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A Lagrangian formulation for the constrained search for the N-representable one-particle density
matrix based on the McWeeny idempotency error minimization is proposed, which converges system-
atically to the ground state. A closed form of the canonical purification is derived for which no a
posteriori adjustment on the trace of the density matrix is needed. The relationship with comparable
methods is discussed, showing their possible generalization through the hole-particle duality. The
appealing simplicity of this self-consistent recursion relation along with its low computational
complexity could prove useful as an alternative to diagonalization in solving dense and sparse matrix
eigenvalue problems. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4943213]

As suggested 60 years ago,1 the idempotency property
of the density matrix (DM) along with a minimization
algorithm would be sufficient to solve for the electronic
structure without relying on the time consuming step of
calculating the eigenstates of the Hamiltonian matrix. The
celebrated McWeeny purification formula2 has inspired major
advances in electronic structure theory based on (conjugate-
gradient) DM minimization3–8 (DMM) or DM polynomial
expansion9,10 (DMPE), where the DM is evaluated by the
recursive application of projection polynomials (commonly
referred to as purification). DMPE resolution includes the
Chebyshev polynomial recursion,9–15 the Newton-Schultz
sign matrix iteration,16–18 the trace-correcting19 and the
trace-resetting20 purification (TCP and TRS, respectively),
and the Palser and Manolopoulos canonical purification
(PMCP).21 They constitute, with sparse matrix algebra, the
principal ingredient for efficient linear-scaling tight-binding
(TB) and self-consistent field (SCF) theories.22,23 Since all
these methods were originally derived within the grand
canonical ensemble,24 for a given total number of states
(M), none of them are expected to yield the correct number of
occupied states (N) unless the chemical potential (µ) is known
exactly. As a result, their implementation to the canonical
ensemble involves heuristic considerations, where the value
of µ12 or the polynomial expansion19 is adapted a posteriori
to reach the correct value for N , which adds irremediably
to the computational complexity. Despite the remarkable
performances of the DMPE approaches for solving for
sparse6,25 and dense26–28 DMs, it remains desirable to develop
an approach that overcomes the use of the chemical potential
while respecting the canonical requirement of constant-N .

In this letter, we derive a rigorous and variational
constrained search for the one-particle density matrix which

a)Electronic mail: lionel.truflandier@u-bordeaux.fr

does not rely on ad hoc adjustments and respects the
N-representability constraint throughout the minimization
process. We shall start from the McWeeny unconstrained
minimization of the error in the idempotency of the density
matrix,1 given by

minimize
D→Dµ

ΩMcW{D; (H , µ)}, (1a)

with ΩMcW = Tr{(D2 − D)2}, (1b)

where for a given fixed Hamiltonian29 H and chemical
potential µ, the density matrix Dµ is the ground-state for
that Hamiltonian and chemical potential. The initial guess
(D0) is generally constructed as a functionH , suitably scaled,

D0 = β1I + β2(µI −H ), (2)

where β1 and β2 stand for preconditioning constants such
that the eigenvalues of D0 lie within a predefined range. The
double-well shape of the McWeeny function with 3 stationary
points: 2 minima at xp = 1 and x p̄ = 0 and 1 local maximum
at xm =

1
2 (see Fig. 1(a), red curve), are important features

in developing robust DMM algorithms. Finding the minimum
of ΩMcW would be easily performed by stepwise gradient
descent,1 where the DM is updated at each iteration n,

Dn+1 = Dn − σn∇ΩMcW, (3a)
with ∇ΩMcW = 2

�
2D3

n − 3D2
n + Dn

�
, (3b)

and σn ≥ 0 represents the step length in the negative direction
of the gradient. Considering an optimal fixed step length
descent (σ = 1/2), on inserting Eq. (3b) into Eq. (3a), the
McWeeny purification formula appears,

Dn+1 = 3D2
n − 2D3

n, (4)

where the right-hand side of the equation above can be
view as an auxiliary DM. For a well-conditioned D0,
i.e., λ(D0) ∈ [− 1

