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Abstract

Aerosol-assisted chemical vapour deposition (AACVD) is a well-known method
for synthesising metal oxide thin films on glass. The primary metal oxide pre-
sented here is SnO2 for its transparent conducting oxide (TCO) properties. Its
fluorine doped form is an established TCO and widely deposited as a window
coating.

The versatility of the AACVD method is displayed in this thesis with re-
sults of the facile deposition of gold nanoparticles (AuNPs). AuNPs are an-
other useful class of materials but in this thesis the interest is mainly in their
surface plasmon resonance (SPR) absorption. Composites of fluorine doped
SnO2 and AuNPs were synthesised, allowing the successful combination of
the optical and electronic characteristics in one material.

The SPR of AuNPs, which gives them their pink and purple colouring,
depends on many factors including size, shape and the refractive index of the
surrounding medium. Using AACVD, AuNPs were then further layered into
composites with other metal oxides, including TiO2, Al2O3, Ga2O3, ZnO and
MgO. Ellipsometric measurements were performed on the metal oxides in or-
der for their refractive index to be calculated and these were compared to the
shifts in the SPR that were observed.

AACVD can also deposit AuNPs onto glass (silica) wool as well as on flat
float glass. These were shown to be active as catalysts in the selective oxidation
of benzyl alcohol.

A wide range of functional materials have been synthesised and analysed
in this thesis. New materials with interesting properties can be made from
creating composites. This thesis shows that AACVD is capable of synthesising
compounds and structures applicable for many devices.
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Chapter 1

Introduction

This thesis will present results relating to the synthesis of gold nanoparticles

and their composites with metal oxides. The main synthesis procedure used

was aerosol-assisted chemical vapour deposition (AACVD). SnO2 and the F

doped analogue was the primary metal oxide synthesised and investigated for

its transparent conducting character. The optical properties, specifically the

surface plasmon resonance absorption, of the gold nanoparticles (AuNPs) were

observed and analysed. The shifts in SPR due to the nanoparticles being in a

composite with dielectric metal oxides will be investigated through the optical

analysis of layered AuNP composites with varying metal oxides. AuNPs will

also be deposited onto another silica substrate, glass wool, and shown to be

catalytically active.

1.1 Transparent conductors

A transparent conducting material presents us with the unique spectral and

electrical properties of transparency over the visible region and high conduc-

tivity, which really lend themselves as components in modern optoelectronic

devices such as flat panel displays and solar energy technology.20 According to
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Haacke’s review in 1977,21 the first reported transparent conductors were of

very thin films of silver and platinum as electrodes in selenium photoelectric

cells.22,23 However, for current practical applications, transparent conducting

oxides (TCOs) dominate the field due to the relative ease of their synthesis and

robustness.21

Conductivity in a wide band gap semiconductor is usually achieved by n-

type doping of a metal oxide, where the dopant donates electrons into the con-

duction band. Transparent and conductive In2O3:Sn (tin doped indium oxide

or ITO) thin films were reported during the mid-1960s,24 first used for reduc-

ing heat losses from sodium lamps,20 it continues to be the one of the most

widely used and highest standard TCO. The addition of dopants in the metal

oxide matrix increases the number of charge carriers in the system, not only

does this improve the conductivity but also enables the material to reflect light

from the IR region. These features of TCOs can be exploited for low emissivity

windows or as the electrode layer transferring electrons to the electrochromic

layer of an electrochromic window.25 More details into the synthesis and ap-

plications of TCOs will be discussed in Section (1.2).

TCO properties are commonly measured and compared using their trans-

mittance and resistance. T , the optical transmittance is related to α, the optical

absorption by

T = exp(−αt ).

Sheet resistance, Rsh, is related to the inherent resistivity, ρ and film thick-

ness, t by

Rsh = ρ/t

and as t increases both T and Rsh decrease with differing proportions.
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1. Introduction

1.1.1 Metals

Metals are a logical material to approach in terms of conductivity for TCO

applications, however these materials possess optical reflectivity that need to

be overcome in order for them to be suitable for use as transparent conductors.

The plasma present due to metallic bonding results in the majority of the visible

light wavelengths being reflected from metal surfaces. Absorption of certain

bands in the visible produces coloured metals, such as yellow for gold and red

orange for copper. The problem of optical transparency in metal films can

be overcome if the thickness of the film were to be lowered to less than 50

nm, preferably below 10 nm. And so, the success of generating a metal film

with low thicknesses reliably is an important factor for synthesis since with

increasing thickness there is an exponential decrease in transparency.26,27

Normally metal thin film growth begins with island formation at low con-

centrations, and depending on the wettability of the surface, bridges will start

to form between the islands as they coalesce. When only islands are present,

the conductivity of the film is low or non-existent, and as soon as bridges form,

connection pathways for carriers also start to form and the conductivity prop-

erties become similar to bulk properties, with increasing conductivity as the

thickness increases.28 If bridges and carrier pathways can be encouraged to

grow at lower concentration, ultra-thin metal films (UTMF) can be formed,

resulting in higher optical transparencies. The tendency for metal islands to

coalesce is related to the surface roughness of the film and depends on the nu-

cleation and growth kinetics of the metal films.26 In transparent electrodes,

the metal oxide component can be used as a seed layer to improve the chemi-

cal and physical interactions between the metal and substrate. By varying the

metal oxide, the wettability of the metal to the surface can be adjusted, and

so potentially reducing the thickness at which the thin film form carrier path-
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ways.29

Diffuse (inelastic) electron scattering can occur on the surface of thin metal

films, reducing the mean free path, and thus resulting in higher sheet resis-

tances when compared to the bulk material.30 According to Sondheimer31 and

Fuchs32 the conductivity only increases when the thickness of the film exceeds

the carrier mean free path, and so the limit in resistivity is purely a geometrical

effect. Apart from diffuse scattering, it is thought that strain and impurity also

play important roles in determining the conductivity of a thin film. However,

early experiments have shown that the relationship between film thickness,

the mean free path of the electrons and conductivity is not simple and does not

obey an exact rule. At room temperature the mean free path for gold is about

620 Å, but the resistivity does not increase until the film is less than 200 Å (Fig-

ure 1.1),1 where there may be specular (elastic) scattering occurring from the

surface.

Figure 1.1: Resistivity of evaporated gold films on bismuth oxide showing bulk
resistivity at 200 Å, less than the mean free path of conduction electrions.1
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1. Introduction

Macrostructures can also be used to play with the observed transparency

of metals. It has been proposed with effective medium theory that metals with

a porous structure can be transparent to wavelengths larger than its pores.33

Porous Pt with thicknesses of up to 30 nm have been incorporated into a p-

type In-P system and been shown to remain transparent, even adding func-

tionality as the Pt metal could catalytically improve the solar to hydrogen con-

version.34 Attempts to increase the thickness of porous Au films to 300 nm by

forming microcylindrical structures were unsuccessful in preserving the visi-

ble transparency, but maintained infrared (IR) transparency which is normally

not present in a homogenously deposited Au film of the same thickness.35

Another solution to overcome the optical restraints and maintain electri-

cal conductivity is to create thin films of metal nanowire meshes. Solution

processed Ag nanowires with a modal length of around 8 µm can result in

films which have solar transmittance of 85% with sheet resistance of 10Ω/�.36

The mechanical nature of the reported Ag nanowires means they can be bent

up to a 4 mm radius without any effect on the sheet resistance. The solu-

tion deposition and lower temperature of synthesis also make this an attrac-

tive environmentally-friendly option when compared to traditional TCOs. Ex-

tending the nanowires to over 100 µm stretches the network to over 460% strain

without losing its conductivity as shown in Figure 1.2.2

Even though flexible, metal nanowire meshes have problems similar to

metal nanoparticles,37,38 with adhering to glass substrates, rubbing off easily

and failing the Scotch tape test.39 By embedding Ag nanowires in a polymer ma-

trix the adherence problem is not only solved but the roughness of the mesh is

overcome making the material more electronically connected and compatible

with devices.3,40 Transparent electrodes made from a Ag nanowire composite

in a conducting polymer has even been shown to outperform the ITO analogue

(Figure 1.3 a).3
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Figure 1.2: Macroscopic and microscopic digital images of highly stretchable
Ag nanowire network on Ecoflex being put under strain and schematic of
stretching and current flow.2

Metal patterning by laser perforation of a thin silver film was tested in sil-

icon oxide solar cells with the idea of improving the conductivity with bet-

ter surface contacts, however the best performing Ag contact (18% coverage)

only achieved a current density of 30.7 mA/cm2 compared to an ITO contact

measuring in at 34.2 mA/cm2.41 A similar technique involves the formation of

carbon nanotube meshes, which also look promising for flexible devices, how-

ever the optoelectronic properties are not yet comparable with current TCO

standards.42–44
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Figure 1.3: Tapping mode AFM scan of a PEDOT:PSS/Ag nanowire compos-
ite surface and height line profile.3

1.2 Transparent conducting oxides (TCOs)

Instead of working to improve the transparency of metallic materials, some

metal oxide semiconductors that already possess optical transparency can, with

the right synthesis also display relatively high electronic conductivity. This

class of materials, called transparent conducting oxides (TCOs), having the

coexistence of optical transparency and conductivity properties, was first re-

ported in the form of cadmium oxide (CdO) around 60 years ago.45

CdO is a promising TCO with a high carrier mobility resulting in a low

resistivity of 2×10−4 Ωm, however the moderately narrow band gap of around

2.3-2.5 eV means absorption in the visible wavelength region results in ma-

terials that are not fully transparent.46 By forming a composite with another
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TCO, such as ZnO which is transparent, the properties of the two oxides can be

mixed. As expected, a higher Cd:Zn ratio content in the composite decreased

the resistivity but at the same time also decreasing the transmittance in the

visible.47 Doping with another metal, Al manages to increase the carrier con-

centration but to detrimental optical effect since the presence of Al increases

ionized impurity scattering and retards the mobility, furthermore the band gap

was reported to narrow with increasing Al content.48 Instead of using CdO as

a factor to increase the conductivity of another metal oxide system, researchers

have tried to utilise the Burstein-Moss phenomenon (see Section 1.2.3) to in-

crease the band gap of CdO and make it more transparent.49 Lower levels of

the conduction band in CdO can be populated with excess electrons with Ti

doping and an increase in band gap was observed from 2.54 eV to 3 eV when

moving from undoped to 5 at.% Ti.49 The conductivity does not however in-

crease in line with the carrier concentration, and the authors suggest that the

presence of Ti dopants introduced stress fields in CdO which reflect free carri-

ers, reducing the mobility from 591 to 202 cm2/Vs when comparing between

undoped and 5 at.% Ti doped CdO.

1.2.1 Electronic structure of TCOs

Fan and Goodenough’s band structure of Sn doped In2O3 (ITO) derived from

x-ray photoemission studies provided an early basic understanding of the band

structure of a TCO material.4 Oxygen vacancies (VO) and Sn interstitials both

provide additional impurity donor levels just under the conduction band min-

imum (CBM). At high donor concentrations the impurity levels overlaps the

CBM, increasing the Fermi level (see Figure 1.4) and creating a degenerate cur-

rent carrying electron gas.50

Following this the conductivity can be characterized by the itinerant elec-
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Figure 1.4: Schematic energy-band model for Sn doped In2O3 with low (left)
and high concentrations of oxygen vacancies as developed by Fan and Goode-
nough.4 It shows the Fermi level (EF) increasing with significant doping into
the conduction band (In 5s and 5p) through oxygen vacancies (VO).

trons and treated with the electron-gas model of solids.5 The resistivity will

then follow the equation:

ρ≈ (neµ)−1

where ρ is the resistivity, n the carrier concentration, e the electronic charge

and µ the mobility of the charge carriers. Mobility, µ is directly proportional

to the free carrier resistivity relaxation time, τ and inversely proportional to

the carrier effective mass, m∗:

µ=
eτ
m∗

The relationship between the electron mobility and electron densities of dif-

ferent materials can be seen in Figure 1.5. Metals have both high µ and n,

semimetals low µ and high n and semiconductors high µ and low n. TCOs

occupy the space between semiconductors and metals with metal-like conduc-
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tivity and insulator-like transparency. Further details on the origin of the con-

ductivity of SnO2, the main TCO system focused here in this thesis, is discussed

in Section 1.2.2.

Figure 1.5: The relationship between electron density and mobility for various
conducting materials.5

1.2.2 Conductivity of tin dioxide

Introduction of defects into a metal oxide lattice will lead to defect levels in

the band gap which when at a high enough density will start contributing

the electrical conductivity character of the host material.51 Tin dioxide can be

made conducting very easily without extrinsic doping. The origin of this in-

herent conductivity was put down to the presence of oxygen vacancies, native

point defects, which can act as donors or acceptors.52–55 However, based on

DFT-LDA calculations Kılıç and Zunger suggested that it was actually intrin-

sic defects in the form of+4 Sn interstitials that contribute to the conductivity

through the formation of conductive shallow donor states, rather than O va-

cancies (VO) which they say form deep non-conductive levels.6 The different

interstitials sites they considered are shown in Figure 1.6. Electrons around the

Sn orbitals are very weakly bound, thus the formation energy of Sn interstitials
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are low. The addition of +4 Sn interstitials causes a change in bond lengths to

similar distances that is found in SnO, another stable tin oxide structure. Oxy-

gen vacancies were also found to have low formation energies, becoming more

favourable in the presence of Sn interstitials because of a strong interdefect at-

traction between them, explaining their detected presence in conducting SnO2

samples. The DFT-LDA modelling method used by Kılıç and Zunger for cal-

culating the formation energies of various defects have been questioned, and

instead calculations are said to be more accurate when using the generalized

gradient approximation (GGA) + U , as it reportedly can acquire the correct

band gap and consequently more accurate defect formation energies. (GGA)

+U studies concluded instead that interstitial Sn sites do have high formation

energies.56

Figure 1.6: (a) An interstitial site in SnO2 and the different possibilities of filling
it with, (b) a neutral Sn interstitial, (c) a Sn+4 interstitial, and (d) a neutral Sn
interstitial with an O vacancy.6

Electron paramagnetic resonance (EPR) can detect spins of unpaired elec-

trons within systems. EPR studies of SnO2 have identified a singly ionized reso-

nance which has been attributed to VOs, since the signal intensity was found to

decrease in an oxygen environment and increase with increasing conductivity

in a hydrogen environment.57,58 Instead of assigning this state to VOs, and be-

cause of the lack of confirmation from other forms of experimental detection,

some researchers have also assigned the defect, which contributes to intrinsic

SnO2 conduction, to interstitial hydrogen.56 Furthermore, hydrogen has been
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reported to contribute to a shallow donor state and therefore increasing the

number of charge carriers in ZnO, In2O3 and SnO2.
59–61 Some researchers have

found unintentional extrinsic doping of Cl, originating from a chlorinated tin

precursor being used in synthesis,62 which is also believed to have led to in-

creases in conductivity levels of SnO2.
63,64

To describe the effects of metal cation defects on the conductivity of SnO2

films, the small-polaron hopping conduction model was proposed since the

defects that contribute to conduction also cause disorder as it moves through

the system.55,65 To investigate this, SnO2 was doped with Li+, Cd2+, Al3+ (p-

type), Ti4+ (same valency), Nb5+, and W6+ from a hydrothermal method. The

authors concluded that ionization energy values of each individual defect will

affect the position of the defect levels. Conductivity was found to decrease

for the Li, Cd, Al and Ti doped films, but increase for Nb and W doped films.

Decreased conductivities were thought to be due to VOs formed to charge com-

pensate some of the p-type cation dopants (Li, Cd and Al). The Ti4+ dopant was

believed to have been reduced to a Ti3+ acceptor state which can stably form

in SnO2 and neutralise any conductivity. When SnO2 was doped, it was found

that the hopping energy was lowered due to a change in dielectric constant,

and this can be used to describe the electron transport properties of defect-rich

metal oxide semiconductors.65,66

Scattering and mobility

The resistance of a conducting thin film can be decreased simply by increasing

the thickness of the film, however for a TCO material this method of increas-

ing conductivity is limited by the increase in scattering and absorption of light

as the film thickness increases. For polycrystalline thin films, scattering can

occur on the grain boundaries.67 Knowing the dominant crystal structure is

important in trying to elucidate transport properties limited by trapped cen-
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tres at the grain boundaries. The (200) plane of SnO2 is predicted to have no

deep lying trap levels at grain boundaries and this is correlated to higher con-

ductivities.68 Grain boundary mechanisms can be ignored if the grain sizes are

larger than the electron mean free path. At higher deposition temperatures,

with larger resultant crystallite size and higher crystallinity, grain boundary

resistance effects are negligible.69

The scattering mechanisms and frequency affects the final electron mobility

of the material. In single crystals electrons can be scattered by phonons, and

when doped intrinsically at high levels from the ionized dopant atoms. Non-

metal dopants, such as F, can therefore increase n without compromising the

optical performance. Recently, it has been suggested that for Mo doped In2O3

high mobilities can be retained even for highly doped systems overcoming the

impurity scattering frequently associated with these systems. In order for this

to occur, the amount of hybridization between the dopant states and the host

lattice must be low at the conduction band minimum.70

There is a wealth of published research on SnO2 TCOs, synthesised in a

large variety of ways, so there is that there exists a large variation in the re-

ported electronic and optical constants some of which will be highlighted in

the discussion.71

1.2.3 Band gap and electronic structure

The band gap (BG) in a semiconductor refers to the gap between the valence

band maximum (VMB) and conduction band minimum (CMB). TCOs are

transparent because the energy size of the gap is larger than that for visible light.

They become conducting when the conduction band is filled with enough elec-

trons, n-type, or if there are mobile holes in the valence band, p-type, which

will then have an effect on the BG structure.
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When lower levels of the conduction band are filled by extrinsic or intrin-

sic doping, the measured optical band gap can be seen to increase and this is

called the Burstein-Moss shift (Figure 1.7).72,73 The Burstein-Moss shift is com-

pensated by band gap narrowing due to many-body interactions, which causes

shifts in the valence and conduction bands.7 For an n-doped semiconductor far

above the Mott critical density, where the density of electrons are high enough

to become conducting, an effective mass model can be used to interpret the

data that takes into account the electron-electron and electron-impurity scat-

tering.74 The Burstein-Moss shift can be correctly calculated for SnO2 using

this model, with a further consequence of band shape distortion with increas-

ing degrees of degeneracy.7

Figure 1.7: Schematic of the optical band gap (BG), Burstein-Moss (BM) shift
and BG widening and narrowing due to many-body interactions. Adapted
from literature.7

At the edge of the optical band gap an exponential tailing can be observed

which is referred to as the Urbach tail caused by which is due to deformation at

high carrier concentration.75 Impurity, disorder and defects in structure leads

to local electric fields that affect band tails.76
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1.2.4 Fluorine doped tin dioxide (FTO)

A common way to improve SnO2’s conductivity is through fluorine doping to

make fluorine-doped tin oxide (FTO). F is a favourable substituent because of

its comparable size to the O2−, similar bond energy of Sn-O and Sn-F and lack

of contribution to ionic scattering. Lab and large scale depositions of SnO2 or

FTO normally yields polycrystalline thin films. Different facets and the ori-

entation of planes can influence the observed optoelectronic character of the

material. (110), (211) and (301) planes have trapping states at the surface which

hinders conductivity, while films with high (200) facing crystallites should have

the same transport properties found in thicker films as the (200) plane is said

to be of higher density.77 Therefore many instances of FTO with high mobil-

ity character have been found to deposit with a preference for the SnO2 (200)

plane.69,78,79

At very high levels of F doping, an Sn-F complex is predicted to form from

X-ray photoelectron spectroscopy (XPS) results, as the F starts populating the

VO sites, decreasing carrier concentration and mobilities.80 If F is substituted

onto an VO there is expected to be a drop in carrier concentration, whereas if

the F substitutes the O site, an increase in carrier concentration should be ob-

served. Excess doping can lead to F sitting at interstitial sites, becoming an elec-

tron acceptor and increasing lattice disorder, therefore hindering conductivity.

As F dopants were introduced and increased in the spray pyrolysis of SnO2, an

initial drop in carrier concentration was observed, before the expected increase

and finally reaching a saturation point when precursor solutions of F:Sn at 250

at.% was used.77

As has been shown by Auger Electron Spectroscopy (AES) studies, F has a

high desorption rate induced by the electron beam,81 therefore elemental analy-

sis of the film surface will probably prevent correct assessment of the F content.
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In general, the dopant amount and inherent size of F in FTO is normally very

low that it is hard to detect and measure using conventional lab techniques.82–84

1.2.5 Applications

TCOs play an important role in the structure of solar cells. The basic concept

of a solar cell is the generation of electricity from the absorption of a pho-

ton which promotes a carrier from the ground to excited state. Some way is

then needed to extract or supply carriers to or from these states. In the two

more popular types of solar cells, silicon p-n junction and dye sensitized so-

lar cells, TCO materials were used as electrodes to extract the electrons from

the light absorbers.85 Anti-reflection properties can also enhance the effect of

photoabsorbers by making sure the maximum amount of light gets through

to the photoactive material.86 A scattering film which gives the appearance of

“milkiness” is advantageous for solar cell applications as it allows the average

path length of the light in the absorber to be longer. The main way to increase

the scattering is to generate roughness in a film87 and when measured by dif-

fuse scattering only 5% is needed for optimized solar energy capture.88 This

scattering is called haze and is measured by:

haze%= Tdiff/(Tdiff+Tspec)× 100

where T diff is diffuse scattering and T spec is specular transmission.

Doped with the right element, electrochromism, the changing of the colour

of a material due to charge, can be displayed in SnO2. Sb doped SnO2 weakly

absorbs in the visible and near IR due to intraband absorptions of conduction

band electrons.89 When applying a potential to Sb doped SnO2, the intensity

of absorption in the visible and IR region changed according to applied po-

tential.90,91 Sb:SnO2 is blue at positive potentials and by decreasing the applied
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potential from E =+1.4 V to E =+0.2 V there was an observed increase in ab-

sorption. By further decreasing to a negative potential of E =−0.4 V, increases

in absorption was also observed near the UV region indicating the introduc-

tion of other absorption processes. Degradation of system electrodes and the

electrolyte occurs outside the range of E = +1.4 V and −0.4 V, but within

this range the electrochromic effect can be cycled without losing efficiency or

colouration up to 106 times.91

Large scale depositions of FTO as low ‘e’ architectural windows, coatings

with reflectance in the IR, makes FTO one of the most widely deposited TCOs.

