions (Fig. 7) that are known to be highly variable even after spatial normalization with SPM538. Using 
a small VOI (a 2 mm-radius sphere), it was possible to account for up to one voxel mismatch across subjects and 
thus substantially increase the consistency of the cerebellar activations associated with saying “1–2–3” (Fig. 7).

Discussion
In this study, we demonstrate a new flexible way of generating whole-brain overlap maps of functional activations 
across subjects. These functional overlap maps complement standard group analyses by indicating how consist-
ently a given effect occurs across subjects. This is particularly useful when it comes to understanding inter-subject 
differences in relation to the conclusions that are valid for the group39. Below, we discuss the advantages of the 
functional overlap maps we are proposing relative to standard GLM techniques for investigating inter-subject 

Figure 3.  Illustrates the distribution of OM values of all voxels for random responses (blue, red and green 
histograms correspond to OM maps for Tmax equivalent to p < 0.01, p < 0.001, and p < 0.0001 uncorrected 
respectively). The Tmax value used during the generation of OM maps for our tasks is equivalent to p <  0.001 
(red curve).
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variability, how these overlap maps differ from other overlap or conjunction maps, how the degree of consistency 
can be interpreted, other uses of overlap maps and methodological issues.

How overlap maps can supplement results from GLM analyses.  Many studies have shown that reli-
ance on group maps alone may be incomplete1–3,16, which stresses the need for complementary information about 
individual effects and their consistency. The advantages of using functional overlap maps in addition to stand-
ard GLM techniques for investigating inter-subject variability are as follows: First, our functional overlap maps 
provide a quick and easy image of the whole brain response, during any given condition, that indicates where 
activations at a given voxel/region in the GLM have emerged from (a) the whole sample (e.g. 100% of subjects); 
(b) subgroups (e.g. 50% of subjects) and (c) atypical participants (e.g. < 10% of subjects). Second, these quick and 
easy to read maps can motivate informative post hoc analyses of inter-subject variability that might be neglected 
in studies based on GLM analyses only. Third, they can facilitate studies of inter-subject variability by guiding 
attention to the regions that are most informative, some of which would not easily be detected in standard GLM 
analyses; for example, if a region was activated by half the subjects and deactivated by the other half (resulting in 
zero mean activation).

Figure 4.  An example of threshold-weighted overlap maps (left panel) during perceptual matching (top) 
and saying 1–2–3 (bottom) across our 30 healthy subjects. Consistency (i.e. OM maps) is color-coded 
(blue =  low, red =  high) and thresholded arbitrarily at 0.2. The corresponding group SPM{t} maps of both tasks 
are shown at p <  0.001 (right panel). Note that for voxels with missing data, OM can be computed based on the 
available subjects that have data at those voxels.



www.nature.com/scientificreports/

8Scientific Reports | 6:20170 | DOI: 10.1038/srep20170

Fourth, knowing the full spectrum of consistency and variability across subjects is important for inferring the 
likely causes of inter-subject variability because if post hoc analyses only investigate measureable known factors 
(e.g. behaviour, demographics, and experimental factors), then other “hidden” sources of variability (e.g. genetic, 
individual preferences, and educational factors) could be missed by standard GLM analyses40–42. Conversely, by 
knowing that all the regions identified in a group GLM were consistently activated across subjects, there can be 
greater confidence when excluding the contribution of hidden factors to the functional architecture of the sample 
(although these factors may still affect the degree to which each region is activated).

Fifth, when variability is caused by a mixture of measurable and hidden factors, knowing which regions are 
most variably activated across subjects can increase sensitivity to measurable effects of variability. For example, if 
one subgroup of participants activate a region, and another does not and the subgroups do not differ in measur-
able ways (e.g. behaviour, demographics), further investigation of measured sources of variability can be focused 
within each subgroup10 (i.e. after controlling for other major but hidden sources of variability).

Sixth, all the above factors can help to interpret what is normal and abnormal in the activation pattern seen 
in a patient. This is particularly useful when a patient has damaged/lost an area of the brain that is significantly 
activated in a GLM analysis but shows no significant difference relative to normal activation despite being able 
to perform the task. Functional overlap maps can be used to predict this potentially surprising result a-priori, by 
showing that the damaged area is not consistently used in normal subjects despite the high group activation. The 
normal control group can then be tailored to those who don’t typically use the damaged area (i.e. those that are 
most like the patient). We can then ask whether the patient maintains or recovers the ability to perform the task 
using a neural system that is also used by the selected control group but not the remaining controls.

Likewise, significantly greater activation in a patient relative to a group of healthy controls does not necessarily 
mean that the patient had more activation than each of the controls. It only means that the patient response was 
higher than the average control response. Overlap maps of activation over all healthy subjects allow the user to 
visualise how atypical patient responses fit with normal consistency and variability, which is useful for motivating 
richer, more accurate mechanistic explanations of clinically relevant effects. More specifically, an explanation of 
an abnormal effect might indicate (i) atypicality, i.e. when not activated in any individual healthy subject, (ii) use 
of one of several possible normal neural systems that can each sustain the same task, i.e. when activated in a sub-
set of controls only, or (iii) enhanced reliance on a neural system that is used by all controls, i.e. when activated in 
almost all controls but at a lower amplitude than the patient, perhaps because of less effort.