2 ,
3
2 ], repeated application of the recursion
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FIG. 1. (a) Convergence of the McWeeny Lagrangian and density matrix
eigenvalues during the course of the minimization using a test Hamiltonian
and an occupation factor θ = 0.10. A grey scale is used to guide the eye during
the processes of purification. Each curve is a plot of the function LMcW(x;γn)
computed at each iteration n. The red line corresponds to LMcW(x;0)
=ΩMcW. (b) Convergence of LMcW (green circles) and the trace conservation
Tr{Dn}−N (black dots). (c) Convergence of ∥∇LMcW∥F (green circles) and
∥Dn∥F −N (black dots).

identity [Eq. (4)] naturally drives the eigenvalues of Dn+1
towards 0 or 1. For basic TB Hamiltonians where the
occupation factor (θ = N/M) is close to 1/2 and µ can
be determined by symmetry21 or when the input DM is
already strongly idempotent, the minimization principle (1a)
is able, on its own, to deliver the correct N-representable
ground-state DM (D). Beyond these very specific cases, we
have to enforce the objective function (1b) to keep N constant
during the minimization. From Eq. (4), a sufficient condition
would be to impose the trace of the auxiliary DM to give the
correct number of occupied states. This leads us to solve a
constrained optimization problem which can be formulated in
terms of the McWeeny Lagrangian (LMcW) by

minimize
{D→D |Tr{D}=N }

γ

LMcW{D, γ; (H ),N}, (5a)

with LMcW = ΩMcW − γ
�
Tr{3D2 − 2D3} − N

�
, (5b)

where γ is the constant-N Lagrange multiplier. The McWeeny
Lagrangian can be minimized using

∇LMcW = ∇ΩMcW − 6γ
�
D − D2� , (6a)

∂γLMcW = Tr{3D2 − 2D3} − N. (6b)

Taking trace Eq. (6a) we obtain the expression for γ,

γ =
1
3
− 2

3
c − 1

6
d, (7a)

with c =
Tr{D2 − D3}
Tr{D − D2} , (7b)

d =
Tr{∇LMcW}
Tr{D − D2} . (7c)

Then, Eqs. (6a) and (7a) are updated at each iteration by
requiring Tr{∇LMcW} = 0, that is d = 0, for all D. As a
result, given D0 such that Tr{D0} = N and [H ,D0] = 0, from
the fixed-step gradient descent minimization described above,

we obtain a recursion formula,

Dn+1 = Dn −
1
2
∇LMcW{Dn; γn}, (8)

which guarantees Tr{Dn+1} = N and [H ,Dn+1] = 0, ∀n.
Added to the preconditioning λ(D0) ∈ [0,1], the iterative
process should approach the (one-particle) ground-state
energy E = Tr{HD} variationally. The parameter c [Eq. (7b)]
is recognized as the unstable fixed point introduced in Ref. 21,
where c ∈ [0,1]. As a result, the interval [− 1

3 ,
1
3 ] constitutes

the stable variational domain of γ.
The variation of the McWeeny Lagrangian function and

the DM eigenvalues during the course of the minimization is
presented in Fig. 1(a) for a test Hamiltonian with N = 10, M
= 100, and a suitably conditioned initial guess (vide infra). The
corresponding convergence profiles of LMcW and ∥∇LMcW∥
(green circles) are reported on Figs. 1(b) and 1(c), respectively,
along with the trace conservation Tr{Dn} − N and the DM
norm convergence ∥Dn∥ − N (black dots). We may notice
first that for γ = 0 (or c = xm =

1
2 ), LMcW simplifies to ΩMcW.

