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Chronic obstructive pulmonary disease (COPD) is a common, highly debili-

tating disease of the airways, primarily caused by smoking. Chronic inflam-

mation and structural remodelling are key pathological features of this

disease, in part caused by the aberrant function of airway smooth muscle

(ASM) cells under the regulation of transforming growth factor (TGF)-b.
miRNA are short, noncoding gene transcripts involved in the negative regula-

tion of specific target genes, through their interactions with mRNA. Previous

studies have proposed that mRNA-145 (miR-145) may interact with SMAD3,

an important downstream signalling molecule of the TGF-b pathway. TGF-b
was used to stimulate primary human ASM cells isolated from healthy non-

smokers, healthy smokers and COPD patients. This resulted in a TGF-b-
dependent increase in CXCL8 and IL-6 release, most notably in the cells

from COPD patients. TGF-b stimulation increased SMAD3 expression, only

in cells from COPD patients, with a concurrent increased miR-145 expres-

sion. Regulation of miR-145 was found to be negatively controlled by path-

ways involving the MAP kinases, MEK-1/2 and p38 MAPK. Subsequent,

overexpression of miR-145 (using synthetic mimics) in ASM cells from

patients with COPD suppressed IL-6 and CXCL8 release, to levels compara-

ble to the nonsmoker controls. Therefore, this study suggests that miR-145

negatively regulates pro-inflammatory cytokine release from ASM cells in

COPD by targeting SMAD3.
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Chronic obstructive pulmonary disease (COPD) is a

chronic inflammatory condition of the lung of high

global prevalence [1] and is associated with high mor-

bidity, mortality and socioeconomic cost [2]; moreover,

its contribution to deaths worldwide is predicted to

increase over the course of both the current and next

decade [3].

Chronic obstructive pulmonary disease is a heteroge-

neous condition, primarily affecting the lung, but often

with significant systemic features, which can augment

the morbidity of the disorder and hamper its manage-

ment [2]. The pulmonary component of the disease

refers to a progressive and largely irreversible obstruc-

tion of airflow, due to a pathological combination of
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narrowing of the small airways, parenchymal destruc-

tion and structural remodelling [4]. The aberrant

remodelling occurs in addition, or in response, to the

ongoing and worsening inflammation [5]. It is associ-

ated with architectural alterations to the bronchi [6],

small airways and parenchymal tissue and affects the

epithelium, its underlying extracellular matrix and the

surrounding smooth muscle and these changes have

been correlated with disease severity [7]. Although the

primary cause of COPD in more economically devel-

oped countries is cigarette smoking, the majority of

heavy smokers do not develop the disease [8] and indi-

cators for determining those that will be affected

remain elusive.

An increased ASM mass has been observed in both

the large and small airways in COPD [6], which cor-

relates with disease severity [7]. Whether increased

ASM mass in COPD is due to either hypertrophy or

hyperproliferation, or a combination of both has not

been definitively determined. ASM cells have also

been shown to produce a number of cytokines,

chemokines and growth factors in response to a vari-

ety of inflammatory stimuli, which may contribute

towards the inflammatory process in COPD [9].

Among these secreted cytokines are CXC chemokine

ligand 8 (CXCL8) and interleukin 6 (IL-6) both of

which have been found to be elevated in the sputum

of patients with COPD; even more so during exacer-

bations [10].

Transforming growth factor (TGF)-b is a pleiotropic

cytokine that stimulates ASM proliferation and pro-

inflammatory cytokine production [11,12], and elevated

TGF-b secretion by pulmonary epithelial cells from

patients with COPD has been observed in comparison

to healthy controls [13]. TGF-b signalling is typically

through the Smad-dependent pathway [14] although

other signalling pathways can also be involved, includ-

ing the nuclear factor-jB (NF-jB) pathway, pathways
involving mitogen-activated protein kinases (MAPKs)

and the Wingless/integrase-1 (WNT) pathway [15].

