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ABSTRACT 1 

Purpose. We sought to test the hypothesis that monocytes contribute to the immunopathogenesis of corneal 2 

allograft rejection and identify therapeutic targets to inhibit monocyte recruitment. 3 

Methods. Monocytes and pro-inflammatory mediators within anterior chamber samples during corneal graft 4 

rejection were quantified by flow cytometry and multiplex protein assays. Lipopolysaccharide (LPS) or 5 

Interferon (IFN) stimulation of monocyte derived macrophages (MDM) was used to generate inflammatory 6 

conditioned media (CoM). Corneal endothelial viability was tested by nuclear counting, connexin 43 and 7 

propidium iodide staining. Chemokine and chemokine receptor expression in monocytes and MDM was 8 

assessed in microarray transcriptomic data. The role of chemokine pathways in monocyte migration across 9 

microvascular endothelium was tested in vitro by chemokine depletion or chemokine receptor inhibitors.  10 

Results. Inflammatory monocytes were significantly enriched in anterior chamber samples within one week of 11 

the onset of symptoms of corneal graft rejection. MDM inflammatory CoM was cytopathic to transformed 12 

human corneal endothelia. This effect was also evident in endothelium of excised human cornea and increased 13 

by the presence of monocytes. Gene expression microarrays identified monocyte chemokine receptors and 14 

cognate chemokines in MDM inflammatory responses, which were also enriched in anterior chamber samples. 15 

Depletion of selected chemokines in MDM inflammatory CoM had no effect on monocyte transmigration across 16 

an endothelial blood-eye barrier but selective chemokine receptor inhibition reduced monocyte recruitment 17 

significantly. 18 

Conclusions. We propose a role for inflammatory monocytes in endothelial cytotoxicity in corneal graft 19 

rejection. Therefore targeting monocyte recruitment  offers a putative novel strategy to reduce donor 20 

endothelial cell injury in survival of human corneal allografts.21 
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INTRODUCTION 1 

Corneal transplantation remains the most commonly performed transplantation worldwide1 and 25% of all 2 

corneal allografts fail within five years primarily as a result of immune mediated rejection2. The cellular 3 

requirements and the sequence of events in the effector component of the allogeneic response leading to 4 

endothelial corneal graft rejection are not fully understood and much of our information has been obtained from 5 

animal models. It is widely believed that CD4+ T cells play an critical role in the rejection of rodent orthotopic 6 

corneal allografts3-5 yet rejection can still occur in CD4 and interferon (IFN) KO mice3, 6. Furthermore, multiple 7 

and redundant effector mechanisms have been implicated in graft rejection7 and may explain the poor 8 

outcomes in respect of rejection in corneal transplant recipients treated only with calcineurin antagonists which 9 

block T cell clonal expansion8. Several lines of evidence in rodent corneal transplantation suggest monocyte 10 

and macrophage involvement in the cell-mediated allogeneic response to transplanted cornea. Firstly, large 11 

numbers of macrophages are found in tissue sections at onset of corneal rejection in mouse and rat. At the 12 

earliest time points following the onset of corneal rejection in the rat, graft-infiltrating macrophages exceed T 13 

cells and NK cells9, and in mice, MOMA-2+ macrophages were reported among the earliest graft-infiltrating 14 

cells, before and after the onset of corneal rejection10. Secondly, local depletion of macrophages by 15 

subconjunctival administration with clodronate liposomes of corneal allotransplant recipients significantly 16 

prolonged corneal graft survival in treated rats using two different strain combinations11, 12. Local depletion of 17 

macrophages was found to downregulate infiltration of all alloreactive cell types, downregulate local and 18 

systemic cytotoxic lymphocyte responses and prevent the generation of antibodies13. Thirdly, earlier pilot 19 

investigation of immune cell populations in aqueous humour samples from the eye in patients at presentation 20 

with acute transplant rejection indicated a high proportion and selective recruitment of CD14+ cells to the 21 

anterior chamber of the eye, likely to represent mononuclear phagocytic cells14, corroborating an earlier 22 

report15. We sought to reconfirm and extend these data, investigate the mechanisms by which these cells may 23 

contribute to the mechanism of human corneal graft failure and investigate possible strategies to inhibit their 24 

recruitment across the blood-eye barrier, as a potential novel therapeutic intervention. 25 
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MATERIALS AND METHODS 1 