For intermediate states, γ ∈ [− 1
3 ,0] ∪ [0, 1

3 ], the symmetry
of ΩMcW is lost and the shape of LMcW(x, γn) drives the
eigenvalues in the hole (left) or in the particle (right) well.
From the grey scale in Fig. 1(a), we observe how γn influences
LMcW (along the y-axis) at x p̄ and the abscissa of the second
stationary point xm which is free to move in [x p̄, xp]. This
yields to transform the hole well from a local (n = 0) to a
global (n = 15) minimum (or conversely the particule well
from a global to a local minimum). At the boundary values
γ = {− 1

3 ,
1
3 }, x p̄ and xm merged to a saddle point in such a

way that only one global minimum left at xp. Notice that, for
situations where γ < [− 1

3 ,
1
3 ], the saddle point transforms to a

maximum and runaway solutions may appear. Nevertheless,
as long as D0 is well conditioned, such kind of critical problem
should not be encountered.

Figs. 1(b) and 1(c) highlight the minimization mecha-
nism: (i) from iterate n = 0 to 12; γ → 0+, LMcW follows the
search direction and decreases monotonically. (ii) At iterate
n = 13; γ ≃ 0,LMcW is close to the target value but the gradient
residual is nonzero. (iii) From n = 14 to 15; γ < 0, the search
direction is inverted. (iv) At iterate n = 16, all the eigenvalues
are trapped in their respective wells. (iii) From iterate n = 17
to 23, γ → 0−, we are in the McWeeny regime [Eq. (4)] and
LMcW eventually reaches the global minimum.

Taking advantage of the closure relation,

D̄ + D = I, (9)

where D̄ stands for the hole density matrix,30 a more appealing
form for the McWeeny canonical purification [Eq. (8)] can be
derived by reformulating Eqs. (6a) and (7b) in terms of D and
D̄,

Dn+1 = Dn + 2
(
D2

nD̄n −
Tr{D2

nD̄n}
Tr{DnD̄n} DnD̄n

)
. (10)

Notice that since at convergence DD̄ = 0, Tr{DD̄} must be
chosen as the termination criterion in the recursion of Eq. (10)
to avoid numerical instabilities when approaching the minima.
The closed-form of this recurrence relation is remarkable:
providing N and H used to build D0 [Eq. (2)], we have
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FIG. 2. (a) Color maps displaying the average number of purifications (p̄) as the function of the filling factor (θ) and energy gap (∆ϵgap). Results obtained
from the PMCP and HPCP methods using the initial guess of Eqs. (2)-(11) and (2)-(14) (notated PMCP+ and HPCP+). Each pixel on the maps corresponds
to an average over 32 test Hamiltonians. (b) Energy convergence profiles with respect to the first 15 iterations for selected values of θ. (c) Average number of
purifications as a function of ln(1/∆ϵgap).

a self-consistent purification transformation which should
converge to D without any support of heuristic adjustments.
Indeed, Eq. (10) can also be derived from the PMCP relations
by working on both D and D̄ and enforcing relation (9) at
each iteration (see the Appendix). Consequently, we can also
demonstrate31 that the hole-particle canonical purification
(HPCP) of Eq. (10) converges quadratically on D as shown
in Fig. 2(b).

To assess the efficiency and limitations of the HPCP,
we have investigated the dependence of the number of
purifications (p) on the occupation factor (θ) and the energy
gap (∆ϵgap = ϵN+1 − ϵN), defined by the higher-occupied (ϵN)
and lower-unoccupied (ϵN+1) states. Similarly to the protocol
of Niklasson,15,19 sequences of M × M dense Hamiltonian
matrices (M = 100) with vanishing off-diagonal elements
were generated, having eigenvalues randomly distributed
in the range [−2.5, ϵN] ∪ [ϵN+1,2.5] for various ∆ϵgap ∈
[10−7,1.0]. As a first test, results are compared to the PMCP,21

along with the original initial guess [Eq. (2)], where β1 = θ
and β2 = min

�
β, β̄

	
, with

β =
θHmax − µ

, β̄ =
θ̄

µ − Hmin

, µ ≃ µ = Tr{H }
M

, (11)

and θ̄ = 1 − θ = N̄/M , N̄ being the number of unoccupied
states. The lower and upper bounds of the Hamiltonian
eigenspectrum ( Hmin and Hmax, respectively) were estimated
from to the Geršgorin’s disc theorem.32 The preconditioning
of D0 given in Eq. (11) guarantees that the DM eigenvalues lie
in the interval [0,1] and gives rise to the following additional
constraints:

