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Condensation of a liquid droplet from a supersaturated vapour phase is initiated by a prototypical
nucleation event. As such it is challenging to compute its rate from atomistic molecular dynamics
simulations. In fact at realistic supersaturation conditions condensation occurs on time scales that far
exceed what can be reached with conventional molecular dynamics methods. Another known problem
in this context is the distortion of the free energy profile associated to nucleation due to the small,
finite size of typical simulation boxes. In this work the problem of time scale is addressed with a
recently developed enhanced sampling method while contextually correcting for finite size effects.
We demonstrate our approach by studying the condensation of argon, and showing that characteristic
nucleation times of the order of magnitude of hours can be reliably calculated. Nucleation rates
spanning a range of 10 orders of magnitude are computed at moderate supersaturation levels, thus
bridging the gap between what standard molecular dynamics simulations can do and real physical
systems. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4966265]

I. INTRODUCTION

Nucleation is the event initiating first order phase
transitions in which a small embryo of a thermodynamically
stable phase appears within a parent metastable phase. The
formation of gas bubbles in a liquid, liquid droplets in a vapour,
or crystal particles in solution are all examples of nucleation
events playing a key role in a variety of fields ranging from
atmospheric physics to pharmaceutical manufacturing. The
small length scale characterising nucleation events renders
their direct experimental observation inherently challenging,
while providing the ideal playground to apply and develop
molecular modelling techniques. Despite extensive efforts in
the investigation of nucleation phenomena with molecular
simulations, the development of a systematic approach to
the calculation of nucleation rates from first principles still
remains a challenge due to the very nature of the nucleation
phenomena.

In the context of the condensation of a liquid phase from
a supersaturated vapour, the nucleation rate J is defined to
be the number of liquid droplets formed per unit time and
volume.

The formation of a liquid droplet containing n molecules,
in a system at constant volume (V ) and temperature (T), is
associated with a Helmholtz free energy change ∆F(n). The
maximum of this quantity, ∆F∗, corresponding to a critical
number of molecules n∗

d
, constitutes the energy barrier that

the system has to overcome in order to undergo the nucleation

a)Electronic mail: m.salvalaglio@ucl.ac.uk

process. The very existence of this barrier determines the key
features of nucleation, namely, that it is an activated process
and a paradigmatic example of a rare event.

The free energy barrier ∆F∗ and the nucleation rate J
depend on the thermodynamic driving force, which is typically
expressed in terms of the supersaturation S, i.e., the ratio of the
actual vapour pressure and the equilibrium vapour pressure.
They depend also on temperature, T , and on system-specific
properties, namely, the surface tension between the liquid and
vapour phases, the molecular volumes of the two phases, vℓ
and vg , and the specific surface of the newly formed droplets,
i.e., 6/d for a spherical droplet of diameter d.

In a system of volume V , at supersaturation S, and
temperature T , the characteristic time of nucleation τ can be
expressed as

τ =
1

J(S,T)V
. (1)

In Eq. (1) it can be readily seen that, at any given condition
of temperature and supersaturation, τ, i.e., the average
time necessary to observe a nucleation event, is inversely
proportional to V . This relationship represents a constraint
between two key factors determining the computational cost
of MD simulations of nucleation events: the number of
steps required to observe a nucleation event that needs to
be of order of τ/δt, where δt is the integration time step
used in MD, and the number of degrees of freedom which
is instead proportional to the number of atoms, and thus
to the volume V when comparing systems at the same

0021-9606/2016/145(21)/211925/10/$30.00 145, 211925-1 Published by AIP Publishing.
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density ρ = N/V . Such a constraint limits the range of
conditions that could be directly investigated by small-scale
MD simulations to regimes where J > 1022–1025 cm−3 s−1. Up
to now, overcoming such limitations has only been possible
by using large scale simulations involving millions of atoms
and requiring massive computational resources.1

Nucleation is the prototypical example of a rare event,
inherently stochastic in nature. When explicitly considering
the stochastic character of nucleation, τ represents the
expected time for the nucleation of the first liquid droplet
from a supersaturated vapour. The law of rare events suggests
that the first nucleation event can be interpreted as a Poisson
process,2 where the survival probability P0, i.e., the probability
that at a given time t there are no droplets in volume
V, is

P0(t) = exp
(
− t
τ

)
. (2)

Eq. (2) highlights how in order to reliably estimate
τ, the stochastic nature of the nucleation process needs
to be explicitly considered, while the reconstruction of the
distribution of transition times is pivotal to reliably estimating
J. In addition to the time scale issues, molecular simulations
of nucleation processes suffer from intrinsic finite size effects
that cause a systematic distortion of ∆F(n) and impact rate
calculations.3–8

In this work we propose a systematic approach for the
calculation of nucleation rates from small-scale unseeded
molecular simulations. The proposed approach is based
on recent developments of Well Tempered Metadynamics
(WTmetaD)9–11 that enable the calculation of transition times
distributions from biased simulations. Moreover we develop
a systematic correction for the effect of finite size on rate
calculations.