Ethics 2 

Ethics approval was provided by designated UK National Research Ethics Service committee for anterior 3 

chamber sampling from patients with acute corneal graft rejection and use of human corneal specimens in 4 

research (Research Ethics Committee reference: 11/LO/1294). Corneas, with healthy endothelium, were 5 

excised at surgery in keratoconus patients. Written informed consent was obtained from all participants. This 6 

study adhered to the tenets of the Declaration of Helsinki. 7 

Aqueous humour analysis 8 

Aqueous humour samples (100-200 µL), were obtained from ten patients presenting with corneal allograft 9 

rejection (Table 1). Diagnosis was confirmed by the finding in all patients of active anterior chamber 10 

inflammation and keratic precipitates on the donor corneal endothelium at slit-lamp biomicroscope 11 

examination. Control aqueous samples were obtained from nine patients undergoing routine cataract surgery 12 

(five male and four female; median age 57 range 3-85) without any other ocular disease. Samples were 13 

centrifuged at 400g for five minutes. The soluble fraction was collected and the cell pellet was resuspended in 14 

100 µL phosphate buffered saline (PBS) with 0.5% bovine serum albumin (Sigma) and 0.01% sodium azide 15 

(Sigma). Total cell counts were enumerated with a hemocytometer and the cells were stained with directly 16 

conjugated fluorescent antibodies to CD14 (Becton Dickinson, clone M5E2) and CD16 (Becton Dickinson, 17 

clone 3G8). Immunostaining was quantified with a FACScalibur flow cytometer (Becton Dickinson) and FlowJo 18 

analysis software (version 9.4.3). Chemokine concentrations in these samples were measured using a flow 19 

cytometric multiplex bead assay kit (Milliplex, HCYTOMAG-60K). 20 

Preparation of monocyte-derived macrophage conditioned media 21 

Monocyte-derived macrophages (MDM) were prepared from human peripheral blood mononuclear cells 22 

(PBMC) as previously described16. After being allowed to differentiate for six days, the medium was changed 23 

to RPMI medium (Sigma) and 10% foetal calf serum (FCS, Biosera) with or without 100 ng/mL 24 

lipopolysaccharide (LPS) for 6 hours or 10 ng/mL IFN for 24 hours, using 1 mL media per 106 MDM. 25 

Conditioned media (CoM) from these cultures were then centrifuged at 10,000 g for five minutes and stored at 26 

-80°C. Residual LPS in LPS stimulated CoM was neutralised by addition of 10 g/mL polymyxin B as described 27 

previously16 and residual IFN was neutralised in IFN stimulated CoM by addition of 2 g/mL blocking antibody 28 

to IFN. Effective functional neutralisation of LPS and IFN under these conditions was confirmed in monocyte 29 

transwell migration assays as described below, but without endothelial cells. We confirmed previous reports 30 
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that LPS inhibits monocyte migration in transwell assays and found that IFN had the same effect, which was 1 

reversed by addition of polymyxin B to neutralise LPS or antibody to neutralise IFN (Supplementary Figure 1). 2 

CoM for each condition was pooled from four separate MDM donors in order to minimise the effects of donor-3 

donor variability. 4 

Human corneal endothelial cell toxicity 5 

The immortalised human corneal endothelial cell line (HCEC-B4G12, Ref- ACC 647, DCMZ, Germany)17 was 6 

cultured in human endothelial serum free medium (Gibco) and 10 ng/ml FGF-2 (Gibco) in tissue culture plates 7 

pre-coated with 10 g/mL laminin (Sigma Aldrich) and 10 mg/mL chondroitin sulphate (Sigma). At 70% 8 

confluence, the media was then changed to 10% CoM from LPS or IFN stimulated and unstimulated MDM 9 

before being washed with PBS and stained with calcein-AM (Sigma) and propidium iodide (PI, Sigma) as per 10 

manufacturer’s instructions. Cellular fluorescence was imaged in situ on a Leica SPE inverted confocal 11 

microscope. Following removal of epithelium, freshly excised full thickness human cornea specimens were cut 12 

into quadrants at surgery with a diamond blade, placed in DME medium (Gibco) with 10% FCS overnight and 13 

then incubated for 24 hours with CoM from stimulated and unstimulated MDM. The corneas were then washed 14 

in PBS, fixed in 4% paraformaldehyde overnight, incubated in a blocking solution (PBS, 0.1M Lysine, 0.05% 15 

Triton X-100) for one hour, before immunostaining with a rabbit antibody for Connexin (Cx)43 (Sigma), 16 

fluorophore-conjugated secondary antibody and with a bis-benzamide nuclear counterstain. The stained 17 

cornea was washed in PBS and mounted in citifluor solution (Citifluor) and imaged using a Leica SPE confocal 18 

microscope. Sample identifiers were blinded for image analysis. Cx43 staining was quantified as previously 19 

described18 and nuclear counting within multiple high power fields was performed manually. 20 

