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A penalty free Nitsche method for the weak imposition of boundary
conditions in compressible and incompressible elasticity
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In this paper, we study the stability of the nonsymmetric version of Nitsche’s method without penalty for
compressible and incompressible elasticity. For the compressible case we prove the convergence of the
error in the H1- and L2-norms. In the incompressible case we use a Galerkin least squares pressure sta-
bilization and we prove the convergence in the H1-norm for the velocity and convergence of the pressure
in the L2-norm.

Keywords: Nitsche’s method; compressible elasticity; inompressible elasticity; stabilized finite element
methods; Korn inequality.

1. Introduction

In the seminal paper of Nitsche (1971), a consistent penalty method for the weak imposition of bound-
ary conditions was introduced. The method relied on a penalty term, the parameter of which had to
be sufficiently large in order for stability to be ensured. Freund & Stenberg (1995) then suggested a
nonsymmetric version of Nitsche’s method. The advantage of the nonsymmetric version was that no
lower bound had to be respected for the penalty parameter, it only needed to be strictly larger than zero.
The symmetric and nonsymmetric versions of Nitsche’s method were further discussed by Hughes et al.
(2000), where the possibility of using the nonsymmetric version with zero penalty parameter was men-
tioned. Penalty free nonsymmetric methods have indeed been advocated for the discontinuous Galerkin
method (see, Oden et al., 1998; Larson & Niklasson, 2004; Girault & Rivière, 2009; Burman & Stamm,
2010). Burman (2012) proved that the nonsymmetric Nitsche method was stable without penalty for
scalar elliptic problems. The main observation in that paper was that although coercivity fails for the
bilinear form when the penalty parameter was set to zero, the formulation could be proven to be inf-sup
stable. Using the discrete stability optimal error estimates were obtained in the energy norm.

The nonsymmetric version of Nitsche’s method without penalty can be seen as a Lagrange multiplier
method, where the Lagrange multiplier has been replaced by the boundary fluxes of the discrete elliptic
operator. This leads to a method that is stable without any unknown parameter and without introducing
additional degrees of freedom. Eliminating the penalty term appears to have some advantages in multi-
physics coupling problems in elasticity, (see for instance, Burman & Fernández, 2014) and it is therefore
interesting to understand the structure and stability mechanisms of the method in such a context.

In this paper we extend the results of Burman (2012) to the case of the equations of linear elasticity.
Both the cases of compressible and incompressible elasticity are considered. The main difficulties

†Corresponding author. Email: thomas.boiveau.12@ucl.ac.uk
‡Email: e.burman@ucl.ac.uk

c© The author 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.



2 of 25 T. BOIVEAU AND E. BURMAN

compared to the scalar case are:

• the Nitsche boundary term is no longer based on the gradient but now contains the deformation
tensor and the divergence;

• it is no longer clear that Korn’s inequality holds;

• for incompressible elasticity the inf-sup condition must be shown to hold simultaneously for the
boundary conditions and the pressure.

We end this section by introducing the models of compressible and incompressible elasticity. Let Ω

be a convex bounded domain in R2, with polygonal boundary ∂Ω . This boundary is decomposable
such that ∂Ω = ∪iΓi with {Γi}i the sides of the polygonal. fff ∈

[
L2(Ω)

]2 is a given body force and

ggg ∈
[
H1/2 (Ω)

]2
the value of uuu at the boundary.

Compressible elasticity: find the displacement uuu : Ω ⊂ R2→ R2 such that

−∇ ·σσσ(uuu) = fff in Ω ,

uuu = ggg on ∂Ω , (1.1)

with
σσσ(uuu) := 2µεεε(uuu)+λ (∇ ·uuu)I2×2.

Incompressible elasticity: find the velocity uuu : Ω ⊂ R2→ R2 and the pressure p : Ω → R such that

−∇ ·σσσ (uuu, p) = fff in Ω ,

∇ ·uuu = 0 in Ω , (1.2)
uuu = ggg on ∂Ω ,

with
σσσ(uuu, p) := 2µεεε(uuu)+ pI2×2.

To ensure the divergence free property of the incompressible case we assume
∫

∂Ω
ggg ·nnn dx = 0 where

nnn denotes the outward normal vector of the boundary. For future reference we introduce the function
spaces V :=

[
H1(Ω)

]2, V0 :=
[
H1

0 (Ω)
]2 and Q := {p ∈ L2 (Ω) ,

∫
Ω

p dx = 0}.

2. Preliminaries

The set {Th}h defines a family of quasi-uniform and shape regular triangulations fitted to Ω . We define
the shape regularity as the existence of a constant cρ ∈ R+ for the family of triangulations such that,
with ρK the radius of the largest circle inscribed in an element K, there holds

hK

ρK
6 cρ ∀K ∈Th.

In a generic sense we define K as the triangles in a triangulation Th and hK := diam(K) is the
diameter of K. Then we define h := maxK∈ThhK as the mesh parameter for a given triangulation Th.
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Pk(K) defines the space of polynomials of degree less than or equal to k on the element K. We define
V k

h and Qk
h the finite element spaces of continuous piecewise polynomial functions

V k
h :=

{
uuuh ∈V : uuuh|K ∈ [Pk (K)]2 ∀K ∈Th

}
, k > 1,

Qk
h := {ph ∈ Q : ph|K ∈ Pk (K) ∀K ∈Th} , k > 1.

For simplicity we will write the L2-norm on a domain Θ , ‖·‖L2(Θ) as ‖·‖
Θ

. In this paper C will be used
as a generic positive constant that may change at each occurrence, we will use the notation a . b for
a6Cb. We now recall several classical inequalities and various mathematical concepts.

LEMMA 2.1 There exists CT ∈ R+ such that for all u ∈ H1 (K) and for all K ∈ Th, the trace inequality
holds

‖u‖
∂K 6CT

(
h
− 1

2
K ‖u‖K +h

1
2
K ‖∇u‖K

)
.

LEMMA 2.2 There exists CI ∈R+ such that for all uh ∈ Pk(K) and for all K ∈Th, the inverse inequality
holds

‖∇uh‖K 6CIh−1
K ‖uh‖K .

Anticipating the inf-sup analysis of the coming section we introduce patches of boundary elements
for the construction of special functions in the finite element space V k

h that will serve for the proof of
stability. We will first detail the geometric construction and then give a technical Lemma that is needed
in the coming analysis. We regroup the boundary elements in closed, disjoint patches Pj with boundary
∂Pj, j = 1, ...,NP. NP defines the total number of patches. The boundary elements are the elements with
either a face or a vertex on the boundary. Every boundary element is a member of exactly one patch Pj.
The number of elements necessary in each patch is always at least two and upper bounded by a constant
depending only on the shape regularity parameter cρ . Let Fj := ∂Pj ∩ ∂Ω , we assume that every Γi is
partitioned by at least one Fj. Define the boundary elements by P := ∪ jPj. For each Fj there exists two
positive constants c1, c2 such that for all j

c1h6meas(Fj)6 c2h.

Figure 2 gives a representation of a patch as defined above with four inner nodes. Let φ j ∈V 1
h be defined

for each node ri ∈Th such that for each patch Pj

φ j (ri) =

 0 for ri ∈Ω\F̊j
0 for xi ∈ K such that K has all its vertices on ∂Ω

1 for ri ∈ F̊j,

with i = 1, . . . ,Nn. Here Nn is the number of nodes in the triangulation Th and F̊j defines the interior of
the face Fj.

We define the function vvvh ∈V k
h such that vvvh := uuuh+vvvΓ , with uuuh,vvvΓ ∈V k

h . The function vvvΓ is defined
such that

vvvΓ =
NP

∑
j=1

vvv j =
NP

∑
j=1

(
α1v j1,α2v j2

)T
, (2.1)

with
v j1 = ζ j1φ j , v j2 = ζ j2φ j , ζ j1,ζ j2 ∈ R, (2.2)
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FIG. 1. Example of a patch Pj , the function φφφ j is equal to 0 in the nonfilled nodes, 1 in the filled nodes.

for simplicity of notation we will use v1, v2 respectively instead of v j1, v j2. To define the properties of
v1 and v2 we need to introduce the projection of u on constant functions on the interval I

P0u|I := meas(I)−1
∫

I
u ds.