Our method is tested on the paradigmatic case of the
nucleation of a liquid argon droplet from a supersaturated
argon vapour in the NVT ensemble. The choice of argon
has a twofold aim: the first is to analyse a simple and yet
significant system, which has been the subject of both small
and large scale nucleation studies and allows to benchmark
our results against the existing literature.12 The second is to
point out that even in such a simple system, at realistic values
of supersaturation nucleation time scales in small volumes
rapidly grow out of reach of standard MD. The choice of
the NVT ensemble also plays a key role in demonstrating
the generality of our approach. At constant volume, the finite
size effect induced by the coupling between nucleus size and
pressure of the vapour phase3,4 is analogous to the effect due
to the coupling between nucleus size and chemical potential
observed in nucleation from multicomponent liquid phases.6,7

The approach developed here for the calculation of transition
times and their correction for finite size effects is thus general
and can be exported to systems of increased complexity and
density, for which large scale approaches are impractically
expensive.

The paper is structured as follows; at first the details of
the application of WTmetaD to the calculation of nucleation
rates are reported, then an analysis of finite size effects is
carried out. WTmetaD and the finite size correction are then

combined to outline a systematic strategy for the calculation of
nucleation rates. Finally results are reported and commented
upon. Unless otherwise noted, the subscript N will be used to
refer to relevant quantities in finite size systems. Such subscript
will be dropped whenever referring to their counterpart in
macroscopic systems.

II. NUCLEATION RATES AND LONG TIME SCALES

A. From metadynamics to dynamics

In this work the acceleration effect associated to
WTmetaD has been exploited in order to substantially reduce
the simulation time required to observe a nucleation event
while simultaneously maintaining the system size small,
hence significantly diminishing the overall computational
cost. WTmetaD is conventionally used to compute free
energy surfaces in a variety of contexts.10,11 Recently it
has been shown that, taking inspiration from conformational
flooding13 and hyperdynamics,14 transition times associated to
activated events can be efficiently computed from WTmetaD
simulations.15 In WTmetaD the simulated system evolves in
a transformed time coordinate, tWT, due to the application
of the history-dependent bias potential VB(ξ, t) constructed
as a function for the collective variable ξ.10,15 As discussed
in detail in Ref. 15, rate calculations via WTmetaD do not
require a converged estimate of free energy profiles, being
instead based on the systematic evaluation of the so-called
acceleration factor, which represents the ratio between the
physical time and the metadynamics time.

In the context of a nucleation problem, the specific
transition time associated to a nucleation event tn can be
computed from the corresponding WTmetaD simulation time
tn,WT as

tn = tn,WT⟨exp (βVB(ξ, t)) ⟩WT, (3)

where the term ⟨exp (βVB(ξ, t)) ⟩WT is the acceleration factor
called α in the following. Note that β = 1/kBT . Crucial to this
procedure is the hypothesis of negligible bias deposition at
the transition state. To comply with such hypothesis, the bias
potential is constructed through the infrequent deposition of
potential Gaussians, in a properly defined space of collective
variables. The fulfilment of such condition can be checked
a posteriori using the approach detailed in Ref. 16. When
this is the case, the whole transition time distribution can
be recovered from a set of WTmetaD simulations. This
approach has been applied to several problems, thus allowing
the computation of rates of activated processes such as DNA
unfolding17 and protein-ligand unbinding.18–20

B. A collective variable to describe liquid
argon nucleation

In WTmetaD the bias potential VB(ξ, t) is constructed
as a function of a collective variable ξ.10,11,21 In this work
we choose as collective variable n the total number of liquid
argon atoms in the system. The collective variable (CV)
n is a global coordinate defining the state of the entire
simulation box and does not strictly correspond to the size
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of the largest cluster, which is the typical reaction coordinate
used in classical nucleation theory (CNT). We have opted
for a global definition of n for two reasons. The first is
computational efficiency. A definition of the largest cluster
as a CV would in fact require a computationally expensive
clustering and sorting procedure performed at each time step.
The second reason is due to the system size: in this work
we are specifically targeting small volumes, in which it is
extremely unlikely to observe multiple nuclei simultaneously
undergoing an irreversible transition to a stable droplet. Thus
albeit n is defined globally, when a nucleation event unfolds in
small volumes it tends to coincide with the size of the largest
cluster.

