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A general derivation and quantification
of the third law of thermodynamics
Lluı́s Masanes1 & Jonathan Oppenheim1

The most accepted version of the third law of thermodynamics, the unattainability principle,

states that any process cannot reach absolute zero temperature in a finite number of steps

and within a finite time. Here, we provide a derivation of the principle that applies to arbitrary

cooling processes, even those exploiting the laws of quantum mechanics or involving an

infinite-dimensional reservoir. We quantify the resources needed to cool a system to any

temperature, and translate these resources into the minimal time or number of steps, by

considering the notion of a thermal machine that obeys similar restrictions to universal

computers. We generally find that the obtainable temperature can scale as an inverse power

of the cooling time. Our results also clarify the connection between two versions of the third

law (the unattainability principle and the heat theorem), and place ultimate bounds on the

speed at which information can be erased.
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T
he third law of thermodynamics has a controversial
past and a number of formulations due to Planck, Einstein
and Nernst. Walther Nernst’s first formulation of the third

law of thermodynamics1, now called the heat theorem, was the
subject of intense discussion2. Nernst claimed that he could prove
his heat theorem using thermodynamical arguments while
Einstein, who refuted several versions of Nernst’s attempted
derivation, was convinced that classical thermodynamics was not
sufficient for a proof, and that quantum theory had to be taken
into account. Max Planck’s formulation3: when the temperature
of a pure substance approaches absolute zero, its entropy
approaches zero; may hold for many crystalline substances, but
it is not true in general, and formulations due to Einstein4

and Nernst5 were for some time considered to be typically true
from an experimental point of view, but sometimes violated.

A modern understanding of entropy and quantum theory takes
the heat theorem outside the realm of thermodynamics. Nernst’s
version states that: at zero temperature, a finite size system has an
entropy S, which is independent of any external parameters x,
that is S(T, x1)� S(T, x2)-0 as the temperature T-0. Since we
now understand the entropy at zero temperature to be the
logarithm of the ground-state degeneracy, the validity of the heat
theorem is contingent on whether the degeneracy changes for
different parameters of the Hamiltonian. One can easily find
families of Hamiltonians, which satisfy or violate the heat
theorem6,7. Here however, we concern ourselves with the
question of Nernst’s unattainability principle8, that Nernst
introduced to support his attempted derivations of his heat
theorem and counter Einstein’s objections. We can understand it
as saying that putting a system into its ground state requires
infinite time or an infinite number of steps. Nernst argues that if
the heat theorem could be violated, then it would be possible to
violate the unattainability principle (Fig. 1). We will see that this
is not the case. Although one can potentially cool at a faster rate
in systems violating the heat theorem, we show that the
unattainability principle still holds. The bound we obtain
quantifies the extent to which a change in entropy at T¼ 0
affects the cooling rate.

Independently of this debate, the validity of the unattainability
principle has remained open. Although formulated in 1912, there
has been no general proof of the principle, despite the central
importance that cooling has in enabling quantum phenomena in
optical, atomic and condensed matter systems. Quantum
computation, precision measurements, quantum simulations
and the manipulation of materials at the atomic scale, all rely
on extreme cooling. Currently, we only know that certain cooling
protocols, whether it be laser cooling, algorithmic cooling,
dynamic cooling or the traditional alternating adaibatic and
isothermic reversible operations, require infinite time to cool
a system to absolute zero. The analysis of particular cooling
protocols9,10 yields quantitative bounds on how fast cooling can
take place, provided one makes certain physical assumptions.
While for other protocols and physical assumptions, there are
claims of violations of the third law11, followed by counter-
claims12 and counter–counter-claims13. The limitation of these
results is that, certain physical assumptions may not be valid at
arbitrarily low temperature, or that certain protocols may not be
optimal. Without a proof based on first principles, the validity
of the third law is in question and cannot be held in the same
esteem as the other laws of thermodynamics.