For simplicity of notation we will also use the notation u j := P0u|Fj . We introduce the following two
dimensional rotation transformation.

DEFINITION 2.1 The rotation transformation in two dimensions can be written as

R :
[
L2 (

Ω̂
)]2 −→

[
L2 (Ω)

]2
ẑzz 7−→ zzz = R(ẑzz) := Aẑzz,

with A a rotation matrix and ẑzz the rotated quantity of zzz.

This two-dimensional rotation is used to transform the generic fixed frame (x,y) into a rotated frame
(ξ ,η) associated to each side Γi of ∂Ω . This rotated frame has its first component tangent to the side Γi
of the polygonal boundary and its second component normal to this same side Γi. Defining τττ as the unit
tangent vector to the boundary, a function zzz = (z1,z2) expressed in the two-dimentional rotated frame
has the following properties

ẑ1 = zzz · τττ , ẑ2 = zzz ·nnn.
The hat denotes a value expressed in the rotated frame (ξ ,η). Figure 2 represents schematically

how is defined this frame for a side Γi.

ξ

η

x

y

Γi
Γi−1

Γi+1

FIG. 2. Representation of the rotated frame (ξ ,η), the first component of the frame is tangent to the side Γi and the second
component is normal to the side Γi.

Using the rotation transformation ûuuh = (û1, û2)
T, we may now define v1 and v2 by the relations

meas
(
F̂j
)−1

∫
F̂j

∂ v̂1

∂η
dŝ := P0û1|F̂j

, meas
(
F̂j
)−1

∫
F̂j

∂ v̂2

∂η
dŝ := P0û2|F̂j

. (2.3)
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LEMMA 2.3 Let Pj be a patch and vvv j a function as defined above, ∀uuuh ∈ V k
h the following inequalities

are true ∥∥∥uuuh−uuu j
h

∥∥∥
Fj
. h‖∇uuuh · τττ‖Fj

, (2.4)∥∥∥h−
1
2 uuuh

∥∥∥2

Fj
−C‖∇uuuh‖2

Pj
6

∥∥∥h−
1
2 uuu j

h

∥∥∥2

Fj
, (2.5)∥∥vvv j

∥∥
Pj
. h

∥∥∇vvv j
∥∥

Pj
, (2.6)

‖∇v̂1‖P̂j
6 C

∥∥∥h−
1
2 uuu j

h · τττ
∥∥∥

Fj
, (2.7)

‖∇v̂2‖P̂j
6 C

∥∥∥h−
1
2 uuu j

h ·nnn
∥∥∥

Fj
. (2.8)

The constant in (2.7), (2.8) is bounded uniformly provided each patch contains a sufficient number of
elements compared to cρ .

Proof. See Appendix. �
In the analysis, we will need a particular form of Korn’s inequality. To prove this alternative form

of the Korn’s inequality we need to define first the following seminorm

|uuu|2
Γ

:=
Nb

∑
i=1

∫
Γi

(P0uuu)2 ds ∀uuu ∈V, (2.9)

with Γi the ith side of the polygonal boundary ∂Ω , i = 1, ...,Nb, Nb is the number of sides on the
boundary. P0uuu|Γi is the P0-projection of uuu on the side Γi.

PROPOSITION 2.2 For all uuu ∈V the seminorm (2.9) is a norm on RM with

RM :=
{

uuu : uuu = ccc+b(x2,−x1)
T ,ccc ∈ R2,b ∈ R

}
.

Proof. The claim follows from direct inspection of the linear system resulting from P0uuu|Γi = 0. �
The alternative form of the Korn’s inequality which will allow us to control the deformation tensor

is expressed in the following theorem.

THEOREM 2.3 There exists a positive constant CK such that ∀uuu ∈V

CK ‖uuu‖H1(Ω) 6 ‖εεε (uuu)‖Ω
+ |uuu|

Γ
.

Proof. This proof is inspired by the proof of the Korn’s inequality in Brenner & Scott (2008). First we
define Ṽ

Ṽ :=
{

uuu ∈V :
∫

Ω

uuu dx = 0,
∫

Ω

rot uuu dx = 0
}
.

We know that, V = Ṽ ⊕RM. Therefore, given any uuu ∈ V , there exists a unique pair (zzz,www) ∈ Ṽ ×RM
such that

uuu = zzz+www.

By the Open Mapping Theorem (Theorem 15, chapter 15 of Lax (2002)) there exists a positive constant
C1 such that

C1

(
‖zzz‖H1(Ω)+‖www‖H1(Ω)

)
6 ‖uuu‖H1(Ω) . (2.10)
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We establish the theorem by contradiction. If the inequality that we want to show does not hold for any
positive constant CK , then there exists a sequence {uuun} ⊆V such that

‖uuun‖H1(Ω) = 1, (2.11)

and
‖εεε (uuun)‖Ω

+ |uuun|Γ <
1
n
. (2.12)

For each n, let uuun = zzzn +wwwn, where zzzn ∈ Ṽ and wwwn ∈ RM, then

‖εεε (zzzn)‖Ω
= ‖εεε (uuun)‖Ω

<
1
n
.

The second Korn’s inequality then implies that zzzn−→ 0 in V . It follows from (2.10) and (2.11) that {wwwn}
is a bounded sequence in V . But since RM is finite dimensional, {wwwn} has a convergent subsequence
{wwwn j} in V . Then the subsequence {uuun j = zzzn j +wwwn j} converges in V to some uuu = limn j→∞ wwwn j ∈ RM,
we obtain

‖uuu‖H1(Ω) = 1, (2.13)

and
|uuu|

Γ
= 0.

The Proposition 2.2 tells us that |·|
Γ

is a norm on RM and therefore

|uuu|
Γ
= 0⇔ uuu = 0,

which contradicts the equation (2.13). �

3. Compressible elasticity

The first case that we consider is the compressible problem described by the system (1.1). We have the
following weak formulation: find uuu ∈Vg such that

a(uuu,vvv) = ( fff ,vvv)
Ω

∀vvv ∈V0,

where (x,y)
Ω

is the L2-scalar product over Ω , Vg :=
{

vvv ∈
[
H1 (Ω)

]2 : vvv|∂Ω = ggg
}

and

a(uuu,vvv) = (2µεεε(uuu),εεε(vvv))
Ω
+(λ∇ ·uuu,∇ · vvv)

Ω
.

3.1 Finite element formulation

The nonsymmetric Nitsche’s method applied to the compressible elasticity problem (1.1) leads to the
following variational formulation, find uuuh ∈V k

h such that

Ah (uuuh,vvvh) = Lh (vvvh) ∀vvvh ∈V k
h , (3.1)

where the bilinear forms Ah and Lh are defined as

Ah(uuuh,vvvh) = a(uuuh,vvvh)−b(uuuh,vvvh)+b(vvvh,uuuh),

Lh(vvvh) = ( fff ,vvvh)Ω
+b(vvvh,ggg).
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The bilinear form b is defined as

b(uuuh,vvvh) = 〈2µεεε (uuuh) ·nnn,vvvh〉∂Ω
+ 〈λ∇ ·uuuh,vvvh ·nnn〉∂Ω

.

In (3.1), a(uuuh,vvvh) represents the terms defined over the whole computational domain, −b(uuuh,vvvh) is
necessary for the consistency of the method, since vh 6= 0, the antisymmetric contribution b(vvvh,uuuh) and
its corresponding term in Lh together impose the boundary condition.

3.2 Stability

The main goal of this section is to show the inf-sup condition. We first give two technical Lemmas,
proofs are provided in Appendix.

LEMMA 3.1 There exists C > 0 independent of h, µ and λ , but not of the mesh geometry, ∀uuuh ∈V k
h , on

each patch Pj for vvv j ∈V k
h as defined in equation (2.1) and ∀ε,α1,α2 ∈ R∗+, such that

〈
λ∇ · vvv j,uuuh ·nnn

〉
Fj
& α2

(
1− Cα2

4ε

)∥∥∥∥∥λ
1
2

h
1
2

uuu j
h ·nnn

∥∥∥∥∥
2

Fj

− Cα2
1

4ε

∥∥∥∥∥λ
1
2

h
1
2

uuu j
h · τττ

∥∥∥∥∥
2

Fj

−2ε

∥∥∥λ
1
2 ∇uuuh

∥∥∥2

Pj
.