In order to propagate the dynamics under the effect
of the WTmetaD bias potential, bias forces need to be
efficiently computed at each time step. To this aim, n is
expressed as a continuous and differentiable function of
the atomic coordinates.9,10,22 To compute n the ten Wolde-
Frenkel definition12,23 has been applied, in which atoms are
considered liquid when they possess a coordination number
larger than a threshold value cℓ, that is chosen to be 5.
The coordination number of each molecule in the system
is defined in a continuous and differentiable form through
the expression ci =


j,i f (ri j), where ri j is the Cartesian

distance between atoms i and j and f (ri j) is the switching
function,

f (ri j) = 1 −
�
ri j/rc

�6

1 −
�
ri j/rc

�12 . (4)

The number of molecules possessing ci ≥ cℓ is thus calculated
using the same functional form as in Eq. (4),

n =
N
i=1

1 − (cℓ/ci)6
1 − (cℓ/ci)12 . (5)

C. Detecting nucleation events
in WTmetaD simulations

The biased transition time tn,WT is the simulation time
associated with the occurrence of a nucleation event in a
WTmetaD simulation. Hence to compute tn,WT , it is necessary
to reliably detect nucleation events. In our case we apply
the approach described in Ref. 12 which is based on the
fact that a clear time scale separation exists between the
residence time in the supersaturated vapour state and the
time necessary for a supercritical nucleus to grow in size.
The latter phenomenon is orders of magnitude faster than
the former, rendering nucleation a rare but fast event. It
should be noted that the separation of time scales hypothesis
holds in the same limit where our method proves to be
effective, namely, when nucleation barriers are significantly
larger than kBT and residence times in the supersaturated
vapour metastable state exceed typical MD time scales.
We also note that such hypothesis holds even for the
fastest nucleation events simulated in this work, namely,
the simulation set S1 (see Table I). Such observation is
consistent with the results reported in Ref. 12 for the
same supersaturation conditions. As done in Ref. 12, the

TABLE I. WTmetaD simulation setup summary.

T l p ω0 ∆t V 0
B(nl)

Label (K) S (nm) (bars) nsim δ (kJ/mol) (ps) γ (Y/N)

S1 80.7 11.4 10.5 4.86 100 0.5/1.0 0.01 25 5 N
S2 80.7 8.68 11.5 3.70 100 0.5 0.01 25 5 N
S3 80.7 6.76 12.5 2.88 50 1.0 0.02 25 5 N
S4 80.7 6.01 13.0 2.56 50 0.5 0.01 25 5 Y
S5 80.7 5.36 13.5 2.28 50 0.5 0.01 25 5 Y

S6 72.0 16.86 13.62 1.79 50 0.25 0.005 25 5 N
S7 72.0 15.57 14.04 1.66 50 0.25 0.005 25 5 N
S8 72.0 14.03 14.60 1.49 50 0.25 0.005 25 5 N
S9 72.0 11.95 15.93 1.27 50 0.25 0.0075 25 5 Y

nucleation time tn,WT can be directly calculated from the
time evolution of n(t), as the simulation time needed to
overcome a threshold size of the emerging liquid droplet
n. This approach remains valid as long as the threshold size
chosen to define the transition criterion is larger than the width
of reversible fluctuations characterising the supersaturated
vapour metastable state. In such a case the transition time
can be safely considered independent of the specific threshold
value.12

D. Expected nucleation time and nucleation rates

As briefly mentioned in the Introduction, due to the
activated nature of nucleation, its transition time probability
distribution is described by the so-called law of rare events,
and is thus expected to be exponential. The nucleation process,
particularly the formation of the first nucleus, i.e., the event
that matters at the scale of the MD simulation box, can in
fact be modelled by a time-homogeneous Poisson process
characterised by a survival probability P0(t) = exp (−t/τN).
Due to its inherent stochasticity, an appropriate sampling of
the nucleation times distribution is required to evaluate the
expected characteristic nucleation time τN .12,24,25 In order
to compute the expected nucleation time τN in a finite
size system, we perform a large number of independent
WTmetaD NVT simulations and extract from each of them
a nucleation time tN . After this, the survival probability
distribution constructed from the tN values is analysed and
its statistical compatibility with a Poisson process quantified.
This allows us to check whether the conditions under which
Eq. (3) is valid are satisfied.16 The characteristic nucleation
time fitted from the survival probability distribution τN
is thus used to compute the nucleation rate in the finite
size system as JN = (τNV )−1, where V is the system’s
volume.12,24,25

E. WTmetaD simulation details

Transition times were computed from NVT simulations
of systems consisting of 512 argon atoms. A Lennard-Jones
potential with ϵ = 0.997 97 kJ/mol and σ = 0.3405 nm was
adopted to describe the interactions between argon atoms.12