Transwell migration assay across an endothelial barrier 21 

Human cerebral microvascular endothelial cells (hCMEC/D3)19 cells were obtained as kind gift from Dr PO 22 

Couraud (Institut Cochin, Paris, France). These were cultured in endothelial growth medium-2 (EGM-2, Lonza) 23 

supplemented with 5% FCS, 1% penicillin-streptomycin (Gibco), 1.4 μM hydrocortisone (Sigma), 5 μg/ml 24 

ascorbic acid (Sigma), 1% chemically defined lipid concentrate (Gibco), 10mM HEPES (Gibco) and 1 ng/ml 25 

human fibroblast growth factor (Sigma). Cells were seeded at 5x104 cells/cm2 on the apical side of 0.33 cm2 26 

polycarbonate transwell inserts (Corning No. 3421, 6.5 mm diameter, 5.0 μm pores) pre-coated with Cultrex 27 

rat type 1 collagen 50 μg/ml (R&D Systems). To form a monolayer hCMEC/D3 cells were maintained in culture 28 

for six days with media changes after three and six days19 and supplemented with 10mM lithium chloride 29 

(Santa Cruz Biotechnology) for the entire culture period to generate tight junctions20, 21 confirmed by 30 

transendothelial electrical resistance (TEER) measurements using an electrical Volt-Ohm-Meter (EVOM-2, 31 
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World Precision Instruments). After six days, the transwells were then transferred into wells containing 10% 1 

stimulated or unstimulated CoM for 24 hours. Cellular transmigration across the endothelial barrier was 2 

assessed by addition of 5x105 peripheral blood mononuclear cells (PBMC) obtained from healthy volunteers 3 

into the upper chamber of the transwell for three hours at 37°C, before collecting cells in the lower chamber. 4 

This cell suspension was then stained for CD14 and CD16 and enumerated by flow cytometry using Flow-5 

CheckTM polystyrol fluorospheres (Beckman Coulter) to standardise cell counting. Monocytes and 6 

lymphocytes were discriminated by light scatter properties and CD14/CD16 staining. Transmigration of cells 7 

into the lower chamber was expressed as a proportion of the input. 8 

Chemokine and chemokine receptor expression data 9 

Data on normalised chemokine receptor expression in monocytes and chemokine expression in LPS or IFN-10 

stimulated MDM was obtained from the European Bioinformatics Institute data repository 11 

(www.ebi.ac.uk/arrayexpress/) using accession numbers E-TABM-1206 and E-MEXP-2032. A network of 12 

interacting chemokines and chemokine receptors was adopted from the KEGG cytokine-cytokine receptor 13 

interaction reference pathway (www.genome.jp/kegg/kegg2.html, map0460) and constructed in Gephi graph 14 

visualization software (version 0.8.2). The transcriptomes of hCMEC/D3 cells after  24 hour incubation with 15 

CoM from unstimulated MDM and LPS-stimulated MDM with PMB were also compared by genome-wide 16 

expression arrays. Total RNA was purified from cell lysates collected in RLT buffer (Qiagen) using the RNeasy 17 

Mini kit (Qiagen). Samples were processed for Agilent microarrays as previously described22 and loess 18 

normalized data wereanalysed using theTM4 microarray software suite MeV (version 4.9). Pathway 19 

enrichment analysis of differentially expressed gene lists was performed using the online bioinformatics tools 20 

InnateDB23 and Ingenuity Pathway Analysis (http://www.ingenuity.com/). Microarray data are available from 21 

the EBI Array Express repository (http://www.ebi.ac.uk/arrayexpress/) under accession no E-MTAB-3692. 22 

Chemokine depletion and chemokine receptor targeting 23 

To deplete single or a combination of different monocyte chemotactic chemokines, biotinylated anti-human 24 

antibody against CCL2, CCL3, CCL4, and CCL8 were added at a concentration of 5 μg/mL to the different 25 

CoM. The biotinylated antibodies were incubated with the CoM for one hour at room temperature before 26 

addition of magnetic streptavidin beads (Dynabeads MyOne Streptavidin T1, Life Technologies) using 109 27 

beads/mL. These were incubated for one hour with the CoM before removing the beads magnetically. 28 

Successful depletion was confirmed by ELISA using paired capture and detection antiboides for each 29 

chemokine (eBioscience) according to manufacturer’s instructions and analysed using a Multiskan absorbance 30 

plate reader (Thermo Labsystems). For chemokine receptor targeting, 5x106 cells/mL PBMC were incubated 31 

http://www.ebi.ac.uk/arrayexpress/
http://www.genome.jp/kegg/kegg2.html
http://www.ingenuity.com/
http://www.ebi.ac.uk/arrayexpress/
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with inhibitors of CCR2 (RS 504393 or BMS CCR2 22, both from Tocris), CCR5 (Maraviroc, Tocris), or CXCR4 1 