LEMMA 3.2 There exists C > 0 independent of h, µ and λ , but not of the mesh geometry, ∀uuuh ∈V k
h , on

each patch Pj for vvv j ∈V k
h as defined in equation (2.1) and ∀ε,α1,α2 ∈ R∗+, such that

〈
2µεεε (vvv j) ·nnn,uuuh

〉
Fj
>α2

(
2− 5Cα2

4ε

)∥∥∥∥∥µ
1
2

h
1
2

uuu j
h ·nnn

∥∥∥∥∥
2

Fj

+α1

(
1− Cα1

4ε

)∥∥∥∥∥µ
1
2

h
1
2

uuu j
h · τττ

∥∥∥∥∥
2

Fj

−3ε

∥∥∥µ
1/2

∇uuuh

∥∥∥2

Pj
.

DEFINITION 3.1 We define the triple norm of a function www ∈V as

|||www|||2 = µ

(
‖∇www‖2

Ω
+
∥∥∥h−

1
2 www
∥∥∥2

∂Ω

)
+λ

(
‖∇ ·www‖2

Ω
+
∥∥∥h−

1
2 www ·nnn

∥∥∥2

∂Ω

)
.

Observe that this is a norm on V by the Poincaré inequality.

LEMMA 3.3 For uuuh,vvvh ∈ V k
h with vvvh = uuuh + vvvΓ , vvvΓ defined by equations (2.1) and (2.2), there exists

positive constants β0 and h0 such that the following inequality holds for h < h0

β0|||uuuh|||2 6 Ah(uuuh,vvvh).

Proof. Decomposing the bilinear form, we can write the following

Ah(uuuh,vvvh) = Ah(uuuh,uuuh)+
Np

∑
j=1

Ah(uuuh,vvv j).

Clearly we have

Ah(uuuh,uuuh) = 2
∥∥∥µ

1
2 εεε(uuuh)

∥∥∥2

Ω

+
∥∥∥λ

1
2 ∇ ·uuuh

∥∥∥2

Ω

,

and

Ah(uuuh,vvv j) =(2µεεε(uuuh),εεε(vvv j))Pj
−
〈
2µεεε (uuuh) ·nnn,vvv j

〉
Fj
+
〈
2µεεε (vvv j) ·nnn,uuuh

〉
Fj

+(λ∇ ·uuuh,∇ · vvv j)Pj
−
〈
λ∇ ·uuuh,vvv j ·nnn

〉
Fj
+
〈
λ∇ · vvv j,uuuh ·nnn

〉
Fj
.
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Using the Cauchy-Schwarz inequality and the inequalities (2.7) (2.8), we can write the two terms defined
over Pj as

(2µεεε(uuuh),εεε(vvv j))Pj
> −ε

∥∥∥µ
1
2 εεε(uuuh)

∥∥∥2

Pj
− Cα2

1
ε

∥∥∥∥∥µ
1
2

h
1
2

uuu j
h · τττ

∥∥∥∥∥
2

Fj

− Cα2
2

ε

∥∥∥∥∥µ
1
2

h
1
2

uuu j
h ·nnn

∥∥∥∥∥
2

Fj

,

(λ∇ ·uuuh,∇ · vvv j)Pj
> −ε

∥∥∥λ
1
2 ∇uuuh

∥∥∥2

Pj
− Cα2

1
4ε

∥∥∥∥∥λ
1
2

h
1
2

uuu j
h · τττ

∥∥∥∥∥
2

Fj

− Cα2
2

4ε

∥∥∥∥∥λ
1
2

h
1
2

uuu j
h ·nnn

∥∥∥∥∥
2

Fj

.

Combining the inequality (2.6) with the trace and inverse inequalities of Lemmas 2.1 and 2.2, followed
by (2.7) (2.8) we obtain

〈
2µεεε (uuuh) ·nnn,vvv j

〉
Fj
6 ε

∥∥∥µ
1
2 εεε(uuuh)

∥∥∥2

Pj
+

Cα2
1

ε

∥∥∥∥∥µ
1
2

h
1
2

uuu j
h · τττ

∥∥∥∥∥
2

Fj

+
Cα2

2
ε

∥∥∥∥∥µ
1
2

h
1
2

uuu j
h ·nnn

∥∥∥∥∥
2

Fj

,

〈
λ∇ ·uuuh,vvv j ·nnn

〉
Fj
6 ε

∥∥∥λ
1
2 ∇uuuh

∥∥∥2

Pj
+

Cα2
1

4ε

∥∥∥∥∥λ
1
2

h
1
2

uuu j
h · τττ

∥∥∥∥∥
2

Fj

+
Cα2

2
4ε

∥∥∥∥∥λ
1
2

h
1
2

uuu j
h ·nnn

∥∥∥∥∥
2

Fj

.

Considering Lemmas 3.1 and 3.2 we have a lower bound for each term. Now we can write the bilinear
form

Ah (uuuh,vvvh)> 2
∥∥∥µ

1
2 εεε (uuuh)

∥∥∥2

Ω

+
∥∥∥λ

1
2 ∇ ·uuuh

∥∥∥2

Ω

−2ε

Np

∑
j=1

∥∥∥µ
1
2 εεε(uuuh)

∥∥∥2

Pj
− (3εµ +4ελ )

Np

∑
j=1
‖∇uuuh‖2

Pj

+α1

(
1−α1

9C
4ε

) Np

∑
j=1

∥∥∥∥∥µ
1
2

h
1
2

uuu j
h · τττ

∥∥∥∥∥
2

Fj

+α2

(
2−α2

13C
4ε

) Np

∑
j=1

∥∥∥∥∥µ
1
2

h
1
2

uuu j
h ·nnn

∥∥∥∥∥
2

Fj

+α1

(
−α1

3C
4ε

) Np

∑
j=1

∥∥∥∥∥λ
1
2

h
1
2

uuu j
h · τττ

∥∥∥∥∥
2

Fj

+α2

(
1−α2

3C
4ε

) Np

∑
j=1

∥∥∥∥∥λ
1
2

h
1
2

uuu j
h ·nnn

∥∥∥∥∥
2

Fj

.

The Theorem 2.3 gives

‖εεε (uuuh)‖Ω
+ |uuuh|Γ >CK ‖uuuh‖H1(Ω) ∀uuuh ∈V k

h .

Assuming that each side Γi contains at least one Fj, the properties of the P0-projection allows us to write

∫
Γi

(P0uuuh)
2 ds6

NΓi

∑
j=1

∫
Fj

(
uuu j

h

)2
ds,

NΓi is the number of Fj contained in the side Γi. Then over all the boundaries Γi

Nb

∑
i=1

∫
Γi

(P0uuuh)
2 ds6

Np

∑
j=1

∫
Fj

(
uuu j

h

)2
ds.
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Then we can use the following bound

‖εεε (uuuh)‖2
Ω
+

Np

∑
j=1

∥∥∥uuu j
h

∥∥∥2

Fj
>CK ‖uuuh‖2

H1(Ω) ∀uuuh ∈V k
h .

Using this result, we can rewrite the bilinear form Ah (uuuh,vvvh) as

Ah (uuuh,vvvh)>
∥∥∥λ

1
2 ∇ ·uuuh

∥∥∥2

Ω

+2CK

∥∥∥µ
1
2 ∇uuuh

∥∥∥2

Ω\P
+(2µCK−5εµ−4ελ )

Np

∑
j=1
‖∇uuuh‖2

Pj

+

((
α1

(
1−α1

9C
4ε

)
−2h

)
µ−α

2
1

3C
4ε

λ

) Np

∑
j=1

∥∥∥h−
1
2 uuu j

h · τττ
∥∥∥2

Fj

+

((
α2

(
2−α2

13C
4ε

)
−2h

)
µ +α2

(
1−α2

3C
4ε

)
λ

) Np

∑
j=1

∥∥∥h−
1
2 uuu j

h ·nnn
∥∥∥2

Fj
.