The time step for the integration of the equations of motion
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was set to 5 fs.12 Two set of simulations were carried out,
with the aim of benchmarking our results with nucleation
rates from both small-scale12 and large scale1 simulations.
The first set of simulations (S1–S5, details in Table I) were
designed to compare our results with those reported in Ref. 12
at temperature of 80.7 K. In this case the potential has
been truncated, but not shifted, with a cutoff length of
6.75σ. With this first series of simulations we aimed at
showcasing the range of supersaturation conditions that can
be investigated with small-scale WTmetaD simulations. To
carry out rate calculations in a wide supersaturation range
we have followed the approach proposed in Ref. 12, carrying
out a series of NVT simulations in cubic boxes of increasing
volume, corresponding to supersaturation values ranging from
11.4 to 5.4. The equilibrium vapour pressure (pe) of argon
under these conditions is equal to 0.43 bars.12,26 The second
series of simulations (S6–S9, details in Table I) has been
carried out at T = 72.0 K, in order to allow for a direct
comparison with the large scale simulations of Ref. 1 in a
range of temperature and supersaturation similar to those of
Ref. 12. In this second series the potential was truncated
at the slightly shorter cutoff length of 5σ to conform
with the setup of Ref. 1. For this series of simulations we
aimed to highlighting the substantial gain in computational
efficiency by providing a quantitative comparison between
our small scale results and large scale simulations. In this
case the simulation volume was defined in order to have
the same number density of argon atoms as in our large
scale benchmark. The equilibrium vapour pressure (pe) of
argon in these conditions is 0.1064 bars.1 We note that in
Ref. 1 nucleation rates were computed for a wider range
of temperatures. As a future work we will further extend
the comparison of our small-scale approach with large-
scale simulations in regimes of low temperature and high
supersaturation.

In Table I setup parameters of the nine sets of simulations,
namely, the supersaturation level S, dimension of the
simulation box edge l, initial pressure p, and number of
independent simulations per supersaturation level nsim have
been reported. In Table I we also report the WTmetaD setup
parameters, namely, width of the deposited Gaussians δ, their
initial height ω0, the deposition stride ∆t, and the γ factor.
For a detailed description of the metadynamics algorithm
and parameters the interested reader is invited to check the
Refs. 9–11. In the last column we indicate whether an initial
bias potential V 0

B(n) was applied (Y) or not (N) (see Sec. V
for a description of simulations with and without V 0

B(n)).
At T = 80.7 K the highest supersaturation at which we
have performed simulations is S = 11.4, corresponding to
the lowest supersaturation at which the standard simulations
of Ref. 12 were performed. This allowed us to check that
our simulation setup was correctly reproducing nucleation
rates both in biased and unbiased simulations. For each
supersaturation the survival probability distribution has been
constructed by performing 50–100 independent nucleation
simulations. At T = 72.0 K we have performed small scale
simulations with the same number density of simulations. The
values of the collective variable n and of the total bias VB(n, t)
have been collected every 100 steps. Temperature has been

controlled using the Bussi-Donadio-Parrinello thermostat,27

with a time constant of 0.1 ps. WTmetaD simulations were
performed with Gromacs 4.6.328 equipped with PLUMED
2.0.29

III. NUCLEATION RATES AND FINITE SIZE EFFECTS

The nucleation rate of droplets from a vapour can be
explicitly derived within classical nucleation theory (CNT) as

J = A
(

p
pe

)
exp (−β∆F∗) , (6)

where A is a pre-exponential factor, p is the pressure in the
vapour phase, pe the equilibrium vapour pressure, and ∆F∗

the free energy barrier to nucleation.
Equation (6) can be viewed as the product of two

distinct contributions: an energetic part, corresponding to the
exponential term, and a kinetic one, related to the molecular
collisions and given by the pre-exponential term. In order to
derive a systematic correction to nucleation rates computed
from small-scale molecular simulations, in the following we
shall assess the impact of the finite size of the simulation box
on both terms.

A. Free energy of nucleation in a confined system

We define confinement as the impossibility of exchanging
atoms between the system and the surrounding environment.
Under this definition an NVT simulation box represents a
prototypical confined system, as its total number of atoms N
is by definition constant. As highlighted in several reference
works,3–8 the free energy change associated with a nucleation
process is affected by confinement. In Fig. 1, the comparison
between nucleation free energies in finite size (blue) and
macroscopic (red) conditions is illustrated together with the

FIG. 1. Nucleation of a liquid argon droplet from supersaturated vapour.
(top) Free energy profiles predicted by CNT in an infinitely large system
at constant supersaturation (∆F(n)) and for a finite size, confined system
(∆FN (n)). Both free energy profiles refer to a system of 512 argon atoms,
in a volume of 2197 nm3, at supersaturation S = 6, with a surface energy
σa = 9 kBT . (bottom) Representation of the system in its vapour V and
droplet D configurations.
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representation of typical configurations of argon atoms in the
vapour (V) and liquid droplet (D) states. Hereafter we shall
summarise how such a distortion in the free energy profile
affects nucleation rates.3 We treat the argon vapour as an ideal
gas hence the pressure of the vapour before droplet formation
(initial state of the system) is

p0(N,V,T) = N kBT
V

. (7)

A liquid spherical embryo of n molecules has a volume Vd,
and a surface Ad, that can be expressed as a function of n as

Vd = nvℓ, (8)