(AMD 3465 hexahydrobromide, Tocris), used at 10 nM, for 30 minutes. 2 

Statistical analysis 3 

Data were analysed using Graphpad Prism software Version 5. The Mann-Whitney U- or t-tests were used to 4 

test significance. Values of p<0.05 were defined as statistically significant. 5 
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RESULTS: 1 

Enrichment of inflammatory monocytes in the aqueous humour of patients with acute corneal graft 2 

rejection. 3 

Samples of aqueous humour from the anterior chamber were obtained from ten patients with endothelial 4 

corneal allograft rejection. The demographic characteristics, primary diagnosis leading to corneal 5 

transplantation, number of previous transplants and previous episodes of allograft rejection, and corticosteroid 6 

therapy at time of rejection are summarised in Table 2. Total cell counts in the aqueous humour samples 7 

revealed that a cellular infiltrate was only detectable in aqueous humour samples from patients presenting 8 

within seven days of the onset of symptoms (Figure 1A), irrespective of concomitant corticosteroid treatment 9 

(Supplementary Figure 2). Within these samples, we confirmed our previous observation14 that CD14+ cells 10 

were significantly enriched in the aqueous humour compared to peripheral blood (Figure 1B). We extended 11 

these data to show that the enrichment of CD14+ cells was entirely due to CD14hiCD16low classical 12 

inflammatory monocytes, known to be recruited to inflammatory foci (Figure 1C). 13 

Monocyte-derived macrophages generate inflammatory mediators that deplete corneal endothelial 14 

cells. 15 

Classical inflammatory monocytes are extremely short-lived with a half-life of less than 24 hours24, unless they 16 

differentiate into macrophages as a result of environmental signals. Therefore, we reasoned that if monocyte 17 

recruitment to the eye contributes to the pathogenesis of corneal transplant rejection, inflammatory mediators 18 

generated by monocyte-derived macrophages (MDM) may cause donor corneal endothelial cytotoxicity and 19 

depletion. Macrophages produce inflammatory mediators in response to innate immune danger signals or 20 

interferon (IFN) production by lymphocytes. We therefore modelled macrophage inflammatory responses by 21 

stimulating MDM with either lipopolysaccharide (LPS) or recombinant IFN, and we pooled conditioned media 22 

(CoM) from stimulated and unstimulated MDM cultures from multiple experiments in order to minimise the 23 

confounding of donor to donor variability. In order to focus on the role of the MDM-derived inflammatory 24 

response in downstream experiments with these CoM, we neutralised LPS or IFN activity by addition of 25 

polymyxin B or blocking antibody to IFN to the relevant samples. We first assessed the effect of MDM CoM 26 

on survival of an immortalized human endothelial cell line and found that CoM from LPS-stimulated MDM 27 

induced significant endothelial cell death, indicated by propidium iodide (PI) staining (Figure 2A). In order to 28 

extend these observations further, we then evaluated the effect of MDM CoM on endothelial cells in excised 29 

corneal specimens ex vivo by counting the number of nuclei in the endothelial layer and by quantifying 30 
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expression of the gap junction protein connexin (Cx)43 as a surrogate for the integrity of the endothelial layer. 1 

In keeping with the effect on the corneal endothelial cell line, we found that CoM from LPS-stimulated MDM 2 

induced significant loss of cells of the corneal endothelium  and reduction of detectable Cx43 immunostaining 3 

(Figure 2B-D). In these experiments, we also found depletion of endothelial cells and loss of Cx43 staining as 4 

a result of incubation with CoM from IFN-stimulated MDM, albeit to a lesser degree than LPS-stimulated CoM 5 

(Figure 2B-D). In addition, we found that the presence of monocytes in this experimental model significantly 6 

increased the cytopathic effect of LPS-stimulated CoM as measured by reduction in Cx43 staining (Figure 3). 7 

Identification of putative targets to modulate monocyte recruitment. 8 

Our data implicate recruitment of functionally active monocytes in the pathogenesis of corneal allograft 9 

rejection. Therapeutic targeting of monocyte recruitment may therefore provide a novel strategy to limit injury 10 

to donor corneal endothelium. Given the importance of chemokine pathways to mediate cell-specific 11 

recruitment, we sought to identify the principal chemokine or chemokine receptors that control human 12 

monocyte recruitment to inflammatory foci. To do this we cross-referenced previously published transcriptomic 13 

data for chemokine receptor expression in human monocytes25 (Figure 4A), chemokine expression by MDM 14 

stimulated with LPS or IFN26 (Figure 4B) with established networks of chemokine and chemokine receptor 15 

interactions (Figure 4C). This analysis identified eight chemokines (CCL2, CCL3, CCL4, CCL5, CCL7, CCL8, 16 