Considering the inequality (2.5) we obtain

Ah (uuuh,vvvh)>
∥∥∥λ

1
2 ∇ ·uuuh

∥∥∥2

Ω

+2CK

∥∥∥µ
1
2 ∇uuuh

∥∥∥2

Ω\P
+(Ca−Cb−Cc)

Np

∑
j=1
‖∇uuuh‖2

Pj

+Cb

Np

∑
j=1

∥∥∥h−
1
2 uuuh · τττ

∥∥∥2

Fj
+Cc

Np

∑
j=1

∥∥∥h−
1
2 uuuh ·nnn

∥∥∥2

Fj
,

with the constants

Ca = 2µCK−5εµ−4ελ ,

Cb =

(
α1

(
1−α1

9C
4ε

)
−2h

)
µ−α

2
1

3C
4ε

λ ,

Cc =

(
α2

(
2−α2

13C
4ε

)
−2h

)
µ +α2

(
1−α2

3C
4ε

)
λ .

First we choose ε = µCK
5µ+4λ

so that Ca = µCK . Fix h < h0 such that Cb and Cc are positive respectively
for

4µ2CK

(9Cµ +3Cλ )(5µ +4λ )
> α1 ,

4µCK (2µ +λ )

(13Cµ +3Cλ )(5µ +4λ )
> α2.

Ca−Cb−Cc will be positive for

CK

2
> α1 ,

µCK

2(2µ +λ )
> α2.

By looking at the order of the constants, we can see that O(β0) = O
(

µ

λ+µ

)
and O(h0) = O

(
µ2

(λ+µ)2

)
.

If λ is large compared to µ , h0 has to be very small. This reflects the locking phenomena that is well
known for finite element method using low order H1-conforming spaces. �
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THEOREM 3.2 There exists positive constants β and h0 such that for all functions uuuh ∈ V k
h and for

h < h0, the following inequality holds

β |||uuuh|||6 sup
vvvh∈V k

h

Ah (uuuh,vvvh)

|||vvvh|||
.

Proof. Considering Lemma 3.3, the only thing that we need to show is

|||vvvh|||. |||uuuh|||. (3.2)

Using the definition of the test function, the triangle inequality gives

|||vvvh|||6 |||uuuh|||+ |||vvvΓ |||.

The definition of the triple norm gives

|||vvvΓ |||2 = µ

(
‖∇vvvΓ ‖2

Ω
+
∥∥∥h−

1
2 vvvΓ

∥∥∥2

∂Ω

)
+λ

(
‖∇ · vvvΓ ‖2

Ω
+
∥∥∥h−

1
2 vvvΓ ·nnn

∥∥∥2

∂Ω

)
.

We observe that

α1

∥∥∥∥∥µ
1
2

h
1
2

uuu j
h · τττ

∥∥∥∥∥
Fj

+α2

∥∥∥∥∥µ
1
2

h
1
2

uuu j
h ·nnn

∥∥∥∥∥
Fj

. α1

∥∥∥∥∥µ
1
2

h
1
2

uuuh · τττ

∥∥∥∥∥
Fj

+α2

∥∥∥∥∥µ
1
2

h
1
2

uuuh ·nnn

∥∥∥∥∥
Fj

. |||uuuh|||,

α1

∥∥∥∥∥λ
1
2

h
1
2

uuu j
h · τττ

∥∥∥∥∥
Fj

+α2

∥∥∥∥∥λ
1
2

h
1
2

uuu j
h ·nnn

∥∥∥∥∥
Fj

. α1

∥∥∥∥∥λ
1
2

h
1
2

uuuh · τττ

∥∥∥∥∥
Fj

+α2

∥∥∥∥∥λ
1
2

h
1
2

uuuh ·nnn

∥∥∥∥∥
Fj

. |||uuuh|||,

using this results and recalling the inequalities (2.7) (2.8), it gives the appropriate upper bounds consid-
ering the definition of vvvΓ ∥∥∥µ

1
2 ∇vvvΓ

∥∥∥
Ω

. |||uuuh|||, (3.3)∥∥∥λ
1
2 ∇ · vvvΓ

∥∥∥
Ω

6
∥∥∥λ

1
2 ∇vvvΓ

∥∥∥
Ω

. |||uuuh|||.

Using the trace inequality 2.1 for the boundary terms and the inequality (2.6) we can write∥∥∥∥∥µ
1
2

h
1
2

vvvΓ

∥∥∥∥∥
∂Ω

.
∥∥∥µ

1
2 ∇vvvΓ

∥∥∥
Ω

. |||uuuh|||, (3.4)∥∥∥∥∥λ
1
2

h
1
2

vvvΓ ·nnn

∥∥∥∥∥
∂Ω

.
∥∥∥λ

1
2 ∇vvvΓ

∥∥∥
Ω

. |||uuuh|||.

We note that O(β ) = O
(

µ

λ+µ

)
. �

3.3 A priori error estimate

Using the stability proven in the previous section we may deduce the a priori error estimate in the triple
norm. We first prove the consistency of the method in the form of a Galerkin orthogonality.
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LEMMA 3.4 If uuu ∈
[
H2 (Ω)

]2 is the solution of (1.1) and uuuh ∈ V k
h the solution of (3.1) the following

property holds
Ah (uuu−uuuh,vvvh) = 0 , ∀vvvh ∈V k

h .

Proof. We observe that Ah (uuu,vvvh) = Lh (vvvh) = Ah (uuuh,vvvh) , ∀vvvh ∈V k
h . �

We introduce an auxiliary norm, in order to study the a priori error estimate

‖www‖∗ = |||www|||+
∥∥∥µ

1
2 h

1
2 ∇www

∥∥∥
∂Ω

+
∥∥∥λ

1
2 h

1
2 ∇ ·www

∥∥∥
∂Ω

.

LEMMA 3.5 Let www ∈
[
H2 (Ω)

]2
+V k

h and vvvh ∈ V k
h , there exists a positive constant M such that the

bilinear form Ah (·, ·) has the property

Ah (www,vvvh)6M ‖www‖∗ |||vvvh|||.

Proof. Using the Cauchy-Schwarz inequality it is straightforward to write

(λ∇ ·www,∇ · vvvh)Ω
+(2µεεε (www) ,εεε (vvvh))Ω

. ‖www‖∗ |||vvvh|||,
〈λ∇ ·www,vvvh ·nnn〉∂Ω

+ 〈λ∇ · vvvh,www ·nnn〉∂Ω
. ‖www‖∗ |||vvvh|||.

The trace inequality and the inequality (2.6) allows us to write

〈2µεεε (www) ·nnn,vvvh〉∂Ω
.

∥∥∥µ
1
2 h

1
2 ∇www

∥∥∥
∂Ω

∥∥∥∥∥µ
1
2

h
1
2

vvvh

∥∥∥∥∥
∂Ω

. ‖www‖∗ |||vvvh|||,

〈2µεεε (vvvh) ·nnn,www〉∂Ω
.

∥∥∥µ
1
2 ∇vvvh

∥∥∥
Ω

∥∥∥∥∥µ
1
2

h
1
2

www

∥∥∥∥∥
∂Ω

. ‖www‖∗ |||vvvh|||.

�

PROPOSITION 3.3 If uuu ∈
[
Hk+1 (Ω)

]2 is the solution of (1.1) and uuuh ∈ V k
h the solution of (3.1) with

h < h0, then there holds
|||uuu−uuuh|||6Cµλ hk |uuu|Hk+1(Ω) ,

where Cµλ is a positive constant that depends on µ , λ and the mesh geometry.

Proof. Let ikSZ denote the Scott-Zhang interpolant (Scott & Zhang, 1990). The approximation property
of the interpolant may be written for each K ∈Th∥∥∥uuu− ikSZuuu

∥∥∥
K
+hK

∥∥∥∇

(
uuu− ikSZuuu

)∥∥∥
K
+h2

K

∥∥∥D2
(

uuu− ikSZuuu
)∥∥∥

K
. hk+1

K |uuu|Hk+1(SK)
.

With SK := interior
(
∪
{

Ki|Ki∩K 6= /0,Ki ∈Th
})

. Using this property and the trace inequality it is
straightforward to show that ∣∣∣∣∣∣∣∣∣uuu− ikSZuuu

∣∣∣∣∣∣∣∣∣ . (
λ

1
2 +µ

1
2

)
hk |uuu|Hk+1(Ω) ,∥∥∥uuu− ikSZuuu

∥∥∥
∗
.