Ad = (an)2/3 (9)

where vℓ is the molecular volume in the liquid phase, and
a = 6π1/2vℓ. After formation of such an embryo (the final
state of the system) the vapour pressure attains the following
value:

p(N,n,V,T) = (N − n) kBT
V − nvℓ

. (10)

The Helmholtz free energy change, ∆FN , for the transition
from the initial to the final state, i.e., for the formation at
constant temperature T and volume V of a n-molecule droplet
from a vapour consisting initially of N molecules, is given
by4

∆FN (N,n,V,T) = −nβ−1 ln
(

p
pe

)
+ γ(an)2/3

+ N β−1 ln
(

p0

pe

)
+ n

�
β−1 − vℓ pe

�
, (11)

where volume, surface, and pressure effects are accounted for.
A typical ∆FN(n) profile is reported in Fig. 1(a) (blue). Both
a local maximum and a local minimum can be identified
along ∆FN(n). The local maximum ∆F∗N represents the
free energy barrier to nucleation in a finite size system.
∆F∗N is associated with a critical nucleus size n∗N , which
represents the liquid embryo in unstable equilibrium with
the surrounding vapour. Such ∆F∗N value can be computed
numerically. As extensively discussed in Ref. 3 for an argon
vapour and in Refs. 7 and 8 for the case of crystal nucleation
from solution, there exists a minimum value of the initial
supersaturation, S0 = p0/pe > 1, below which the function
∆FN(n) is monotonically increasing, hence no maximum is
present. At N and T fixed such a condition defines an upper
bound for the volume for which nucleation rates can be
computed. In Fig. 2 ∆FN(n) is plotted as a function of the
system volume, highlighting the critical conditions associated
with the transition to a monotonically increasing function.
Contrary to the analysis so far, Classical Nucleation Theory
(CNT) deals with infinitely large systems, where the formation
of the liquid droplet has a negligible effect on the state of the
surrounding phase. The corresponding Helmholtz free energy
change, ∆F(n), for the formation of a n-molecule embryo
at temperature T and supersaturation S0 can be obtained by
taking the limit of Eq. (11) with V and N approaching infinity,
and their ratio remaining constant. Under these conditions
p = p0 and

∆F(n) = −nkBT ln S0 + γ(an)2/3. (12)

FIG. 2. Free energy of nucleation in a finite size system at constant N= 512,
T= 80.7 K, as a function of the system volume V. The solid blue line
represents the locus of the maxima of ∆FN , corresponding to the critical
nuclei. The dashed blue line represents the locus of the local minima in of
∆FN , representing a stable argon droplet in a finite size induced equilibrium
with the argon vapour. In solid red the ∆F(n) is highlighted, corresponding
to the threshold value of V above which ∆F(n) becomes a monotonically
increasing function even if S0 > 1.

For an infinitely large system, in which Eq. (12) holds,
the free energy barrier ∆F∗ can be computed analytically as30

∆F∗ = − 4β3γ3a2

27(ln S0)2
. (13)

It is worth noticing that ∆F∗N , which is the nucleation free
energy barrier in a confined system at the same conditions of
T and S0, is strictly larger than ∆F∗.

B. Macroscopic nucleation rates from finite
size calculations

In order to compute a correction term associated to the
confinement effect we follow the approach of Ref. 3, and
define a factor φ as the ratio between the nucleation rate in
macroscopic conditions J and in a finite sized confined system
JN . In analogy with Eq. (6), the nucleation rate in a confined
system JN can be written as4

JN = ANS exp
�
−β∆F∗N

�
. (14)

Since the system supersaturation in a finite size simulation
before a supercritical nucleus forms is essentially the same as
in a macroscopic system, S = S0, φ reduces to3

φ =
J

JN
=

A
AN

exp
�
β(∆F∗N − ∆F∗)� . (15)

Eq. (15) provides a working principle to obtain nucleation
rates in macroscopic systems from finite size NVT simulations
as

J = φJN . (16)

As reported in Ref. 3, due to the exponential dependence
on the strictly positive quantity ∆F∗N − ∆F∗, the dominating
term in Eq. (15) is exp

�
β(∆F∗N − ∆F∗)�, whereas the pre-

exponential term A/AN in Eq. (15) is expected to play a
secondary role. In order to identify key contributions to A/AN ,
its dependence on finite size is discussed in the following.
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Within the framework of CNT, A is typically expressed
as12,30

A = Z f ∗
pe

kBT
, (17)

where Z is the Zeldovich factor given by31

Z =


| d2∆F(n)

dn2 |n=n∗
2πkBT

(18)

and f ∗ the rate of attachment of molecules to the critical
cluster. Since nucleation of a droplet from its vapour is a
process controlled by direct impingement,30 the attachment
rate f ∗ is derived from the kinetic theory of gases as24,30

f ∗ = c(n∗) p
√

2πmkBT
, (19)

where c(n∗) = 3(36πvℓ2)(n∗)2/3 is the surface area of the
critical cluster, vℓ is the volume per molecule in the liquid
phase, and p the pressure.