CCL13 and CCL18) and the most highly expressed chemokine receptors (CCR1, CCR2 and CCR5) which 17 

may participate in amplification of monocyte recruitment to putative inflammatory foci. Importantly, using a 18 

multiplex protein assay which included reagents for CCL2, CCL3 and CCL4, we found that each of these 19 

chemokines were also detectable at significantly greater levels in anterior chamber samples from patients with 20 

acute corneal graft rejection within seven days of symptom onset, compared to samples from patients with 21 

greater than seven days symptoms or samples from control patients (Figure 5). These data highlight the most 22 

likely monocyte chemokine pathways involved in monocyte recruitment in acute corneal graft rejection. 23 

Macrophage inflammatory responses drive monocyte recruitment across a blood-eye barrier 24 

Next, we developed an experimental model for monocyte transmigration across the blood-eye barrier in order 25 

to test the hypothesis that the chemokine pathways described above were necessary for monocyte recruitment 26 

and could therefore be targeted to effectively reduce monocyte recruitment in corneal allograft rejection. We 27 

used a well-characterised human endothelial cell line derived from brain microvasculature to establish an 28 

endothelial barrier with tight junctions in transwells (Figure 6A-B). Inflammatory CoM from LPS or IFN-29 

stimulated MDM added to the bottom compartment of the transwell apparatus induced significantly greater 30 

monocyte transmigration from top to bottom compartment (Figure 6A and 6C). We used unfractionated PBMC 31 
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in order to compare monocyte and lymphocyte recruitment. Consistent with our in vivo finding that monocytes 1 

are enriched in the anterior chamber of patients with acute corneal graft rejection, we found significantly greater 2 

transmigration of monocytes compared to lymphocytes in this in vitro model (Figure 6C). 3 

Chemokine receptor targeting to attenuate monocyte transmigration across a blood-eye barrier. 4 

In order to reduce monocyte recruitment in corneal graft rejection to a functionally significant degree, we 5 

reasoned that it might be possible to target either the chemokines or chemokine receptors. To test the effect 6 

of chemokine targeting we depleted LPS-stimulated MDM CoM of selected chemokines identified in the 7 

experiments above individually, or all of these chemokines together. We found no attenuation of monocyte 8 

transmigration in the endothelial blood-eye barrier model (Figure 7A). In response to pro-inflammatory stimuli, 9 

endothelial cells upregulate cell adhesion molecules and chemokines that contribute to leukocyte recruitment27-10 

29. Accordingly, genome-wide transcriptional responses in hCMEC/D3 cells to CoM from LPS-stimulated MDM 11 

revealed upregulation of canonical cell adhesion molecules involved in leukocyte adhesion and diapedesis, 12 

and significant enrichment of secreted products with chemotactic activity (Supplementary Figure 3) including 13 

CCL2, CCL5, CCL7 and CCL8 (Figure 7B), thereby supporting monocyte recruitment despite depletion of 14 

these chemokines in the CoM from LPS-stimulated MDM. Therefore we considered targeting their cognate 15 

chemokine receptors instead. A number of small molecules inhibitors of the chemokine receptors CCR2 and 16 

CCR5 have already been evaluated in clinical trials. We therefore tested the effect of small molecule inhibitors 17 

of these chemokine receptors on monocyte transmigration. We found that targeting CCR2 with inhibitory 18 

molecules significantly attenuated monocyte recruitment (Figure 7C). A CCR5 inhibitor also showed the same 19 

effect but did not reach statistical significance in four experimental replicates. In contrast a small molecule 20 

targeting CXCR4 had no effect on monocyte recruitment (Figure 7C). CXR4 is expressed by monocytes 21 

(Figure 4A) but its ligand, CXCL12 (Figure 3C) was not upregulated in LPS or IFN-stimulated MDM (Figure 22 

4B),. Of note, CCR2 expression and function are known to be downregulated as monocytes are differentiated 23 

to macrophages30, although some subsets of macrophages may retain higher CCR2 expression31. This is also 24 

reflected in our analysis of the transcriptomes of monocytes and MDM (Supplementary Figure 4), even after 25 

MDM stimulation with LPS or IFN, and is consistent with the hypothesis CCR2 has a specific role in tissue 26 

recruitment of circulating monocytes.  27 
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DISCUSSION 1 

In the present manuscript, we show three lines of evidence to support a role for monocytes in corneal rejection. 2 