(
λ

1
2 +µ

1
2

)
hk |uuu|Hk+1(Ω) .

Using Theorem 3.2, the Galerkin orthogonality of Lemma 3.4, and the Lemma 3.5 we deduce

β

∣∣∣∣∣∣∣∣∣uuuh− ikSZuuu
∣∣∣∣∣∣∣∣∣6 Ah

(
uuu− ikSZuuu,vvvh

)
|||vvvh|||

6M
∥∥∥uuu− ikSZuuu

∥∥∥
∗
.
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This inequality together with a triangle inequality leads to the desired estimate

|||uuu−uuuh|||6
∣∣∣∣∣∣∣∣∣uuu− ikSZuuu

∣∣∣∣∣∣∣∣∣+ M
β

∥∥∥uuu− ikSZuuu
∥∥∥
∗
.

We see that the constant in the estimate satisfies : O
(
Cµλ

)
= O

(
β−1

(
λ

1
2 +µ

1
2

))
. �

The convergence of the L2-error suffers of suboptimality of order O
(
h1/2

)
due to the lack of adjoint

consistency of the nonsymmetric formulation.

PROPOSITION 3.4 Let uuu∈
[
Hk+1(Ω)

]2 be the solution of (1.1) and uuuh the solution of (3.1) with h < h0,
then

‖uuu−uuuh‖Ω
6C′

µλ
hk+ 1

2 |uuu|Hk+1(Ω) ,

where C′
µλ

is a positive constant that depends on µ , λ and the mesh geometry.

Proof. Let zzz satisfy the adjoint problem

−2µ∇ · εεε(zzz)−λ∇(∇ · zzz) = uuu−uuuh in Ω ,

zzz = 0 on ∂Ω .

Then we can write

‖uuu−uuuh‖2
Ω

= (uuu−uuuh,−2µ∇ · εεε(zzz)−λ∇(∇ · zzz))
Ω

= (2µεεε(uuu−uuuh),εεε(zzz))Ω
+(λ∇ · (uuu−uuuh),∇ · zzz)Ω

−〈2µ(uuu−uuuh),εεε(zzz) ·nnn〉∂Ω
−〈λ (uuu−uuuh) ·nnn,∇ · zzz〉∂Ω

= Ah (uuu−uuuh,zzz)−2〈2µ(uuu−uuuh),εεε(zzz) ·nnn〉∂Ω
−2〈λ (uuu−uuuh) ·nnn,∇ · zzz〉∂Ω

.

By Lemma 3.4, using (zzz− i1SZzzz)|∂Ω ≡ 0 and similar arguments as in the proof of Lemma 3.5 we deduce
that

Ah(uuu−uuuh,zzz) = Ah
(
uuu−uuuh,zzz− i1SZzzz

)
=

(
2µεεε(uuu−uuuh),εεε(zzz− i1SZzzz)

)
Ω
+
(
λ∇ · (uuu−uuuh),∇ · (zzz− i1SZzzz)

)
Ω

+
〈
2µ(uuu−uuuh),εεε(zzz− i1SZzzz) ·nnn

〉
∂Ω

+
〈
λ (uuu−uuuh) ·nnn,∇ · (zzz− i1SZzzz)

〉
∂Ω

. |||uuu−uuuh|||
∥∥zzz− i1SZzzz

∥∥
∗

.
(

λ
1
2 +µ

1
2

)
h|||uuu−uuuh||| |zzz|H2(Ω) . (3.5)

The global trace inequalities ‖εεε(zzz) ·nnn‖
∂Ω
. ‖zzz‖H2(Ω) and ‖∇ · zzz‖

∂Ω
. ‖zzz‖H2(Ω) , lead to∣∣〈2µ(uuu−uuuh),εεε(zzz) ·nnn〉∂Ω

∣∣+ ∣∣〈λ (uuu−uuuh) ·nnn,∇ · zzz〉∂Ω

∣∣. (λ
1
2 +µ

1
2

)
h

1
2 |||uuu−uuuh|||‖zzz‖H2(Ω) . (3.6)

Using inequalities (3.5) and (3.6) we obtain

‖uuu−uuuh‖2
Ω
.Cµλ

(
λ

1
2 +µ

1
2

)(
h+h

1
2

)
hk |uuu|Hk+1(Ω) ‖zzz‖H2(Ω) .

We conclude applying the regularity estimate ‖zzz‖H2(Ω). ‖uuu−uuuh‖Ω
. O
(

C′
µλ

)
=O

(
Cµλ

(
λ

1
2 +µ

1
2

))
.

�
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4. Incompressible elasticity

In this part we consider the problem (1.2) and we prove the stability for this configuration similarly as
in the previous part for the compressible case. For incompressible elasticity we have to manage one
more unknown, the pressure. We choose to work with equal order interpolation for the velocity and
the pressure and add a pressure stabilization to recover stability. Note that in this part we re-define
the bilinear forms, the triple norm and the star norm. We have the following weak formulation: find
(uuu, p) ∈Vg×Q such that

a [(uuu, p) ,(vvv,q)] = ( fff ,vvv)
Ω

∀(vvv,q) ∈V0×Q,

with
a [(uuu, p) ,(vvv,q)] = (2µεεε(uuu),εεε(vvv))

Ω
− (p,∇ · vvv)

Ω
+(∇ ·uuu,q)

Ω
.

4.1 Finite element formulation

The nonsymmetric Nitsche’s method applied to the incompressible elasticity (1.2) gives the following
variational formulation, find uuuh ∈V k

h and ph ∈ Qk
h such that

Ah [(uuuh, ph) ,(vvvh,qh)] = Lh (vvvh,qh) ∀(vvvh,qh) ∈V k
h ×Qk

h, (4.1)

where the bilinear forms Ah and Lh are defined as

Ah [(uuuh, ph) ,(vvvh,qh)] = a [(uuuh, ph) ,(vvvh,qh)]−b(uuuh,vvvh, ph)+b(vvvh,uuuh,qh)+Sh (uuuh, ph,qh) ,

Lh (vvvh,qh) =

(
fff ,vvvh +

γ

µ
h2

∇qh

)
Ω

+b(vvvh,ggg,qh) .

The bilinear form b is defined as

b(uuuh,vvvh, ph) = 〈(2µεεε (uuuh)− phI2×2) ·nnn,vvvh〉∂Ω
.

Sh denotes the stabilization term, we define

Sh (uuuh, ph,qh) =
γ

µ
∑

K∈Th

∫
K

h2 (−2µ∇ · εεε (uuuh)+∇ph)∇qh dx,

this term is necessary as we want to use equal order interpolation.

4.2 Stability

We proceed similarly as for the compressible case, we first define the triple norm.

DEFINITION 4.1 We define the triple norm of (www,ρ) ∈V ×L2 (Ω) as

|||(www,ρ)|||2 = µ

(
‖∇www‖2

Ω
+
∥∥∥h−

1
2 www
∥∥∥2

∂Ω

)
+

1
µ
‖h∇ρ‖2

Ω
.

LEMMA 4.1 For uuuh,vvvh ∈V k
h with vvvh = uuuh + vvvΓ , vvvΓ defined by equations (2.1) (2.2), and qh = ph, there

exists positive constants β0 and h0 such that the following inequality holds for h < h0

β0|||(uuuh, ph)|||2 6 Ah [(uuuh, ph) ,(vvvh,qh)] .
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Proof. Decomposing the bilinear form, we can write the following

Ah [(uuuh, ph) ,(vvvh,qh)] = Ah [(uuuh, ph) ,(uuuh, ph)]+
Np

∑
j=1

Ah [(uuuh, ph) ,(vvv j,0)] .

Using the Cauchy-Schwarz inequality and an inverse inequality we can write

Ah [(uuuh, ph) ,(uuuh, ph)] > 2
∥∥∥µ

1
2 εεε (uuuh)

∥∥∥2

Ω

− γ

µ
‖2hµ∇ · εεε (uuuh)‖Ω

‖h∇ph‖Ω
+

γ

µ
‖h∇ph‖2

Ω

> 2
(
1− ε

′)∥∥∥µ
1
2 εεε (uuuh)

∥∥∥2

Ω

+
γ

µ

(
1− Cγ

4ε ′

)
‖h∇ph‖2

Ω
.