The attachment frequencies f ∗ and f ∗N differ due to two
reasons. The first is that the critical nucleus size in finite size
simulations n∗N is strictly larger than the critical nucleus in
the corresponding infinite case n∗.4 The second reason is that
the vapour pressure acting on the critical nucleus in finite size
systems p∗N = (N − n∗N)/((V − n∗Nvℓ)kBT) is always smaller
than its corresponding value for a system at macroscopic
conditions p = N/(V kBT).

The Zeldovich factors Z and ZN are instead expected to
differ due to the fact that the curvature of the free energy
profile in the region around its maximum is affected by finite
size, see Fig. 1, for example. The extent of the contribution
of the exp

�
β(∆F∗N − ∆F∗)�, f ∗/ f ∗N , and Z/ZN terms to φ is

discussed in Sec. V.
The correction factor φ depends on quantities that can

be directly calculated from ∆F(n)N and ∆F(n) such as: ∆F∗N ,
∆F∗, ZN , Z , n∗N , and n∗. Both ∆F(n) and ∆F(n)N can be,
respectively, computed from Eqs. (12) and (11), once the
surface tension γ is known.

The surface tension γ is obtained by fitting Eq. (14),
in which the pre-exponential term AN is considered
supersaturation-independent, on the JN values obtained as
a function of supersaturation.

IV. WORKFLOW SUMMARY

In Fig. 3 the workflow for the calculation of nucleation
rates from small-scale finite size NVT simulations has been
summarised. The calculation procedure can be outlined as
follows:

1. A set of WTmetaD simulations is carried out for multiple
supersaturation levels Sk. Supersaturation is imposed by
defining the system volume while keeping constant the
number of molecules N and the temperature T .

2. Applying the criterion for the identification of nucleation
events proposed in Ref. 12, the WTmetaD transition
time tWT and the corresponding acceleration factor α are
calculated from each WTmetaD simulation.

3. The physical transition time associated to each nucleation
event is computed using Eq. (3).

4. The transition times obtained for each supersaturation
value are used to fit the survival probability distribution,
and compute the average nucleation time τN for each finite
size system at volume V and supersaturation S.

5. Average nucleation times τN are converted to finite size
nucleation rates using JN = 1/ (τNV ).12

6. The finite size nucleation rates are used to fit Eq. (14). The
fitting parameter is the surface tension γ, which is used to
compute ∆F∗, ∆F∗N , n∗, n∗N , Z , ZN , and thus the correction
factor φ.

7. Eq. (16) is used to compute the nucleation rate in
macroscopic conditions J.

V. RESULTS

A. WTmetaD simulations

The time evolution of the number of liquid-like argon
atoms n in a typical WTmetaD simulation is reported in
Fig. 4, where the nucleation event can be clearly identified
as the rapid transition from n values fluctuating close to
zero to n values fluctuating around a positive value nD. The
final state corresponds to a finite sized droplet stabilised by
finite size effects corresponding to the local minimum in free
energy shown in Fig. 1 (blue curve). It can be seen that the
lifetime of the supersaturated vapour state in the WTmetaD
simulation is much larger than the transition time associated
with the nucleation event driving the system into the stable
state characterised by n = nD. Such a difference becomes

FIG. 3. Workflow summary for the calculations of macroscopic nucleation rates from small-scale NVT WTmetaD nucleation simulations. Sk refers to a
supersaturation level within a set of k ∈ [1,n] with n representing the total number of supersaturation levels considered at constant T . The scheme reported here
refers to the series of simulations performed at T= 80.7, hence k ∈ [1,5] (see Table I). The same scheme has been applied to both temperature considered in this
work. The outcome of each step has been commented in Sec. IV.
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FIG. 4. Time series of the collective variable n(t) obtained from a typical
simulation. The value of typical n, n∗N , and nD have been highlighted on the
plot.

exponentially large when the WTmetaD time is rescaled to real
time according to Eq. (3),15 neatly highlighting the time scale
separation characteristic of the nucleation problem. During
WTmetaD simulations a repulsive bias potential is adaptively
constructed with an infrequent deposition of Gaussians.9,15 In
order to speed up the adaptive construction of the bias for
the two slowest cases (S4 and S5 in Table I), in addition to
the WTmetaD bias VB(n, t), we apply a static bias V 0

B(n)
constructed from a preliminary WTmetaD simulation. In
Fig. 5 the total bias potential is reported for S2 and S5,
which are characterised by the absence and presence of an
initial bias V 0

B(n), respectively. In all cases in the region of the
maximum of ∆NF(n), the total bias applied V tot

B (n) decays to
values smaller than kBT , in agreement with the hypotheses
of negligible bias deposition at the transition state invoked to
carry out rate calculations from WTmetaD.15,16