A number of recent works analyse a process closely related
to cooling to absolute zero: erasing information or generating
pure states. In refs 14–16 it is shown that, regardless of the
amount of time invested, these processes are strictly impossible if
the reservoir is finite-dimensional. However, strict unattainability
in the sense of Nernst is not really a physically meaningful

statement. Rather, one wants to obtain a finite bound to how close
one can get to the desired state with a finite amount of resources
or within a given time. Some interesting steps in this direction
are taken in ref. 17, where they obtain a bound in terms of
the dimension of the reservoir, but not one that can be translated
into time. It also requires the dimension of the reservoir to be
finite, an assumption that is not needed to derive our
unattainability result here, and something which rarely holds in
real setups. In fact, we shall see that the physical mechanism
which enforces our third law is not dimension, but the profile of
the density of states of the reservoir18. On the other hand, argues
that for a qubit, one can produce a pure state to arbitrary
accuracy as the time invested increases. This, however, requires
that the work injected in the bath fluctuates around its mean
value by an unbounded amount (this is also necessary in ref. 17).
A fact that becomes more relevant when cooling systems much
larger than a qubit.

In the present article, we bound the achievable temperature by
resources such as the volume of the reservoir and the largest
value by which the work can fluctuate. This in itself can be said
to constitute a version of the third law. However, we also argue
that, in any process implemented in finite time, these two
resources must remain finite too. When the scaling of these
resources with time has a standard form (explained below), and
the heat bath consists of radiation, our third law provides
the following relation between the lowest achievable temperature
T 0S and time t

T 0S �
const

t7
: ð1Þ

We believe this to be the first derivation of a quantitative lower
bound on the temperature in terms of cooling resources,
confirming the general validity of the models and conjecture in
ref. 9 (although we do not require the system to be continually
thermal, we are able to get a bound which is more general than
the differential equation postulated there).

The question of how much time a state transformation takes is
a very natural question to ask in the field of theoretical computer
science, which generally tries to quantify the resources needed to
perform a task. In the case of lower bounding the resources to
perform a computation, this can be in terms of the number
of basic steps or gates (given a certain energy). It is thus no
surprise, that the techniques we will use come from recent efforts
to construct a theory of thermodynamics based on fundamental
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Figure 1 | Nernst justification of the unattainability principle. If the heat

theorem is violated then perfect cooling can be achieved with a finite

number steps. On the right, absolute zero is reached after an infinite

number of isothermic and adiabatic reversible processes, when the heat

theorem is satisfied S(0, x1)¼ S(0, x2). While on the left, a finite number

of steps appears to be sufficient when the heat theorem is violated

S(0, x1)4S(0, x2). The problem with this argument is that the last adiabat is

impossible, because it must preserve the probability distribution set by the

last isotherm, which is not confined to the ground-space. [Figure, courtesy

Wikipedia Foundation].
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principles of quantum information theory19–35. Traditionally,
thermodynamics has been mostly concerned with large, classical
systems, but these recent results also apply to microscopic
quantum systems in arbitrary non-equilibrium states coupled
to a heat reservoir, as is the case here. We thus wish to contribute
to the programme of deriving the whole of thermodynamics from
more fundamental principles.

Results
Physical setup. Our goal is to provide ultimate quantitative
bounds applicable to any cooling procedure—namely, we wish
to find a lower bound for the temperature that a system can reach
after any process which uses some given resources or lasting some
given time t. Therefore, we must allow for the most general
quantum transformation, that is, those that respect total energy
conservation and are microscopically reversible (unitary). This
general setup includes thermodynamically irreversible protocols
and also unrealistic protocols where total control of the micro-
scopic degrees of freedom of the bath is required. Surprisingly,
we will find here, as was found for the case of the second
law25,27,29,30, that having such unrealistic degree of control
does not appear to give one an advantage over having very
crude control.