Tr{D0} = N, (12a)
Tr{D0} > Tr{D2

0} > Tr{D3
0}, (12b)

Tr{D3
0} > 2Tr{D2

0} − Tr{D0}, (12c)

which are also necessary and sufficient conditions for c ∈ [0,1]
at the first iteration. Convergence was achieved with respect to
the idempotency property, such that Tr{DnD̄n} ≤ 10−6 for all
the calculations. Additional tests on the Frobenius norm33 and
the eigenvalues of the converged density matrix (D∞) were
performed, using

∥D∞∥F −


Tr{D∞} < 10−6, (13a)

∥D∞∥F − N < 10−6, (13b)

∥diag{D∞} − diag{IN ,0N̄}∥F < 10−6, (13c)

which ensures that, at convergence, the representation of D∞
is orthogonal, and D∞ corresponds to D.

The variation of the average number of purifications (p̄)
with respect to θ and ∆ϵgap is displayed in Fig. 2(a) using a
color map for p̄ ∈ [10,50]. For a given energy gap, the HPCP
shows a net improvement over the PMCP approach regarding
moderate low and high occupation factors. Nevertheless,
as previously noted by Niklasson and Mazziotti,19,30 the
extreme values of θ remain pathological for the original
canonical purification and to a lesser extent for the HPCP. One
solution would be to break the symmetry of the McWeeny
function by moving xm towards xp or x p̄ depending on
the θ value. Basically, this requires a higher polynomial
degree for ΩMcW, i.e., Tr{(Dn − D)2}n>2, resulting in a higher
computational complexity. Assuming optimal programming,
we emphasize that the PMCP and HPCP involved only
two matrix multiplications per iteration. As already proved
in Ref. 21 and highlighted by the energy convergence profiles
in Fig. 2(b), the PMCP and HPCP approach E monotonically.

The dependence of p̄ on the band gap plotted in
Fig. 2(c) confirms the early numerical experiments,19,25 where
p̄ increases linearly with respect to ln(1/∆ϵgap). The influence
of θ is clearly apparent if we compare the minimum number
of purifications as required for the wider band gap (y-axis
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intercept), where for example, with θ = 0.5, both canonical
purifications reach the ideal value of about 10 purifications,
whereas for θ = 0.05, p̄HPCP = 23 and p̄PMCP = 37.

Let us consider how to improve the performance of
the canonical purifications by working on the initial guess,
regarding the hole-particle equivalence (or duality30). Instead
of searching for D, we may choose to purify D̄, which simply
requires replacing D with D̄ in relation (10). In that case, the
initial hole density matrix, satisfying λ(D̄0) ∈ [0,1], would be
given by Eqs. (2) and (11), with β1 = θ̄ and β2 = −max

�
β, β̄

	
.

Then, intuitively, the guess for the particle density matrix
should be improved by using this additional information.
Therefore, a more general preconditioning is proposed,

D+0 = αD0 + (1 − α)(I − D̄0), (14)
where α can be viewed as a mixing coefficient.34 Results
obtained with this new preconditioning are plotted in Fig. 2
(notated PMCP+ and HPCP+). As evident from Fig. 2(a), the
naive value of α = 0.5 leads to a net improvement of the PMCP
and HPCP performances over the range 0.3 < θ < 0.7, inside
of which the number of purifications becomes independent of
θ. Outside this interval, runaway solutions were encountered
due to the ill-conditioning of c, where either of the constraints
in Eq. (12b) or (12c) is violated. The solution to this problem
is to perform a constrained search of α in Eq. (14), such that
the first inequality of Eq. (12b) is respected, that is,

search
0≤α≤1
δ>0




Tr{D2
0} =




N − δN, if θ < (1 − δ)
N − δN̄ , if θ > (1 − δ)