The second part can be written as

Ah [(uuuh, ph) ,(vvv j,0)] = (2µεεε (uuuh) ,εεε (vvv j))Pj
+(∇ph,vvv j)Pj

−
〈
2µεεε (uuuh) ·nnn,vvv j

〉
Fj
+
〈
2µεεε (vvv j) ·nnn,uuuh

〉
Fj
.

Term by term we can obtain a lower bound of each term, note that most of the terms have been studied in
the compressible case. The lower bound of the only remaining term can be found using the inequalities
(2.7) (2.8) and the inequality (2.6), we get

(∇ph,vvv j)Pj
>− ε

µ
‖h∇ph‖2

Pj
− Cα2

1 µ

2ε

∥∥∥h−
1
2 uuu j

h · τττ
∥∥∥2

Fj
− Cα2

2 µ

2ε

∥∥∥h−
1
2 uuu j

h ·nnn
∥∥∥2

Fj
.

The full bilinear form gives

Ah [(uuuh, ph) ,(vvvh,qh)]> 2
(
1− ε

′)∥∥∥µ
1
2 εεε (uuuh)

∥∥∥2

Ω

+
γ

µ

(
1− Cγ

4ε ′

)
‖h∇ph‖2

Ω

−2ε

Np

∑
j=1

∥∥∥µ
1
2 εεε (uuuh)

∥∥∥2

Pj
− ε

µ

Np

∑
j=1
‖h∇ph‖2

Pj
−3ε

Np

∑
j=1

∥∥∥µ
1
2 ∇uuuh

∥∥∥2

Pj

− Cα2
1 µ

2ε

Np

∑
j=1

∥∥∥h−
1
2 uuu j

h · τττ
∥∥∥2

Fj
− Cα2

2 µ

2ε

Np

∑
j=1

∥∥∥h−
1
2 uuu j

h ·nnn
∥∥∥2

Fj

+α1

(
1−α1

11C
4ε

) Np

∑
j=1

∥∥∥∥∥µ
1
2

h
1
2

uuu j
h · τττ

∥∥∥∥∥
2

Fj

+α2

(
2−α2

15C
4ε

) Np

∑
j=1

∥∥∥∥∥µ
1
2

h
1
2

uuu j
h ·nnn

∥∥∥∥∥
2

Fj

.

Similarly as for the compressible case, using the Theorem 2.3 and the inequality (2.5) we obtain

Ah [(uuuh, ph) ,(vvvh,qh)]>Ca

∥∥∥µ
1
2 ∇uuuh

∥∥∥2

Ω\P
+Cb ‖h∇ph‖2

Ω\P +
(
Cc−Ce−C f

) Np

∑
j=1

∥∥∥µ
1
2 ∇uuuh

∥∥∥2

Pj

+Cd

Np

∑
j=1
‖h∇ph‖2

Pj
+Ce

Np

∑
j=1

∥∥∥∥∥µ
1
2

h
1
2

uuuh · τττ

∥∥∥∥∥
2

Fj

+C f

Np

∑
j=1

∥∥∥∥∥µ
1
2

h
1
2

uuuh ·nnn

∥∥∥∥∥
2

Fj

,
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with the constants

Ca = 2CK
(
1− ε

′) ,
Cb =

γ

µ

(
1− Cγ

4ε ′

)
,

Cc = 2CK
(
1− ε

′)−5ε,

Cd =
γ

µ

(
1− Cγ

4ε ′

)
− ε

µ
,

Ce = α1

(
1−α1

11C
4ε

)
−2h

(
1− ε

′) ,
C f = α2

(
2−α2

15C
4ε

)
−2h

(
1− ε

′) .
We choose ε = γ2

4 and ε ′ = 1
4 . Taking γ < 1

C+ 1
4

, for h small enough Ce and C f will be positive respec-

tively for
γ2

11C
> α1 ,

2γ2

15C
> α2.

Cc−Ce−C f will be positive for√
2CK

5
> γ ,

CK

2
> α1 ,

CK

4
> α2.

h0 is the biggest value of h that can be considered, we observe that O(β0) = O(1), O(h0) = O(1). �
We remark that contrary to the case of compressible elasticity we see that the conditions on the

constants are independent of the physical parameters, this reflects that the mixed method is locking free.

THEOREM 4.2 There exists positive constants β and h0 such that for all functions (uuuh, ph) ∈ V k
h ×Qk

h
and for h < h0, the following inequality holds

β |||(uuuh, ph)|||6 sup
(vvvh,qh)∈V k

h×Qk
h

Ah [(uuuh, ph) ,(vvvh,qh)]

|||(vvvh,qh)|||
.

Proof. Considering Lemma 4.1, the only thing that we need to show is

|||(vvvh,qh)|||. |||(uuuh, ph)|||.

Using the definition of the test functions, the triangle inequality gives

|||(vvvh,qh)|||6 |||(uuuh, ph)|||+ |||(vvvΓ ,0)|||.

The triple norm of (vvvΓ ,0) is

|||(vvvΓ ,0)|||2 = µ

(
‖∇vvvΓ ‖2

Ω
+
∥∥∥h−

1
2 vvvΓ

∥∥∥2

∂Ω

)
.

The claim follows from equations (3.3, 3.4) of Theorem 3.2. Note that O(β ) = O(1). �



16 of 25 T. BOIVEAU AND E. BURMAN

4.3 A priori error estimate

The stability proven in the previous section leads to the study of the error estimate in the triple norm,
the Galerkin orthogonality is characterized by the following consistency relation.

LEMMA 4.2 If (uuu, p) ∈
[
H2 (Ω)

]2×H1 (Ω) is the solution of (1.2) and (uuuh, ph) ∈V k
h ×Qk

h the solution
of (4.1) the the following property holds

Ah [(uuu−uuuh, p− ph) ,(vvvh,qh)] = 0.

The star norm of (www,ρ) used for the continuity of Ah [(·, ·) ,(·, ·)] is defined as

‖(www,ρ)‖∗ := |||(www,ρ)|||+
∥∥∥µ

1
2 h

1
2 ∇www

∥∥∥
∂Ω

+‖ρ‖
Ω
+
∥∥∥h

1
2 ρ

∥∥∥
∂Ω

+
∥∥h−1www

∥∥
Ω

+

(
∑

K∈Th

∥∥∥hµ
1
2 ∇ · εεε (www)

∥∥∥2

K

) 1
2

.

LEMMA 4.3 Let (www,ρ) ∈
([

H2 (Ω)
]2
+V k

h

)
×
(
H1 (Ω)+Qk

h

)
and (vvvh,qh) ∈ V k

h ×Qk
h there exists a

positive constant M such that the bilinear form Ah [(·, ·) ,(·, ·)] has the property

Ah [(www,ρ) ,(vvvh,qh)]6M ‖(www,ρ)‖∗ |||(vvvh,qh)|||.

Proof. The proof of the Lemma 3.5 gives us the desired upper bound for most of the terms. The
integration by parts gives

(∇ρ,vvvh)Ω
= 〈ρ ·nnn,vvvh〉∂Ω

− (ρ,∇ · vvvh)Ω
.

Using the Cauchy-Schwarz inequality we obtain

〈ρ ·nnn,vvvh〉∂Ω
− (ρ,∇ · vvvh)Ω

− (∇qh,www)Ω
. ‖(www,ρ)‖∗ |||(vvvh,qh)|||,

∑
K∈Th

(
h2 (−2µ∇ · εεε (www)+∇ρ) ,∇qh

)
K . ‖(www,ρ)‖∗ |||(vvvh,qh)|||.

Note that the second line corresponds to the stabilization term. �

PROPOSITION 4.3 If (uuu, p) ∈
[
Hk+1 (Ω)

]2×Hk (Ω) is the solution of (1.2) and (uuuh, ph) the solution of
(4.1) with h < h0, then there holds

|||(uuu−uuuh, p− ph)|||6 hk
(

Cuµ |uuu|Hk+1(Ω)+Cpµ |p|Hk(Ω)

)
.

where Cuµ and Cpµ are positive constants that depends on µ and the mesh geometry.