Firstly, classical inflammatory monocytes are specifically enriched in anterior chamber specimens from 3 

patients with acute corneal rejection. Secondly, the pro-inflammatory mediators of monocyte derived cells are 4 

sufficient to induce cell death of a human corneal endothelial cell line in vitro and death of primary human 5 

corneal endothelial cells in corneal buttons ex vivo. Thirdly, the addition of monocytes to proinflammatory 6 

mediators significantly enhances corneal endothelial cell death. CD14hi monocytes comprise about 10% of 7 

PBMC in health. Therefore, the finding that 40-50% of cells within aqueous humour samples of patients at the 8 

time of acute corneal allograft rejection are monocytes clearly indicates selective recruitment, further supported 9 

by the finding of elevated levels of chemokines CCL2, CCL3 and CCL4, known to be chemoattractant for 10 

monocytes. These were almost entirely CD16low cells, which is the predominant monocyte subset to be 11 

recruited to inflammatory foci and suggests that these cells are likely to be functionally active in the allogeneic 12 

tissue injury response. It is of note that the cellular infiltrate was only evident in patients with symptoms for less 13 

than seven days, indicating that these specimens were examined shortly following the onset of the effector 14 

phase of the allogeneic response. Of note, this observation was not confounded by presence or absence of 15 

corticosteroid treatment, albeit our sample size was too small for statistically robust subgroup analysis. 16 

Additional comparisons in immune correlates of alternative corneal pathologies would be necessary to test the 17 

specificity of our findings for acute corneal allograft rejection. 18 

Monocytes typically survive less than 24 hours, or differentiate into tissue resident macrophages and dendritic 19 

cells24. We speculate that monocyte recruitment to the anterior chamber represents one of the earliest events 20 

in the effector phase of corneal allograft rejection and is associated with monocyte differentiation. Hence, the 21 

absence of cells later than seven days following the onset of transplant rejection symptoms may reflect the 22 

transition to macrophages that migrate from the anterior chamber or adhere to the transplant surface, as 23 

suggested by data from rodent models9. Our study does not address the question of the initial inflammatory 24 

trigger that stimulates monocyte recruitment in the first instance. The intersection of coagulation pathways with 25 

inflammation, and inflammatory responses that arise from so-called danger associated molecular patterns 26 

suggest tissue injury may lead to innate immune responses that augment adaptive immune responses to 27 

allogeneic antigens32. In corneal transplantation the mechanical trauma of surgery may cause significant tissue 28 

damage, leading to activation of resident antigen-presenting cells and enhanced immunogenicity, in keeping 29 

with the danger model proposed by Matzinger33.  30 
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Macrophage infiltration has also long been recognised as a hallmark of acute allograft rejection after heart 1 

transplantation34, and a number of studies suggest that macrophages can promote acute renal allograft 2 

rejection35-37. The functional consequence of modulating macrophage function in corneal transplantation was 3 

most directly shown by prolongation of rat corneal allograft survival following depletion of conjunctival 4 

macrophages with clodronate liposomes13. One component of the present study was to assess whether 5 

inflammatory responses from MDM may contribute to loss of donor corneal function in rejection by causing 6 

endothelial cell death and thereby compromising the transparency of donor cornea. In two separate models 7 

we found CoM from LPS stimulated MDM, and to a lesser extent IFN-stimulated MDM caused significant 8 

corneal endothelial cell loss. Furthermore, monocytes had an additional direct cytotoxic effect on human 9 

corneal endothelium ex vivo but only in the context of inflammation. This suggests therefore that the 10 

inflammatory cellular microenvironment either drives further pro-inflammtory cytokine release and subsequent 11 

cytotoxicity; in keeping with published evidence showing inflammatory cytokines to promote endothelial cell 12 

apoptosis38-41 or that the monocytes themselves become activated and release tissue destructive lysosomal 13 

enzymes or free radicals that are directly cytotoxic42-44. Further characterisation of the fate and phenotype of 14 

the monocyte derived macrophages that accumulate during corneal rejection is necessary to test these 15 

hypotheses. Due to the limited availability and volume of human aqueous humour sampling, this was not 16 

possible in the present study, but requires renewed assessments of tissue specimens from rejected corneal 17 

allografts or further experimental studies in animal models. In addition, the mechanism of corneal endothelial 18 

cell death is not addressed in our current experiments, but specific cell death pathways, including apoptosis, 19 

pyroptosis and necroptosis all intersect with inflammatory responses and may therefore be implicated. 20 

Elucidating which of these pathways makes the greatest contribution will be important in future studies in order 21 

to identify targets to inhibit corneal endothelial cell death. 22 

Our data suggest a rationale for therapeutic targeting of monocyte recruitment and we investigated targeting 23 

of the monocyte chemotaxis. Cross-reacting specificities of chemokines and chemokine receptors generate a 24 

network with potential for significant functional redundancy that may undermine the use of specific inhibitors. 25 