TCOs are also used in devices where transparent electronics are essential such

as touch screens, flat panel displays and transistors.

1.3 Chemical vapour deposition of TCO materi-

als

Reports in literature of transparent conducting SnO2 thin films have shown

that it can be synthesised by many techniques such as spray pyrolysis, chemi-

cal vapour deposition (CVD), sputter coating amongst others.92 A variant of

chemical vapour deposition (CVD) is the method of choice for making thin

films industrially on-line for glass coatings and, as shown in this thesis, can be

scalable to smaller laboratory experiments. The results from lab-scale CVD

experiments are a valuable tool for understanding and predicting the reactions

that might occur in a larger scale reactor. In this thesis, aerosol-assisted chemi-

cal vapour deposition (AACVD) was used to deposit metal oxides, gold nanopar-

ticles (AuNPs) and composites comprised of both onto glass substrates.

Chemical vapour deposition of thin films are labelled so because the chemi-

cal reactions between the vapourised precursors begin to occur in the gas phase
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or on the substrate, before further reacting and leading to deposition of thin

films.93 This is different to physical vapour deposition (PVD) which involves

adsorption of atoms or molecules onto the surface prior to reacting i.e. if the

precursor or droplets adsorb onto the surface before reacting. Pilkington in-

troduced industrial "on-line" atmospheric pressure CVD (APCVD) on archi-

tectural glass, the most successful coating being FTO low emissivity coatings.

Spray pyrolysis has been used to make SnO2 thin films and the precursors in

solution are sprayed onto a heated substrate.94–96 If the droplets do not react in

the gas phase and land on the surface before evaporation or initial reactions, it

is classed as a PVD process. Sputtering is another example of a PVD technique

whereby the precursors in the form of atoms are generated and accelerated to-

wards a substrate where it reacts to form thin films.

Reactions involved in the CVD mechanism are complicated and involve

many factors such as the temperature, carrier gas, precursor, and flow rate.

Varying any of these factors change the concentration of precursors present

in the gas phase, residence time of reactants on the surface, and consequently

influence the nature of reactions occurring both in the gas phase and on the

surface. Specifically, the formation of a thin film depends on adsorption of at

least one reactant on surface, formation of critical nuclei by surface reactions

preceded by surface diffusion and formation of activated complexes. Any waste

gaseous products undergo desorption of gaseous with or without some surface

migration. Figure 1.8 show the key steps in a CVD that mainly characterised

by the following processes:

i Vapour flow into the reactor followed by the evaporation and of the pre-
cursor reagents

ii Gas phase reactions of the precursors produce reactive intermediates and
by-products

iii Reactants move by mass transport onto the surface
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iv Reactants then adsorb onto the surface

v Reactants can diffuse across the surface and further react to forming the
thin film

vi Surface products desorb and move by mass transport away from the re-
action area

Figure 1.8: Reactions and processes in chemical vapour deposition (adapted
from Hitchman et al 8).

CVD reactions are traditionally initiated through thermal processes, as it

is with the AACVD set up used in this thesis. As the temperature of the reac-

tor increases, the growth rate increases in relation to the Arrhenius equation.97

However, after a certain temperature the growth rate becomes dependent on

the mass transport of reagents to the surface and is said to become mass trans-

port or diffusion-controlled growth.72,98 If gas phase reactions occur too early,

it may mean that the product is formed as a powder rather than a thin film.

In the CVD of SnO2, it is unlikely that there homogenous gas-phase volume

reaction found except at high temperature.99 There are many other methods

apart from CVD used to make TCOs which will be briefly discussed here.

If low temperatures are needed, for example if the material is thermally

sensitive, plasma-assisted or plasma-enhanced CVD can occur at low temper-
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atures where electrical energy is used to initiate reactions.100 Sol-gel produces

highly uniform film, with less risk of reactions happening in unwanted areas

of the reactor, but requires a two-step process of first forming the amorphous

layer which is crystallised normally using heat.101,102 Even though relatively

cheap, this process can be very time expensive as each amorphous layer has

to be dipped or spun onto the surface and is unsuitable for large scale high-

throughput depositions.

In general extremely high levels of layer-by-layer control can be achieved

with atomic layer deposition or an epitaxy-type deposition, however long de-

position times are required with specialist equipment for maintaining low pres-

sures and precise control of high-purity precursor flow.103,104 This is in contrast

to AACVD where reactions can be carried out in atmospheric pressures and

environments. For accurate controlled ratios of elements sputtering is often

used, as the amounts of metal atoms in the gas phase released from the source

can be controlled by the voltage of the high energy electron beam but this is

an off-line method.

Inkjet printing methods of TCO materials provides the user with the op-

tion of direct patterning, extremely useful for solar cell fabrication, and precise

control of the desired amounts of deposition. Due to the ink-drying process,105

the thin films do not yet provide high conductivites seen from other deposition

methods. Spray methods can be fast and the mechanism of reaction initiation

can be adjusted according to the desired end product. The disadvantages are

that the films produced from spray can be uneven and films tend to have im-

purity issues.106

Instead of using a tightly controlled deposition process such as ALD and

MBE, highly pure and dense thin films can be produced using CVD because of

the way reactions occur through chemical reactions between the precursors in

the gas phase. It is a non line-of-sight uniform coating process which is advan-
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tageous over PVD processes that suffer from shadowing and uneven coatings

on non-flat substrates.93 In terms of experimentation, there are many indepen-

dent variables allowing the user to tune the properties of the thin film such

as morphology, orientation, and surface structure. In particular for aerosol-

assisted CVD, as the volatility of the precursors is not as important, it opens

up a wider selection range of precursors.

1.3.1 Aerosol-assisted chemical vapour deposition (AACVD)

There are a variety of ways to generate the gaseous precursors for CVD. Com-

monly atmospheric pressure chemical vapour deposition (APCVD) is used to

carry out FTO deposition in industry.107 In APCVD the precursor gas is gener-

ated directly using heat from the liquid precursor chemicals, without the use of

a solvent, and mixed prior to being carried into the reactor deposition.108 Even

though APCVD allows for a high throughput process producing excellent op-

tical and electronic properties, it is harder to control morphologies, which can

be important for certain applications for example haze for solar cells. With

AACVD, a solvent is used to dissolve the precursors, and this offers the user an-

other factor to vary the resultant phase and morphology. This control in mor-

phology achieved using AACVD, can be used as a seeding layer for APCVD,

thereby combining the modification with the quicker synthesis of industrial-

style APCVD.109

For AACVD, fine aerosol droplets are formed from a precursor solution

using either a Collision type atomizer, ultrasonically or through a standard

spray head. In this thesis the droplets were mainly produced ultrasonically,

but also through a spray head whereby the droplet size can be controlled by

adjusting the liquid flow. The aerosol droplet size affects the proximity the

precursor molecules are to each other and so the final film structure and mor-
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phology through different energetically preferred reactions.110 When compar-

ing the two droplet production types, ultrasonic droplets have an average size

of 45 µm whereas the Collision atomizer produce much smaller droplets of

around 0.3 µm. It has been shown that aerosols generated with a Collision type

atomizer are more effective at depositing fluorine-doped tin dioxide with more

desirable transparency and conductivity when compared to the ultrasonic gen-

eration or APCVD.69 However, as the Collision atomizer is made from metal,

it degrades when coming into contact with the auric acid precursor solution

and so was not used for the purpose of this thesis.

A range of variables can be used in AACVD which allows the user to con-

trol the electrical and crystal properties such as deposition temperature, dopant

concentration and aerosol size as variables.69 We decided to use the AACVD

system since there have already been reports of auric acid as a precursor for

AuNPs in AACVD reactions,38 and the system has also been shown to produce

high quality SnO2 TCOs.69,79 Reports on AuNP depositions using AACVD up

until now have been sparse and this thesis aims to investigate these reactions

further, improving the process and elucidate the reactions that are happening.

1.3.2 Thermophoresis

In an AACVD reactor there are a multitude of forces that affect the way in

which the aerosol and particles flow through the reactor such as electrostatic,

gravity, diffusion and thermophoretic forces.9 As the heat source lies along the

bottom plate for an AACVD reactor (Figure 1.8) there is a decreasing tempera-

ture gradient from the bottom to the top plate. Thermophoresis describes the

process when particles suspended between the plates can experience a force and

flow upwards away from the heat source. The force is exerted on the particles

from convection of gases within the reactor.
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Figure 1.9: Arrows indicate the convection of gases upwards away from the
heated substrate/bottom plate, affecting larger particles more strongly, trans-
porting them towards the top plate and leaving smaller particles nearer the
bottom plate.

The thermophoretic effect can be useful for directing unwanted contam-

inant particles way from the substrate111 but can also make reactions unpre-

dictable and be an unwanted effect for NP deposition. NPs are likely to ex-

perience thermophoresis due to their size compared to reactive molecules or

particles, as has been shown for AuNPs in an AACVD reactions.38,112

Temperature and flow rate affect the flow within the reactor and the ob-

served thermophoretic effects. Flows of TiO2 particles were measured for a

horizontal reactor investigating the thermophoretic effects present. As a re-

sult of the flow and an upwards movement of the particles a perceived dust-free

region was observed (Figure 1.10).9 This dust-free region was also found to in-

crease with increasing substrate temperature and decreasing flow rates. Heavier

and larger particles have smaller dust-free regions, however the particles inves-

tigated were all above 0.8 µm, much larger than the NPs discussed in this thesis.
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Figure 1.10: Schematic showing a horizontal reactor and flow of dust used in
calculations of thermophoretic effects.9

1.4 CVD of SnO2 thin films

Precursors are selected in terms of availability, solubility, decomposition tem-

perature and molecular structure. Having the precursor in the desired oxida-

tion state or already bonded to the desired atom, e.g. bonded with oxygen if

product is an oxide, can be useful for achieving the desired product. The sol-

vent is selected based on whether it can dissolve the desired precursor and how

easily it forms a vapour in the ultrasonic humidifier. Solvents can be inert,

act as a reagent or even a catalyst.69,79,113 This is also true for the carrier gas.

The rate at which the gas carries the aerosol into the reaction chamber can de-

termine where the reaction and deposition occurs. Deposition temperature is

important for giving the desired phase and deposition pattern on the substrate;

too high and the deposition occurs in the baffle not on the substrate, too low

and product forms and exits through the exhaust. The various factors affecting

the CVD of SnO2 will be discussed briefly here.
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1.4.1 Precursors

The deposition techniques used will determine the type of precursor chosen,

which will then affect the final properties of the film by more than just the

basic elemental composition. SnO2 can be sputtered into thin film form from

a readily oxidised SnO2 or metallic Sn target. The metallic Sn reacts with O2

gas in a process called reactive sputtering. However, instead of reacting at the

surface with sputtered Sn atoms, the O2 gas can also oxidise the target surface

itself, switching to compound sputtering mode. The switch between metal

and compound sputtering modes presents itself as a hysteresis in the material,

resulting in a non-uniform and irreproducible thin films.114 As a result of this

instability amongst others, various phases and oxidation states of Sn can be

found in one deposition.115

For chemical vapour depositions involving tin chlorides such as SnCl4, an

initial continuous rise in growth rate proportional to the precursor concentra-

tion was observed after which further increases had no effect.116 Agashe and

Major suggests that instead of the Sn precursor undergoing gas phase pyrolysis,

the Sn containing species first adsorbs onto the surface then reacts with H2O

to form the oxide. At certain precursor concentration levels the substrate be-

comes saturated with adsorbed species and there is not enough oxygen from

H2O to react with Sn which leads to a constant growth rate unaffected by the

amount of Sn in the reactor. To further confirm surface reactions as key steps,

experiments with tin tetrachloride (TTC) showed that the growth rates were ac-

tually too slow for the reaction to be initiated by gas-phase reactions.117 Using

monobutyltin trichloride (MBTC) can give a more complicated view as when

water and oxygen are involved, pyrolysis, hydrolysis and surface reactions all

could be occurring simultaneously in the reactor.118

Van Mol et al. discussed kinetic models of reaction between MBTC, H2O
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and O2 by combining computational techniques and comparing these to ex-

perimental data. For organometallic precursors such as MBTC the reaction

can begin with the breakage of the Sn-C bond in the gas phase if tempera-

tures reach above 400 ◦C, forming radicals which then start a chain reaction

where deposition then occurs. However, commercial CVD reactors might not

have high enough temperatures in areas that are not in direct contact with the

heating element for the initial cleavage of the Sn-C bond, as areas away from

the heated substrates are usually under 400 ◦C and so depositions under these

conditions is only limited to surface reactions.118 They reported that the most

likely model would begin with the gas-phase formation of an MBTC-H2O com-

plex, adsorption onto a substrate and consequent reaction with a gaseous O2,

which results in a mass transport limited growth rate observed dependent on

the presence on MBTC concentrations. When using tetramethyltin (TMT)

or dimethyltindichloride (DMTC) as the precursor, it has been proposed that

the rate limiting chemistry occurs in gas phase, leading to species such as SnO

or SnO2 which diffuse to the film where they are absorbed and further ox-

idised. However, modelling of the SnO2 formations might be unrealistic as

they were based on a laminar flow reactor within a tube furnace, meaning the

whole reactor is heated evenly with little or no temperature gradient above the

substrate.97,119,120

By-products of precursor decomposition can have unintended effects on

film growth. Radicals, formed from the breakdown of bromotrifluoromethane,

act as scavenging agents inhibiting film growth.119 Further tests by using addi-

tional compounds of Br2 and tert-butyl bromide in the reaction mixture was

shown to inhibit film growth, therefore when choosing a precursor it is impor-

tant to note if it thermally decomposes into any of radical scavenging species.97

For reactions using common chlorinated Sn precursors, for example tin tetra-

chloride, by-products could include Cl2 and HCl, and the ratio of these can
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determine if the film has a rough or smooth surface.121 Any produced Cl2 acts

as an etchant, reducing the roughness and resulting in smoother films.122

Sn precursors react with O containing species in the reactor to form SnO2

and using a O containing Sn compound doesn’t necessarily mean that fully ox-

idised SnO2 is obtained. Tin acetylacetonate has been found not to form a film

when deposited in N2, adding of H2O formed SnO, and only when the carrier

gas contained O2 did SnO2 deposit.123 Alkoxides andβ-diketonato precursors

can deposit SnO2 but with poor crystallinity and high resistivity.124,125

Working within the AACVD system, tin precursors with a crown ether

as a multidentate macrocyclic ligand has been used to try and modify the sur-

face structure of SnO2 in order to improve its gas sensing properties to some

success.126 In trying to deposit SnO2 nanoparticles within a TiO2 film from a

nanoparticulate precursor solution, the system suffered from precursor loss,

with the resulting film having decreased photocatalytic, electronic and opti-

cal properties.127 SnCl4, although useful as an APCVD precursor, the high

volatility is not needed for an AACVD system, and rather the high reactiv-

ity deters it as a precursor choice. Using compounds with an O present, such

as an acetylacetonate adduct, results in SnO2 with high C contamination giving

less transparent films. Since MBTC reacts initially by the cleavage of the Sn-C

bond,118 when used in an AACVD reactor MBTC deposits cleanly, with little

C contamination. MBTC also volatilises easily in the bubbler using ultrasonic

methods.109 MBTC was used in this thesis as a Sn precursor because of its track-

record of producing thin films with high transparency and low resistance,69,79

as well as the ease of handling and reasons just previously mentioned.
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1.4.2 Temperature

High quality SnO2 deposition has been reported mostly between tempera-

tures of 400-600 ◦C. Early CVD studies of tetramethyltin (TMT) show that

by increasing the deposition temperature, larger grains were produced since

smaller crystallites had more energy to coalesce.128 Larger grains will have

less grain boundary scattering and the material should have a higher mobil-

ity.129 Higher conductivity was observed in vapour deposited SnO2 from SnCl4

(TTC) when increasing temperatures from 380 up to 525 ◦C. This could be due

to larger grain size, however, the conductivity could also stem from O deficien-

cies which also increases with deposition temperature. The increased conduc-

tivity was not observed if the temperature surpassed 600 ◦C, and instead mo-

bility and carrier concentration began to decrease, perhaps due to O entering

the lattice.63 Another reason could be that in the reported films, Cl was also

detected in the lattice, present in all films apart from the one at 600 ◦C. The Cl

left behind from the TTC precursor could be contributing to the conductivity

and explaining the increased resistance in films deposited at 600 ◦C. Other un-

intentional extrinsic doping has been found for example, Br has been detected

in some films where SnBr4 has been used as a precursor for spray deposition.

As with the previously discussed depositions, increasing deposition tempera-

ture also increased O defects and lowered the final dopant concentration in the

resulting film.64 Another study also showed higher extrinsic F and Cl doping

occurring only at lower temperatures.128

For direct oxidation of TMT in a low pressure CVD system, at tempera-

tures above 600 ◦C an observed a spontaneous gas phase reaction was observed

which resulted in a white powder and only a very thin deposited layer of desired

material.130 Under 400 ◦C, TTC pyrosol depositions was suggested to be led by

nucleation resulting in a smoother fine grained amorphous structure that re-
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sembles “spherulites” or “cauliflowers”.121 This morphology was reportedly

due to HCl and Cl2 are produced as a by-product of TTC, and as the tempera-

ture increases, the amount of Cl2 decreases leaving a larger proportion of HCl

which etched the surface leaving it rougher.

Some precursors are able to deposit SnO2 at a temperature lower than 400

◦C, for example tin (II) bis-trifluoro acetate and tin acetylacetonate can deposit

polycrystalline SnO2 from 230 ◦C.123,131 The deposition reactions appear to

be thermally activated, dependent on the surface reactions and the desorption

and adsorption of gas phase species. Higher temperatures are still more advan-

tageous as the deposition rate has been shown to increase from 0.092 nms−1 at

360 ◦C to 0.65 nms−1 at 510 ◦C.121 Along with a higher deposition rate, a higher

temperature also means adsorbed surface molecules will be able to diffuse and

find the most energetically favourable site, creating films with less imperfect

crystallinity and a higher mobility. In an investigation using TTC there was

an activation energy associated with the deposition rate and temperature again

suggesting thermally activated growth led by surface reactions which depend

on adsorption and desorption of gas phase species.121

Since temperature can affect the way precursor is broken down and the

dopants, it can also affect the final Sn lattice positions. SnO and β-Sn peaks have

been found in CVD depositions from chlorinated Sn precursors between 450-

550 ◦C which can result in a narrowing of the band gap and reduction of optical

transparency.79,128 Apart from the deposition temperature, the formation of Sn

phases with lower oxidation states is also a factor of carrier gas and precursor

compound.
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1.4.3 Carrier gas

The carrier gas in the CVD production of SnO2 can be inert or take part in

the reaction, but either way its presence can still affect the reaction. Earlier

studies have shown that Cl dopant levels found in SnO2 was higher for films

deposited in N2, then O2 and finally lowest for H2.
63 Since O2 can be involved

in the reaction to form SnO2, it is logical to assume that there might be a simple

relationship found between oxygen pressure and deposition rate.130 However,

studies have shown that when the flow of O2 was adjusted to a very low rate, a

spontaneous gas reaction occurred, similar to reactions seen at high deposition

temperatures (see Section 1.4.2).

When O2 is in the reaction chamber and reacting to deposit SnO2, it could

eliminate oxygen vacancies thus decreasing the conductivity, as found by Kim

et al., where their SnO2 deposited with O2 was more insulating than if N2 was

used.64 Pre-mixing the precursors with O2, rather than introduction in the re-

actor can result in a film with weaker crystallinity. The authors of a study on

tin trifluoroacetate suggest that by introducing the O2 to the tin compound

earlier, the reaction occurs in the gas phase forming particles first before de-

positing on the substrate. Since the SnO2 lattice had already been formed from

gas phase reaction, it might be energetically unfavourable to rearrange on the

substrate surface to form a more crystalline film overall.131

H2O can also help the oxidation of Sn from tin (II) acetylacetonate (acac),

but only incompletely to SnO, since the additional presence of O2 was still

needed for complete oxidation to SnO2.
123 Even with laser ablation from an

SnO2 target, only when O2 gas was present in the chamber did SnO2 form.132

Perhaps because of the lack of crystallinity, using N2 can also lead to more resis-

tive and less transparent films, with a decrease in Hall mobility, rather than car-

rier concentration, which indicates scattering due to imperfect crystallisation
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from a deficiency in reactive O species.133 Post treatment after film synthesis

such as annealing in N2 or H2 plasma can also improve conductivity, however

with the danger of β-Sn formation.134

Oxygen poor conditions has been shown to give rise to poor mobility prob-

ably due to scattering from the defects and disorders. This disorder due to

thermal and structural defects manifests itself in Urbach tailing (Section 1.2.3),

which was observed to a larger degree when N2 was used as a carrier gas rather

than air.79

1.4.4 Flow rate

As the precursors flow into the reactor with the carrier gas, the mass transport

of these reactants can be the limiting factor affecting the deposition reactions

and rate. It was been shown that at very low flow rates the reaction rate is con-

trolled by gas-phase mass transfer and the deposition rate is dependent on it, but

with increasing flow the boundary layer thickness attains a limiting value and

the reaction becomes controlled by the chemical surface reaction rate; growth

is now independent of flow rates.99

As the precursors enter the heated part of the reactor they can either pyrol-

yse, hydrolyse, react with another molecule in the gas phase, or adsorb onto the

substrate before undergoing subsequent reactions. Instead of being mass trans-

port limited, if any of these subsequent reactions have a low rate of reaction,

any of them can also ultimately be the limiting factor in the rate of deposition.