In addition to the transcription of mRNA, which

forms the first step of the ‘central dogma of molecular

biology’, noncoding RNA are transcribed from DNA

[16]. miRNA bind, in a complementary manner, to the

30 end of their target mRNA and instigate there sup-

pression/degradation [16]. Cell proliferation has been

shown to be regulated by microRNA-221 (miR-221) in

ASM cells from patients with asthma [12]; in a human

epithelial cell line [17]; and in murine vascular smooth

muscle cells (VSMCs) [18]. IL-6 and CXCL8 secretion

has also been shown to be attenuated by miRNA; by

miR-221 in ASM cells from patients with asthma [12];

and by miR-146a and miR-146b in human alveolar

epithelial cells [19,20]. Our previous studies have

helped to identify miR-145 as a potential key regulator

of airway smooth muscle function in COPD. Firstly, it

is highly expressed in the healthy lung [21] and in

healthy ASM cells specifically [22]. It has also been

shown to be overexpressed in the airways of patients

with cystic fibrosis, and to correlate with a decrease in

SMAD3 expression [23]. A number of human and ani-

mal models have linked miR-145 to mechanisms that

could also contribute towards the development of

COPD [24,25]. Smooth muscle cell proliferation corre-

lated inversely with expression levels of miR-145 in

murine [26–28], leporine [29] and human [28] vascula-

tures. Moreover, exposure to cigarette smoke has been

shown to affect expression levels of miR-145 in the

lungs of rats [30].

We hypothesized that increased IL-6 and CXCL8

release from the ASM cells of COPD patients is medi-

ated by the TGF-b–induced expression of miR-145.

We examined the effects of TGF-b upon ASM IL-6

and CXCL8 release from patients with COPD, and in

healthy nonsmokers and healthy smokers. We then

examined the regulation of miR-145 with specific

kinase inhibitors. Finally, we examined the effects of

modulating the expression levels of miR-145 in these

cells on cytokine release and on the phosphorylation

of SMAD3. miR-145 controls the excessive cytokine

release observed in ASM cells from patients with

COPD, by reducing SMAD3 phosphorylation.

Materials and methods

Primary human ASM cell culture

Primary human ASM cells were previously dissected from

the lungs of healthy nonsmokers, healthy smokers and

patients with COPD; disease and smoking status were

defined according to guidelines produced by the American

Thoracic Society [31]. Healthy smokers had a smoking his-

tory of at least 10 pack years. There were significant differ-

ences between FEV1 in litres, FEV1 percent predicted, and

FEV1/FVC ratio between smokers and patients with COPD

compared with nonsmokers but matched for age and smok-

ing history (Table 1).

ASM cells were cultured and plated as previously

described [11,12,22,32]. ASM cells were plated onto 96-well

plates for the measurement of cytokine release, and six well

plates for RNA and protein extraction. Confluent cells

were growth-arrested by FCS deprivation for 24 h in Dul-

becco’s Modified Eagle’s Medium supplemented with

sodium pyruvate (1 mM), L-glutamine (2 mM), nonessential

amino acids (1 : 100), penicillin (100 U�mL�1)/streptomycin

(100 mg�mL�1), amphotericin B (1.5 mg�mL�1) and BSA

(0.1%). Passages 3–4 from nine different donors were used.
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Cells were stimulated in triplicate � TGF-b at the indi-

cated concentrations.

Alternatively, ASM cells were cultured for 1 h in the

presence or absence of the indicated concentrations of

TPCA-1 (an IKK-2 inhibitor), PD098059 (a MEK-1/2 inhi-

bitor), SP600125 (a JNK-1/2 inhibitor) and SB 203580 (a

p38 MAP kinase inhibitor) and then stimulated with

1 ng�mL�1 of TGF-b for 24 h. All inhibitors were obtained

from Calbiochem. The supernatants were removed, and IL-

6 and CXCL8 levels were determined by DuoSet ELISA

(R&D Systems, Abingdon, UK).

miRNA and mRNA Expression

The human (hsa)-miR-145 and SMAD3 expression levels

were measured as previously described [11,12,22].

Transfection with miR-145 mimics and controls

ASM cells were transfected as previously described [11,12].

A mimic for miR-145 and controls were obtained from

Ambion/Applied Biosystems, Ltd. (Paisley, UK). Trans-

fected cells were plated into 96-well or 6-well plates, and

left to adhere overnight before being serum starved for 6 h

before stimulation with 1 ng�mL�1 TGF-b for the indicated

times.

Western blotting

Proteins were measured as previously described [12,32,33].

Antibodies against human phospho-S423-S425-Smad3 and

total Smad3 were purchased from AbCam (Cambridge,

UK).

Data analysis

Data were analysed using GRAPHPAD PRISM, version 5.03

(GraphPad Software, San Diego, CA). Data were not

normally distributed (as assessed by the Kolmogorov–Smir-

nov test), and therefore groups were compared using the

Dunn nonparametric test. All data are expressed as

means � SEMs. Significance was defined as a P value of

less than 0.05.