We cross-referenced chemokine receptor expression in monocytes and chemokine production in stimulated 26 

MDM with existing databases for chemokine pathways in order to identify those that may contribute to 27 

inflammatory monocyte recruitment in our model. Our experimental model simulated changes to chemokine 28 

levels associated with acute human corneal graft rejection. We therefore adopted an experimental system in 29 

which we could test the role of selected chemokine or chemokine receptors for monocyte migration across 30 

endothelial cells which exhibit the tight junction features of the blood-aqueous or blood-brain barrier. Given the 31 
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functional redundancy within the chemokine network, we were not surprised to find that depletion of individual 1 

chemokines in this system had no significant effect on monocyte migration. It was more surprising that 2 

depletion of several chemokines that we predicted may play a role also had no effect on chemokine 3 

transmigration. However, we found that the endothelial cells modelling the blood-brain barrier also produced 4 

these chemokines and can therefore drive monocyte recruitment in response to paracrine activation by 5 

macrophages. Therefore, we tested the effect of targeting key monocyte chemokine receptors instead, using 6 

CCR2 and CCR5 small molecule inhibitors which have shown some efficacy in preclinical and clinical models 7 

of rheumatoid disease45, 46. Blockade of CCR2, which interacts with CCL2, CCL7, CCL8 and CCL13 did result 8 

in partial inhibition of monocyte transmigration, suggesting that this receptor at least plays a non-redundant 9 

role in recruitment of inflammatory monocytes. Additional sampling and analysis of the humoral and cellular 10 

components enriched in acute corneal rejection is needed to overcome the limitations of the small aqueous 11 

humour sample size in the present study. Nonetheless, our findings add to the evidence for the role of 12 

monocyte recruitment early on in the effector phase of corneal transplant rejection and highlights the potential 13 

for chemokine receptor blockade to reduce donor endothelial cell injury in rejection. In vivo studies will be 14 

required to examine the efficacy of this novel immunomodulatory approach in attenuating allogenic injury to 15 

donor endothelium and prolonging human corneal transplant survival. Of note, experimental corneal rejection 16 

was ameliorated in mice with targeted deletions of CCR1, but not in mice deleted for CCR2 and CCL346. 17 

Although total mononuclear cell recruitment to the site of rejection was attenuated in CCR1 deficient mice, 18 

monocyte recruitment specifically was not evaluated and cellular recruitment in CCR2/CCL3 deficient mice 19 

was not reported. Therefore genetic and pharmaceutical targeting of chemokine recptors in mouse models 20 

merit further evaluation in order to pave the way for first in man clinical studies. 21 
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TABLE 1 1 

Inclusion criteria Exclusion criteria 

Patients who have had a penetrating keratoplasty 
and have been diagnosed with endothelial rejection 
by one or more of the following: 

 Endothelial rejection line 

 Graft KP with aqueous cells 

 Visible aqueous cells with graft oedema in a 
previously clear graft. 

Patients with a history of HSV keratitis in that eye 

2 



Tables 

18 

TABLE 2 1 

Patient Age Sex Primary corneal 
diagnosis 

No. of 
previous 
transplants 

Previous 
rejection 
episodes 

Duration of symptoms 
(days) prior to sample 
collection 

Time after 
transplant 

(months) 

Prior 
topical  

steroids 

1 42 M Microbial keratitis 0 No 2 11 No 

2 53 F Ectasia post 
LASIK 

3 Yes 2 1 Yes 

3 23 F Keratoconus 0 No 14 9 Yes 

4 39 M Keratoconus 1 Yes 2 31 Yes 

5 42 M Keratoconus 0 No 10 18 Yes 

6 86 M Fuchs disease 0 No 17 16 No 

7 48 M Keratoconus 0 No 7 27 Yes 

8 90 M Pseudophakic 
bullous 
keratopathy 

0 No 14 12 No 

9 52 M Keratoconus 0 No 14 17 No 

10 26 M Macular dystrophy 0 Yes 1 12 Yes 

2 



Figure legends 

19 

FIGURE LEGENDS 1 

Figure 1 2 

(A) Total cell counts in aqueous humour (AH) samples were compared in patients with more or less than seven 3 

days symptoms of corneal allograft rejection. In patients for whom a cellular infiltrate was evident (n = 5), the 4 

proportion of all CD14+ cells (B) and monocyte subsets discriminated by the combination of CD14 and CD16 5 

staining (C) was compared in AH and contemporaneous PBMC samples. The inset dot plot shows the gating 6 

strategy used to quantify each of monocyte subsets indicated.  indicates statistically significant differences 7 