We will show that the density of states of the reservoir assisting
the cooling process has an important impact on how fast a system
can be cooled. (The density of states O(E) is the number of states
with energy E.) We see that the faster O(E) grows, the lower the
temperature that can be achieved with fixed resources or in
a fixed amount of time. Even more: if O(E) grows exponentially
or faster, then cooling to absolute zero in finite time is in principle
possible, allowing for a violation of the third law. However,
we will see that exponential or super-exponential O(E) should
be regarded as unphysical. This becomes more intuitive
when expressed in terms of the (micro-canonical) heat capacity
C(E), related to S(E)¼ ln O(E) via

CðEÞ¼� S0ðEÞ½ �2

S00ðEÞ ; ð2Þ

where primes represent differentials. If O(E) grows exponentially
or faster, then C(E) is infinite or negative, which is regarded
as unphysical. If O(E) is sub-exponential, then C(E) is positive.
And, the faster O(E) grows, the larger C(E) is. Only a reservoir
with infinite-dimensional Hilbert space can keep S(E) growing
for all E. And indeed, infinite-dimensional reservoirs are the
ones that allow for faster cooling. However, our results are general
and also apply to the finite-dimensional case.

Suppose that we want to cool a quantum system with Hilbert
space dimension d, and Hamiltonian HS having ground-state
degeneracy g, gap above the ground state D and largest energy
J. What are the resources required to do so?

Fundamental assumptions. Let us specify the setup more
concretely and collect the assumptions we will adopt (those which
come from first principles):

(i) We consider the start of the process to be when the system
has not yet been put in contact with the work storage system
(the weight) nor the reservoir, so that initially, the global state is
rS#rB#rW. While other initial starting scenario may be of
interest, its consideration is beyond the scope of the current
paper.

(ii) We allow for the most general quantum transformation on
system, bath and weight, which is reversible (unitary) and
preserves total energy. This might appear restrictive compared
with the paradigms that allow arbitrary interaction terms,
however this is not the case, since arbitrary interactions can be

incorporated into the model as shown in Appendix H of ref. 27
and in ref. 25, simply by allowing the energy of the work system
to fluctuate. In many paradigms, this is implicitly enforced by
assuming that all missing energy is counted as work. Paradigms
which relax this condition are essentially ignoring the energy
transferred to other systems, or treat these other systems as
classical. Essentially, we impose energy conservation to ensure we
properly account for all energy costs associated with the
interaction while the various unitaries or interaction terms
simply transfer or take energy from the weight to compensate.
The cooling process is thus any transformation of the form

rS ! trBW UrS�rB�rWUy
� �

; ð3Þ

where U is a global unitary satisfying

U ;HSþHBþHW½ �¼0; ð4Þ
(iii) The work that is consumed within the transformation

is taken from the weight. Since we are interested in
ultimate limitations, we consider an idealized weight with
Hamiltonian having continuous and unbounded spectrum
HW¼

R1
�1 y yj i yh jdy. Any other work system can be simula-

ted with this one30. We denote by wmax the worst-case value of
the work consumed, that is,

y� y0j j4wmax ) W yh jU y0j iW¼0: ð5Þ
wmax will generally be much larger than the average work hWi. In
any physically reasonable process carried out in finite time, one
expects it to be finite.

(iv) We also require, as in ref. 29, that the cooling
transformation commutes with the translations on the weight.
In other words, the functioning of the thermal machine is
independent of the origin of energies of the weight, so that it just
depends on how much work is delivered from the weight. This
can be understood as defining what work is—it is merely the
change in energy we can induce on some external system. This
also ensures that the weight is only a mechanism for delivering
or storing work, and is not, for instance, an entropy dump
(see Result 1 in the Supplementary Discussion). It also ensures
that the cooling process always leaves the weight in a state that
can be used in the next run or the process. Thus

U ;�½ �¼0; ð6Þ
where the Hermitian operator P acts as eix� yj iW¼ yþ xj iW for
all x; y 2 R. Beyond this, we allow the initial state of the weight
rW to be arbitrary. In particular, it can be coherent, which
provides an advantage27.

(v) We assume that the bath has volume V and is in the
thermal state rB¼ 1

ZB
e�bHB at given inverse temperature b¼ 1

T,
with ZB the partition function of the bath. We denote the free
energy density of the bath (in the canonical state rB) by
fcan¼� T

V ln ZB.
(vi) The micro-canonical heat capacity (2) is not negative C(E)

for all energies E. This implies that S(E) is sublinear in E. We also
prove in the Supplementary Methods that if S(E) grows linearly
or faster, then perfect cooling in finite time is possible.