Results

The effect of TGF-b stimulation on CXCL8 and

IL-6 release and SMAD3 and miR-145 expression

by ASM cells after 24 h

ASM cells were stimulated with 2.5% FCS and TGF-

b at the indicated concentrations (0.001–10 ng�mL�1)

for 24 h. TGF-b induced a concentration-dependent

increase in CXCL8 and IL-6 release from ASM cells

which plateaued at 1 ng�mL�1 in the nonsmokers

(P < 0.05), smokers (P < 0.01) and COPD (P < 0.001)

cells (Fig. 1A,B). A significant increase in CXCL8

release was observed in the COPD ASM cells com-

pared to the nonsmokers (P < 0.01) when the ASM

cells were stimulated with 1 ng�mL�1 of TGF-b
(Fig. 1A). Furthermore, there was significant increase

in IL-6 release between the nonsmokers and smokers

(P < 0.01), nonsmokers and COPDs (P < 0.001), and

the smoker and COPD ASM cells (P < 0.05)

(Fig. 1B).

TGF-b (0.01 ng�mL�1) induced an increase in

SMAD3 expression in ASM cells from COPD

patients ~ 60-fold higher than baseline (P < 0.001;

Fig. 1C). Relatively little change to SMAD3 expres-

sion was seen in the nonsmokers and smokers com-

pared to unstimulated cells. miR-145 expression in

ASM cells from COPD patients exhibited a concen-

tration dependent increase which plateaued at

1 ng�mL�1 (P < 0.01) (Fig. 1D). A significant increase

in expression was observed in the COPD ASM cells

compared to the nonsmokers and smokers (both

P < 0.01) (Fig. 1D).

The effects of specific kinase inhibitors on CXCL8

and IL-6 release by ASM cells stimulated with

FCS and TGF-b after 24 h

In previous studies, we and others have demonstrated

that cytokines can induce activation of IKK2/NF-jB
and the MAP kinases, ERK-1/2, JNK-1/2 and p38

MAP kinase in ASM cells and that these are inhibited

in the presence of the selective pharmacological inhibi-

tors of these [34–43]. We therefore used the biological

active concentrations of these inhibitors to examine

the role of the NF-jB and MAP kinases pathways

during miR-145 expression.

Table 1. Patient characteristics.

Nonsmokers Smokers COPD

n 9 9 9

Age (years) 66.4 � 12.72 59.2 � 7.6 65.4 � 6.6

Sex (♂ – ♀) 7 – 2 4 – 5 5 – 5

Pack years

smoking

N/A 29.25 � 3.3 38.32 � 26.92

FEV1 (L) 4.02 � 0.48 3.12 � 0.78 1.76 � 0.45

FEV1

(% Predicted)

104.23 � 7.28 101.5 � 4.51 77 � 21.97

FEV1/FVC (%) 78.89 � 5.98 77.57 � 3.32 38.88 � 15.75

PC20 (mg�mL�1) > 16 > 16 Too severe

FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity;

PC20, provocative concentration of methacholine causing a 20% fall

in FEV1. Data shown as mean � SEM.
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Following 1 h pre-treatment with inhibitors, ASM

cells were stimulated with TGF-b (1 ng�mL�1) and

the generation of IL-6 (Fig. 2A,D,G,J), CXCL8

(Fig. 2B,E,H,K) and miR-145 (Fig. 2C,F,I,L) were

determined at 24 h. Exposure to TPCA-1 completely

inhibited production of IL-6 and CXCL8 in the non-

smokers at 10 lM, and a significant reduction was

observed in the COPD ASM cells (both P < 0.05)

(Fig. 2A,B). No effect was observed upon miR-145

expression (Fig. 2C). The MEK-1/2 inhibitor (10 lM)
also attenuated IL-6 and CXCL8 production (both

P < 0.05) (Fig. 2D,E). Interestingly, a significant

increase in miR-145 expression was observed in the

COPD ASM cells (P < 0.05) (Fig. 2F). Inhibition of

the JNK-1/2 kinase demonstrated no effect upon

either cytokine release or miR-145 expression

(Fig. 2G,H,I). In contrast, inhibition of the p38

MAP kinase had differential actions upon cytokine

and miR-145 production. Blocking p38 MAP kinase

inhibited CXCL8 but not IL-6 in both the non-

smoker and COPD ASM cells (Fig. 2J,K), and a sig-

nificant increase in miR-145 expression was observed

in the COPD ASM cells (Fig. 2L). Overall, pharma-

cological studies indicate that TGF-b- induced miR-

145 expression is regulated via an MEK-1/2- and

p38-dependent pathway.