For example, the flow rate of TMT into the reactor was observed not to affect

deposition rate, which probably means that formation of an active complex

that is inherently related to O2 is the rate limiting step. Consequently, depo-

sition rate is proportioned to the square root of oxygen flow rate at low flow

rates and constant at high flow rates.130
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1.4.5 Growth phase and structure

Certain depositions can result in SnO being detected in the final film, probably

because SnO is an intermediate to SnO2 and can be a consequence of incom-

plete oxidation. The oxidation of SnO to SnO2 can occur directly, or through

intermediates such as Sn2O3 and Sn3O4.
135–137

The effects of using methanol and water with varying ratios as solvents

in TTC pyrolysis reactions was found to increase the electrical resistance as

CH3OH:H2O increased above a ratio of 2-3.133 The hydrolytic formation of

SnO2 from the reaction of TTC and water was observed from SEM and XRD

to form larger grains with higher crystallinity and preferred growth in the

(200) plane resulting in higher Hall mobilities. An increase in the presence

of CH3OH at any reaction sites will lower the amount of H2O present and

so result in a lower rate of hydrolytic reactions, explaining why thin films de-

posited with higher CH3OH:H2O had a higher resistance. The balance has to

be struck however, since the oxidation of Sn does not occur if the water content

is too high.133

Preferred orientation due to preferred nucleation on crystal surface, the de-

viation from randomly orientated powder crystals, increase with thickness of

the film. The nucleation becomes more random or less deviated from random

planes when the temperature increases to 600 ◦C or the partial pressure of the

reactant is high.138

The HF formed from pyrolytic reactions, as a result of using F dopant pre-

cursors, will linger in the reactor and etch the surface of the SnO2 resulting in

rougher thin films and should be taken into consideration as it may affect the

perceived rate of deposition. When using identical deposition conditions in

spray pyrolysis, FTO films exhibit a surface structure with higher granularity

than when compared to SnO2 films.80
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The use of the alcohols methanol, ethanol and isopropanol (IPA) as ad-

ditives can adjust the surface morphology by increasing the micrograin den-

sity whilst decreasing micrograin size.139 Authors have suggested that with the

addition of alcohols, reactions with HCl in the reactor occur that decreases

the amount of Cl on the surface and consequently increase the available nu-

cleation points for H2O, which controls the deposition rate in their reaction.

The choice of solvent is an important factor since marked differences in the

structure, preferred orientation and characteristics of films have been found

in an extensive study of SnO2 CVD depositions when using a wide variety of

solvents.79

1.4.6 Doping SnO2

Intrinsic and extrinsic dopants can help increase the transparency and conduc-

tivity of SnO2 as discussed in Section 1.2.2. Using average CVD synthesis tem-

peratures can result in SnO2 films with conducting properties are frequently

observed, and since fully oxidised SnO2 is insulating, it has been concluded

that intrinsic doping is easily achievable in SnO2. Extrinsic doping can occur

on either the Sn or O site. The most common substitutional dopant is F, which

forms F doped SnO2 or FTO, and on the Sn site various cations with a higher

valency than +4 have also been tested widely.

Alkoxyfluoro tin complexes, Sn(OR1)F(R2COCHCOR2)2 1 (R1 = tert-

amyl, isopropyl, ethyl; R2 =methyl, tert-butyl) with a covalent bond between

the Sn and F were synthesised as precursors for sol-gel and seemed promising as

thermal treatment at 550 ◦C yielded crystalline solids with low resistivity.101

However, after complexes 1 were prepared through the sol-gel route and de-

posited either by spin-coating or spray pyrolysis, even though the thin films

had good F incorporation of 3 mol.% the optical transmittance was low due
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to high C contamination. Further to this, during the formation of the thin

film by spin-coating, large amount of organic compounds were released dur-

ing the thermal treatment leaving the structure with high microporosity and

a low electronic conductivity across the thin film.140 Films spray coated from

the same compound might also seem promising with resulting films contain-

ing even higher F doping of up to 10 at.%, however it was found that the F did

not contribute to the carrier concentration, as instead of sitting in O sites the F

dopants were occupying interstitial sites or the edges of the grain boundaries,

and so the F dopants contribute to carrier scattering and reduced the overall

mobility of the material. F ratios of up to 250 at.% Sn in the precursor solu-

tion has been shown to improve conductivity before saturation when using a

higher concentration.77

The ease of which something can be doped into a lattice is affected by the

size. Not only can a dopant affect the host lattice by being incorporated in the

structure it can also affect the growth mechanism as shown by the increasing

grain size of SnO2 due to strain from Sb doping.129 There seemed to be an op-

timum F/Sn ratio whereby the thin film can become the most polycrystalline

in nature which should give the good mobilities suitable for TCO purposes. It

was observed that increasing the atomic ratio of the precursor solution F/Sn to

0.1 can increase the crystallinity of the film resulting in higher intensity reflec-

tions in the XRD pattern. However, at even higher atomic ratios the intensity

of the XRD reflections was seen to begin to decrease again due to lattice disor-

der from high dopant concentration.141

The doping levels of F actually entering the SnO2 lattice has been found

to be small compared to the amount in the starting precursor solution, though

some studies have still shown that higher F in solution results in more effective

F incorporation.142 F has been observed to evolve and form a very stable HF

by-product that would not take part in the CVD reaction, which might be the
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case in most precursor solutions since H will be in abundance due to the break-

down of any precursor compounds and also trace H2O.80 Since the uptake of F

into SnO2 is relatively poor, the environment of the F atoms in the precursor

solution is probably an important factor as to whether it can actually dope the

host lattice effectively and also the final position of the dopant atom.

Naturally, using a precursor compound with a pre-existing Sn-F bond has

been suggested for improving the solubility of F in SnO2, however most Sn-F

compounds have poor volatility making them unsuitable for many deposition

methods where the precursor solution needs to be nebulised into droplets.143

There are still a few examples of Sn-F precursors in the literature. For exam-

ple, the CVD of trichlorotrifluoroethane (C2F3Cl3) can result in FTO films,

however unknown phases of SnF2 or SnxOy were detected in the XRD due to

incomplete decomposition of SnO2.
68 An complex of amyloxyfluorodipentan-

2,4-dionatotin(IV) was used in sol-gel, spin and spray coated resulting in thin

films with F content of 3 at.% and 10 at.% respectively. The spin coated film

suffered from large resistivity due to a disconnected microstructure and the

spray coated was also quite resistant either due to excess F or C, since apprecia-

ble levels of C at 10 at.% were detected.140 Another option would be to use a

complex containing both Sn and F elements, but not connected with a direct

bond, for example an organotin fluoroalkoxide. Variation was found as to how

much F can be incorporated into the SnO2 lattice, however this depended not

on the quantity of F, rather the environment, even so the best F incorporation

was found to be only 1.52 at.%.143

For AACVD, the deposition technique used in this thesis, F-doping has

been performed with trifluoroacetic acid,69,109 Even though a fluorinated tin

compound has been shown to be able to deposit FTO with APCVD, the op-

toelectronic properties and F incorporation was still worse than dual source

precursors.143 Increasing the amount of F in the compound does now improve
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the incorporation and it was found that the position of the F in the molecule is

more important. In other AACVD reactions, an exchanged reaction between

NH4F and MBTC (shown below) in the precursor solution has been observed

explaining the high quality doping that can be seen in FTO thin films produced

using AACVD and this precursor mixture.79

NH4F(s)+
nBuSnCl3(l) −−→

nBuSnCl2F(sln)+NH4Cl(s)

Ammonium fluoride would thus pair well as a dopant for MBTC used in

the AACVD system used for this thesis.

1.5 Gold nanoparticles

TCOs can be combined with other optically interesting material to add new

functionality and create new hybrid materials. Gold nanoparticles (AuNPs)

have an unusual and interesting absorbance called the surface plasmon reso-

nance (SPR) absorption which gives them visually attractive purple and pink

colours. Composites of AuNPs and TCOs based on SnO2 are presented in

Chapter 3 and are shown to have a novel combination of properties: highly

conductive, transparent and robust with a strong SPR absorbance from AuNPs.

Evidence for the use of nanoparticles colouring glass can be traced back to

the 4th or 5th century AD, a famous example being the Lycurgus cup. Pro-

duction of ruby red glass began in the 17th century with the use of Purple of

Cassius - the product of a reaction between gold salts with tin (II) chloride.144

It was thought that a Au:Sn alloy was the source of the colour, but we now

know that the true origin of colour was the Au nanoparticles supported on

tin dioxide.145 Nowadays coloured glass for architectural windows is highly

sought after and is traditionally introduced by body tinting via doping with
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various metal oxides such as cobalt oxide for blue glass.146 However since the

metal oxide dopant is introduced into the liquid part of the flow process of glass

production, when changeover is needed large amounts of waste are generated

when flushing the system. We propose that a gold nanoparticle coating could

be used as a potential colourant for modern glass production.

1.5.1 Optical properties and surface plasmon resonance

Particles in the nanosize region are interesting as they exhibit properties not

seen in bulk material or their molecular counterparts. For metallic particles

larger than 2 nm a surface plasmon band absorption is observed in the UV-vis

spectra. These are effects due to surface plasmon resonances (SPR) or the Mie

resonance, the scattering of electromagnetic waves due to a homogenous dielec-

tric particle.147 Gold, along with silver and copper exhibit very intense surface

plasmon bands, or SPR absorbances, hence can be easily seen with the naked

eye. This is one of the reasons as to why these elements have become successful

in applications involving nanoparticles. The fascinating array of colours asso-

ciated with the gold have been well known historically and investigations by

Faraday was presented at a Royal Society Lecture in 1857.148 Faraday realised

that the red colour seen in some instances of gold could be due to the small

sizes of the metal particles.

The colour of gold nanoparticles (AuNPs) originate from strongly localised

surface plasmon resonance (SPR), which changes according to the size and

shape of the particles and the surrounding dielectric media.149 Light induces

a dipole in the nanoparticle causing the surface electrons to oscillate against

the restoring force of the positive static nuclei. An absorption called localised

surface plasmon resonance (LSPR) occurs at the wavelengths where the in-

coming photon frequency are coherent with the collective oscillations of the

65



surface electrons (Figure 1.11).147 Mie’s theory describes and predicts the de-

pendence of the SPR with regards to the size of the nanoparticles by solving

Maxwell’s equations for spherical particles.150 However since the delocalised

conduction electrons oscillate in the interface of two materials with different

dielectric functions, such as between metal and air, changing the character of

the media surrounding the NPs, specifically the dielectric constant, will alter

the interface properties experienced at the NP surface and consequently change

the resonant frequency of the conduction electrons. The LSPR absorption fre-

quency will thus change giving a different coloured nanoparticle. Changing

the interface property by altering the dielectric constant of the surrounding

media allows the character of the nanoparticles to be fine-tuned and adjusted

for many different applications other than a colourant, such as in sensors, catal-

ysis and imaging.151

Figure 1.11: Oscillation of conduction electrons due to absorption at resonant
frequencies at the curved surface of metal nanoparticles called localised surface
plasmon resonance.

Many papers have been published studying the relationship between the

surface plasmon band and the properties of the nanoparticles. It has been found

that the surface plasmon band is affected by the size and shape of the nanopar-

ticles.10,152 This is illustrated simply in Figure 1.12 whereby the authors adjust
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the size of the nanoparticles by the amount of auric acid used in their citrate

reduction method.10 Another factor that affects the SPR of nanoparticles are

the dielectric constants of the medium in which they sit in.153 This is exploited

and used to enhance the Raman signal of organic molecules – surface enhanced

Raman spectroscopy (SERS). In 1979 the Raman scattering signals of pyri-

dine was found to increase when adsorbed onto silver or gold nanoparticles.154

The localised resonances create an effective electric field at the molecules and

the metal-adsorbed-molecule system enhances the Raman scattering of the ad-

sorbed molecule.151 Tuning the SPR to midway between the exciting laser and

the Raman band optimizes the SERS effect.155

Figure 1.12: Absorbance spectra of 9, 22, 48 and 99 nm sized gold nanoparticles
normalised at their maxima, synthesised from auric acid with varying citrate
concentrations.10 Reprinted with permission from Size and Temperature De-
pendence of the Plasmon Absorption of Colloidal Gold Nanoparticles, S. Link
and M. a. Sayed, The Journal of Physical Chemistry B, 1999, 103, 4212-4217.
Copyright (1999) American Chemical Society.
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1.5.2 Synthesis

The ability to tailor the properties of nanoparticles is desirable since it fun-

damentally affects the role NPs play in many applications such as the opti-

cal properties or its performance as a catalyst.156 A common and established

way to make AuNPs on the benchtop is through the Turkevich method which

involves the reduction of auric acid by trisodium citrate in water.157 Heat is

applied to the stirring solution and at 100 ◦C the reaction takes about 10 min-

utes to complete. The resulting nanoparticles can be monodisperse and range

between 10-30 nm. The trisodium citrate also acts as the capping agent and

the concentration of it can affect on the final size of the AuNPs, however

this can also depend on the initiation method of the reaction.158 Growth of

AuNPs in citrate proceeds through an Ostwald ripening mechanism first where

the smaller NPs dissolve into larger NPs before equilibrating to a maximum

size. For nanoparticles in organic liquids, the Brust-Schiffrin method can be

employed. Here tetraoctylammoniumbromide (TOAB) is used as a transfer

agent, before reduction in the organic solvent proceeds through a reduction

with sodium borohydride with dodecanethiol as the capping agent.159

Through preliminary experiments using the AACVD set-up as described in

this thesis, it was found that depositions using gold nanoparticles in the bubbler

was poor because they were very thermophoresis and the gas flowing through

the reactor. In Section 3.5, AuNPs are instead directly reduced and deposited

simultaneaously onto glass substrate in an AACVD reactor. It is typical for

AuNPs to not adhere well to surfaces such as glass,112,160 and although silanisa-

tion reactions between the AuNPs and glass surfaces can overcome this.37,161,162
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1.5.3 Applications

In medicine, gold nanoparticles have been shown to be promising drug delivery

vehicles, with the ability to densely pack and stabilise the delivery drug.163

Drugs were loaded onto gold nanostars with an average size of 25 nm and a SPR

centred at 780 nm, allowing them to enter the cell and deliver the treatment

directly at the cell nucleus.164 The tips and bodies of the nanostars shown in

Figure 1.13 have different resonances, increasing the range of energy they can

transfer to the molecule.11

Figure 1.13: TEM image of Au nanostars synthesised from HAuCl4.
11

AuNPs are used in many and everyday health applications. Most famously,

they are found in First Response pregnancy tests whereby the AuNPs become

mobile when the correct peptide is present and clump together manifesting

itself as a coloured sign.12 Novel treatments use AuNPs to photothermally kill

cancerous cells and bacteria.165,166 It has also been found to be antibacterial

when paired with toluidine and light activated methylene blue as well as used

for the detection of anti-microbial susceptibility.167,168

Another popular and widely used application of AuNPs is in the field of
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catalysis, some of which will be tested in Chapter 5. Reactions that AuNPs are

effective catalysts for are extensive: low temperature oxidation of CO,169 par-

tial oxidation of hydrocarbons,170 the water-gas shift reaction, where hydrogen

is generated from CO and water171 and reduction of nitrogen oxides,172 which

is useful for cleaning emissions from engines or factories, the polymerisation

of pyrrole,173 and aniline,174 and oxidation of alcohols.175,176

1.6 Composite nanoparticle metal oxide

1.6.1 Applications

By depositing noble metal nanoparticles alongside metal oxides desirable func-

tional optoelectronic properties can be improved. The enhancement of the

local electric field by nanoparticles such as gold onto dielectric materials can

also be useful for optical and photonic devices because of their resulting large

third order optical non-linearity.177 Au composites have also been shown to

improve the switching properties in a WO3−x electrochromic system.178

It has been recently reported that gold nanoparticle metal oxide compos-

ites have been suggested to exhibit photocatalytic activity in the visible range.

TiO2 is another widely synthesised metal oxide because of its use in many

applications such as the photocatalytic degradation of organic molecules for

self-cleaning materials and for cleaning up surface waters.179 Titania is also an

important component in the conversion of solar to chemical energy by water

splitting. AuNPs have been said to work both as light harvesters in the visi-

ble, promoting electrons into the conduction band as well as catalytic sites for

gas generation.180 Other work has shown an increase in photocatalytic activity

in the visible but a slight decrease in the UV. They suggest that the improve-

ment of the activity is caused by local electric field enhancement near the TiO2
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surface, increasing the photogeneration of charge thereby increasing catalytic

activity.181 Au-TiO2 can also have anti-reflective properties, bringing an added

efficiency boost to solar cells.86

Another important gold:metal oxide application worth mentioning is metal

oxide supported gold catalysts, whereby the catalytic activity of the gold is re-

lated to its state as a composite with the metal oxide.182 The extent of this cat-

alytic activity can be related to the other functional properties of AuNP and

metal oxide composite.

1.6.2 Synthesis

Gold nanoparticle:metal oxide matrices have mostly been deposited in bulk

form or as thin films, they have also been synthesised as nanowires and nanocom-

posite particles.12 In general there are five different routes to noble nanoparti-

cle metal oxide composite thin films as shown in Figure 1.14. In Route 1 a

thin film of metal oxide is first deposited, after which nanoparticles are added

on top. Ready-made FTO electrodes were silanised, then soaked in a solu-

tion of AuNPs synthesised using citrate reduction, before being tested in a

dye-sensitised solar cell.183 Of the various sizes tested, the 25 nm AuNPs were

found to increase the overall performance by 15 % compared to the basic FTO

electrode.

Route 2 describes the method whereby metal ions or compounds are first

deposited onto the metal oxide thin film, then through a secondary process

are converted into nanoparticles. For example, an organogold precursor was

first adsorbed onto Al2O3, SiO2, and TiO2, after which a heat driven decompo-

sition reaction resulted in gold nanoparticle composite catalytic materials for

the oxidation of Co and H2.
184 AuNPs can also be formed through agglomer-

ation of a thin Au film by being heated for 2 hours at 400 ◦C, as shown when
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Figure 1.14: A basic outline of the various routes used to make thin films with
embedded nanoparticles (adapted from Walters et al).12

for depositions using reactive magnetron sputtering onto a ZnO film,185 where

another layer of ZnO was deposited on top of the AuNPs to create a sandwich

structure. A similar sputtering technique was used for metal oxide/Ag/metal

oxide thin films, with the omission of the thermal agglomeration resulting in a

Ag thin film, with very low resistance of 4.4 Ω/� and high transparency.186,187

The metal oxide and nanoparticle precursor can be delivered and deposited

at the same time as described by Route 3. AACVD experiments have been used

to deposit various AuNPs and metal oxide nanocomposites of WO3, MoO3

and TiO2 using auric acid on glass in a single-step process from one precursor

solution.38 Again using AACVD, thin films of Pt (1-4 nm) and Au (4-11 nm)

nanoparticles composites with WO3 nanoneedles were deposited onto gas sen-

sors but this time from two separate precursor solutions.188 With another one-

pot solution of chloroauric acid and zinc acetate, thin films of gold nanoparticle

(7-13 nm) and ZnO composites were deposited onto glass and ITO substrates
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via spray pyrolysis.189 An increase in the photoelectrical current performance

was found and a change in the morphology of the ZnO with the presence of

chloroauric acid, which might affect the optical properties of the solar cell. The

aerosol in the CVD system can be generated using two mechanisms as shown

by the hybrid AA/APCVD system used to deposit AuNP vanadium dioxide

thin films.190 Using a liquid phase deposition method, AuNPs dispersed in

SiO2 was deposited onto TiO2.
191

In Route 4, the metallic nanoparticles are deposited and formed on the sub-

strate first, with a second step for metal oxide deposition. The electrochromic

performance of WO3 was shown to improve if the structure was decorated with

gold nanoparticles due to an increase in charge transfer ability. The compos-

ites were formed in a two-step process with the AuNPs being deposited first.

The AuNPs with sizes of 40-60 nm were first electrodeposited onto ITO using

potassium dicyanoaurate, and an WO3 layer subsequently deposited above it

using sol-gel.178 Care has to be taken when using this route, as the nanoparti-

cles could undergo further change during the second metal oxide deposition

step, as high temperatures are frequently needed to obtain a high quality crys-

talline film.

If the size and character of the nanoparticles are of great importance to the

final product, Route 5 can be undertaken as the nanoparticles are synthesised

prior to forming the composite. Recently a thin film of Au nanoparticles em-

bedded in SnO2 was spin coated from a sol-gel solution of SnO2 coated Au

nanoparticles to ensure a homogenous film.192 Sol-gel solutions containing the

Ti precursors as well as AuNPs synthesised from the Turkevich method, were

dip coated with the thickness of the films varied from the number of coatings

and withdrawal speed.193 Even though the size of the nanoparticles can be con-

trolled at the outset, there is still a final annealing stage at 550 ◦C for one hour

which could alter the shape of the nanoparticles. AACVD with a one-pot solu-
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tion of gold nanoparticles and metal oxide precursor has been used to deposit

TiO2 and WO3 composite films.38 Self-assembled arrays of gold nanoparticles

and silica produced highly ordered thin films, using micelles of gold nanopar-

ticles in a emulsion solution with soluble silica.194

1.7 Aims

There have been a few studies focusing on the application of Au:SnO2 com-

posites in gas sensors, where powders and nanoparticles have been synthe-

sised,195,196 however, there isn’t much in the literature about AuNP/SnO2 com-

posites with high transparency or low resistance properties. The CVD proce-

dure is closely related to the industrial way of coating glass and at the out-

set this thesis explores the possibility of synthesising composite AuNP/SnO2

films with a high electrical conductivity and visible transparency, and a linear

combination of both films without detrimental effect to the TCO or thin film

quality. Having deposited noble nanoparticles using this method, composites

can be expanded to other metal oxides, with the possibility of tuning the SPR

with changing character of the metal oxide thin film rather than the shape of

the nanoparticles. Finally, AACVD is used to deposit gold nanoparticles on

another silica substrate other than float glass, on glass wool. With the high sur-

face area of glass wool, the potential catalytic activity of the AuNPs is explored.
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Chapter 2

Experimental and Analytical

Details

This chapter will give details into the deposition techniques used to make the

thin films of metal oxides and gold nanoparticles as well as the various charac-

terisation techniques used for analysis.