Proof. Let ikSZ denote the Scott-Zhang interpolant (Scott & Zhang, 1990), the approximation properties
for each K ∈Th gives∥∥∥uuu− ikSZuuu

∥∥∥
K
+hK

∥∥∥∇

(
uuu− ikSZuuu

)∥∥∥
K
+h2

K

∥∥∥D2
(

uuu− ikSZuuu
)∥∥∥

K
. hk+1

K |uuu|Hk+1(SK)
,∥∥∥p− ikSZp

∥∥∥
K
+hK

∥∥∥∇

(
p− ikSZp

)∥∥∥
K
. hK |p|Hk(SK)

.



PENALTY FREE NITSCHE METHOD, ELASTICITY 17 of 25

Using these properties and the trace inequality, it is straightforward to show that

|||(uuu−uuuh, p− ph)||| . hk
(

µ
1
2 |uuu|Hk+1(Ω)+µ

− 1
2 |p|Hk(Ω)

)
,

‖(uuu−uuuh, p− ph)‖∗ . hk
(

µ
1
2 |uuu|Hk+1(Ω)+µ

− 1
2 |p|Hk(Ω)

)
.

Using Theorem 4.2, Galerkin orthogonality and the Lemma 4.3 we obtain

β

∣∣∣∣∣∣∣∣∣(uuuh− ikSZuuu, ph− ikSZp
)∣∣∣∣∣∣∣∣∣6 Ah

[(
uuuh− ikSZuuu, ph− ikSZp

)
,(vvvh,qh)

]
|||(vvvh,qh)|||

6M
∥∥∥(uuu− ikSZuuu, p− ikSZp

)∥∥∥
∗
.

Using this property and the triangle inequality we can write

|||(uuu−uuuh, p− ph)|||6
∣∣∣∣∣∣∣∣∣(uuu− ikSZuuu, p− ikSZp

)∣∣∣∣∣∣∣∣∣+ M
β

∥∥∥(uuu− ikSZuuu, p− ikSZp
)∥∥∥
∗
.

We note that O
(
Cuµ

)
= O

(
µ

1
2

)
and O

(
Cpµ

)
= O

(
µ−

1
2

)
. �

The convergence of the L2-error of the velocities with the order O
(

hk+ 1
2

)
may be proven similarly

as in Proposition 3.4.

PROPOSITION 4.4 Let (uuu, p) ∈
[
Hk+1 (Ω)

]2×Hk (Ω) be the solution of (1.2) and (uuuh, ph) ∈ V k
h ×Qk

h
the solution of (4.1) with h < h0, then

‖p− ph‖Ω
6 hk

(
C′uµ |u|Hk+1(Ω)+C′pµ |p|Hk(Ω)

)
,

where C′uµ and C′pµ are positive constants that depends on µ and the mesh geometry.

Proof. By the surjectivity of the divergence operator ∇· : H1
0 (Ω)→ L2

0 (Ω) (see, Girault & Raviart,
1986), there exists vvvp ∈V0 such that ∇ ·vvvp = p− ph. Therefore we may write (using the Lemma 4.2 and
observing that (vvvp− iSZvvvp) |∂Ω = 0)

‖p− ph‖2
Ω

= (p− ph,∇ · vvvp)+Ah [(uuu−uuuh, p− ph) ,(iSZvvvp,0)]
= (p− ph,∇ · (vvvp− iSZvvvp))Ω

+(2µεεε (uuu−uuuh) ,εεε (iSZvvvp))Ω
+
〈
2µεεε (iSZvvvp) ·nnn,uuu−uuuh

〉
∂Ω

= −(∇(p− ph) ,vvvp− iSZvvvp)Ω

+(2µεεε (uuu−uuuh) ,εεε (iSZvvvp))Ω
+
〈
2µεεε (iSZvvvp) ·nnn,uuu−uuuh

〉
∂Ω

.
1

µ
1
2
‖h∇(p− ph)‖Ω

h−1
∥∥∥µ

1
2 (vvvp− iSZvvvp)

∥∥∥
Ω

+2
∥∥∥µ

1
2 ∇(uuu−uuuh)

∥∥∥
Ω

∥∥∥µ
1
2 ∇iSZvvvp

∥∥∥
Ω

+
∥∥∥µ

1
2 ∇iSZvvvp

∥∥∥
Ω

∥∥∥∥∥µ
1
2

h
1
2
(uuu−uuuh)

∥∥∥∥∥
Ω

. µ
1
2 |||(uuu−uuuh) ,(p− ph)|||

∣∣vvvp
∣∣
H1(Ω)

.

We conclude by applying the stability
∥∥vvvp
∥∥

H1(Ω)
6Cvvvp ‖p− ph‖Ω

. We observe that O
(
C′uµ

)
= O(µ)

and O
(
C′pµ

)
= O(1). �
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5. Numerical results

In this section we will present some numerical experiments verifying the above theory. The package
FreeFem++ (Hecht, 2012) was used for the numerical study. In the first two sections we consider the
domain Ω as the unit square [0,1]× [0,1]. For compressible and incompressible elasticity we use a
manufactured solution to test the precision of the method. In the third section we study the performance
of the penalty free Nitsche’s method for the Cook’s membrane problem.

5.1 Compressible elasticity

The two dimensional function below is a manufactured solution considered for the tests

uuu =

((
x5− x4

)(
y3− y2

)(
x4− x3

)(
y6− y5

)) .

The nonsymmetric Nitsche’s method given by equation (3.1) is used to compute approximations on a
series of structured meshes. We consider first and second order polynomials and we study the conver-
gence rates of the error in the H1- and L2-norms. We choose µ = 1 and consider several values of λ in
order to see numerically the locking phenomena for large values of λ compared to µ .
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FIG. 3. Compressible elasticity, V 1
h : error versus the maximal element diameter h. Left: L2-error, right: H1-error.

The piecewise affine case (Figure 3) shows locking for λ = 105. When λ becomes too large, the
convergence of the error does not hold if h is not small enough. When the piecewise quadratic approxi-
mation is used (Figure 4), the problem with large values of λ only changes the value of the error constant
and has negligible effect on the observed rates of convergence. The numerical results show that for both
cases the rate of convergence of the H1-error corresponds to what has been shown theoretically. For
the L2-error, we observe a convergence of order O

(
hk+1

)
, which is a super convergence with O(h1/2)

compared to the theoretical result. In spite of numerous numerical experiments not reported here, we
have not been able to find an example exhibiting the suboptimal L2-convergence of Proposition 3.4.
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FIG. 4. Compressible elasticity, V 2
h : error versus the maximal element diameter h. Left: L2-error, right: H1-error.

5.2 Incompressible elasticity

The manufactured solution considered in this part defines the velocity and the pressure respectively such
that

uuu =

(
sin(4πx)cos(4πy)
−cos(4πx)sin(4πy)

)
, p = πcos(4πx)cos(4πy).

The nonsymmetric Nitsche’s method without penalty given by equation (4.1) is used to compute approx-
imations on a series of structured meshes. We take µ = 1, a range of values of γ has been considered in
the tests to study numerically the effect of the stabilization parameter on the computational error. Figure
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FIG. 5. Incompressible elasticity, V 1
h ×Q1

h: errors for a range of value of γ versus the maximal element diameter h. Left: H1-error
of the velocity, right : L2-error of the pressure.

5 considers piecewise affine approximation. It shows that in this case the H1-error of the velocity has
an order of convergence O

(
h1
)

for all the values of γ tested. The convergence rates for the L2-error of
the pressure are close to O

(
h3/2

)
for all the values of γ considered and for h small enough.
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5.3 Cook’s membrane problem

The Cook’s membrane problem is a bending dominated test case. Figure 6 represents the computational
domain Ω . On the face (CD) the Dirichlet boundary condition uuu = 0 is imposed. On the face (AC) the
Neumann boundary condition σσσ(uuu) = (0,100) is imposed.

48

44

16

C

D

A

B

FIG. 6. Cook’s membrane, computational domain.

In this part we compare the results given by the strong and weak imposition of the Dirichlet boundary
condition. The weak imposition is implemented using the nonsymmetric Nitsche’s method without
penalty. We use first and second order polynomial approximation on unstructured meshes. For the
first test E = 105 and ν = 0.3333, we use compressible elasticity, note that O(µ) = O(λ ) (µ = 37501,
λ = 74979) . Figure 7 shows the deformed mesh obtained.