, (15)

which leads to solve a second-order polynomial equation in α,
at the extra cost of only one matrix multiplication. Obviously,
the parameter δ has to be carefully chosen such that the second
equality of Eq. (12b) and condition (12c) are also respected. We
found δ ≃ 2/3 as the optimal value.31 From Fig. 2, the bene-
fits of this optimized preconditioning are clear when focuss-
ing within the range [0.0,0.3] ∪ [0.7,1.0], albeit with one or
two extra purifications around the poles θ = {0.3,0.7}. These
benefits are even clearer in Fig. 2(c), where we also show the
plots of p̄ as a function of ln(1/∆ϵgap) for the test case θ = 0.01.
At the intercept, we find p̄PMCP ≃ 38 compared to p̄HPCP ≃ 21,
showing the improvement bring by the hole-particle equiva-
lence. We have also compared our method against the most
efficient of the trace updating methods, TRS4,20 and find that

for non-pathological fillings, the two are comparable in effi-
ciency. For the pathological cases, where TRS4 adjusts the
polynomial, we found it more efficient, but at the expense of
non-variational behaviour in the early iterations.

To conclude, we have shown how, by considering both
electron and hole occupancies, the density matrix for a
given system can be found efficiently while preserving N-
representability. This opens the door to a more robust, stable
ground state minimisation algorithm, with application to
standard and linear scaling DFT approaches.

L.A.T. would like to acknowledge D. Hache for his
unwavering support and midnight talks about how to move
beads along a double-well potential.

APPENDIX: ALTERNATIVE DERIVATION
OF THE HOLE-PARTICLE CANONICAL PURIFICATION

We demonstrate that by symmetrizing the Palser and
Manolopoulos equations with respect to D̄, the closed-form of
Eq. (10) appears naturally. Let us start from Eq. (16) of Ref. 21,

for cn ≤
1
2
, (A1a)

Dn+1 = −
1

1 − cn
D3

n +
1 + cn
1 − cn

D2
n +

1 − 2cn
1 − cn

Dn,

for cn >
1
2
, Dn+1 = −

1
cn

D3
n +

1 + cn
cn

D2
n, (A1b)

with cn given in Eq. (7b). We may search for purification
relations dual to Eq. (A1), i.e., function of D̄. We obtain

for c̄n ≥
1
2
, (A2a)

D̄n+1 = −
1

1 − c̄n
D̄3

n +
1 + c̄n
1 − c̄n

D̄2
n +

1 − 2c̄n
1 − c̄n

D̄n,

for c̄n <
1
2
, D̄n+1 = −

1
c̄n

D̄3
n +

1 + c̄n
c̄n

D̄2
n, (A2b)

with c̄n = 1 − cn. Instead of purifying either D or D̄, we
shall try to take advantage of the closure relation [Eq. (9)] in
such a way that, if we choose to work within the subspace of
occupied states, the purification of D [Eq. (A1)] is constrained
to verify D = I − D̄. By inserting this constraint in Eq. (A2),
we obtain

for cn ≤
1
2
, Dn+1 = I −

(
− 1

cn
(I − Dn)3 + 2 − cn

cn
(I − Dn)2 − 1 − 2cn

cn
(I − Dn)

)
, (A3a)

for cn >
1
2
, Dn+1 = I −

(
− 1

1 − cn
(I − Dn)3 + 2 − cn

1 − cn
(I − Dn)2

)
. (A3b)

On multiplying Eqs. (A1a) and (A3a) by (1 − cn) and cn,
respectively [or multiplying Eqs. (A1b) and (A3b) by cn and
(1 − cn)], and adding, we obtain

Dn+1 = Dn + 2
�
D2

nD̄n − cnDnD̄n

�
. (A4a)
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