Figure 5.  Overlap maps showing a consistent effect in the primary motor region (M1) for the hand. This 
was not significant (p-FWE <  0.05) in the standard group map (in both coronal and axial views). Left and 
right M1 are indicated with white arrows and their t-values in each subject are illustrated in the bar plots. 
OM =  overlap map; SPM{t} =  standard group analysis with random-effects as typically done in SPM. For 
illustration purposes, in both maps, only voxels with positive t values are shown. Typical motor activations are 
shown in coronal views (red box, top-right panel) using standard SPM analysis with handedness entered as a 
factor.



www.nature.com/scientificreports/

9Scientific Reports | 6:20170 | DOI: 10.1038/srep20170

Finally, overlap maps can be particularly useful for assessing aggregate effects in heterogeneous clinical popu-
lations. In fact, they might be the only meaningful way to combine heterogeneous patient maps43, when patients 
differ markedly with respect to their lesions and recovery trajectories.

Other uses of functional overlap maps.  Our method also provides a useful tool to assess the detect-
ability power of a given fMRI paradigm at the individual subject level, which is known to vary with both task 
and region7,8,44,45. This can be achieved by generating overlap maps for each contrast of interest at any given 
spatial (regional) level. Another application concerns the widely used practice of selecting regions of interest. 
For instance, functional connectivity studies typically need to limit data to those from a particular set of regions 
(nodes). The coordinates of such regions are commonly defined from the group analysis; however, this does not 
necessarily guarantee that the same region is activated in each subject, which sometimes requires that the subjects 
with missing values in regions of interest are excluded. For example, although a left superior parietal cluster was 

Figure 6.  Illustrates a strong effect in the parietal lobule from the standard group analysis that was not 
highly consistent (i.e. activated) in each individual subject. 

Figure 7.  Shows consistency in the cerebellar regions for saying 1–2–3 using different VOIs: the voxel itself 
(left), the voxel itself plus its neighbours within a 2 mm-radius sphere (middle), or the voxel itself plus its 
neighbours within a 4 mm-radius sphere (right). 
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significantly activated in our group analysis (Fig. 6), only 4 out of 30 subjects activated that cluster at a liberal 
threshold of p <  0.05 uncorrected. This is why that cluster appeared with very low consistency in the overlap map 
(Fig. 6). The apriori measure of subject consistency that our overlap maps provide is therefore particularly useful 
for region selection in connectivity analyses.

The complementary information provided by overlap maps can also indicate when users need to consider 
better or more useful GLM models. This information can be generated at the voxel/regional level, where there is 
least homogeneity in the group/population. In the example we provide, we deliberately omitted a known source 
of variability (i.e. hand response) from our group analysis to show how this would be detected in the overlap 
maps but not the SPM{t} maps. After confirming that variability in the overlap map corresponded to whether the 
participants used their left or right hand, we created a better group analysis that modelled inter-subject variability 
in hand responses. This approach to improving the group analysis on the basis of viewing an overlap map could 
be used in other contexts where the degree of inter-subject variability is unknown. It could, for instance, involve 
including a range of possible explanatory variables (i.e. sources of variance) into the group analysis models, test-
ing for normality, using non-parametric statistics, dealing with outliers, using robust statistics or modelling the 
group as a mixture of subpopulations8–14,46–49.

Comparison with other methods and methodological issues.  The difference between our maps and 
those presented previously7,18–21 is that they show consistency and variability, within the same whole brain image, 
taking into account a wide range of statistical thresholds. The advantage of considering multiple statistical thresh-
olds is that we avoid the application of arbitrary thresholds to individual maps that might vary in both the spatial 
location and hemodynamic response to effects of interest7.

Unlike previous approaches, our overlap maps can also be shown at any spatial scale (from the voxel to the 
regional level) and do not require any assumption about the normality or the homogeneity of the population. It 
is easy to implement as it can operate directly on the already computed individual SPM{t} maps. Compared to 
variance maps17, overlap maps do not depend on estimates of within-subject variance. The flexible scheme we 
propose here can also be applied to other measures of brain activation, for instance on the basis of the signal 
amplitude (i.e. effect size) in individual subjects50–52 rather than their statistical scores.

Now we turn to our multi-step procedure (Fig. 2), to consider the influence of Tmax, the number of subjects 
S, the shape of the weighting function Wth (Equation (2)), the size of the VOI, and the meaning of moderate OM 
values.