With these assumptions, we show that to perfectly cool the
system to absolute zero, at least one of these two resources, the
volume of the bath V, or the worst-case value of the work
consumed wmax has to be infinite. Also, we bound the lowest
achievable temperature of the system T 0S in terms of V and wmax.

Quantifying unattainability from first principles. With
assumptions (i)–(vi), we consider two cases, one where the initial
and final state are thermal, and one where we allow arbitrary
initial and final states. Our first result concerns the former,
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and states that in any process where the worst-case work injected
is wmax, the final temperature of the system cannot be lower than

T 0S �
TD

V fmic
ln2 d

3 g

J þ T J
TS
þwmax

� �
� fcan

� �
þ T J

TS
þT ln 3d

g

ð7Þ

in the large wmax,V limit. The micro-canonical free-energy
density at inverse temperature b0 is defined by

fmic b0ð Þ¼
1
V

E0�
1
b

S E0ð Þ
� �

; ð8Þ

where E0 is the solution of equation S0(E0)¼ b0. Recall that, when
the volume of the bath V is large, it is usually the case that
fmic(b0)¼ fcan(b0) and these are independent of V.

Let us analyse the behaviour of equation (7) in terms of
the resources invested. As wmax grows, b0 decreases and
fmic increases, yielding a lower final temperature T 0S. Since all
the volume dependence in equation (7) is explicit, hence, a larger
V also translates into a lower final temperature.

In what follows we provide a bound for the physically relevant
family of entropies

SðEÞ¼ lnOðEÞ¼aV1� nEn; ð9Þ
where a40 and nA[1/2, 1) are two constants. Such an entropy is
extensive, and if we set n¼ D

Dþ 1 it describes electromagnetic
radiation (or any massless bosonic field) in a D-dimensional
box of volume V. It is generally believed that there is no
other reservoir that has a density of states growing faster with
E than this36, and certainly none which has nZ1. The later,
corresponds to the bath with negative heat capacity discussed
earlier, which enables cooling with finite wmax. In the
Supplementary Discussion, we adapt bound (7) to the entropy
(9), obtaining

T 0S �
TD

V a n
ln2 d

3 g
J þ TJ

TS
þwmax

� �� � 1
1� n

þ T J
TS
þT ln 3d

g

ð10Þ

up to leading terms. Now, all the dependence on V and wmax is
explicit. In particular, we observe that larger values of V and
wmax allow for lower temperatures. And also, larger values
of n, which amount to a faster entropy growth, allowing for
lower temperatures.

As mentioned above, the cooling processes that we consider
are very general. In particular, they can alter the Hamiltonian of
the system during the process, as long as the final Hamiltonian is
identical to the initial one HS. This excludes the uninteresting
cooling method consisting of re-scaling the Hamiltonian HS-0.
However, our bounds can easily be adapted to process where
the final Hamiltonian differs from the initial one, as we will
discuss in the conclusion.

Let us now consider the more general case, where neither the
initial or final state need be thermal, but can instead be arbitrary.
As it is already well known14,15,17,18,30, the unattainability of
absolute zero is not a consequence of the fact that the target state
has low energy, but rather that it has low entropy. Hence, this
directly translates to the unattainability of any pure state, or more
generally, any state with rank g lower than the initial state. These
type of processes are generally known as information erasure,
or purification. Now we analyse the limitations of any processes
which takes an arbitrary initial state rS and transforms it into
a final state r0S with support onto the g-rank projector P. We
quantify the inaccuracy of the transformation by the error
E¼1� tr r0SP

� 	
. For the sake of clarity, we assume that the system

has trivial Hamiltonian HS¼ 0 (the general case is treated in the
Supplementary Discussion), and we denote by lmin and lmax the

smallest and largest eigenvalues of rS. In the Supplementary
Methods, we show that any process rS-r0S has error

ln
1
E
� bV fmic

ln 2 d
3 g

J þT ln lmax
lmin
þwmax

 !
� fcan

" #
þ ln

3
d lmin

:

ð11Þ
The results presented above, as well as others of more

generality presented in the Supplementary Discussion, quantify
our ability to cool a system (or more generally, put it into
a reduced rank state), in terms of two resources: the volume of
the bath V, and the worst-case fluctuation of the work consumed
wmax. They thus constitute a form of third law, in the sense
that they place a bound on cooling, given some finite resources.
We now wish to translate this into the time it would take to cool
the system, and we will do so, by consider the notion of a thermal
machine and making two physically reasonable assumptions.