B. Survival probability distributions and average
transition times in finite size conditions

As described in Section II, sets of 50–100 simulations
were carried out at T = 80.7 at five different supersaturation
levels S1-S5 (see Table I) and at T = 72.0 K for four
supersaturation levels S6 − S9. From each set of simulations
an empirical survival probability (ESP) distribution has
been constructed. The average transition time in finite size
conditions τN has been computed for each supersaturation
level by a non-linear least square fitting of the ESP with

FIG. 6. (a) Survival probability distributions obtained at 80.7 K for four
different supersaturation levels (S1= 11.4, S2= 8.7, S3= 6.8, S4= 6.0,
S5= 5.4). (b) Average nucleation times in finite size systems τN . The average
acceleration factor α as a function of supersaturation is displayed as an inset.

the expression P0 = exp (−t/τN), hereafter referred to as
the theoretical survival probability (TSP). Evaluating the
statistical compatibility between the ESP and the TSP with
the protocol described in Ref. 16 allowed ensuring that
the crucial hypothesis of negligible bias deposition at the
transition state has been satisfactorily fulfilled for all the
simulation sets S1-S9. In Fig. 6(a) both the ESP constructed
from WTmetaD simulations and the fitted TSP are reported for

FIG. 5. (a) Simulation set S2: WTmetaD bias potential at transition time, VB(n, tWT). (b) Simulation set S4: initial static bias potential V0(n), WTmetaD
bias potential at transition time VB(n, tWT), and total bias at transition time V tot

B (n,tWT)=V 0
B(n)+VB(n, tWT). For comparison nucleation free energy profiles

∆FN (n) have been reported and the kBT level has been highlighted in red.
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FIG. 7. Nucleation rates calculated
from finite sized WTmetaD simulations
(JN ) and rescaled to the macroscopic
limit J . The blue dashed line represents
the result of the fitting of the JN data
with Eq. (14). Computed values of J ,
JN , τN , and their associated errorbars
(not visible on the logarithmic scale) are
reported in the Table II. The data-point
from Diemand et al. marked with * has
been computed on the basis of a single
nucleation event. Its 68% confidence in-
terval has been highlighted as a gray
solid line.1

the set of simulations at T = 80.7. For the same temperature in
Fig. 6(b) the supersaturation-dependent values of the finite size
transition time τN is reported as a function of supersaturation,
together with the average acceleration factor α (in the inset).
Fig. 6(b) highlights how the application of WTmetaD allows to
directly simulate nucleation events characterised by transition
times of the order of 104 s, thus significantly expanding the
range of transition times that could be reached with small-scale
standard MD simulation setup.

C. Nucleation rates

As discussed in Section II D nucleation rates in
the confined regime JN can be directly computed as JN
= (τNV )−1. In Fig. 7 and Table II values of JN and J are
reported as a function of the supersaturation S for both the
simulations series at T = 80.7 K and T = 72.0 K.

In Fig. 8, it can be seen that the finite size correction
is negligible at high supersaturation (S ≥ 11.4), where the
nucleation barriers ∆F∗ and ∆F∗N are almost indistinguishable.
However, for lower supersaturation levels φ reaches values
accounting for up to two orders of magnitude of difference
between J and JN . A breakdown of the contributions of the
terms appearing in φ is also reported in Fig. 8. It can be
seen that, as expected,3 the contribution of the term f ∗/ f ∗N
negligible over the entire supersaturation domain. Despite the
term Z/ZN having a slightly heavier impact on φ, it can be
seen that the finite size correction is substantially captured by
considering only the exponential term in Eq. (15).3 Nucleation
rates in macroscopic conditions J are thus computed as

J = φJN ≃ JN exp
�
β
�
∆F∗N − ∆F∗

��
(20)

and reported in Fig. 6(c). Nucleation rates rescaled explicitly
accounting also for the term Z/ZN are reported in the SI.

TABLE II. Nucleation time in the small scale simulations, nucleation rates extracted from WTmetaD simulation
for both T= 80.7 and T= 72.0 K, and average acceleration factor α. For the simulations series at T= 72.0 K the
nucleation rate computed from large scale simulations JLS

1 is reported for comparison.