2.1 Aerosol-assisted chemical vapour deposition set-

up

The AACVD set up used in in this thesis is shown in Figure 2.1. This is a

cold-walled (only substrate is heated) tubular reactor, with a thermocouple-

controlled graphite block, containing a Whatmann cartridge heater which was

used to heat the glass substrate. The temperature of the substrate was mon-

itored and maintained using a Pt–Rh thermocouple. The ultrasonic aerosol

was generated with a PIFCOHEALTH ultrasonic humidifier, with an operat-

ing frequency of 40 kHz and 25W of power. The aerosol was moved to the

reactor using a nitrogen gas flow via PTFE and glass tubing, where it entered

through a baffle between the top and bottom plates. The single-entry baffle ad-
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justs the gas flow so that it enters the reactor in a horizontal plane and prevents

the heating and premature reaction in equipment directing the aerosol flow.

The structure of the top and bottom plates with 8 mm separation between

them encourages laminar flow and an even deposition on the substrate. The

main substrates used in this thesis were Pilkington NSG barrier glass with a 50

nm SiO2 coat which prevents ionic impurities diffusing into the deposited film.

These were cut to fit the reactor (145 mm× 45 mm) cleaned with soapy water,

isopropanol and acetone then air dried prior to use. Any gaseous by-products

left via an exhaust.

Figure 2.1: Experimental set-up for aerosol assisted chemical vapour deposi-
tion.

2.1.1 Materials

Hydrogen tetrachloroaurate hydrate (49% Au) and hydrogen tetrachloroau-

rate(III) solution (40-44% Au) were supplied by Alfa Aesar of Johnson Matthey

Plc. Monobutyltin trichloride (95%), ammonium fluoride (>99.99% trace metal

basis), titanium ethoxide (technical grade), gallium acetylacetonate (99.99% trace

metal basis), aluminium acetylacetonate (99%) were all purchased from Sigma

Aldrich Chemical Co.. Magnesium acetate and zinc acetate were obtained
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2. Experimental and Analytical Details

from Hopkin & Williams were. Methanol was bought from Fisher Chemical

and was used as received.

Table 2.1 gives an overview of the materials deposited using AACVD in this

thesis, the precursors and deposition details. The metal oxides that formed a

layered composite in Chapter 4, were chosen to deposit at the same temperature

as the AuNPs of 450 ◦C to avoid further reactions of AuNPs. The flow rate

and carrier gas were chosen to give the most efficient and even coverage in the

deposition. Ti precursors suffer from spontaneous powder formation in the

gas phase and so the equipment (bubbler, any connecting pipework and baffle)

were all dried in an oven for at least 1 hour prior to use.

Table 2.1: The materials investigated in this thesis and their deposition details.

Desired
material Precursor Solvent Carrier gas

Tempera-
ture
(◦C)

SnO2

monobutytin
trichloride

(CH3(CH2)3SnCl3)
methanol

compressed
air or

nitrogen
400-500

AuNPs or
particles

hydrogen
tetrachloroaurate
(HAuCl4xH2O)

methanol
compressed

air or
nitrogen

400-500

TiO2
titanium ethoxide

(Ti(OC2H5)4)
toluene nitrogen 450

Al2O3

aluminium
acetylacetonate

([CH3COCH=C(O-
)CH3]3Al)

methanol air 450

Ga 2O3

gallium
acetylacetonate

([CH3COCH=C(O-
)CH3]3Ga)

methanol air 450

ZnO zinc acetate
((CH3CO2)2Zn) methanol nitrogen 450

MgO magnesium acetate
((CH3CO2)2Mg) methanol air 450
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2.2 Spray deposition

The precursor solution is injected into a chamber where a high pressure stream

of gas pushed the solution through a pneumatic atomizing nozzle creating a

downward flow of aerosol towards the substrate which was heated to 350 ◦C

(Figure 2.2). The nozzle is the Lechler series 136.330.xx.16 nozzle with a diam-

eter of 0.40 mm and a 20◦ spray angle with a full cone using a siphon principle

and external mixing.

Figure 2.2: Set up for spray deposition.
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2.3 Analytical techniques

2.3.1 X-ray diffraction

XRD was used to detect phase and preferred orientation growth. Thin film

measurements were performed at a glancing angle of 1-5◦ on a Bruker D8 (GADDS)

and Discover LynxEye diffractometer using monochromated Cu Kα radiation

(λ = 1.5406 ) in reflection mode over 10-66◦/2θ. Depositions on glass wool

were measured using a STOE diffractometer with monochromated Mo Kα1

radiation (λ = 0.7093 ) in transmission mode over the angle range 2–40 ◦/2θ.

Diffraction peaks in an XRD pattern arise from the coherent interference

of x-rays when they specularly reflect from a periodic lattice of atoms, as those

found in a crystal structure. The different planes of a unit cell generate differ-

ent lattice spacings and so giving rise to interference at different angles. The

interferences relate to the incoming wavelength with Bragg’s equation:

nλ=2d sinθ

In order for the reflected light to be coherent, the wavelength of the x-rays

have to be multiples of 2d sinθ as shown in Figure 2.3.

Figure 2.3: Schematic showing how satisfying Bragg’s Law of nλ=2d sinθ can
generate coherent interference between the x-rays. The full length of the red
line represents 2d sinθ and λ represents the wavelength of the x-ray (adapted
from Diffraction Physics, by J. M. Cowley13).
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From comparisons of the XRD intensities of reflections in each plane be-

tween a randomly orientated powder and any deposited thin film, the preferred

growth of each plane can be calculated and described using the texture coeffi-

cient.

2.3.2 UV-visible-IR spectroscopy

Optical properties such as transmittance, reflectance, absorbance, band gap and

SPR absorption were measured using UV-Vis spectroscopy on a Perkin Elmer

LAMBDA 950 UV-Vis/IR Spectrophotometer. The Swanepoel method was

used to calculate film thickness from interference pattern197 and was correlated

with the F20 Filmetrics measurements made in air and calibrated with a silica

standard. The band gap was measured from Tauc plot calculations.198

2.3.3 Filmetrics and Hall effect

The Filmetrics F20 system was used to measure film thickness based on the

interference pattern from reflections over 350-1000 nm. Electronic properties

of the thin films were measured using the Hall effect on an Ecopia HMS 3000

set up on samples cut into 0.5-1 cm square pieces, with silver painted electrodes

on each corner, and using a 0.58 T permanent magnet at currents of 0.01-1

mA. When a conducting sample is placed perpendicular to a magnetic field, a

voltage difference arises perpendicular to both the current and the magnetic

field (Figure 2.4). The Hall voltage with film thickness input is then used to

calculate resistivity, carrier concentration and mobility.
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Figure 2.4: Diagram of the Hall effect where charge accumulation on a con-
ductive thin film due to Lorentz forces from transverse applied electric and
magnetic fields (adapted from Hall-Effect Sensors, Ramsden, E.14).

2.3.4 Scanning electron microscopy

SEM was performed to investigate surface morphology and elemental analysis

on a JEOL JSM- 6301F and 6700F field emission microscope operating at 3-10

kV for imaging and 10-20 kV for EDX. Samples were cut and stuck onto the

stage with carbon tape, sputtered with C or Au and grounded with Cu tape or

Ag paint to prevent charging. In an SEM (Figure 2.5), electrons are accelerated

towards the sample using a bias and secondary electrons are detected to create

an image based on the electron density. Secondary electrons are ejected due

to inelastic scattering between the samples valence electrons and the incoming

electron beam. The beam is scanned across the surface and so the intensity

of secondary electrons and resulting image represents topographical charac-

ter of the sample surface at the micrometre level making it a valuable tool for

interpreting the optical and morphological properties of thin films. Backscat-

tered electrons are detected from electrons that elastically scatter from the nu-

cleus and is useful for distinguishing between some elements, since elements

with a high atomic number ejects more backscattered electrons resulting in a

brighter parts of the image. Detection of elastically scattered electrons was
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used to quickly scan across a large area to locate noble metal nanoparticles that

are embedded within a semiconductor, where EDX provided further elemental

confirmation.

Figure 2.5: Schematic of the scanning tunnelling microscope with positions
of the backscattered and secondary electron detectors (adapted from online
source15).
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2.3.5 Transmission electron microscopy

In a transmission electron microscope a beam of electrons is focused on a thin

layer of sample and transmitted through it. The electron beam interacts with

the sample and the forward scattered electrons are detected with a charge-couple

device. The electron beam is scattered by the electron cloud and nuclei of the

sample, and so charged particles scatter more strongly and an image is formed

due to the variation in amount of electrons that are scattered and the intensity

detected.

Samples of material were scrapped off the glass substrate and sonicated in

n-hexane creating a suspension. The sample suspensions were then drop-casted

onto a 400 Cu mesh lacy carbon film TEM grid (Agar Scientific Ltd) before use

in the transmission electron microscope (TEM) machine. Images were taken

using a Jeol 2100 HRTEM with a LaB6 source operating at an acceleration

voltage of 200 kv with an Oxford Instruments X-Max EDS detector running

AZTEC software and micrographs were detected with a Gatan Orius CCD.

2.3.6 Energy dispersive x-ray spectroscopy

Energy dispersive x-rays (EDX) can be used in parallel with TEM and SEM

imaging. With higher energy electron beam, electrons from the ground states

are ejected leaving holes which are then filled by electrons from a higher energy

levels, x-rays are released with an energy of the difference between the two

orbitals, which are therefore characteristic to their elemental composition. The

detector measures the intensity of emitted x-rays against their energy and can

be used to determine the elemental composition of the sample.
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2.3.7 X-ray photoelectron spectroscopy

Elemental analysis was also carried out with x-ray photoelectron spectroscopy

(XPS) on a Thermo Scientific K Alpha with monochromated Al-Kα source

(0.834 nm, 1486.6 eV). X-rays are used to eject core shell electrons, the en-

ergies of which correspond to the core shells of a particular element (Figure

2.6). For Al-Kα, electrons deeper than 10 nm away from the surface have a

very low probability of escaping it without loss in energy, therefore XPS peaks

are mainly contributed from the surface material. The chemical environment

around an element can shift the energy levels, and so analysis of the XPS peaks

and position can inform the user of the chemical environment surrounding the

element of interest.
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2. Experimental and Analytical Details

Figure 2.6: Schematic showing the layout of the x-ray photoelectron spec-
troscopy set up and the mechanism by which the photoelectron is ejected due to
incoming x-rays (adapted from Auger- and X-Ray Photoelectron Spectroscopy
in Materials Science: A User-Oriented Guide, Hofmann, S.16).

2.3.8 Gas chromatography

In gas chromatography (GC), the sample is vapourised and separated along a

column allowing for quantitative analysis. GC experiments described in Chap-

ter 4 were performed using a flame ionization detector (FID) Perkin Elmer

Clarus R© 500 GC. The analytes were ignited with H2 gas and accelerated to-

wards the collector which possessed a negative bias. Samples were extracted

from the reaction mixture and stored in the fridge prior to measurement. An

internal standard was used (dodecane) to calculate the component quantities.
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Figure 2.7: Component of a gas chromatography set up and a close-up of the
flame ionisation detector (adapted from Basic Gas Chromatography, McNair,
H. M. and Miller, J. M.17).
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Chapter 3

Functional Composites of Gold

Nanoparticles and Tin Dioxide

This chapter describes composite films of gold nanoparticles (AuNPs) and tin

dioxide that were synthesised, combining their respective functional properties

of surface plasmon resonance (SPR) absorption, transparency over the visible,

high electronic conductivity, reflectance in the infrared region, while being

relatively robust and easy to handle in ambient environment.

3.1 Introduction

Transparent conducting SnO2 have been deposited using many different tech-

niques such as spray pyrolysis, sol-gel, sputtering and chemical vapour deposi-

tion (CVD).72,199 In this chapter, aerosol-assisted chemical vapour deposition

(AACVD) was used to make F-doped tin dioxide (FTO) from monobutyltin

trichloride (MBTC) and ammonium fluoride (NH4F) similar to previously re-

ported experiments.69,79 The carrier gas and temperature was varied in order

to improve the optoelectronic properties of the thin films.

Gold nanoparticle:metal oxide matrices have mostly been deposited in bulk
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form or as thin films,12,177 they have also been synthesised as nanowires200 and

nanocomposite particles.201 A multi-target sputtering system was employed to

form AuNP composites with dielectrics (TiO2 and mixed ZnS-SiO2) where a

large third-order non-linearity was observed, useful for photonic devices.177

More specifically for Au:SnO2 composites, powders and nanoparticles have

been synthesised for their use as gas sensors.195,196,202 Recently a thin film of

SnO2 embedded with Au nanoparticles were spin-coated from a sol-gel solution

of SnO2 coated Au nanoparticles ensuring a homogenous composite film.192

The AuNPs of around 15 nm were formed from a citrate reduction method be-

fore being coated with SnO2 through stirring with sodium stannate trihydrate

forming composite particles of around 55 nm. A SnO2 sol was then prepared

with the addition of the resulting composite particles and finally spin coated

into a composite film, whereby the thickness can be increased through addi-

tional coatings. The films displayed transparency and SPR absorbances but

the authors did not report high electric conductivity.

Similar AACVD systems have been shown able to deposit various AuNPs

and metal oxide nanocomposites on glass in a single-step process using auric

acid in the precursor solution.38,203 Hybrid AACVD and APCVD deposited

Au:metal oxide composite films, where the addition of tetraoctylammonium-

bromide (TOAB) was used to influence the size of the AuNPs.190

3.1.1 Objectives

The work in this chapter aims to improve on the AACVD techniques previ-

ously used to deposit composite metal oxide nanoparticle films, by improving

the control of AuNP deposition and quality of the optical and electronic prop-

erties not previously explored. Various precursor solutions will be tested, one-

pot, with gold and tin oxide precursors together, or separately, where better
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3. Functional Composites of Gold Nanoparticles and Tin Dioxide

control and quality can be achieved. The AACVD procedure is closely related

to the industrial way of coating glass and results in composite films contain-

ing metal oxides with desirable optoelectronic properties, not reported from

other methods such as sol-gel192 and sputtering.177 The properties of the films

produced in this chapter focus on high visible transparency, low resistivity, a

blue colouration potentially useful for window tint, SPR absorbances and ad-

herence to the glass substrate which to our knowledge has not been explored.

3.2 Experimental details

3.2.1 Precursor solutions

Table 3.1 below shows the precursors required and used in this section to de-

posit SnO2, F doped SnO2, Au nanoparticles and AuNP:SnO2 composite films.

These were all one-pot solution depositions. The solvent (methanol) was added

to the required precursor(s) and stirred till dissolution before aerosol genera-

tion. NH4F was used instead of trifluoroacetic acid because it has been shown

to effectively dope when used with MBTC (see Section 1.4.6).

Table 3.1: Precursors used for the relevant materials.

Materials Precursors used

SnO2
MBTC (monobutyltin trichloride,

CH3CH2CH2CH2SnCl3)

F doped SnO2 NH4F +MBTC

Gold nanoparticles (AuNPs) HAuCl4.xH2O (gold chloride
hydrate)

AuNP:SnO2 composite MBTC +HAuCl4.xH2O
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3.2.2 Deposition details

Aerosols were generated with an ultrasonic humidifier from the precursor so-

lution contained in a glass bubbler. Carrier gas of pressurised air or N2 was

used to transport the vapour at a rate of 1-2 L min−1 into the CVD reactor

which was heated to 400-500 ◦C.

3.3 AACVD of SnO2

SnO2 was deposited from a solution of MBTC in methanol at different temper-

atures (400, 450 and 500 ◦C) with N2 as the carrier gas (2 Lmin−1). Methanol

was used as a solvent as it has been shown to increase the density and conduc-

tivity of SnO2.
139 All depositions took around 30 min resulted in transparent

films with good coverage and adherence on the bottom plate. C contamination

could be observed through the colouring and was found more often at higher

temperatures concentrated and mostly close to the inlet evidenced by brown

and black tinted depositions.

3.3.1 Phase and morphology

It is well known that the breakdown of MBTC is complicated and many prod-

ucts are formed, but due to the non-anhydrous nature of the reaction vessels

it is possible that instead of reacting with methanol the reaction initiates with

water as follows118,204:

nBuSnCl3+H2O−−→ SnO2+HCl+Bu

The XRD patterns for the films deposited at all three investigated tempera-

tures were almost identical, apart from a slight increase in the (200) plane at 450

◦C (Figure 3.1). The orientation of deposited planes can depend on a number
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3. Functional Composites of Gold Nanoparticles and Tin Dioxide

of things, the initial reactions, consequent growth after the first few layers and

the deposition rate, all of which are affected by the temperature of deposition.

The deposition conditions and precursors at 450 ◦C induced an increase of Sn

at interstitial sites in the SnO2 lattice116 resulting in a slight increase in the (200)

direction.

Figure 3.1: XRD pattern intensities of SnO2 reference18 and thin films de-
posited at 400, 450 and 500 ◦C from a precursor solution of MBTC (2 mmol)
in 20 ml methanol with N2 (g) flowing at 2 L min−1.

The most preferred growth for the films deposited at all temperatures was

the (210) plane (Figure 3.2), which is normally suppressed in the single crys-

tal.18 The (111) and (110) plane peaks were observed to be the second and third

most dominant growth planes. The observed preferred orientation was unlike

previously reported films whereby the majority of SnO2 deposited using CVD

or spray pyrolysis was found to be orientated along the (101),205 (111),78 and

(200) planes,78,133,206 probably due to the use of N2 as a carrier gas and oxidation

of Sn from the methanol precursor or water rather than abundant O2 in the

environment. No Sn(II)O peaks were observed indicating that oxygen was ef-

ficiently incorporated into the SnO2 matrix from the methanol or any residual

in the environment.
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Figure 3.2: Percentage change in preferred growth of SnO2 deposited at 450 ◦C
from a precursor solution of MBTC (2 mmol) in 20 ml methanol with N2 (g)
at 2 L min−1.

The SEMs (Figure 3.3) of the SnO2 films show a similar surface morphol-

ogy for all deposition temperatures reflecting the nearly identical XRD pattern

for all three films. However the surface changed from being relatively flat on

the surface to becoming more faceted and rough with increasing deposition

temperatures probably indicating the increasing crystallinity.
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3. Functional Composites of Gold Nanoparticles and Tin Dioxide

Figure 3.3: SEM images of SnO2 thin film deposited at (a) 400, (b) 450, and (c)
500 ◦C from a precursor solution of MBTC (2 mmol) in 20 ml methanol with
N2 (g) flowing at 2 L min−1.
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3.3.2 Optical and electronic properties

The transmittance of the deposited SnO2 films were fairly high, between 60 and

80% in the visible range (Figure 3.4 a). The sheet resistance was lowest for the

film deposited at 500 ◦C at 100 Ω/�, compared to 250–400 Ω/� for the films

deposited at 400 and 450 ◦C. The higher conductivity corresponds to the reflec-

tion seen in the far IR (see Figure 3.4) which is a characteristic TCO property

for low emissivity applications. The increase in conductivity here is related

to the thicknesses of the films, with the film deposited at 500 ◦C being about

400 nm thick and the films deposited at 400-450 ◦C about 250-300 nm thick

as measured by Filmetrics. However, the increase in conductivity can also be

due to better electrical connectivity between the crystallites when they form

at a higher temperature as seen by the increase in overlap in the SEM images

(Figure 3.3). Theoretically, minimising the amount of oxygen in the reactor

environment, through using N2 rather than air, should encourage the forma-

tion of oxygen vacancies in the SnO2 matrix and increase the conductivity of

the thin film, however this was not observed with relatively poor conductivity

when being considered for TCO purposes.

Figure 3.4: Transmittance and reflectance spectra of SnO2 thin film deposited
at 400, 450 and 500 ◦C from a precursor solution of n-butyltin trichloride (2
mmol) in 20 ml methanol with N2 (g) at 2 L min−1.
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3. Functional Composites of Gold Nanoparticles and Tin Dioxide

3.3.3 Summary

Even though the films were transparent and conductive, the sheet resistances

were still quite high when comparing to industrial standards i.e. Pilkington

Tec-8 at 8 Ω/�. Depositing at a lower temperature produces a film that seems

more transparent by eye, even though the transmittance spectra are pretty sim-

ilar, as films deposited at a higher temperature suffered from slight carbon con-

tamination, scattering and haziness caused by a rougher microstructure as seen

in the SEM images (Figure 3.3). As a compromise, 450 ◦C was decided as the

best deposition temperature for SnO2 in this system as with all other factors

the same, it had both reasonable transparency as well as potential for increas-

ing electrical conductivity. In order to improve the conductivity, gaseous oxy-

gen could be introduced into the environment by using air as a carrier gas.79

Gaseous O2 is more reactive in the deposition chamber compared to the oxy-

gen contained in the methanol of precursor droplets which needs more energy

to atomise, so the reaction between the Sn and O happens earlier and more

connectivity is developed within the SnO2 crystallites. Less defects and disor-

der was formed leading to a lower level of scattering therefore also improving

the transparency.79,207

3.4 F doping and improving TCO properties

Fluorine doping has long been known to improve the TCO properties of SnO2

as discussed in Section 1.2.4.28 With this AACVD system it is easy to incorpo-

rate F into a host SnO2 film simply by adding ammonium fluoride into the Sn

precursor solution.69,79 The results presented here are of a fluorine doped tin

oxide (FTO) film deposited from a 30 at.% F:Sn solution at 450 ◦C with air (1 L

min−1) using NH4F and MBTC as the precursors. AACVD of FTO achieved
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good coverage across the glass substrate resulting in uniform transparent con-

ducting films with small gradients in thicknesses of around 50 nm across the

whole substrate.