Thermal machines. Let us recall that the field of computational
complexity is based on the Church-Turing thesis—the idea that
we consider a computer to be a Turing machine, and then explore
how the time of computation scales with the size of the problem.
Different machines may perform differently—the computer head
may move faster or slower across the memory tape; information
may be stored in bits or in higher dimensional memory units, and
the head may write to this memory at different speeds. Nature
does not appear to impose a fundamental limit to the dimension
of a computer memory unit or the speed at which it may be
written. However, for any physically reasonable realization
of a computer, and whatever the speed of these operations, it is
fixed and finite, and only then do we examine the scaling of time
with problem size. And what is important is the overall scaling of
the time with input (polynomial or exponential), rather than any
constants. Likewise here, we will consider a fixed thermal
machine, and we will assume that it can only transfer a finite
amount of energy into the heat bath in finite time. Likewise,
in a finite time, it cannot explore an infinite size heat bath.
A thermal machine which did otherwise would be physically
unreasonable.

We can consider both V and wmax as monotonic functions of
time t. The longer our thermal machine runs, the more work it
can pump into the heat bath, and the larger the volume of the
bath it can explore. For any particular thermal machine, one can
put a finite bound on T 0S by substituting these functions into
equation (10). In particular, if we assume that the interaction is
mediated by the dynamics of a local Hamiltonian, then the
interaction of a system with a bath of volume V and spacial
dimension d will take time

t � 1
v

V1=D; ð12Þ

where v is proportional to the speed of sound in the bath
(or Lieb–Robinson velocity37), and V1/D the linear dimension of
the bath. The implementation of general unitaries takes much
longer than equation (12), but this serves as a lower bound. Since
we are interested here in the scaling of temperature with time,
rather than with constant factors, we need not be concerned by
the fact that practical thermal machines operate at much slower
speeds. Of course, just as with actual computers, thermal
machines generally have speeds well below the Lieb–Robinson
bound. Note that, despite V being finite, the Hilbert space of
the bath can be infinite-dimensional. If one wanted to have
a bound which was independent of the thermal machine, and
independent on the speed of sound which is a property of the
bath, then one could always take v to be the speed of light. While
such a bound would not be practically relevant, it would be
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fundamental. This is similar to bounds on computation, where to
get a fundamental bound, one should take the gate speed to be
infinite (since there is no fundamental bound on this) and
convert the number of bits used in the process to time by
multiplying by the speed of light.

A relationship between worst-case work wmax and time t is
obtained by noticing the following. In finite t it is not possible to
inject into the bath an infinite amount of work. For simplicity,
here we assume a linear relationship

t � 1
u

wmax; ð13Þ

where the constant u will depend on the interactions between
system and weight. However, we stress that, if a particular
physical setup is incorrectly modelled by the relations (12) and
(13), then any other bound tZh1(wmax) and tZh2(V) is also
good. As long as h1 and h2 are strictly monotonic functions the
unattainability principle will hold.