The effect upon TGF-b-stimulated ASM cells of

miR-145 overexpression on CXCL8 and IL-6

release

To clarify the role of miR-145, we examined the effect

of overexpressing miR-145 on TGF-b–induced CXCL8

and IL-6 release. Transfection using Amaxa electropo-

ration (Lonza, Slough, UK) showed that miR-145

mimics (100 nM) inhibited CXCL8 release by approxi-

mately 47% (P < 0.01) and IL-6 release by approxi-

mately 49% (P < 0.001), to levels comparably seen in

the healthy smokers (Fig. 3A,B). Altering the endoge-

nous levels of miR-145 exerted no effect in either

healthy or smoker ASM cells or those from patients

with severe asthma. To confirm efficient transfection,

we undertook parallel studies that examined the effects

of a small, interfering RNA (100 nM) targeted to IL-6.

As demonstrated previously [12,41], we showed a

reduction in IL-6 release induced by TGF-b stimula-

tion in ASM cells (data not shown), with no effect

upon cell viability (data not shown).

Fig. 1. Effect of increasing concentrations

of transforming growth factor–b (TGF-b)

on airway smooth muscle (ASM) CXCL8

(A) and IL-6 release (B), SMAD3 (C) and

miR-145 (D) expression from the ASM

cells of non-smokers, smokers and

patients with COPD at 24 h. Points

represent the means � SEMs from nine

ASM donors in each group. */$/#P < 0.05;

**/$$/##P < 0.01; ***/###/$$$P < 0.001.

Asterisks indicate comparison with no

TGF-b control. Hash signs indicate COPD

vs. nonsmoker ASM cells. Dollar signs

indicate COPD vs. smoker ASM cells. Plus

signs indicate smoker vs. nonsmoker ASM

cells.
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Fig. 2. Effect of inhibitors of IKK2 and MAP kinases upon TGF-b-induced IL-6 and CXCL8 release, and miR-145 expression from the ASM

cells of nonsmokers and patients with COPD at 24 h. ASM cells were pretreated for 60 min with the indicated concentrations of the

inhibitors of IKK-2 (TPCA-1), MEK-1/2 (PD098059), JNK-1/2 (SP600125) and p38 MAP kinase (SB203580). Following exposure to vehicle

control or TGF-b (1 ng�mL�1) for 24 h, the release of IL-6 and CXCL8 was determined by ELISA. miR-145 expression was measured by RT-

PCR. Points represent the means � SEM of nine ASM donors in each group. */#P < 0.05; ##P < 0.01; ###P < 0.001. Asterisks indicate

stimulated nonsmoker comparison with no TGF-b control. Hash signs indicate stimulated COPD comparison with no TGF-b control.
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Effects of miR-145 on SMAD3

We next determined whether miR-145 could regulate

SMAD3 phosphorylation. As previously demonstrated

[33], TGF-b (1 ng�mL�1) increased SMAD3 phospho-

rylation in the nonsmoker ASM cells at 24 h

(P < 0.05) (Fig. 3C). For the first time, we demon-

strate that there is a slight increase in phosphorylation

in the non-smokers, and an even greater degree of

phosphorylation in the ASM cells from COPD

patients induced by TGF-b (P < 0.001) (Fig. 3C). The

miR-145 mimic (100 nM) decreased the TGF-b-induced
phosphorylation of SMAD3 in the COPD ASM cells

by approximately 50% (P < 0.05) (Fig. 3C), and

demonstrated no effect upon either the nonsmoker or

smoker ASM cells.

Discussion

We have made several important observations regard-

ing the behaviour of ASM cells from patients with

COPD. First, we showed that TGF-b increased both

ASM IL-6 and CXCL8 release in the COPD patients

to a greater degree than those from the nonsmoker

subjects. We also observed a concurrent increase in the

expression of both SMAD3 and miR-145 in the ASM

cells from the COPD patients. We next investigated

the mechanisms that regulate the expression of miR-

145. We showed that expression of miR-145 is medi-

ated, at least in part, through activation of MEK-1/2

and p38 in ASM cells from COPD patients. Examina-

tion of the effect of these MAP kinase inhibitors upon

generation of inflammatory mediators showed that

Fig. 3. Effects of the overexpression of miR-145 in the ASM cells of nonsmokers, smokers and patients with COPD at 24 h. ASM cells

were electroporated in the presence of buffer, control mimic or miR-145 mimic. Cells were then exposed to vehicle control or 1 ng�mL�1