Choosing the dopant for F can also affect the growth phase and final mor-

phology as discussed in Section 1.4.5. Using ammonium fluoride and butyltin

trichloride can result in an exchange process whereby the Cl in butyltin trichlo-

ride is replaced by F in some cases,79 forming ammonium chloride and a fluoro-

tin complex as shown below

NH4F(s)+
nBuSnCl3(l) −−→

nBuSnCl2F(sln)+NH4Cl(s)

This reaction is beneficial for the normally hard to achieve incorporation of F

into SnO2.

3.4.1 Phase and morphology

The FTO thin film (around 450 nm thick) displayed sharp SnO2 reflections

in the XRD pattern and a typical pyramidal microstructure as observed from

SEM images (Figure 3.5). The FTO film adhered well to the glass, passed the

Scotch R© tape test and could not be rubbed off unless scratched with a metal

spatula. A more crystalline morphology and XRD pattern was observed for

FTO when compared to SnO2, due to the more complete oxidation by using

air, which contains O2, rather than N2 as the carrier gas. Using air and a F

dopant in the deposition increased intensities for the (101), (200), and (211) and

decreased the (110) reflections when compared to the undoped SnO2 (Figure

3.2).

Preferred growth was found to be in the (200) and (210) planes (Figure 3.6)

which correlate with low electrical resistivity of previous FTO studies.79 The

increase of (200) from SnO2 to FTO agrees well with the decrease in sheet
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3. Functional Composites of Gold Nanoparticles and Tin Dioxide

resistance, from 100 Ω/� to 10 Ω/�. The (200) plane also correlates with a

sharper-edged morphology133 that has better electrical connectivity. The (210)

and (110) planes have both been found to be preferred in thin films formed in an

AACVD system with methanol. The use of methanol compared to other sol-

vents also seem to enhance the effect of deposition temperature with different

preferred phases found for different deposition temperatures.79

The growth of the (200) seems favoured for SnO2 thin film deposition on

glass based substrates as it this was found to be the preferred plane also for

sprayed116 and APCVD films.78 The (200) orientation has a low atomic density

and a minimum interfacial energy for rutile SnO2, having been observed to

be the preferred orientation even for sprayed SnO2 thin films on a range of

substrates.142

Figure 3.5: XRD pattern and SEM image of fluorine doped tin dioxide from a
30% ammonium fluoride to MBTC solution deposited in air.

3.4.2 Optical and electronic properties

The transmittance of the FTO film was high at around 70-80% in the visible re-

gion (see Figure 3.7) and also visibly transparent (Figure 3.23), even though the
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Figure 3.6: Percentage change in preferred growth of FTO deposited at 450 ◦C
from a precursor solution of MBTC and NH4F in methanol with air.

transmittance measurements were similar to SnO2 deposited with N2 (Figure

3.4), by eye the FTO film looked more transparent. This can be related to the

increase in reflectance at the visible region, which is at 10-30% for SnO2 (Fig-

ure 3.4) compared to 10-20% for the FTO (Figure 3.7) due to a small amount

of carbon contamination or the haziness in the SnO2.

Measurements using the Hall effect and Van der Pauw calculations show

that the FTO thin film on glass is n-type with a charge carrier concentration

of 4.9× 1020 cm−3, mobility 25 cm2 (V s)−1, sheet resistance 10 Ω/� and resis-

tivity 5.0× 10−4 Ω cm. These figures are comparable and in some cases exceed

those of the leading commercial TCO for glass Pilkington TEC-8, which has a

carrier concentration 5.3×1020 cm−3, mobility 28 cm2 (V s)−1, sheet resistance

at 8 Ω/� and resistivity 5.2× 10−4 Ω cm. The electrical properties are in line

with the reflectance spectra, displaying the characteristic plasma band onset of

increased reflectance towards the IR (Figure 3.7) due to high charge carrier con-

centration and an interference pattern due to the thickness of the film.208 The

FTO presented here possesses a near ideal transmittance and long wavelength
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3. Functional Composites of Gold Nanoparticles and Tin Dioxide

Figure 3.7: Transmission and reflection spectra of fluorine doped tin dioxide
from a 30% ammonium fluoride to MBTC solution deposited with air.

reflectance profile for low emissivity coatings (Figure 3.7).

3.4.3 Summary

The precursor and AACVD deposition conditions here produced consistently

high quality FTO film at industrial standards. This allows us to create compos-

ites with AuNPs that have guaranteed good TCO properties described in Sec-

tion 3.7. By doping with F and using air as the carrier gas there were dramatic

increases in conductivity compared to the SnO2 deposited using N2 whereby

the sheet resistance was lowered from 100 Ω/� to 8 Ω/�, but still maintaining

the high transparency of 65-80% transmittance. Thin films of SnO2 produced

by other methods other than CVD seem to not produce simultaneously trans-

parent and conductive films. When compared to FTO deposited by CVD, or

specifically AACVD, the resistivity were very similar and in some cases better

that previously reported, with high carrier concentrations in the order of 1020

cm−3 and mobility of around 20 cm2(Vs)−1.78,79,109

99



3.5 Investigation of auric acid depositions

Results of gold depositions from auric acid are reported in this section. In order

to achieve good coverage of the glass substrate higher flow rates were needed

for AuNP compared to SnO2 based depositions. Auric acid reduces to gold at

a lower temperature and depositions on the glass can accumulate by the inlet if

temperatures are too high.

Different methods were tried in order to vary the sizes of nanoparticles be-

ing deposited, for example varying the temperature or the inclusion of various

stabilisers, e.g. tetraoctyl ammoniumbromide (TOAB) to the precursor solu-

tion.112 However for AACVD of AuNPs using gold chloride hydrate, chang-

ing the precursor concentration seems to give the best and uniform result of

decreasing nanoparticle sizes. Details of the precursor concentrations are given

in Table 3.2 and discussed in Section 3.5.3.

Due to thermophoresis (Section 1.3.2) the gold also deposits on the top

plate, unlike most metal oxide depositions where deposition occurs almost ex-

clusively on the bottom plate, under which the heating element is located due

to a higher thermal activation energies. The difference in top and bottom plate

depositions are discussed in Section 3.5.2.

Precursor solutions (20 ml) as described in Table 3.2 were placed in the

bubbler and used straightaway for AACVD deposition using air as a carrier

gas. Each deposition took around 30 minutes.

100



3. Functional Composites of Gold Nanoparticles and Tin Dioxide

Table 3.2: Different concentrations of auric acid in methanol used to deposit
the gold nanoparticles and their corresponding SPR maxima and sizes deter-
mined from SEM images.

Amount of
HAuCl4 (mM)

SPR maximum (nm) of bottom
plate substrate and top plate (nm)

Range of nanoparticles
observed (nm)

0.25 535; 540 10-40

0.5 540; 560 30-50

1 545; 570 50-70

3.5.1 Phase and appearance

All the depositions from auric acid resulted in coloured AuNP thin films that

displayed cubic metallic gold XRD patterns as in Figure 3.8.

Figure 3.8: Typical XRD pattern of AuNPs deposited from auric acid using
aerosol-assisted chemical vapour deposition with cubic gold reference19 for
comparison.

3.5.2 Difference between top and bottom plates

From SEM images in Figure 3.9 it can be seen that in general the top plate gold

nanoparticles formed in the CVD reaction of auric acid were slightly larger at
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30 nm to 70 nm compared to the bottom plate nanoparticles at 20 nm to 60

nm. Larger particles were observed more often on the top rather than bottom

plate as when NPs form in between the plates, they are more susceptible to

thermophoresis and are pushed upwards due to convection in the reactor even-

tually settling on the top plate. The larger sizes of the top plate particles corre-

sponded to observations of SPR absorption maxima at longer wavelengths.209

Even though the top plate nanoparticles were larger, there were fewer nanopar-

ticles observed in the SEM, since a larger area of glass can be observed from

SEM images.

Thermogravimetric analysis of HAuCl4 showed a loss of HCl between 80

and 110 ◦C followed by a loss of 3/2 Cl2 between 150 ◦C and 200 ◦C.38 How-

ever, since MeOH is also present in the reaction, the reaction could also possi-

bly proceed as below.

2 HAuCl4+ 3CH3OH−−→ 2Au+ 8 HCl+ 3 HCHO

AuNPs are formed when auric acid is reduced by methanol in the reactor where

the temperature is high enough for reaction activation. So even though reduc-

tion and NP formation can occur in between the plates, overall AuNPs will

form more readily near the heated bottom plate substrate, therefore a higher

number of depositions occur on the bottom plate and it is where we observe a

higher concentration of AuNPs as seen from SEM images (Figure 3.9).
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3. Functional Composites of Gold Nanoparticles and Tin Dioxide

Figure 3.9: Comparison of films deposited on bottom and top plate from the
AACVD reaction of auric acid (0.02 mmol) in methanol (20 ml) with air (2 L
min−1) at 450 ◦C. Shown here are SEM images and SPR maxima observed from
the absorbance spectra at 545 nm (bottom plate) and 570 nm (top plate). The
spherical shapes of the nanoparticles can be seen in the SEM images and the
sizes were estimated from this.

3.5.3 Changing the auric acid concentration

Gold nanoparticles were deposited from a range of auric acid precursor concen-

trations (Table 3.2) resulting in nanoparticle with a range of sizes. Depositions

from higher concentrations of gold in the precursor solution resulted in larger

and more irregular sized particles with a larger dispersity as seen in the TEM

images (Figure 3.11). The SPR of nanoparticles deposited from higher auric

acid concentrations were observed at longer wavelengths (Figure 3.10), similar

to NPs deposited on the top plate as shown in Table 3.2.
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Figure 3.10: Surface plasmon resonance maxima of a gold nanoparticles de-
posited on the top and bottom plate from various concentrations of 0.05, 1
and 2 × 10−2 mmol in 20 ml methanol at 450 ◦C.

As the concentration of auric acid used in the precursor solution was low-

ered, the resulting nanoparticles became smaller and more spherically uniform,

decreasing to 10 nm (see TEM images in Figure 3.11). The reduction of nanopar-

ticle sizes were only seen on the bottom plates, all the top plate nanoparticles

still had large size variations and irregularly shapes. The amount of nanoparti-

cles on the top plate however, did decrease in correlation with decreasing auric

acid concentration. Since it seems that the thermophoresis only affects a cer-

tain type of nanoparticle, large and irregular sized, it can be postulated that

these nanoparticles are all formed by the same mechanism, when suspended in

between the two plates not on the bottom plate surface, otherwise their pres-

ence would have also been observed on the bottom plate.
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Figure 3.11: TEM images of AuNPs deposited on the bottom plate from auric
acid concentrations of (a) 2× 10−2, (b) 1× 10−2 and (c) 0.5× 10−2 mmol in 20
ml methanol.
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3.5.4 High auric acid concentration depositions

Composites of AuNP:SnO2 deposited from one-pot solutions of auric acid and

MBTC at different ratios are discussed in Section 3.6. The concentration of

auric acid used for the one-pot AuNP:SnO2 depositions, 6 mM of auric acid in

methanol, was much higher than the auric acid reactions described in Section

3.5.3 (up to 1 mM). Results in this section describe depositions using that higher

concentration of auric acid but without the Sn component. The auric acid was

dissolved into methanol to make a 6 mM solution, 20 ml was placed in a bubbler

used for deposition at 450 ◦C with N2 at a rate of 2 L min−1.

As observed from the photograph in Figure 3.12 there is a gradient of Au

concentration on the glass substrate, with a higher concentration closer to the

inlet of orange deposits indicating absorptions from bulk gold. The concentra-

tion of gold decreases while moving further from the inlet where instead there

is a purple colour due to gold nanoparticless. The intensity of purple lessens

moving away from the inlet due to precursor depletion, but is still of a higher

intensity compared to depositions using a lower precursor concentration as in

Section 3.5.3.

From the SEMs (Figure 3.13) it was observed that the films were discontin-

uous, having either particulate or island morphology. A discontinuous mor-

phology indicates that the deposition of NPs occurs first at random locations

on the glass, which could serve as nucleation points where more Au can then

deposit on it. Since there seems to be overlapping particles on the bottom plate,

but still the presence of the characteristic nanoparticulate SPR absorption, it

is likely that the reduction into gold occurs mostly in the aerosol before de-

position onto the substrate, with no particle diffusion that would occur when

forming a continuous film. Reactions of auric acid into AuNPs and deposition

onto the glass substrate were more efficient than in the one-pot Au:Sn deposi-
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Figure 3.12: Photographs of AuNPs deposited from a 20 ml solution of 6 mM
auric acid in methanol. Even though the concentration of Au was high, it still
maintained nanoparticulate nature as seen by the purple colour with trans-
parency - note that text can be seen through it.

tion described in Section 3.6, as there were more observed AuNPs on both the

top and bottom plate.

The AuNPs deposited from this relatively highly concentrated solution

were in general larger and less spherical than the nanoparticles deposited from

a lower precursor concentration described in Section 3.5.3. In terms of opti-

cal properties (Figure 3.14), the gold films possessed a broad reflectance from

500 nm and onwards towards longer wavelengths characteristic of the metal-

lic reflectance. There was a strong absorbance from the SPR, resulting in the

blue and purple colour when looking through the film, which was of a higher

intensity than when depositing with the Sn precursor in the one-pot solution

(Section 3.6).
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Figure 3.13: SEM images of gold deposited from an auric acid solution (6 mM)
by AACVD. Images show showing island growth on the (a) bottom plate and
large particle deposition on the (b) top plate.

Figure 3.14: Optical properties of a typical gold nanoparticle film: (a) trans-
mittance, reflectance and (b) SPR absorption.

3.5.5 Summary

AuNPs can be synthesised and deposited as a thin film onto glass with AACVD.

Furthermore, we can control the depositions by controlling the auric acid

precursor solution, allowing the properties of the nanoparticles that were de-

posited on the bottom plate to be optimised according to the application moreso

than for the one-pot AuNP:SnO2 composite depositions discussed in Section

3.6. By depositing the AuNPs by itself, rather than in situ with a metal oxide,

different metal oxide composites can be synthesised without having to consider

complicated interactions between the auric acid and metal oxide precursors in

the precursor solution and during the reaction in the reactor. Compared to
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other pure auric acid CVD investigations, where the Au film possessed SPR ab-

sorption from nanomorphological features,112 the NPs synthesised here were

smaller having a more discrete individual nanoparticulate nature as if synthe-

sised using bench top methods.

3.6 One-pot solution AACVD of AuNP and SnO2

composites

Ideally a composite synthesised from CVD would be made from a one-pot pre-

cursor solution to increase ease of preparation. In this section composites of

nanoparticulate Au embedded within a thin film of SnO2 were generated from

a one-pot solution of auric acid and MBTC. Gradation of Au content in the

films was useful in allowing the analysis of different compositions and combi-

nations from a single CVD experiment. Reaction pathways can also be derived

from the deposition patterns. Auric acid was dissolved into methanol with

varying amounts of MBTC, stirred thoroughly then used shortly afterwards

in the AACVD reactions. Some of the one-pot depositions showed mostly

metallic gold or none at all, and through judging by appearances the Au:Sn

precursor ratio showing the most efficacious incorporation of nanoparticulate

gold into SnO2 (5.6 at.% Au:Sn) which was further investigated in terms of

deposition temperature.

3.6.1 Film appearance

Most of the films deposited, as per the conditions shown in Table 3.3 displayed

the same colours with metal-like reflectivity despite using different precursor

concentrations (i.e. Au:Sn ratio). However, the intensity of colours did change

depending on the ratio of Au:Sn and sometimes displaying full bulk gold re-
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Table 3.3: Different compositions of one-pot precursor solutions for the depo-
sition of gold and SnO2 thin films. All depositions were carried out using pre-
cursor solutions of auric acid in varying concentrations with butyltin trichlo-
ride (2 mmol) in methanol (20 ml).

Auric acid (mmol) Au:Sn (at%) Temperature ◦C

0.4 16.7 500

0.2 9.1 500

0.12 5.6 400, 450 & 500

0.1 4.8 500

flectance at high concentrations (Figure 3.15). The films deposited at 400 and

450 ◦C tended to cover the whole substrate, but at a higher temperature of

500 ◦C the breakdown of precursors occurs faster, so reaction, formation and

deposition of SnO2 was concentrated near the aerosol inlet (Figure 3.15).

The depositions on the top plates tended to be powdery and non-adhesive

which indicated that the material has little intermolecular interaction with the

silica coated glass. The top plates appeared to have a gold metal-like reflectivity,

shades of purple in reflected light and shades of blue and orange in transmit-

ted light. The colouration and low adhesion of the top plate films suggests

that they are composed of mostly gold nanoparticles with little or no SnO2.

On the bottom plates, depositions were generally adhesive provided the films

were less than 1 µm thick. Likewise the colours of the bottom plates were dark

blue/black when viewed in transmitted light and purple in reflected light indi-

cating the presence of gold. Better adhesion of the film to the glass substrate on

the bottom plates indicated that it consisted also of a large part SnO2, whilst

the colour is due to the presence of gold nanoparticles within the metal oxide

composite since tin oxide depositions are colourless or white.
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3. Functional Composites of Gold Nanoparticles and Tin Dioxide

3.6.2 Deposited phase

In order to have a look at deposition pathways, XRD patterns were obtained

at 5 interval distances away from the inlet (Figure 3.16). As expected on the

bottom plate, SnO2 reflections were the main peaks detected. The intensities

indicate crystalline SnO2 depositions were most favourable about 3 cm from

the inlet (Figure 3.16). Sharp peaks correlate with a thicker film whilst a higher

background can be accounted for by a thin deposit (less than 200 nm). On the

other hand, for the top plate cubic Au peaks were detected. The maximum

intensities for the Au peaks on the top plate were detected 1 cm from the inlet

before decreasing with increasing distance. A higher background can be seen

on the top plate XRD patterns which come from the nanoparticulate morphol-

ogy and underlying amorphous glass at places of low coverage. The proximity

of Au deposition to the inlet and the absence of Au depositions in the baffle (see

Figure 2.1) suggest that nanoparticles form as soon as precursor droplets enter

the reactor, these nanoparticles are immediately affected thermophoretically

resulting in top plate depositions close to the inlet. Most of the XRD patterns

observed only show either SnO2 or cubic metallic Au peaks. On the other

hand SnO2 forms more readily on the bottom plate, indicating that MBTC has

a higher thermal activation energy for decomposition.
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Figure 3.15: Photographs showing the top and bottom plate of a gold and
tin dioxide composite film in transmittance and reflectance mode deposited
at 450 ◦C from a one-pot solution of monobutyltin trichloride and auric acid
in methanol.
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3. Functional Composites of Gold Nanoparticles and Tin Dioxide

Figure 3.16: Intensities of XRD patterns taken at 0, 1, 2, 3 and 4 cm away
from the inlet of a bottom and top plate deposited from a precursor solution
of MBTC (2 mmol) and auric acid (0.12 mmol) in methanol (20 ml) at 450 ◦C
with N2 (g) carrier gas.
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Table 3.4: Data measured at from different points of 0, 4 and 8 cm away from the inlet (Figure 3.17) on the bottom plate of films deposited
from a 20 ml methanolic solution of 100 mM MBTC at 500 ◦C and together with 6 mM HAuCl2 at 400, 450 and 500 ◦C. Deposited
Au:Sn atomic ratios were determined using EDX and the corresponding SPR maximum where existent.

Precursor(s) Temperature
(◦C) Point Au:Sn

(at.%)

SPR maxima
(nm)

XRD
phase

SnO2 unit cell a
= b; c (Å)

Unit cell volume
(Å3)

M
BT

C

50
0 - - - SnO2 4.75 ; 3.19 72.03

M
BT

C
an

d
H

A
uC

l 4

50
0

a 47.1 559 Au/SnO2 4.73 ; 3.21 71.75

b 14.3 555 SnO2 4.74 ; 3.18 71.40

c - - SnO2 4.77 ; 3.19 72.71

45
0

a 53.5 570 Au - -

b 11.5 551 Au/SnO2 4.77 ; 3.20 72.73

c 8.3 558 SnO2 4.74 ; 3.16 71.21

40
0

a 49.5 597 Au - -

b 21.3 517 Au - -

c - - SnO2 4.78 ; 3.19 72.99114



3. Functional Composites of Gold Nanoparticles and Tin Dioxide

Figure 3.17: Points of 0, 4 and 8 cm away from inlet at which samples of bottom
plate depositions at different temperatures from a one-pot precursor solution
of auric acid and MBTC were measured for the values in Table 3.4.

Au:Sn atomic ratios of the deposited film were calculated from EDX. It

showed a varied deposition of gold to tin ratios on the bottom and top plate.

With low Au metal atomic deposition (around under 10 at.%), the Au peaks

do not show up in the XRD. On the other hand films with high Au metal at.%

(deposition over around 40 at.%) only peaks from cubic metallic Au were ob-

served. Sometimes both peaks can be seen in the XRD pattern if the amount

of Sn and Au is sufficiently high as in Figure 3.18. The lattice parameters were

computed by fitting a Le Bail model to the patterns using the general structure

analysis system (GSAS). Stoichiometric tin dioxide powder has a tetragonal ru-

tile structure and crystallises in the space group P42/mnm. The cell parameters

used for modelling were a = b = 4.747 Åand c = 3.185 Å. The calculated unit

cell are all similar to this as shown in Table 3.4.

An example XPS spectrum for a deposition at 500 ◦C is shown in Figure

3.19. The Sn 3d peaks display a spin orbit coupling of 8.4 eV and the binding

energy of the 3d5/2 was observed at 486.8 eV, in good agreement to the reported

range of 486.95-487.30 eV.205,210,211 XPS also confirmed that gold deposition

occurred on both the bottom and top plate but the quantity was dependent on

location (see Table 3.4). The Au 4f5/2 XPS peak from the nanoparticles was

located at 84.1 eV, in good agreement with elemental gold reference values at

84.00 eV and 84.04 eV.212,213 On the bottom plates, XPS gave no evidence for

Sn being incorporated into the gold nanoparticles or for gold substituting into
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Figure 3.18: XRD pattern of a film deposited at 500 ◦C with a precursor solu-
tion of MBTC (2 mmol) and auric acid (0.12 mmol) in methanol (20 ml) with
N2 (g) carrier gas. This is an example of both the Au and SnO2 peaks showing.
The peaks labelled are for SnO2 (*) and Au (◦).

the SnO2 lattice. The XPS data agreed with EDX and UV-Vis spectroscopy of

the presence of mostly Au on the top plate as SnO2 was only detected there for

depositions at 500 ◦C.