The influence of Tmax.  Our approach integrated the areas of the histograms (i.e. number of subjects against 
threshold, as in Fig. 2) over a wider range of thresholds instead of searching for an optimal threshold that is 
subject-specific (e.g. as is the case for instance in test-retest fMRI protocols28,53). The definition of an upper limit 
on the range of statistical thresholds makes our approach robust to outliers. It is obvious to see that consistency 
values in the overlap maps would decrease with Tmax because the effective number of subjects who activated the 
same voxels at very high thresholds is likely to decrease (also illustrated in Fig. 3 using synthetic data). The overlap 
maps generated at different Tmax values are expected to be strongly correlated because, by construction (Fig. 2), 
subjects who contribute to OMv at a higher Tmax value are also contributing to OMv at a lower Tmax value. For 
example, when calculating the voxel-wise correlation of OMv values from the perceptual matching contrast at four 
different Tmax values (equivalent to p <  0.01, p <  0.001, p <  0.0001, and p <  0.00001 uncorrected), all pairwise 
correlations were larger than 0.9. When comparing overlap maps between different groups or tasks, Tmax must be 
held constant. Here we recommend the use of a Tmax equivalent to p <  0.001 (uncorrected).

The influence of subject numbers.  Our approach can be applied to any sample, though the number of 
subjects S will define how ‘smooth’ the cumulative histogram is, given that discrete quantities are manipulated 
during the assessment of OMv. Specifically, for a given sample size S, the difference between two bins (Fig. 2) is 
always a multiple of 1/S and the possible number of discrete levels (i.e. OMv,th between 0 and 1) in the histogram 
is less than or equal to S +  1. Thus, a smaller S resulting in a coarser histogram. Critically, this ‘digitisation’ does 
not hamper the assessment of the area under the curve of the histogram (cf. Equation (3)), given that OMv is 
identifiable even for voxels with few activating subjects (e.g. voxels in blue in Fig. 5 that mimic the case of samples 
with small subject numbers.

The influence of the weighting function.  The weighting function Wth can be of any monotonic form32,33, 
but it is also valid to compute the same consistency values without weighting. The rationale here would be to boost 
the consistent effects that are significant in many individual subjects at higher thresholds. Likewise, a weighting 
function Wth would down-weight the impact of individual effects at lower thresholds, thus, as those effects are 
the dominant ones (i.e. the cumulative histogram decreases with threshold th), stronger nonlinear weighting 
functions would yield smaller values in the overlap maps (see illustration in Fig. 8).

Adjusting the volume of interest (VOI).  By applying a nonlinear spatial filtering (Equation (4)), it is pos-
sible to predefine a VOI of any shape to limit the extent of the spatial dependency between neighbouring voxels. 
We recommend the use of small spherical volumes of interest (e.g. the 6 closest neighbours to every voxel that 
touches one of their faces), although users can select larger VOI if the peaks of activated regions are expected to be 
particularly variable across subjects. As expected (Fig. 7), a larger VOI yields smoother overlap maps.

Interpreting moderate values in the overlap maps.  As mentioned above, standard overlap maps that 
compute the proportion N out of S subjects at a given statistical threshold th are easy to interpret but are critically 
dependent on th7,18–20. To deal with this threshold dependency, our new approach collapses two dimensions 
(number of subjects and threshold) into one measure that we refer to as a weighted-threshold OM value  
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(cf. Fig. 2). The compromise is that the interpretation of intermediate OM values becomes slightly ambiguous. For 
example, if N out of S subjects activated a particular voxel/region irrespective of threshold th, then it is straight-
forward to show that OM is equal to the ratio /N S (noted Scenario 1). However, by construction, if all subjects S 
activated that voxel up to a particular threshold Tp (with Tp <  Tmax), then it is straightforward to show that OM 
would also show the same value /N S if Tp is equal to ⋅ TN

S max (noted Scenario 2). This illustrates that the same 
intermediate OM value can result from two different scenarios. To improve the interpretability of intermediate 
OM values, we propose two practical solutions. The first one simply proceeds by regenerating an overlap map at 
a lower Tmax threshold with the expectation that OM values for voxels of Scenario 1 will not change whereas OM 
values for voxels of Scenario 2 would increase. The second way that we recommend here is to read the overlap 
map in parallel with the SPM{t} group map, with the expectation that voxels of Scenario 1 are more likely to have 
low t scores (e.g. mixture of subgroups yielding high between-subject variance) whereas voxels of Scenario 2 are 
more likely to have high t scores (e.g. consistent small individual effects yielding low between-subject variance). 
In all cases, when it comes to reject or retain an effect, we recommend that all statistical decisions to be made on 
the basis of the standard SPM{t} maps.

Conclusion
In summary, threshold-weighted overlap maps are easy to generate and can provide useful complementary infor-
mation about individual effects. They supplement and facilitate post hoc analyses/re-analyses of GLM results by 
informing the user about the (potential) existence of other sources of heterogeneity in the data (e.g. unknown 
sources of variance) that might not be explicitly taken into account when assuming homogeneity/normality of 
the group data.

The interpretation of data from many scenarios would benefit from threshold-weighted overlap maps. For 
example, data from tasks that are expected to involve different cognitive strategies and hence different supporting 
neuronal systems40,54, or when there are individual differences in learning or subjective judgment55,56, or when 
mapping functional responses that are expected to be spatially variable across individuals21,57. In our future work, 
we are planning to generate threshold-weighted overlap maps, across hundreds of healthy subjects, for many dif-
ferent language and sensory functions58, which can serve as an fMRI normative database for clinical applications.
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