Limitations using thermal machines. For any particular thermal
machine, we can now derive limitations on the temperature that can
be reached in a given time t. Since the physical system with the
fastest entropy growth that we are aware of is radiation, it is
worthwhile to dedicate the next paragraph to the case n¼ D

Dþ 1 in
equation (9), because this should provide a bound with wide validity.
Using the particular relations (12) and (13), and substituting them
into equation (10), for the case of radiation, we obtain

T 0S �
TD
vD

ln 2 d
3 g

a u

" #Dþ 1
1

t2Dþ 1
ð14Þ

in the large t limit. Our bound (14) can be straightforwardly adapted
to any other relation tZh1(wmax) and tZh2(V).
It is interesting to observe in equation (14) the relationship between
the characteristic time (how long does it takes to cool to a fixed T 0S)
and the size of the system VS. Exploiting the usual relation ln dpVS

we obtain the sublinear scaling

t / V
Dþ 1

2Dþ 1
S : ð15Þ

Something concerning about result (11) is that, in the limit
lmin-0 the bound becomes trivial E � 0ð Þ. This can be solved
by truncating the initial state rS to the subspace containing the
k largest eigenvalues and optimizing the resulting bound for
E as a function of k. Also, this truncation method allows to extend
all our results to infinite-dimensional systems (d¼N).

Discussion
We hope the present work puts the third law on a footing more in
line with those of the other laws of thermodynamics. These
have already been long established, although they’ve recently
been reformulated within the context of other resource
theories19,20,25,27,38–40. Namely, as described in ref. 30, the first
law (energy conservation), and unitarity (or microscopic
reversibility) describe the class of operations which are allowed
within thermodynamics. The zeroth law, is the fact that the only
state which one can add to the theory without making it trivial,
are the equivalence class of thermal states at temperature T.
This allows the temperature to emerge naturally. The second
law(s), tells us which state transformations are allowed under the
class of operations. For macroscopic systems with short-range
interactions, there is only one function, the entropy, which tells
you whether you can go from one state to another, but in general
there are many constraints25,30–32. The third law quantifies
how long it takes to cool a system. We propose to generalize it
further: While the second laws tell us which thermodynamical
transitions are possible, generalized third laws quantify the time

of these transitions. In this context, it would be interesting to
explore the time and resource costs of other thermodynamical
transitions. It would also be interesting to explore the third law in
more restricted physical settings, as well as to other resource
theory frameworks, in particular, those discussed in ref. 30.

It is worth noting that scaling we find, for example, the inverse
polynomial of equation (1), is more benign than what one might
have feared, and does not exclude obtaining lower temperatures
with a modest increase of resources. However, it is also stronger
than that envisioned when the third law was original formulated.
Consider for example, the cooling protocol of Fig. 1 proposed
by Nernst. It is unphysical, since it requires an infinite number
of heat baths, each one at a lower and lower temperature, and
with the final heat baths at close to zero temperature. However,
it allows the temperature of the system to decrease exponentially
in the number of steps, something which we are able to rule out
when one doesn’t have colder and colder reservoirs.

Finally, let us return to the question of the relationship between
the unattainability principle and Nernst’s heat theorem. In
modern terms, the latter can just be understood as saying that
the degeneracy of the ground state g cannot be changed. This may
be partly a matter of definition: if we can change the Hamiltonian
then the degeneracy of the ground state can change, although one
may then argue that the system is now in a different phase of
matter. Regardless, one can still apply our results to this case.
As described in Section A of the Supplementary Discussion, this
is accomplished by letting g and D in al the above results
correspond to the final Hamiltonian, while the other parameters
(J and ZS) correspond to the initial Hamiltonian HS. Thus, if the
heat theorem is violated and we can change g, this at best allows
us to cool at a faster rate, rather than violate the unattainability
principle.

Methods
Sketch of the proof. We qualitatively describe the proof technique with a simple
case. Consider the transformation of a qubit, from a maximally mixed state to
a pure state:

1
2

0j i 0h j þ 1j i 1h jð Þ ! 0j i 0h j: ð16Þ

For simplicity we consider HS¼ 0, hence this is not really cooling, but rather
erasure—however, the essentials are identical. The initial(final) joint microstates of
qubit and bath are depicted in the lower(upper) panels of Fig. 2. A perfect imple-
mentation of transformation (16) amounts to mapping all the states of the lower
panels to the upper-left panel. If the Hilbert space of the bath is finite, such
a transformation is incompatible with unitarity, which requires that all final states are
occupied. However, an infinite-dimensional bath allows for some final states to not be
the image of any initial state. The crucial constraint is that the work that this
transformation can consume in the worst case, is bounded by wmax. This restricts the
map of every state depicted in the lower panels in Fig. 2, to a state in the upper panels
which cannot be shifted to the right by more than wmax. We are interested in the
energy E0, the threshold energy below which all initial states (depicted in the lower
two panels) can be mapped to final states (the upper-left panel). E0 is the solution of