Figure 3.19: Photoemission spectra of the Sn 3d3/2 and 3d5/2 (left) and Au 4f5/2

and 4f7/2 binding energies of samples deposited at 400, 450 and 500 ◦C from a
precursor solution of MBTC (2 mmol) and auric acid (0.12 mmol) in methanol
(20 ml) with N2 (g) as the carrier gas.
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3. Functional Composites of Gold Nanoparticles and Tin Dioxide

3.6.3 Surface morphology

SEM images in Figure 3.20 show a range of clustered to faceted structures which

were taken from three regions investigated of a bottom plate deposition (Fig-

ure 3.17). The faceted structures corresponded to sharp SnO2 peaks in the

XRD pattern (Figure 3.18) and are found in other similarly polycrystalline

SnO2 thin films.79 The films which were more cluster-like had a higher Au:Sn

ratio which corresponded to less sharply defined XRD reflections as the pres-

ence of AuNPs within the SnO2 disrupts the crystallinity. The morphological

trend from faceted to clusters were observed to accompany decreasing deposi-

tion temperature and increasing gold precursor.

Films deposited on bottom plates at high temperatures were observed to

have a more faceted crystalline SnO2 morphology, possibly because the ther-

mophoretic effect is larger and any AuNPs formed are moved upwards towards

the top plate, as well as higher temperatures should produce more crystalline

films as the atoms have more energy to move towards more stable sites. At a

higher Au:Sn precursor ratio or at lower deposition temperatures, more gold

nanoparticles or compounds will be present in the reactor by the bottom plate

which might interrupt crystalline SnO2 formation, resulting in clusters rather

than crystalline facets. AuNPs were observed on the top plate of films, with

less than a monolayer deposited at 400 and 450 ◦C, which increased to blanket

coverage for films deposited at 500 ◦C (Figure 3.21). As mentioned before, ther-

mophoresis has a larger effect on larger particles, which indicates that during

the AACVD reaction gold atoms are aggregating and forming nanoparticles

in between the plates prior to deposition. As with XRD patterns, the AuNPs

cannot be seen in the SEM images of the bottom plates even when an SPR

absorption was present, indicating they are embedded within the SnO2 host

matrix.
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Figure 3.20: SEM images taken from different regions on the bottom plate of
AuNP:SnO2 composite deposited at 500 ◦C from a precursor solution of 5.6
at.% Au:Sn in 20 ml methanol at different distances from inlet of (a) 0 cm, (b)
4 cm and (c) 8 cm. EDX cannot determine if the white dot features in image
(b) are nanoparticles because they are too small, however they are likely to be
the uppermost features of the surface morphology.
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3. Functional Composites of Gold Nanoparticles and Tin Dioxide

Figure 3.21: SEM images of gold nanoparticles deposited on the top plate from
a precursor solution of HAuCl43H2O and BuSnCl3 with an atomic ratio of
0.06 in 20 ml methanol at (a) 500 ◦C, (b) 450 ◦C, and (c) 400 ◦C.
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3.6.4 Optical and electronic properties

UV/visible spectroscopy showed SPR absorption peaks in all the films but not

all areas on the bottom and top plates. There were areas where the interference

patterns were strong and so the SPR peaks could not be determined. From

the observable SPR bands, the maxima ranged from 510 to 602 nm where the

longer end of the range is red-shifted when compared with thin films of only

AuNPs (Figures 3.14 & 3.10) either due to larger NPs size, a wider size range or

due to the refractive index of the surrounding SnO2. Previous observations of

SPR absorbances measured from core AuNPs have been found to shift during

the composite formation with a SnO2.
192 The reported AuNPs had an SPR

absorption maxima at 522 nm, which increased to 545 nm after coating with

SnO2, then finally increased again to 554 nm after being spin coated into a thin

film. These shifts in SPR are due to the refractive index of SnO2 and also the

final interparticle distance found in the thin film since the actual size of the

AuNPs remained the same.192

All conductance measurements were made on a 2-pt probe ammeter. The

resistance of the films were on average in the 1 kΩ/� range which is not opti-

mum for conducting purposes and was less than depositions of just SnO23.3.

However, the Drude-like reflectance in the far IR that is normally indicative of

the presence of charge carriers seems to be unperturbed (Figure 3.22) leading

us to think that the position of gold nanoparticles embedded within the SnO2

matrix disrupted the conduction mechanism but retained the reflective charac-

ter of the SnO2. It is possible that the metallic gold deposits also contributed to

this reflectance feature. Smaller areas of darker regions were reported to have

much lower resistances around 2–3 Ω/�, probably due to high concentration

of gold nanoparticles in the film reaching the percolation limit for metal con-

ductivity. If it were needed for specific electronic applications, the electrical
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3. Functional Composites of Gold Nanoparticles and Tin Dioxide

conductance of SnO2 could be increased introducing more oxygen vacancies

and n-type doping.5

Bottom plate

The transmittance percentages and the corresponding SPR band absorptions

of films deposited on the bottom plates at 500 ◦C from an 5.6 at.% Au:Sn in

the precursor solution at various points are shown in Figure 3.22. In general a

higher Au:Sn ratio results in a lower transmittance and more prominent SPR

absorbance. The width of the SPR band increases with Au:Sn ratio indicating a

widening dispersion of the nanoparticles.209 Films with a lower Au:Sn content

had lower SPR absorbance intensity and narrower SPR band, therefore lower

dispersity of nanoparticles. The intensity of SPR absorbance can be used to

indicate the relative amounts of gold nanoparticles. If there were less Au in

the SnO2 matrix the nanoparticles are less likely to agglomerate into larger

nanoparticles and will also be more stabilised in the SnO2 matrix. The SPR

position changes according to the size of the nanoparticles, concentration and

dielectric constant of the surrounding medium. However, due to the fact that

the Au nanoparticles are embedded in the SnO2 within the metal oxide matrix,

the sizes and concentration of the nanoparticles could not be investigated and

correlated with the SPR position.

Top plate

As EDX shows no Sn deposited and an Au atomic percentage of 100% for the

film deposited on the top plate at 500 ◦C, the transmittance intensity or ab-

sorbance amount, was taken as a qualitative indicator of the amount of gold

deposited. All areas displayed a clear SPR absorption indicating nanoparticu-

late rather than island or thin film morphology. There is a higher intensity of

SPR and concentration of Au near the inlet, as the precursor is deposited and
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used up the intensity decreases when moving away from the inlet (Figure 3.22).
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Figure 3.22: Optical properties from a deposition using a precursor solution of 5.6 at.% Au:Sn in 20 ml methanol at 500 ◦C. Trans-
mittance (a), absorption (b) and reflectance (c) spectra correspond to bottom plate depositions. The observed ratios of deposited Au:Sn
are labelled. The areas investigated as a function of distance from the inlet (I) 0 cm, (II) 4 cm and (III) 8 cm are labelled. (d), (e) and (f)
correspond to transmittance, absorbance and reflectance top plate depositions with (I), (II) and (III) here referring to Au at.%.
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3.6.5 Reaction pathway

The formation of the gold nanoparticles in the reaction comes from the decom-

position of auric acid in the gas phase during the CVD process. The tin dioxide

host matrix deposited on the heated bottom plate substrate at all investigated

temperatures but on the unheated top plate only during 500 ◦C depositions. In-

terestingly the gold nanoparticles were found embedded within the tin matrix,

affording intense SPR generated colours, however the nanoparticles were pre-

dominantly within the bulk of the tin dioxide coating and could not be imaged

by SEM at the surface.

The top plate regions that were investigated showed mostly gold nanoparti-

cles. The fact that a significant amount of gold nanoparticles were observed on

the top plate is a result of thermophoresis where the already formed nanoparti-

cles in the gas phase find it difficult to diffuse through the diffusion layer at the

heated surface and rebound, eventually settling on the cooler top plate.203 The

observed top plate nanoparticles formed were of different sizes and shapes but

showed triangular and hexagonal facets as well as spherical particles. Notably,

the concentration of gold both within the tin dioxide film matrix on the heated

substrate and on the top plate varied considerably with distance from the inlet

to the reactor. This enabled the generation of a film with concentration gradi-

ents of Au:SnO2, where the nanoparticle to host matrix ratios varied markedly

down the film. This enabled us to explore the composite phase space rapidly

and determine the best regions for colouration and reflective properties as well

as for conductivity.

The methanol carrier solvent has a key effect on both reactions, in the for-

mation of nanoparticles and host the metal oxide host. Methanol has been

shown in a number of CVD reactions to promote the formation of elemental

metals, especially for Cu214, Ag215 and Au.38 It is thought that methanol de-
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composes in the reactor forming an in situ source of hydrogen which may aid

the formation of the nanoparticles. Conversely the methanol also acts as the

source of oxygen for the formation of the tin oxide matrix as the reaction was

conducted under a nitrogen atmosphere. One possible set of equations for the

processes are schematically illustrated below;

SnBuCl3+ 4CH3OH−−→ SnO2+ 3HCl+ 3
2 C2H4+C4H10+H2O

2HAuCl4+ 3CH3OH+ 2H2O−−→ 2Au+ 8HCl+ 3HCHO+O2

Both top and bottom plates were analysed since there was Au deposition

on both and so the reactions that occurred can be properly evaluated and un-

derstood. We see an increase in dispersity of the top plate nanoparticles when

starting with a low Au precursor concentration. This is in contrast to bottom

plate nanoparticles where the dispersity decreases with increasing gold content

due to stabilisation of SnO2 and the decrease in mobility of Au particles. The

presence of the SPR and the elemental detection of gold (EDX/XPS) suggests

the presence of gold nanoparticles despite not being able to readily image them

in SEM images. The relationship between the SPR width and the Au content

promises an ability to tune the characteristics of the nanoparticles with depo-

sition conditions.

3.6.6 Summary

Composite films of AuNP:SnO2 were grown from a simple one-pot solution

using AACVD. Two types of films were generated, top plate films consisting

of mostly gold, and bottom plate films which consisted of AuNP:SnO2. The

Au was incorporated into the film at different ratios and it was found that thin

films of the composite that have between 3-15 at.% Au:Sn, optimum properties

were found in terms of blue colouration, reasonable optical transparency and

also reflectivity in the IR. The intensity and tint of the colouration depends on
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the nanoparticles as well as the dielectric constant of the metal oxide matrix,

which will be further explored in Chapter 4. In order to improve the TCO

properties of the film, the SnO2 can be F doped. It would also be ideal if the

top plate nanoparticles could be utilised as they could be considered wasted in

this process.

3.7 Layering to make conductive AuNP and SnO2

composites

In this section thin films of AuNPs and FTO are layered and combined to create

double layered composite thin films of either FTO on AuNPs (FTO/AuNP)

or AuNPs on FTO (AuNP/FTO) as illustrated in Figure 3.23. By deposit-

ing one film at a time, optimum deposition conditions can first be determined

before combining the materials, enabling us to tailor the product for specific

desirable characteristics and avoid interactions between the Au and Sn precur-

sor in the bubbler or in the reactor. Layering a composite also allows us the

option of exposing either the AuNPs or the metal oxide to the outside surface.

The deposition conditions of each layer is identical to the high quality single

layer thin films described in Section 3.4 for FTO and Section 3.5.3 for AuNPs,

therefore the composite films had good TCO properties (low sheet resistance,

transparency) and a reproducible gold nanoparticle SPR.

In a CVD process metal oxides have no problem adhering to a glass sub-

strate, on the other hand AuNPs are typically not adherent to glass38 unless

complicated methods such as pretreatment of the glass216 or silanisation217 are

employed. Using the layering method, the AuNPs can be robustly adhered by

overlaying FTO above it and also when overlaid on FTO, suggesting the pres-

ence of strong interactions between the gold nanoparticles and semiconducting
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FTO. All the composite films were adherent to the glass substrate, passing the

Scotch R© tape test, with no visible change after months of storage and only

scratching off when using a steel scalpel with force.

Figure 3.23: Photographs of films showing the colour and transparency. (a)
AuNPs deposited from auric acid, (b) FTO deposited from butyltin trichloride
and ammonium fluoride, (c) FTO deposited as an overlayer above AuNPs and
(d) AuNPs overlaid above FTO.

3.7.1 FTO on Au

For layered films of FTO on AuNPs (FTO/AuNP) a range of AuNPs were

deposited first, using the same precursor concentrations as in Table 3.2, with a

subsequent FTO layer made using a 30 at.% F:Sn precursor solution of NH4F

to BuSnCl3 in methanol.

Film appearance and morphology

The resulting FTO/Au films were blue and transparent with the FTO act-

ing as a sealant, adhering the AuNPs to the glass (Figure 3.23). Most of the
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Figure 3.24: Comparing the properties of composite FTO (from a precursor
solution of 30 at.% F:Sn) depositions on AuNP substrates from top and bottom
plate positions. Different morphologies were observed from the SEM images
of FTO on bottom plate (a) and top plate (b) and inserted are SEMs of the
AuNP substrate.
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FTO/AuNP films displayed SnO2 reflection patterns in the XRD with pre-

ferred orientation in the (210) plane (Figure 3.24) the same as FTO deposited

onto glass (Section 3.4). An exception was found for the layered films where

FTO was deposited on a highly concentrated layer of AuNPs, from the highest

auric acid precursor concentration investigated (1 mM), whereby the preferred

orientation was solely (200). The change in preferred orientation is reflected

in the broader particle morphology observed from SEM images (Figure 3.24)

which could be due to a disturbance in the growth of the film from the shape

of the underlying AuNPs.

Optical and electronic properties

The colour of the films change from pink/purple with just AuNPs to blue after

overlaying with FTO (Figure 3.23), indicating that the absorption had moved

towards the red end of the spectrum. This correlates with the location of the

AuNPs’ SPR maximum (Figure 3.25), which generally shifts to longer wave-

lengths after FTO deposition as a consequence of the change in surrounding

dielectric constant by having the FTO in-fill the AuNP structure. The com-

posite’s transmittance and reflectance plots are simply a combination of the

two individual films.

The measured electronic properties (Table 3.5) of the FTO/AuNPs were

retained, with the reflection in the far IR due to the onset of the plasmon band

not affected by a AuNP substrate (Figure 3.25) when compared to the reflection

spectrum of the FTO (Figure 3.7) thin film. This could mean that no electron

transfer is occurring in between the layers. It should be noted that the blue

colouration from the SPR combined with the reflection in the far IR is an ideal

one for window applications.
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Table 3.5: Electronic properties of FTO on AuNPs layered thin film. Precursor solutions in methanol (20 ml) were composed of 30
at.% F:Sn for FTO and 2 ×10−2 mmol HAuCl4 (1 mM) for AuNPs.

Substrate for FTO
deposition

ρ, resistivity (×10−4

Ω cm)
RSH , sheet resistance

(Ω/�)
µ, mobility
(cm2(Vs)−1)

N, carrier concentration
(cm−3)

Glass 5 10 25.3 4.93 ×1020

AuNPs (top plate) - - 28.44 4.26 ×1020

AuNPs (bottom plate) 4.86 7.84 25.73 4.99 ×1020

Figure 3.25: The (a) transmittance and reflectance spectra for FTO deposited on the bottom and top plate of a gold nanoparticle depo-
sition. SPR absorptions were also observed as shown in (b).
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3.7.2 Au on FTO

For AuNPs on FTO layered materials, the FTO was deposited first with a pre-

cursor concentration of 30 at.% F:Sn in methanol. The FTO films were then

used as the top and bottom plate in the same auric acid deposition set up as

described in the first section using precursor concentrations in Table 3.2.

Film appearance and morphology

The adherence of AuNPs was stronger to the FTO thin film compared to the

glass substrate, where it withstood the Scotch R© tape test rather than being

rubbed off very easily upon slight touching. This suggests a strong intermolec-

ular interaction between the AuNPs and the FTO, perhaps due to the fact that

FTO is semiconducting whereas the silica barrier on the glass substrate is in-

sulating. The preferred orientation of the FTO was found to be in the SnO2

(200) and (210) plane (Figure 3.28) as expected from the FTO in Section 3.4. A

small peak at around 2θ = 45◦ is attributed to the cubic gold (200) plane which

was not observed in the XRD pattern of the FTO/AuNPs layered film since

the XRD pattern was measured with a low angle of 0.5 ◦C and so is relatively

surface sensitive.

The deposition of AuNPs nanoparticles on the FTO varied from a very

dense layer of spherical NPs to a more decorative type when depositing at lower

auric acid concentration shown in (Figure 3.26 and 3.27). However, the sizes

of the nanoparticles do not seem to vary much and ranged from 30 to 70 nm.

AuNPs can be observed in the SEM image even where the SPR was not easily

detectable indicating depositing them onto FTO is less efficient than onto glass.

In general the electronic properties of the AuNPs on FTO thin films were the

same as FTO on glass with the resistivities around 5 ×10−4 Ω cm.
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Figure 3.26: Comparing the properties of composite films from AuNP top and
bottom plate depositions onto a substrate of FTO (30 at.% precursor ratio of
F:Sn). Different amounts and sizes of nanoparticles were observed from the
SEM (a & b), slightly different XRD patterns (c & d) and preferred orientation
(e & f).
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Figure 3.27: SEM image of AuNPs (brighter parts of image) with decorative
shapes on FTO.

Optical and electronic properties

Only the films deposited with a high auric acid concentration (1 mM) have

small but detectable SPR absorption maxima at 528 and 562 nm for bottom

and top plate films respectively (arrows Figure 3.28). Despite the lack of visible

SPR, all the films still have a light pink purple colouration indicating that there

was indeed a layer of AuNPs (Figure 3.23). The position of the visible SPR

maxima follows the trend of previous films whereby the position of the bottom

plate AuNPs maximum is at a shorter wavelength compared to the top plate

AuNP film, again indicating that top plate depositions result in larger AuNPs.

When comparing the detectable SPR maxima of AuNP/FTO and AuNP/glass,

a slight shift to lower wavelengths was observed. This is a combination of

the dielectric character of the FTO as well as different substrate conditions for

AuNP formation and deposition.
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Figure 3.28: XRD and optical spectra of AuNPs deposited onto fluorine doped
tin oxide thin film. (a) XRD pattern is standard for all the FTO on AuNPs thin
film. (b) The SPR absorption (arrows) of FTO overlaid above top and bottom
plate gold nanoparticles.

Summary

The SPR properties of AuNPs and TCO properties from FTO have been suc-

cessfully combined into composite materials and characterised. The composite

gold nanoparticle and FTO films were deposited using aerosol-assisted chemi-

cal vapour deposition in a layered structure. The highly transparent and con-

ducting character of the FTO was not altered even when depositing above a

layer of AuNPs with all the films achieving excellent sheet resistances of be-

tween 8-10 Ω/�. The layered thin film took on the optical character of both
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layers, combining the SPR absorption (500-700 nm), blue/pink colouration

and reflection (onset at 1500 nm) in the IR due to the high charge carrier con-

centration. The refractive index of the FTO film is higher than air at around

2,130,205 and this shifts the SPR absorption towards longer wavelengths.149

Considering the in situ AACVD method for making AuNPs without sur-

factants, the deposition still managed to produce AuNPs homogenously on the

surface at approximately the same sizes as each other which were dependent on

precursor concentration given identical deposition temperature. This method

is to our knowledge the first report of making layered films of TCO with en-

hanced colouration properties, and can be further studied in terms of a tunable

system with easier deposition of composite AuNP:metal oxide system without

the need for an extra ex situ nanoparticle synthesis step.

3.8 Conclusion

There have already been various reports of AuNP composites with other metal

oxides TiO2, WO3, MoO3, and VO2 synthesised from AP (atmospheric pres-

sure) and AACVD.12,38,188,203 This work in this chapter expands on the previous

reports with the synthesis of composite functional thin films with very good

industrial standard TCO properties by using FTO. The majority of previously

reported AuNP and SnO2 based composites have the AuNPs pre-synthesised

using some version of the Turkevich method before being loaded onto a metal

oxide.183,192,195,196 The AACVD has shown to be a flexible choice for metal ox-

ide noble nanoparticle composite formation as the AuNPs can be formed di-

rectly from auric acid using heat and decomposition reactions rather than hav-

ing be preformed or thermally activated in a two-step reactions.112,192,218

AuNPs and SnO2 were first deposited separately using AACVD reactions.

F doping using the NH4F precursor effectively improved the properties of the
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SnO2 thin film, producing a high quality film combining the typical low resis-

tance and high visible transparency as expected from previous reports.79 A one-

pot precursor solution of auric acid and MBTC was shown to be able through

CVD to deposit composite films although the electronic properties were not up

to TCO standards. However, depositing AuNPs from auric acid by themselves

produced a more controlled and efficient reaction not seen with previous CVD

methods of Au synthesis,38,203 with some predictability about NP size and dis-

persion. Therefore, the AuNPs and FTO films were instead deposited layer

by layer, allowing the choice of either film being exposed to the environment.

This method can be expanded to other metal oxide nanoparticulate composite

systems and it can be easily seen that this will be a useful way of tailoring the

deposition procedure and composite properties for various specific application.

Table 3.6: A comparison of the preferentially orientated planes of SnO2 and
FTO deposited using AACVD with MBTC and NH4F.

Material Conditions (temperature,
carrier gas) Preferred orientations

SnO2 400-500 ◦C, N2 (210), (111), (110)

FTO 450 ◦C, air (200), (210)

AuNP/FTO 450 ◦C, air (200), (210)

FTO/AuNP 450 ◦C, air (210), (200)

The preferred orientation growth for the SnO2 thin films were similar to

other CVD and spray deposition methods, with an increasing and preferential

growth in the (200) plane correlating with F-doping or increasing conductiv-

ity.78,116 As Table 3.6 shows, when the FTO is deposited onto AuNPs instead

of the silica coated barrier glass, there is an increase in the (210) and a decrease

in the (200) plane, although these both are still the preferred growth planes.