TGF-b and the release of CXCL8 (A) and IL-6 (B) was measured by ELISA at 24 h. Furthermore, p-SMAD3 was measure by western blotting

(C). Points represent the means � SEMs from nine ASM donors in each group. */#P < 0.05; **/##/++P < 0.01; ***/###P < 0.001.
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IL-6 release was mediated via IKK2 and MEK-1/2

while CXCL8 release was mediated via IKK2, MEK-

1/2 and p38 in both the ASM cohorts, from nonsmok-

ers and those with COPD. Finally, we found that

miR-145 regulates the enhanced IL-6 and CXCL8

release seen in the ASM cells from patients with

COPD, that could be partly through the control of

SMAD3 (Summarized in Fig. 4).

Previous observations have described the effect of

inducing hyperproliferation of ASM cells with TGF-b
in both asthma [11,12] and COPD [44]. This is the first

time that TGF-b has been shown to induce both IL-6

and CXCL8 release from primary ASM cells isolated

from individuals with COPD. The regulation of smooth

muscle cell phenotype has previously been shown to be

correlated with expression of miR-145. Specifically,

miR-145 has been demonstrated to regulate smooth

muscle cell fate [26,45], the contractile phenotype of

VSMCs [27,46], and acts a novel VSMC phenotypic

marker in murine models [28], and prevent vein graft

disease in rabbits [29]. Interestingly, exposure to cigar-

ette smoke has been shown to affect expression levels of

miR-145 in the lungs of rats [30], and has been found to

be differentially expressed in lung homogenates in rats

with COPD [47]. Furthermore, miR-145 (along with

others) has recently been proposed to be a promising

plasma based biomarker for the diagnosis of COPD

[48]. This is the first time that a role for miR-145 in the

ASM cells from COPD patients has been reported. We

have shown that expression of miR-145 is through acti-

vation of both MEK-1/2 and p38. Interestingly, Hu

et al. [49], have reported that activation of MEK-1/2

suppresses miR-145 expression in VSMCs, and Kent

et al. [50], demonstrate that miR-145 expression is

inhibited through activation of the MAPK and JNK

pathways in colorectal cancer. Furthermore, in car-

diomyocytes, the protective activity of miR-145 is asso-

ciated with modulation of both MEK-1/2 and JNK [51]

and in gastric mucosal epithelial cell regulation of miR-

145 involves JNK [52]. Similar to our results, p38 has

previously been shown to be linked to miR-145 induc-

tion in VSMCs [53] and Hong et al. [54], suggest that

the p38 MAPK signalling pathway promotes miRNA

biogenesis by facilitating the nuclear localization of

p68. Clearly, the regulation of miR-145 is, unsurpris-

ingly, cell type specific.

Finally, we examined the effect of increasing miR-

145 expression in ASM cells from COPD patients

upon IL-6 and CXCL8 release. Although studies

have suggested a correlation between miR-145 expres-

sion and IL-6 & CXCL8 release [55–58], we show

for the first time that increasing the expression of

Fig. 4. SMAD3 dependent regulation of IL-6 & CXCL8 release by TGF-b-induced miR-145 expression. In response to TGF-b stimulation,

MEK-1/2 and p38 activation results in increased miR-145 expression. The concurrent increase in expression and phosphorylation of SMAD3,

is regulated by miR-145 to prevent further generation and release of IL-6 & CXCL8.
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miR-145 can reduce the levels of IL-6 & CXCL8

release from the COPD ASM cells to levels compara-

ble to that of the nonsmoker ASM cells. miR-145 is

proposed to target SMAD3 in systemic sclerosis

(SSc) [59], cystic fibrosis [23], cartilage dysfunction

[60], nasopharyngeal cancer [61] and in hypertrophic

scar fibroblasts (HSFBs) [62], we show here that this

may also be the case in ASM cells from patients

with COPD.

Interestingly, miR-145 is also likely to be important

in regulating ASM cells in asthma, as it is highly

expressed in the healthy lung [21] and in healthy ASM

cells specifically [22], and inhibition of miR-145 inhibits

eosinophilic inflammation, mucus hypersecretion, TH2

cytokine production and airway hyperresponsiveness

in house dust mite-induced allergic mouse airways [63].

In conclusion, miR-145 is vital in controlling the

increased inflammatory response of human ASM cells

in patients with COPD. This finding may open a new

avenue in COPD therapeutics by targeting of miRNA-

145 and diagnosis by its detection.
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