2I E0ð Þ¼I E0 þwmaxð Þ; ð17Þ

where I(E) is the number of eigenvalues of HB smaller than E. The factor of two in
equation (17) reflects the fact that there are two initial states of the system, being
mapped to one final state of the system. The coloured area of the two lower panels
represent the states counted by the left-hand side of equation (17), while the coloured
area of the upper-left panel represents the states counted by the right-hand side of
equation (17). Above E0, some states will have to be mapped to the upper-right panel.
The error E is the sum of the probabilities of all states mapped to the upper-right
panel. In this simple case, the probability of a state from the lower panels with energy
E is 1

2ZB
e� bE (the factor 1

2 comes from the qubit), which decreases exponentially as we
move to the right. The optimal protocol is that which minimizes E, and must satisfy
bound (11) (Supplementary Methods). This picture makes clear that the faster O(E)
grows, the larger E0 is, and the smaller E is. But when O(E) grows exponentially, we
have I(E)peaE, and equation (17) becomes 2¼ eawmax , which holds for a finite wmax

independently of E0. This implies that all states can be mapped to the upper-left, and
consequently E¼ 0. In this and also the super-exponential case, there is no third law.
However, such a density of states does not allow for having a well-defined thermal
state and partition function at all temperatures. In more physical terms, such a
substance would suck up all the energy from the surrounding systems (for certain
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initial conditions), and also, it would violate Beckenstein’s entropy bound41. A
possible concern of the reader may be that O(E) is often approximated by an
exponential, but this is because the reservoir is often assumed to have infinite volume
V. Here we argue that in any process implemented in finite time, the system can only
interact with a finite region of a bath.

Another way to see the link between wmax and the achievable temperature
T 0S can be seen from the following protocol, recently explored, for example,
in ref. 42. Imagine, we have a two level system with energy gap D. One cooling
method would be to put the system in contact with a bath at temperature T, and
raise the energy of the excited state by an amount wmax isothermally. After this,
the probability that the system has successfully been put in its ground state is
given by 1= 1þ e� b Dþwmaxð Þ� 	

. We then remove the system from the heat bath,
and then lower the energy of the excited state back to D, putting the system into
a temperature of T 0S¼T D

Dþwmax
. By choosing wmax large enough, we can make the

temperature arbitrarily low, and in this limit, the average work W is finite and
dominated by the first isothermal step, giving W¼T log(1þ e� bD), the change in
free energy. Note that the average work W is much smaller than the worst-case
work wmax. Achieving absolute zero using this protocol clearly requires infinite
resources (in this case, raising the excited state an infinite amount). Assumption
(13) applied to the above protocol gives us a final temperature

T 0SðtÞ ¼T
D

Dþ u t
: ð18Þ

Data availability. Data sharing not applicable to this article as no datasets were
generated or analysed during the current study.
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Figure 2 | Erasing a qubit. Here we illustrate the limitations of

transforming a qubit with HS¼0, from a maximally mixed state to a pure

state. Each of the four panels depicts the function O(E), and each little circle

represents a microstate of the bath, having the energy of the corresponding

column. The two lower panels together contain all the joint states of system

and bath before the transformation: the left(right) panel contains all the

states of the bath together with the system being in state |0i(|1i). In the

same way, the two upper panels contain all the joint states of system and

bath after the transformation. The goal of erasure is to put all the states of

the two lower panels to the upper-left panel, with the constraint that any

state can only be shifted to the right by no more than wmax. Energy E0, the

solution of equation (17), is the threshold below which all states from the

lower two panels can be mapped to the upper-left panel. Above E0, some

states will have to be mapped to the upper-right panel, contributing to

a non-zero E.
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