T τN JN J JLS

Label (K) (s) (cm−3 s−1) (cm−3 s−1) (cm−3 s−1) α

S1 80.7 5.75 ± 0.65 × 10−8 1.5 ± 0.34 × 1025 3.04 ± 0.70 × 1025 . . . 2.8
S2 80.7 2.33 ± 0.33 × 10−5 2.8 ± 0.82 × 1022 8.64 ± 2.53 × 1022 . . . 1.8 × 102

S3 80.7 8.02 ± 1.96 × 10−2 6.4 ± 3.3 × 1018 5.09 ± 2.65 × 1019 . . . 2.4 × 105

S4 80.7 3.61 ± 0.76 × 101 1.26 ± 0.56 × 1016 2.57 ± 1.14 × 1017 . . . 6.3 × 107

S5 80.7 3.13 ± 0.84 × 104 1.30 ± 0.75 × 1013 1.35 ± 0.78 × 1015 . . . 1.7 × 1011

S6 72.0 4.52 ± 0.87 × 10−5 8.76 ± 1.75 × 1021 1.92 ± 0.38 × 1022 1.27 ± 0.02 × 1022 4.25 × 102

S7 72.0 5.08 ± 1.11 × 10−4 7.11 ± 1.64 × 1020 1.77 ± 0.41 × 1021 1.79 ± 0.09 × 1021 3.0 × 103

S8 72.0 1.34 ± 0.36 × 10−2 2.4 ± 0.7 × 1019 7.38 ± 2.2 × 1019 3.01 ± 0.44 × 1019 4.32 × 104

S9 72.0 1.60 ± 0.51 × 102 1.55 ± 0.54 × 1015 1.12 ± 0.39 × 1016 5.7-84.2 × 1016 8.36 × 108
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FIG. 8. Simulations S1-S5. Breakdown of the contributions to the finite size
correction φ of the factors exp

�
β(∆F∗N −∆F∗)

�
, f / fN , and Z/ZN .

The surface tension γ values obtained from the fitting
of the JN computed from WTmetaD at 80.7 K and 72.0 K
correspond to γ = 17.0 and 20.0 mN/m, respectively. Both
estimates nicely extrapolate the data of Goujon et al.32

for the same system in the temperature range between
85 K and 135 K as shown in the supplementary Fig. S4
(supplementary material). The surface tension has been
considered independent from S, as typically done in CNT.
We have found that this choice allows to well describe the
JN data directly computed from simulations while keeping at
a minimum the number of fitting parameters. We have also
verified that considering γ, a linear function of supersaturation,
does not noticeably improve the description of the WTmetaD
data.

Nucleation rates computed at T = 80.7 K clearly indicate
that, as expected, in the limit of small acceleration factors our
method coincides with the survival probability approach of
Ref. 12. In contrast with the latter however we significantly
extend the accessible nucleation time scale. This unlocks the
possibility of computing nucleation rates for processes that
are up to ten orders of magnitude slower than those typically
accessible through MD simulations.12,24,25,33,34

A comparison with nucleation rates computed from large-
scale simulations1 shows that the computational efficiency of
small-scale simulations comes without significant sacrifices
in accuracy. Our estimates of nucleation rates at T = 72.0 K
are fully consistent with those obtained from large scale
simulations at the same temperature. Moreover, as expected
on the basis of the analysis on finite size effects,3 JN values
systematically underestimate rates obtained from large scale
simulations, justifying the finite size correction φ. Simulation
sets S6-S8 display quantitative agreement with the estimates of
Diemand et al. reported in Ref. 1 (see Table S1). It should be
noted that in this range of conditions the finite size correction
φ is small and both J and JN are within the same order of
magnitude of large scale estimates. The comparison of results
obtained for simulation set S9 deserves a separate discussion.
In contrast with large-scale nucleation rates computed in
conditions corresponding to simulation sets S6-S8, the result
reported in Ref. 1 for conditions corresponding to S9 is based
on the observation of a single nucleation event. According to
the discussion reported in Ref. 1 this allows only for a rough
estimate of a quite large 68% confidence interval for the

nucleation rate. Remarkably, our finite size corrected estimate
of J is of the same order of magnitude of the lower bound
of the confidence interval, ensuring a reasonable agreement
also in this case. It should be noted that, in contrast with the
lack of reliable nucleation statistics for large scale simulations
corresponding to S9,1 our approach allows to record tens of
nucleation events thus providing meaningful statistics for the
estimate of nucleation rates in conditions that have proven to
be challenging even for large scale simulations.

VI. CONCLUSION

To conclude, in this work we have shown that WTmetaD
can be applied to the direct calculation of nucleation rates,
proving to be particularly useful to tackle the time scale
limitations that plague small-scale nucleation simulations.
In the case of argon condensation this implies being
able to simulate nucleation in fairly small systems, while
efficiently reaching time scales of the order of 104 s with
ordinary computational resources. This result is particularly
relevant when contrasted with computationally expensive,
large scale simulations. We have in fact shown that,
within the range of temperature and supersaturation values
investigated in this work, our approach yields results that are
in quantitative agreement with those obtained from billion-
atoms simulations. Moreover, we have highlighted that rate
calculations from small scale simulations require a systematic
assessment of finite size effects. Being able to simultaneously
address both time scale and finite size limitations allows to
significantly extend the range of nucleation conditions that
can be directly investigated with computationally efficient,
small-scale molecular simulations.

SUPPLEMENTARY MATERIAL

See supplementary material for additional details on
transition times convergence, finite size correction, and surface
tension estimates.
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