We compute the vertical displacement of the point A (top corner) versus the meshsize. Figure 8
shows the results for this case, by refining the mesh the approximation of the displacement of A becomes
more accurate. Both weak and strong imposition of the Dirichlet boundary are displayed. For first and
second order approximation the weak imposition case converges faster than the strong imposition.

For the second test we consider E = 250 and ν = 0.4999, we expect to observe locking as O(µ)�
O(λ ) (µ = 83, λ = 416610). Using compressible elasticity we perform the same tests as for the first
study.

Figure 9 represents the vertical displacement of the point A (top corner) versus the meshsize. We
observe locking for both methods for first order approximation. The second order approximation con-
verges without locking even for the coarse meshes. Similarly as the previous case the convergence is
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FIG. 7. Deformed mesh, with a magnification factor of 10.
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FIG. 8. Convergence of the vertical displacement, E = 105 ν = 0.3333.

faster for the weak imposition. In view of the observed locking, we use the nearly incompressible prob-
lem to perform the same computations. The nearly incompressible problem, is obtained considering
(1.2) and replacing ∇ ·uuu = 0 by ∇ ·uuu = p/λ .

Figure 10 displays the nearly incompressible elasticity for first and second order approximations for
the weak and strong imposition but also the compressible elasticity with second order approximation. It
shows that for nearly incompressible elasticity there is no locking for the method using first order poly-
nomial approximation however for second order approximation the compressible elasticity converges
faster than the nearly incompressible elasticity. Once again the weak imposition case converges faster
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FIG. 9. Convergence of the vertical displacement, E = 250 ν = 0.4999.
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FIG. 10. Convergence of the vertical displacement, E = 250 ν = 0.4999.

than the strong imposition.

Appendix

Proof of Lemma 2.3

• (2.4)
There exists x0 ∈ Fj such that (uuuh−uuu j

h)(x0) = 0, then for x ∈ Fj

(uuuh−uuu j
h)(x) =

∫ x

x0

∇uuuh · τττ ds,
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using the Cauchy-Schwarz inequality it follows that

∥∥∥uuuh−uuu j
h

∥∥∥
Fj
.

(∫
Fj

(∫
Fj

|∇uuuh · τττ| ds
)2

ds

) 1
2

. h
1
2 ‖∇uuuh · τττ‖Fj

(∫
Fj

ds
) 1

2
.

• (2.5)
The triangle inequality gives∥∥∥h−

1
2 uuuh

∥∥∥2

Fj
6
∥∥∥h−

1
2 (uuuh− ūuuh)

∥∥∥2

Fj
+
∥∥∥h−

1
2 ūuuh

∥∥∥2

Fj
,

considering the inequality (2.4) and the trace inequality we can write

‖(uuuh− ūuuh)‖Fj
. h

1
2 ‖∇uuuh‖Pj

.

• (2.6)
Applying the Poincaré inequality, on each patch Pj the inequality follows.

• (2.7), (2.8)
Using the properties of vvv j (2.1), (2.3) and the Lemma 4.1 of Burman (2012).

Proof of Lemma 3.1

Proof. In the rotated frame (ξ ,η), applying the definition of the P0-projection, we can write the bilinear
form as〈

λ ∇̂ · v̂vv j, ûuuh · n̂nn
〉

F̂j
= λ

∫
F̂j

(
α1

∂ v̂1

∂ξ
+α2

∂ v̂2

∂η

)
û2 dŝ

= λ

∫
F̂j

α1
∂ v̂1

∂ξ
û2 +α2

1
h
(P0û2)

2 dŝ+λ

∫
F̂j

α2
∂ v̂2

∂η
(û2−P0û2) dŝ.

We observe that ∂ v̂1
∂ξ

= ∇̂ · (v̂1,0)T. Using the trace inequality, the inverse inequality and (2.7) (2.8), we
can show ∥∥∥∥∂ v̂1

∂ξ

∥∥∥∥
F̂j

. h−1
∥∥∥uuu j

h · τττ
∥∥∥

Fj
.

Note that
∫

F̂j
∂ v̂1
∂ξ

dŝ = 0, using these properties and the inequality (2.4), it follows that

λ

∫
F̂j

α1
∂ v̂1

∂ξ
û2 dŝ = λ

∫
F̂j

α1
∂ v̂1

∂ξ
(û2−P0û2) dŝ

> −Cα1h−1
∥∥∥λ

1
2 uuu j

h · τττ
∥∥∥

Fj

∥∥∥λ
1
2

(
uuuh−uuu j

h

)
·nnn
∥∥∥

Fj

> −Cα2
1

4ε

∥∥∥∥∥λ
1
2

h
1
2

uuu j
h · τττ

∥∥∥∥∥
2

Fj

− ε

∥∥∥λ
1
2 ∇uuuh

∥∥∥2

Pj
.
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Using (2.1) we can obtain similarly

λ

∫
F̂j

α2
∂ v̂2

∂η
(û2−P0û2) dŝ > −Cα2

2
4ε

∥∥∥∥∥λ
1
2

h
1
2

uuu j
h ·nnn

∥∥∥∥∥
2

Fj

− ε

∥∥∥λ
1
2 ∇uuuh

∥∥∥2

Pj
,

λ

∫
F̂j

α2
1
h
(P0û2)

2 dŝ = α2

∥∥∥∥∥λ
1
2

h
1
2

uuu j
h ·nnn

∥∥∥∥∥
2

Fj

.

�

Proof of Lemma 3.2

Proof. In the rotated frame (ξ ,η), applying the definition of the P0-projection, we can write the bilinear
form similarly as in the previous proof〈

2µε̂εε (v̂vv j) · n̂nn, ûuuh
〉

F̂j
= µ

∫
F̂j

α1
∂ v̂1

∂η
û1 +α2

∂ v̂2

∂ξ
û1 +2α2

∂ v̂2

∂η
û2 dŝ

= µ

∫
F̂j

α1
1
h
(P0û1)

2 +α2
∂ v̂2

∂ξ
û1 +α2

2
h
(P0û2)

2 dŝ

+µ

∫
F̂j

α1
∂ v̂1

∂η
(û1−P0û1) dŝ+2µ

∫
F̂j

α2
∂ v̂2

∂η
(û2−P0û2) dŝ.

Term by term we obtain

µ

∫
F̂j

α1
1
h
(P0û1)

2 dŝ = α1

∥∥∥∥∥µ
1
2

h
1
2

uuu j
h · τττ

∥∥∥∥∥
2

Fj

,

µ

∫
F̂j

α2
2
h
(P0û2)

2 dŝ = 2α2

∥∥∥∥∥µ
1
2

h
1
2

uuu j
h ·nnn

∥∥∥∥∥
2

Fj

,

µ

∫
F̂j

α1
∂ v̂1

∂η
(û1−P0û1) dŝ > −Cα2

1
4ε

∥∥∥∥∥µ
1
2

h
1
2

uuu j
h · τττ

∥∥∥∥∥
2

Fj

− ε

∥∥∥µ
1
2 ∇uuuh

∥∥∥2

Pj
,

2µ

∫
F̂j

α2
∂ v̂2

∂η
(û2−P0û2) dŝ > −Cα2

2
ε

∥∥∥∥∥µ
1
2

h
1
2

uuu j
h ·nnn

∥∥∥∥∥
2

Fj

− ε

∥∥∥µ
1
2 ∇uuuh

∥∥∥2

Pj
.

We observe that ∂ v̂2
∂ξ

= ∇̂(0, v̂2)
T ·τττ. Using the trace inequality, the inverse inequality and (2.7) (2.8), we

can show ∥∥∥∥∂ v̂2

∂ξ

∥∥∥∥
F̂j

. h−1
∥∥∥uuu j

h ·nnn
∥∥∥

Fj
.

Note that since
∫

F̂j
∂ v̂2
∂ξ

dŝ = 0, we obtain

µ

∫
F̂j

α2
∂ v̂2

∂ξ
û1 dŝ = µ

∫
F̂j

α2
∂ v̂2

∂ξ
(û1−P0û1) dŝ>−Cα2

2
4ε

∥∥∥∥∥µ
1
2

h
1
2

uuu j
h ·nnn

∥∥∥∥∥
2

Fj

− ε

∥∥∥µ
1
2 ∇uuuh

∥∥∥2

Pj
.
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