This is probably due to the rough structure of the substrate AuNP film, as the

sizes of the NPs were quite substantial at 20-60 nm diameter when compared
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to a flat substrate.

Since the refractive index of the metal oxide seems to be an important fac-

tor in the final SPR of the composites, the next chapter will report on the

optical properties of various composites comprised of AuNPs and multiple

other metal oxides. The relationship between the refractive index of the var-

ious metal oxides, measured with ellipsometry and shifts in SPR absorbances

are discussed.
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Chapter 4

Effect of Metal Oxide Character

on the SPR in Composites with

AuNPs

4.1 Introduction

It is well known that the peak positions and character of the SPR absorption

alters with size, shape and the surrounding media of the noble metal nanopar-

ticles.149,219,220 Results from Chapter 3 showed a variety of AuNP depositions,

with different nanoparticle sizes and within an SnO2 matrix using different

layering structures. We found that the colours and SPR absorbances were dif-

ferent for a range of AuNP sizes, and for the different structures of the com-

posite; FTO overlaid onto AuNPs or AuNPs overlaid onto FTO. In order to

be able to analyse the effect of the refractive index of the metal oxide on the

SPR, we needed to be able to compare with other metal oxide composites. The

AACVD method is well established for depositing various metal oxides221 and

has been shown in this thesis able to deposit AuNP thin films, was used to pre-

pare various composites of AuNPs and different metal oxides. This can give
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us some insight into the way the metal oxides deposit on the nanoparticles and

give us an idea of how to tune the SPR. We chose to structure the layers so that

the metal oxide is overlaid above the AuNPs. This ensures that the AuNPs

deposit in the same environment on the same substrate, resulting in a simi-

lar SPR absorbances and nanoparticle character. The optical properties of the

metal oxide/AuNP composites were investigated and compared. There have

been studies on the effect of the surrounding refractive index on the plasmon

character of nanoparticles, however it has to be noted that any effect seen is

very dependent on the specific system being investigated, not only on the size

and shape of the nanoparticles, but also the surfactant being used or the acidity

of the solution. So in order to discuss about the effect of the refractive index

of the surrounding media on the SPR of AuNPs, it is necessary to investigate

it in terms of using the system of deposition used in this thesis.

Using an optical darkfield microscope, the SPRs of individual AgNPs can

be measured allowing investigation into their dependence on different local

refractive index environments. The local refractive index of a system with 70

nm Ag nanoparticles was varied from 1.44 to 1.56 using index oils and a red

shifting of 1.16 nm per 0.01 index change was found.222 Since the shift depends

on the interface between the NP and the index oil, different sizes of NP will be

affected to a different degree, and indeed it was found for AgNPs that different

sizes had different sensitivities to the solvent refractive index.223 Furthermore,

the same authors also reported different shapes having varying sensitivities to

the change in refractive index, with ellipsoidal particles being less sensitive than

angular truncated tetrahedrals.

Within a solid it is harder to linearly change the refractive index easily but,

by varying the ratios of SiO2 to TiO2, in SiO2-TiO2 mixed metal compos-

ites different refractive index environments can be produced. Using sol-gel,

AuNPs were embedded within these films producing composites film colours
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that ranged from pink to blue, where the SPR was red-shifted with increasing

refractive index.224 The increased wavelength of the SPR maxima compared

relatively well to calculations performed using Mie theory, taking an average

spherical particle diameter of 10 nm which was confirmed by TEM. Within

a AuNP-metal oxide composite, as the metal oxide changes from being amor-

phous to crystalline, the refractive index can also be affected and so any ob-

served SPR.225

4.2 Objectives

In this chapter, the refractive index of the environment surrounding the AuNPs

is changed through the use of different metal oxides. All the materials discussed

here were deposited using the AACVD method as described in Section 2.1.

The metal oxides (TiO2, ZnO, Al2O3, Ga2O3 and MgO) were overlaid above

AuNP films to form the composite with a layered structure. The refractive

index was measured with ellipsometry so the specific character of the metal

oxide character, such as phase and growth morphology, which is affected by

deposition method can be discounted. From this it would be ideal if there was

a relationship or correlation found between the refractive index and the SPR

absorption so the optical absorption of thin films deposited in the future can

be tuned.

4.3 Experimental details

4.3.1 AACVD of composite films

All depositions were performed in an AACVD reactor as described in Chapter

2. Gold nanoparticles were deposited first using a 0.02 mmol auric acid solu-

tion (HAuCl4 in dilute HCl solution dissolved in 20 ml methanol) at 450 ◦C.
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The reactor was left heating at the deposition temperature for a further hour

after the precursor solution was exhausted before being turned off and finally

left to cool to room temperature. The cooled gold nanoparticle plates were re-

moved from the reactor and the bottom plate returned to be used as a substrate

for further metal oxide deposition thus forming a composite thin film of gold

nanoparticles and said metal oxide (Figure 4.1).

Figure 4.1: Schematic showing the 2-step deposition process of layered AuNP
and metal oxide composite formation.

Precursor solutions were made up from monobutyltin trichloride, gallium

acetylacetonate, titanium ethoxide, aluminium acetylacetonate, magnesium ac-

etate and zinc acetate, left to stir till fully dissolved before using in the reaction.

All AACVD reactions of the metal oxides took roughly 30-40 minutes for the

precursor solution to be completely depleted. Composites were formed from

the following metal oxides: SnO2, Ga2O3, TiO2, ZnO, MgO and Al2O3. The

deposition details for each metal oxide are displayed in Table 4.1.
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Table 4.1: Deposition details for the various metal oxides. All precursor solu-
tions were made with 20 ml methanol, with the exception of titanium ethoxide
which was dissolved in 15 ml toluene. All depositions occurred at 450 ◦C.

Material Precursor
Concen-
tration
(mM)

Carrier
gas

Flow rate
(Lmin−1)

SnO2 monobutyl tintrichloride 24 air 0.5

Ga2O3 gallium acetylacetonate 89 air 1.5

TiO2 titanium ethoxide 292 nitrogen 0.5

ZnO zinc acetate 139 nitrogen 1

Al2O3
aluminium

acetylacetonate 77 air 2

MgO magnesium acetate 82 air 1

4.4 Results

4.4.1 AuNP deposition

Using the auric acid precursor in a solution with dilute hydrochloric acid, in-

stead of hydrated hydrogen tetrachloroaurate crystals that was used in Chapter

3, resulted in a different AACVD reaction as there is extra acidity present in

the precursor solution. The gold first deposits as a rough film with a broad SPR

absorption and was observed to have a blue colouration (seen from 30 minute

absorption spectrum in Figure 4.2), which is attributed to a rough surface with

nanofeatures similar to previous reports.38 After the blue film is returned to

the reactor and heated up again to the deposition temperature of 450 ◦C, the

broad feature gradually narrows into a clear peak where the majority of the

absorption shifts towards the blue, correlating with a change in colour to pur-

ple and pink (see 60 minute absorption spectrum in Figure 4.2). After reheat-

ing the pink/purple AuNP film to 450 ◦C again for another hour, the colour

and pattern remained the same, therefore leading to the conclusion that there
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would be no further major change in SPR or NP size from heating once the

NP shapes have been stabilised. Throughout heating the pattern of deposition

on the glass remained the same with no net migration of Au on the substrate

and just a change in morphology. This progression of SPR features are shown

in Figure 4.2 labelled with the duration of additional heating after the films

were deposited. At 60 minutes the rough surface had been fully developed into

nanoparticles, the narrowing of the absorption was not accompanied by a shift

in the position of the SPR absorption maximum indicating that there might be

an ideal AuNP shape and size that was dependent on the initial Au concentra-

tion and temperature. At 450 ◦C it seems that the thermodynamically favoured

morphology of Au is made up of disconnected nanoparticles rather than a thin

film. Further heating will probably result in a narrowing of the SPR but with-

out change in SPR maximum.

Figure 4.2: The absorbances of AuNP depositions after different deposition du-
rations (30-60 min) from a precursor solution of HAuCl4 (solution with dilute
HCl) dissolved in methanol. As the additional heating duration is extended,
the AuNP film transforms from a rough surface to nanoparticles resulting in
a narrowing of the SPR absorption. The general flat absorbance between 600-
1000nm develops into an SPR peak and maximum as the deposition time in-
creases.
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The AuNP films used in this chapter have all been heated for a further 60

minutes in order to get fully nanoparticulate films. A layer of AuNPs in a

range of sizes of mostly between 10 to 40 nm can be observed from the SEM

and TEM images in Figure 4.3. There were also some much smaller NPs of sizes

5 nm which could be absorbed into the larger nanoparticles, perhaps towards

the optimum size, during the second step of metal oxide deposition during

composite formation (Figure 4.1).

Figure 4.3: SEM and TEM images showing the AuNPs deposited using a pre-
cursor solution of 0.02 mmol HAuCl4 at 450 ◦C.

4.4.2 Metal oxide deposition

Phase and morphology

Tin oxide, anatase titanium oxide, zinc oxide and magnesium oxide displayed

crystalline peaks in the XRD pattern (Figure 4.4). Gallium and aluminium

oxide were both amorphous at the investigated deposition temperature of 450

◦C, as they only form polycrystalline thin films at temperatures of 700 ◦C and

above.226,227 Crystallinity was not important for the reasons investigated here

so the films were chosen not to be annealed or deposited at a higher temper-

ature, since heating it any further will increase the temperature to above that

which the gold nanoparticles were deposited at could possibly further change

their morphology. Being amorphous might affect the morphology and defects

144
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in the film and therefore change the refractive index of the material when com-

pared to reference values of crystalline films in the literature, however this was

negated since the refractive index was directly calculated from ellipsometric

data taken on the actual films (discussed in Section 4.4.3).

From SEM images in Figure 4.5 magnesium oxide and gallium oxide were

observed to have relatively flat surface morphologies. Despite depositing as an

amorphous thin film at 450 ◦C, the aluminium oxide thin film still seems to

have a systematic growth pattern since its surface possesses distinctive spheri-

cal shapes similar to previously reported amorphous alumina films.228 As ex-

pected from Chapter 3, the surface of tin oxide was faceted, covered with a

square based pyramidal structure and resulting in a rough surface. The surface

of titanium oxide had semi-spherical shapes which were relatively smooth and

featureless. Zinc oxide’s surface had the presence of clumpy clusters leading to

the roughest film when observing the side-on SEM images (Figure 4.6). The

side-on SEMs and Filmetrics measurements were used to determine the film

thicknesses.
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Figure 4.4: X-ray diffraction patterns of various metal oxides deposited using
AACVD.
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Figure 4.5: SEM images of various metal oxides deposited using AACVD.
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Figure 4.6: Side-on SEM images of the various metal oxides deposited using
AACVD.

148



4. Effect of Metal Oxide Character on the SPR in Composites with AuNPs

Optical properties of the metal oxides

All the films have a high transparency in the visible region with over 70% trans-

mittance between 300-800 nm, apart from TiO2 which suffered from slight

brown tinges due to carbon contamination, though it still had a relatively high

transparency of around 60% (Figure 4.7). Since all the films have thicknesses

in the visible range, interference patterns could be seen in all the transmittance

and reflectance data. Zinc oxide, tin oxide and titanium oxide thin films show

a slight increase in reflectance in the far infra-red due to the increase in electron

carriers, although it was not enough for the films to be appreciably conductive.

Even though the films investigated here do not possess good conductor prop-

erties, they have the potential to be doped to make them suitable for TCOs or

other applications, however this is not within the scope of this investigation.54

Figure 4.7: Transmittance and reflectance spectra of various metal oxides de-
posited using AACVD.
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4.4.3 Ellipsometry and the determination of refractive index

Spectroscopic ellipsometry measures the polarization that an incident light

beam experiences after being reflected off a surface. The measurements of po-

larization can then be used to calculate some optical properties of the thin film.

The refractive indices (n) and extinction coefficients (k) of the metal oxide thin

films and silica barrier glass were extracted using models based on ellipsome-

try measurements ofψ and δ over 300 - 1300 nm from angles of incidence 64◦,

67◦, 70◦, 73◦ and 76◦ (Figure 4.9). Analysis of the raw data was performed using

the Spectroscopic Ellipsometry Analysis (SEA) software. The models for the

fittings were based on a simple structure of the material surfaces, including the

50 nm silica barrier layer which was fitted separately and then incorporated

into the metal oxide models. Additional diffusion layers between the distinct

layers accounting for the rough surfaces and voids at the interfaces (see Figure

4.8) were inserted if the model did not fit well with the experimental data.

Figure 4.8: Simple diagram showing the basic model used to calculate ψ and δ
from ellipsometry measurements

The surfaces were modelled from basic dispersion laws whereby the cal-

culations were inputted with initial thicknesses obtained from side-on SEM

that had been correlated with Filmetrics measurements - ZnO (Tanguy and

Drude), Ga2O3 (Cauchy), SnO2 (Tauc-Lorentz, Sellmeier and Lorentz), Al2O3

(Cauchy), MgO (Cauchy) and TiO2 (Tauc-Lorentz, Sellmeier and Lorentz).
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The range of ellipsometric data modelled (Figure 4.9) was narrowed to focus

on the points of interest (visible range) since the dispersion laws do not de-

scribe the materials’ response well within the whole wavelength range mea-

sured. Fudge factors such as effective medium approximations were not used

to prevent false-fitting of data.

The roughness of the thin film surfaces did not detrimentally affect the

reflectance with a sufficient intensity being detected for measurement of the

ellipsometric data, ψ and δ. Measurements were fitted at wavelengths below

the band gap energy where interference patterns were observed due to internal

reflections between the thin films and the substrate. At energies above the band

gap, absorption occurs from interband transitions and this is where the fitted

model deviates from experimental measurements.229 Any significant structural

inhomogeneity can be modelled by treating the films as separate layers (Figure

4.8).230 The selection of incident angle for the ellipsometric measurement is

critical for a textured surface, since it leads to scattering and self-absorption

in the TCO which could lead to inaccurate measurements. Errors can also

be introduced since the films are not as atomically smooth as, say if the metal

oxides were deposited with molecular beam epitaxy. However, deviation from

the fit due to sample structural inhomogeneity was overcame by measuring

ellipsometric data and fitting the model over a range of angles.230,231
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Figure 4.9: Refractive index, n, extinction coefficient, k, and the observed and fit of ψ and δ from ellipsometry measurements.
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Refractive index values based on calculations from the models are displayed

in Table 4.2 with n values quoted at 550 nm (within the range of the AuNPs’

SPR maxima) and 632.8 nm (HeNe laser wavelength) along with some refer-

ences from the literature. Most of the calculated n are similar to ellipsomet-

rically based data in the literature apart from the titanium oxide where our

measured value differed from the reference at 650 nm by -0.32, with differ-

ences arising probably because of deposition method since the reference refers

to a sol-gel deposited film whilst the film discussed here was generated from

AACVD. The fit for all the models were good, all fitting with an R2 value of

above 90 %, apart from MgO where the best obtained R2 = 87 %.

Table 4.2: Calculated refractive indices of various metal oxides modelled from
ellipsometric data.

Material Film thickness (nm) n at 550 & 632.8 nm reference n

SnO2 385 2.10 & 2.08 2.12 at 650 nm76

Ga2O3 380 1.79 & 1.78 1.92 at 632 nm231

TiO2 525 2.53 & 2.49 2.17 at 650 nm232

ZnO 560 1.79 & 1.77 1.95 at 650 nm229

Al2O3 435 1.57 & 1.57 1.64 at 632.8 nm233

MgO 385 1.72 & 1.72 1.73 at 650 nm230

4.4.4 SPR of gold nanoparticles and composites

It is appreciated that the size and shape of the nanoparticles will affect the SPR

as has been discussed earlier in this thesis in Chapter 3, however the discussion

here on SPR mainly relates to the differences in the metal oxide character of the

composite since it is assumed that the all the gold nanoparticle films are iden-

tical and undergo identical processing conditions during composite layer for-

mation. All SPR absorbances observed from the AuNP films were red-shifted
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after composite formation through overlaying with metal oxides (Figure 4.10).

From some of the optical spectra, the interference pattern from the metal ox-

ide can be misleading in that it looks like a double maxima from two SPR ab-

sorptions. The largest shift was seen with the AuNP:MgO at 79.6 nm and the

smallest shift was seen with the AuNP:ZnO at 17.9 nm (see Table 4.3). From

the graph in Figure 4.11, no direct correlation was found between the refractive

index of the metal oxide and the amount of SPR shift.

Figure 4.10: The shifts in SPR absorption before and after forming composites
with various metal oxides.

Individual NP measurements of SPR have shown to display an increasing

SPR shift with increasing refractive index of surrounding media.222 The exper-

imental set up here is drastically different and measurements could be assumed

cruder since the SPR was measured collectively from all the AuNPs. However,

the results here are still of interest as it relates more closely to industrial deposi-

tion processes. In CVD synthesis there will exist non-uniform contact between

the nanoparticles and the different metal oxide thin films due to the roughness
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of both the gold nanoparticles and the metal oxide surfaces. The types of CVD

reactions that occur and where, in the gas phase or on the surface of the gold

nanoparticles, will determine whether the metal oxide is in close proximity to

the gold nanoparticles, and therefore the extent to which the changes in metal

oxide refractive index will affect the SPR of the composite film.

There is also the possibility that the size and shapes of the AuNPs might

have been altered during the second stage deposition of the metal oxide due

to the high temperature environments.153 However, the temperature used for

metal oxide depositions were all at 450 ◦C which was the same temperature

as for the AuNP deposition and it was discussed in Section 4.4.1 that it was

unlikely that the AuNPs would change to become red shifted because of an

increase is size. On the other hand, because during the second deposition the

reactor contained other reactants, i.e. metal oxide precursors and solvent, these

could react and affect the final size of the AuNPs, and therefore shift the ob-

served SPR.

Table 4.3: Shift in SPR of AuNPs before after composite formation with metal
oxide.

Material SPR maximum
of AuNPs (nm)

SPR maximum of
composite (nm)

SPR red
shift (nm)

SnO2 560.6 591.0 30.4

Ga2O3 545.3 582.2 36.9

TiO2 579.0 652.9 73.9

ZnO 549.8 567.7 17.9

Al2O3 559.5 609.9 50.4

MgO 559.5 639.1 79.6
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Figure 4.11: Graph showing the SPR shift of composites formed with gold
nanoparticles and various oxides: Al2O3, MgO, Ga2O3, ZnO, SnO2 and TiO2
and the corresponding refractive indices as measured from the individual metal
oxides.

4.5 Conclusion

Using AACVD gold nanoparticle and metal oxide composites were synthe-

sised by layering various metal oxides onto AuNP films. The optical proper-

ties such as refractive index and extinction coefficient of the individual metal

oxides (SnO2, TiO2, ZnO, MgO, Al2O3 and Ga2O3) were analysed using spec-

troscopic ellipsometry. After overlaying the metal oxides onto the AuNPs,

there was found to be a change in the SPR, red-shifting the maxima, but with-

out direct correlation to the refractive index of the metal oxides. The reactions

that occur to form the different metal oxides can vary wildly in terms of rate

and location, and therefore resulting in a different structure and interface be-

tween the gold nanoparticles and the metal oxides.

The lack of correlation between the refractive index of the surrounding

media, i.e. between the metal oxide and the SPR shift, as has been found for

previous reports,222,223 was attributed to the imperfections and differences be-

tween the AACVD deposition of the metal oxides as well as potential changes
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in the AuNPs themselves. The AuNPs could have been altered during the sec-

ond heating stage, either due to Ostwald’s ripening, melting or from further

reactions.

Nevertheless, this chapter shows the adaptability of the AACVD system

through layering to create composites of AuNPs with a wide range of metal

oxides. Further improvements to the metal oxide for functional properties can

be made from adjusting the reaction conditions.
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Chapter 5

Gold Nanoparticles on Silica Wool

5.1 Introduction

One of the main applications for gold nanoparticles are as catalysts used in the

industrial production of chemicals and vehicular catalytic converters.234 The

AuNPs are normally dispersed and supported on a surface which is typically

made up of a metal oxide as the observed catalytic activity is inherently linked

to these support structures.235 Despite this, unsupported gold nanoparticles

do still show significant activity in many other different important catalytic

reactions.236

In Chapter 4, AACVD was shown to simply and effectively deposit gold

nanoparticles from auric acid without the need for surfactants or additional

reducing agents onto silica-coated flat glass surfaces which means there are no

carbonaceous surfactants or residues. For applications such as catalysis, im-

mobilisation of catalysts onto a substrate with a high surface area is beneficial

as it will allow for an increase number of available active sites and ease of re-

moval and recycling. We therefore proposed to deposit on a high surface area

substrate of glass wool, where the silicon dioxide can also act as the support

metal oxide increasing the overall activity of the catalytic system. This is anal-
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ogous to the work in Chapter 3 where the auric acid is deposited onto silica

barrier coated glass. AACVD’s advantage of being a non line-of-sight depo-

sition method is utilised here as the substrate is not flat. In the results from

this chapter, we describe the AACVD route used to deposit gold nanoparticles

onto glass wool substrates. Preliminary experiments involving the oxidation

of benzyl alcohol were also performed to test the catalytic activity of the gold

nanoparticles deposited in this way.

5.2 AACVD of gold onto glass wool

Experimental

AACVD set up

Glass (silica) wool was purchased from Sigma Aldrich. About 1 g of glass wool

(GW) was placed in between the top and bottom plates of the reactor as in

Figure 5.1. The amount of GW was chosen so that it was the maximum amount

able to fit in the reactor without hindering the flow of auric acid. Too much

GW resulted in highly concentrated depositions near the inlet, whereas too

little GW and the majority of gold aerosol just flowed through the wool finally

depositing on the top and bottom plates. Air was used as the carrier gas with

flow rates of 3-4 Lmin−1.