(p<0.05, Mann-Whitney U-test). Measurements for individual patient samples are shown in A and summarised 8 

as median ±IQR in B and C. 9 

Figure 2 10 

(A) Propidium iodide and calcein staining in a human corneal endothelial cell line incubated with CoM from 11 

unstimulated (control) and LPS or IFN stimulated MDM, was visualised by immunofuoresence microscopy at 12 

30 and 690 minutes. (B) Cx43 and nuclear staining in the endothelial layer of human cornea specimens 13 

incubated overnight with CoM from unstimulated and LPS or IFN stimulated MDM was visualised by confocal 14 

microscopy. Quantitaion of numbers of visible nuclei and positive Cx43 staining per high power field is 15 

summarised from four separate experiments (C-D). indicates statistically significant differences (p<0.05, 16 

Mann-Whitney U-test). Bars represent median ±IQR. Fluorescence images are representative of four separate 17 

experiments in each case. 18 

Figure 3 19 

(A) Cx43 and nuclear staining (DAPI) in the endothelial layer of human cornea specimens incubated ex vivo 20 

for 24 hours with CoM from unstimulated (Control) and LPS or IFN stimulated MDM followed by an overnight 21 

incubation with CD14 selected human monocytes (Mo) was visualised by confocal microscopy. Quantitation 22 

of numbers of visible nuclei and positive Cx43 staining per high power field is summarised from four separate 23 

experiments (B-C). indicates statistically significant differences (p<0.05, Mann-Whitney U-test). Bars 24 

represent mean ± SEM. Fluorescence images are representative of four separate experiments. 25 

Figure 4 26 

(A) Relative mRNA expression of chemokine receptors by peripheral blood monocytes from separate healthy 27 

volunteer donors and (B) mean fold change of chemokine transcript levels in LPS or IFN-stimulated MDM, 28 

are derived from previously published data sets. (C) A network diagram of known chemokine receptor-ligand 29 
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interactions for all the chemokine receptors expressed in A, above the median normalised expression level of 1 

8 (Log2), in which the size of the nodes is proportional to the number of interactions. Interactions between 2 

chemokine receptors (yellow nodes) in this network and chemokines (red nodes) which are upregulated in 3 

LPS or IFN-stimulated MDM are highlighted. 4 

Figure 5 5 

Comparison of selected chemokine concentrations (CCL2, CCL3 and CCL4) in aqueous humour samples from 6 

patients with corneal allograft rejection grouped by duration of symptoms (more or less than one week 7 

duration), and samples from control patients undergoing cataract surgery. Measurements from individual 8 

patient samples and the median of each group are indicated. indicates statistically significant differences 9 

(p<0.05, Mann-Whitney U-test). 10 

Figure 6 11 

(A) Schematic representation of the transwell model to evaluate PBMC transmigration across a blood-eye 12 

barrier. The hCMEC/D3 cell line is cultured in transwell and allowed to form tight junctions, followed by 13 

incubation in CoM from stimulated and unstimulated MDM in the lower chamber and addition of unfractionated 14 

PBMC in the top chamber. (B) Measurement of trans endothelial electrical resistance (TEER) across 15 

hCMEC/D3 cells in culture with and without Lithium supplementation to encourage tight junction formation. (C) 16 

Quantiation of CD14+ (monocytes) and CD14- (lymphocytes) fraction of PBMC migrating through the 17 

hCMEC/D3 barrier as proportion of the total PBMC loaded into the top chamber, in response to each of the 18 

MDM CoM indicated in the lower chamber. In B, bars represent mean  ±SEM of at least 10 separate 19 

measurements. In C, bars represent mean ±SEM of six separate experiments. indicates statistically 20 

significant differences (p<0.05, t-test). 21 

Figure 7 22 

(A) Monocyte transmigration across hCMEC/D3 cells incubated with CoM from LPS stimulated MDM was 23 

compared with and without depletion of selected chemokines from the CoM reflected in the final concentration 24 

of the each of the chemokines indicated in the heat map panel. (B) Gene expression heat map of chemokines 25 

upregulated in hCMEC/D3 cells incubated with CoM from LPS stimulated MDM compared to CoM from 26 

unstimulated MDM in four independent experiments. (C) Monocyte transmigration across hCMEC/D3 cells 27 

incubated with CoM from LPS stimulated MDM was compared in the presence and absence of small molecule 28 

inhibitors of the chemokine receptors indicated. Data bars represent mean±SEM of four separate experiments 29 

in each case. indicates statistically significant differences (p<0.05,t-test). 30 
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