Figure 5.1: Aerosol-assisted chemical vapour deposition set up of gold nanopar-
ticle deposition onto glass wool.
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Precursor solutions

Hydrogen tetrachloroaurate(III) hydrate solution (Alfa Aesar) was dissolved in

methanol and used immediately. A range of concentrations were investigated

consisting of 0.01-1 mmol of auric acid in 20-100 ml methanol.

5.2.1 Results

Precursor concentration

Typically 1 g of glass wool was used for a deposition (weighed prior to de-

position) which amounts to a surface area of 6.72 m2 as measured from BET

(Brunauer–Emmett–Teller) experiments. A typical sheet of float glass substrate

used in this AACVD reactor has an area of 0.065 m2 (4.5× 14.5 cm), compara-

bly the glass wool has about 100 more times the surface area. For the coverage

of AuNPs on the wool to be the same as on flat float glass, then precursor con-

centrations would have to increase 100-fold. However, increasing the amount

of auric acid in the precursor solution only resulted in larger sized gold parti-

cle deposits. For example when increasing the auric acid amount from 0.2 to 1

mmol, the colour of Au deposits changed from pink/purple (Figure 5.5) to or-

ange (Figure 5.2), especially near the inlet. It normally requires less energy for

the auric acid aerosol droplets that enter the reactor to undergo reduction onto

sites where gold nanoparticles have already formed which act as seeds, rather

than forming new gold nanoparticle sites. Therefore, increasing the auric acid

concentration does not increase the amount of AuNPs but just the size of the

particles.
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Figure 5.2: Photograph of gold particles deposited by aerosol-assisted chemical
deposition from auric acid (1 mmol) in 100 ml methanol with air (4 Lmin−1)
at 350 ◦C.

Phase and adherence

SEM images of the blank GW substrate (Figure 5.3) showed a relatively smooth

surface with a few dust particles attached. Overall, all the substrate strands

were quite uniform in terms of diameter and surface morphology.

Figure 5.3: SEM of blank glass wool.

In a normal AACVD set up using float glass as a substrate the aerosol flows

in a laminar fashion between the top and bottom plates. However in this set up

the presence of glass wool disrupts the flow and higher flow rates were needed
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to force the aerosol in between glass wool, 3-4 Lmin−1 instead of 1-2 Lmin−1

for flat substrates as described in Chapter 3 and 4. The AuNP:GW was ground

up in a pestle and mortar and an XRD taken from a capillary tube. The XRD

pattern shown in Figure 5.4 displayed cubic metallic peaks with a high back-

ground because of the nanoparticulate nature of the gold combined with the

amorphous particles of glass wool.

Figure 5.4: XRD pattern of AuNPs deposited onto glass wool showing cubic
Au reflections with reference.19

The gold nanoparticle deposits were robustly adhered to the glass wool,

not becoming detached even when placed in hexane, decane or acetone which

is promising for reusability in solution based catalytic reactions. They also

remain unchanged for long periods of time of up to two years, even when kept

in an ambient temperature and environment.
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Deposition pattern and colouration

Photographs in Figure 5.5 compare AuNP depositions onto glass wool using

the same concentration of auric acid (0.2 mmol in 50 ml methanol) but at dif-

ferent flow rates of (a) 3 Lmin−1 and (b) 4 Lmin−1. When auric acid is reduced

to metallic gold, the product is always coloured (except for nanoparticles less

than 2 nm in size), which enables us to utilise colouration and intensity of

colour as an indication of deposition. In general, gold nanoparticles were ob-

served to have a coloured appearance ranging from blue to red, with the SPR

shifting towards the red with increasing particle size.209,237 CVD of AuNPs

onto float glass also results in a pink/purple appearance (see Chapter 3), and

as the nanoparticles agglomerate to larger bulk-like particles, the SPR absorp-

tion starts to decrease leaving the typical gold metal absorptions from the d

to conduction band238 giving rise to an orange coloured appearance similar to

depositions from high auric concentrations as described in Section 3.5.4.

The depositions described here were of a pink and purple colour as seen

from the photographs (Figure 5.5). They clearly show a more even spread of

AuNPs along all of the glass wool when depositions had taken place at a higher

flow rate. The aerosol was better able to travel down the reactor when the flow

rate was higher as at a lower flow rate the loss of momentum in the aerosol

will be greater, leading reactions and agglomerated depositions by the inlet.

A higher flow rate gives the unreacted auric acid droplets a chance to travel

further down the reactor before depositing on the glass wool. By the inlet

bigger particles were formed with sizes larger than 1 µm, instead of the desired

nanoparticulate morphology of less than 1 µm.

Gold depositions were also detected on the glass top and bottom plates (Fig-

ure 5.1), particularly around the outside edges wherever the aerosol was able

to come in contact with them. These depositions consisted of pink/purple
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Figure 5.5: Differences of gold nanoparticles deposited onto glass wool by
aerosol-assisted chemical deposition from auric acid (0.2 mmol) in 50 ml
methanol with air at (a) 3 and (b) 4 Lmin−1 at 350 ◦C.

nanoparticles as well as highly concentrated metallic yellow gold. There seems

to be a preference for gold to deposit on the plates since all the areas that were

exposed to the aerosol from lack of GW were covered in gold. As the glass

plates are denser than the GW, they were able to absorb more and lose less

heat, resulting in a hotter surface than the GW where it is easier for auric acid

to break down. Depositions were even found on the top plate which indicates

that even though it was further away from the heating element compared to

the GW, their denser structure meant it was efficient at retaining heat radiat-

ing from the carbon block, again resulting in a higher temperature and more

gold deposition reactions. On the other hand, the deposition efficiency might

have been identical for both substrates but since the surface area of the GW is

about 100 times more than the glass plates per sample used in the deposition,
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5. Gold Nanoparticles on Silica Wool

the gold amount per area would be higher and look more intense on the glass

plates.

Particle sizes

Large dispersions of nanoparticle sizes were observed from all auric acid de-

positions on glass wool (see example TEM in Figure 5.7), regardless of precur-

sor concentration. The large dispersions indicate that the nanoparticle forma-

tion processes were not as uniform as depositions onto flat substrates, whereby

there was a trend for deposits from lower auric acid concentrations to result in

smaller nanoparticles with a narrower dispersion (Section 3.5). The substrate

orientation in relation to the aerosol inlet was random for each deposition be-

cause the fluffy nature of the glass wool made it difficult to arrange the wool

in a perfectly identical manner for each and every deposition. This resulted

in a slightly different flow path of aerosol and heat distribution in the reactor

for every deposition. However, on average AuNPs with a largely pink/purple

colouration were able to be repeatedly deposited on a large area of glass wool.

Figure 5.6 displays SEM images comparing between a red/orange and a

pink coloured sample obtained from a single glass wool deposition using 0.2

mmol of auric acid and a flow rate of 3 Lmin−1. As photographs of the deposi-

tion pattern show (Figure 5.5, the red/orange deposits were found near the inlet

and around the edges, whilst the pink deposits were found in the majority of

the central areas, fading out towards the outlet as the precursor was depleted.

The red/orange colouring of the deposits indicate gold in the form of larger

particle sizes and indeed corresponded to platelet shaped gold particles of sizes

500 nm to 1 µm in the SEM images (Figure 5.6). Pink areas indicate nanopar-

ticulate gold which agrees with the SEM images where particles of 100-500 nm

were observed.

TEM images reemphasise the large dispersion of AuNPs found when auric
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Figure 5.6: Secondary and backscattered electron SEM images of AuNPs de-
posited on glass wool showing a more agglomerated and larger particle sizes
from the orange areas using and smaller individual gold nanoparticles from
the purple areas. The AuNPs are imaged as whiter and lighter shades on the
backscattered images. The AuNPs were synthesised from an aerosol-assisted
chemical deposition using a precursor solution of auric acid (1 mmol) in 100
ml methanol with air (4 Lmin−1) at 350 ◦C.

acid was deposited onto glass wool substrates. TEM images in Figure 5.7 show

that particles of more than 500 nm as well as nanoparticles down to sizes of 25

nm can be produced in a single deposition. The shape of the larger particles

(about 500 nm to 1 µm) suggest that some of them were formed from agglom-

eration of smaller particles. For gold particle depositions on a flat substrate,

the larger particles are pushed upwards by thermophoresis, acting as a filter for

the bottom plate where smaller gold nanoparticles with a smaller dispersion

can settle and deposit. Since the glass wool occupied all the space between the
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5. Gold Nanoparticles on Silica Wool

bottom and top plates, the screening effect of thermophoresis was not felt by

the AuNPs resulting in depositions regardless of size variations.
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Figure 5.7: TEM images showing agglomerated and individual gold nanoparti-
cles that were deposited by aerosol-assisted chemical deposition from auric acid
(1 mmol) in 100 ml methanol with air (4 Lmin−1) at 350 ◦C.
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5.2.2 Summary

Aerosol-assisted chemical vapour depositions is a viable way to deposit gold

nanoparticles onto glass wool. The size dispersion of AuNPs were large how-

ever, and fine tuning of the AACVD set up needs to be conducted in order to

be able to have a more controlled deposition that results in a narrower AuNP

size dispersion. Even though the specific locations of deposition on the glass

wool might be slightly unpredictable, in general the colour and area covered by

Au can be reliably repeated. A separate set up of spray deposition rig was also

found effective at depositing AuNPs which will be discussed in Section 5.4.

5.3 Benzyl alcohol catalytic reaction

AuNPs acts as catalysts for many reactions and the oxidation of alcohol ac-

tivity is reported here.239 In general for reactions involving gold nanoparticles

as the catalyst, when using the same weight the smaller the nanoparticles, the

more surface area would be exposed and so the more active the catalyst.240 The

reaction tested here to confirm the catalytic activity of the gold deposited on

glass wool involves the selective oxidation of benzylalcohol to benzaldehyde

without over-oxidation to benzoic acid and benzyl benzoate (Figure 5.8). The

formation of the aldehyde is an important step in many pharmaceutical, agro-

chemical and perfume industries. A good catalyst has to be efficient, effective

and selective, achieving a high percentage of desired product in the least amount

of time.

Normally benzaldehyde undergoes autoxidation in the presence of oxygen

to benzoic acid very easily in ambient conditions and with increased rate in

the presence of a catalyst.241–244 However, there have been numerous reports of

over 99 % selective catalytic conversion reactions to benzaldehyde from benzyl
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alcohol, and other such analogous reactions, even within highly oxygenated en-

vironments.245–247 EPR studies have shown that the presence of molecules with

activated hydrogen atoms, such as the C-H bond in benzyl alcohol, can inhibit

the autoxidation by hydrogen transfer, intercepting the free radicals involved

in the radical chain reaction.248 Other molecules such as allylic alcohols can

also inhibit in a similar way, but toluene or methanol do not as they have less

activated hydrogen atoms.

Figure 5.8: Reaction scheme showing the oxidation of benzyl alcohol to ben-
zaldehyde and further oxidation to benzoic acid and benzyl benzoate.

5.3.1 Experimental

Reaction mixture

Benzyl alcohol, tert-butyl hydroperoxide, dodecane and decane were placed in

a glass container which fits into the heating element. 0.1 g of an orange and a
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5. Gold Nanoparticles on Silica Wool

purple area of gold deposited glass wool were tested separately, both deposited

from 1 mmol of auric acid in methanol (50 ml) at 350 ◦C with an air flow of 4

Lmin−1.

Technical details

A mechanical stirrer was fitted into the glass vessel containing the reaction solu-

tion to try and ensure even distribution of reactants and catalyst (Figure 5.9).

Firstly, the chemicals were added sequentially into the vessel as in Table 5.1,

then the stirring mixture was slowly heated to 90 ◦C, maintained and left for

4 hours in a Mettler Toledo Multimax RB-04 that was programmed with com-

puter software. A condenser was placed above the reactor in order to prevent

loss of reaction mixture. Aliquots (0.2 µl) of solution were extracted, before

the addition of the AuNP:GW (0.1 g), every 15 minutes during the first hour,

then every consequent hour. The aliquots were stored in a fridge and analysed

in a flame ionisation detector (FID) gas chromatographer (GC). Dodecane was

used as the internal standard for quantitative calculations as it wasn’t involved

in any reactions.

Table 5.1: Chemicals in the reaction mixture for the catalytic oxidation of ben-
zyl alcohol.

Chemicals in order of addition Amount (×10−2 moles)

Benzyl alcohol 4.4

Tert-butyl hydroperoxide 10.3

Dodecane 2.0

Decane 2.6
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Figure 5.9: The reaction vessel showing the reaction solution and AuNP (gold
nanoparticle deposited) glass wool inside it being stirred by a mechanical stir-
rer. The temperature probe informs the power of the heating mantle, and the
microsyringe is inserted into the reaction vessel in order to extract samples for
gas chromatography (GC) measurements.

5.3.2 Results

The reaction mixture (Table 5.1) was heated to 90 ◦C and maintained at this

temperature for four hours. Two different sets of gold depositions were tested,

one from an orange area and the other a pink/purple area of gold deposition.

As determined from the discussion in Section 5.2.1, the orange colouring in-

dicate areas with high concentrations of larger particles where nanoparticles

have agglomerated, and the pink/purple colour indicated areas where and at a

lower concentration.

The GC spectrum in Figure 5.10 was taken from the reaction mixture prior

to heating and it shows the time of flight peak positions for the individual com-
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ponents. The progress of the reaction is followed by the decrease in benzyl al-

cohol peak as well as the formation of benzaldehyde, benzoic acid and benzyl

benzoate. The quantities were calculated using the internal standard of dode-

cane.

Figure 5.10: Gas chromatography signals of mixture prior to reaction showing
the time of flight peaks of the different components.

Both the orange and purple areas showed catalytic activity although not

very high conversion percentages. After four hours, the orange wool catalyst

had oxidised benzyl alcohol to benzaldehyde with a 37% yield and 94% selec-

tivity whilst the purple wool had only converted 16% at a similar selectivity of

97%. The high selectivity of these catalysts are in line with reports of gold cat-

alysts in the literature which also show that selectivity is unaffected by particle

size.249

When looking at the activity of the orange wool (Figure 5.11), a high con-

version rate was measured at the beginning of the reaction period, with over

half the total yield being produced in the first 15 minutes. The orange wool

was clearly catalytically active even though the average particle size was more
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than 1 µm. However, since there was a large dispersion in nanoparticle sizes

even though the average particle size might not be small enough to be catalyt-

ically active, there would have been present smaller nanoparticles to carry out

the reaction (see SEM in Figure 5.6). After this initial burst of catalytic activ-

ity, the conversion rate rapidly decreases and only a further 17% was converted

in the following period up to the final reading taken at the 4 hour mark. The

conversion did not reach 100%, and so it was postulated that if the catalyst had

remain unchanged, the active sites must have become blocked in some way ei-

ther by the presence of reactants or products during the reaction. This could

be due to the nature of the strands of glass wool being in close proximity to

each other and not allowing for sufficient reaction mixture agitation even with

mechanical stirring in place.

A larger percentage yield might be expected from the purple wool since the

colouring indicates smaller nanoparticles which have been shown to be better

catalysts,250 however the final yield of benzaldehyde only reaches 16% after

the four hour reaction period. Even though the smaller particles from the pur-

ple areas should be more catalytically active due to increase surface area, when

looking at the SEM images in Figure 5.6 there was an actual reduction in the

number of nanoparticles, resulting in a smaller number of active sites when

compared to the orange wool. The purple wool would also suffer from block-

age of the active sites due to the nature of the glass wool and so the conversion

rate would further decrease.

5.3.3 Summary

The catalytic activity of two different areas of gold nanoparticle deposition on

glass wool were tested with an important alcohol oxidation reaction. The ar-

eas were differentiated by colour and therefore roughly divided by nanoparticle
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5. Gold Nanoparticles on Silica Wool

Figure 5.11: Conversion rate of benzyl alcohol oxidising to benzaldehyde with
tert-butyl hydroxyperoxide catalysed by gold nanoparticles immobilised on
glass wool with an orange colouring.

sizes. The selectivities of the tested AuNP:GW were high at 96-97% conversion

of benzyl alcohol to benzaldehyde agreeing well with previous studies.170,251

However the yield was quite low when compared to the literature, possibly

due to active sites being blocked by products or by-products during the reac-

tion. As was discussed in more depth in Section 5.2.1, the AACVD of gold on

glass wool resulted in a large dispersion of AuNP sizes. So even though the

orange wool had on average larger particles, there were actually large amounts

of catalytically active nanoparticles of below 50 nm present. As expected, the

purple areas of glass wool which had nanoparticles of lower than 50 nm were

also catalytically active. The differences in catalytic activity was in this case

dependent on the amount of Au not the size of the nanoparticles as the orange

wool achieved a higher yield than the purple wool.
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5.4 Spray deposition of gold nanoparticles onto

glass wool

In order to try and avoid the large dispersion of gold nanoparticles obtained

from the AACVD of auric acid onto glass wool (Section 5.2) depositions using

a spray rig were also tested. The formation of nanoparticles should be less

dependent on the nature of the glass wool substrate since most of the path

travelled by the aerosol is not affected by the substrate, unlike an AACVD

reactor where the aerosol comes into contact with the glass wool upon entering

the reactor (Figure 5.1). The particles of gold deposited using the spray rig

suggest that the auric acid undergoes a spray pyrolysis mechanism, as the shape

suggests that the spray droplets only vapourise and react after landing on the

heated substrate.

5.4.1 Experimental

Spray set up

The precursor solution of auric acid (0.01-0.02 mmol) dissolved in a mixture

of methanol and acetone (1:5) was injected into a chamber where a high pres-

sure stream of N2 pushed the solution through a pneumatic atomizing nozzle

creating a downward flow of aerosol towards the substrate which was heated

to 350 ◦C (see Figure 2.2). Pyrex R© glass wool (Corning R©) was obtained as

long strands and wrapped around a piece of 2.5 × 2.5 cm float glass weigh-

ing it down and securing it on the carbon block. On a macroscopic level the

Pyrex R© glass wool looks different to the glass wool used in Sections 5.2 and

5.3, however when comparing SEM images (Figure 5.3 and 5.12), on a micro-

scopic level they are actually identical, with uniform width (about 12 nm in

diameter) and a smooth surface.
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5. Gold Nanoparticles on Silica Wool

Figure 5.12: Secondary (a) and backscattered (b) SEM image of Corning glass
wool.

5.4.2 Results

Colour

The auric acid deposits in nanoparticulate form as seen from the pink and pur-

ple colouration of the photographs in Figure 5.13. The colour of the deposit

outlines the shape of the spray pattern on the top of the glass wool substrate

which leads us to assume that the reduction of auric acid happens on or very

close to the substrate, with the aerosol remaining unreacted as auric acid when

travelling through the reactor making it a spray pyrolysis106 rather than a chem-

ical vapour deposition process. The coloured depositions were present wher-

ever the spray stream hit the substrate and this makes the depositions easily

predictable, reproducible and controllable. There were no areas of highly con-

centrated orange deposits, indicating a lack of agglomeration of the nanoparti-

cles. Photographs in Figure 5.13 compare depositions from (a) 0.02 mmol and

(b) 0.01 mmol of auric acid in the precursor solutions. No colour changes can

be seen with increasing concentration, only an increase of purple colour inten-

sity again confirming the lack of agglomeration of the nanoparticles compared

with the AACVD method (Section 5.2). The nanoparticles can only be seen

on the very top most layer of glass wool as the aerosol could not penetrate the

layers of wool. This factor makes the rig inefficient at depositing large amounts
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of AuNPs on a large fraction of the glass wool.

Figure 5.13: Photograph of gold nanoparticles deposited using a spray deposi-
tion method with (a) 0.02 mmol and (b) 0.01 mmol of auric acid in a mixture
of methanol (5 ml) and acetone (20 ml).

Phase and morphology

The size and distribution of the gold nanoparticles on glass wool were investi-

gated using SEM and TEM. Cubic gold nanoparticles with sizes ranging from

50-200 nm were found evenly distributed on areas of the glass wool where

the spray hit and the purple colour was observed (Figure 5.14 and 5.15). The

nanoparticles were all of a rounded nature but not of a uniform shape. This

agrees with the theory that they form at a high rate upon arriving on the heated
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substrate, rather than during their passage to the substrate, which might re-

sult in uniform and spherical nanoparticles. When comparing these with the

nanoparticles deposited with AACVD (Section 5.3), we can assume that these

might also be catalytically active.

Figure 5.14: Scanning electron microscope image of gold nanoparticles (con-
firmed by EDX) on glass wool deposited by a spray deposition method.

5.4.3 Summary

Gold nanoparticles were formed quickly and easily using the spray deposi-

tion method. The formation of gold nanoparticles differed slightly with the

AACVD method, as the aerosol comes into contact with the hot substrate be-

fore reduction into elemental gold. This resulted in the apparent visibility of

the spray pattern formed from purple nanoparticulate deposits on the glass

wool. The particles were all on the nanoscale 200 nm or less, but not of uni-

form shape. The rounded and flat nature of the nanoparticles suggest that the

gold particles form upon impacting on the glass wool substrate rather than re-

acting first in the droplet suggesting a pyrolytic rather than a CVD process.
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Figure 5.15: Transmission electron microscope image of gold nanoparticles on
glass wool deposited by a spray deposition method.

5.5 Conclusions

Glass wool is a useful substrate for immobilisation of catalysts due to its large

surface area. Here we report the first deposition of gold nanoparticles onto

glass wool using two deposition methods differing in terms of aerosol genera-

tion and set up as shown in Figures 5.1 and 2.2.

In aerosol-assisted chemical vapour deposition (AACVD) the aerosol is formed

by an ultrasonic humidifier and carried into the reactor with air flowing at 3-4

Lmin−1, the speed and velocity of the aerosol droplets are relatively low com-

pared with the travel path of the aerosol droplets from the spray rig. It was

concluded that the gold was deposited through a spray pyrolysis method when

using the spray rig as the spray aerosol did not seem to react prior to contacting

with the surface. The pressure at which the aerosol droplets enter the reactor is
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higher for the spray rig since the precursor solution is being forced through the

nozzle head with a diameter of 0.4 mm. This force on the droplets combined

with gravity ensures that the droplets flow in a downwards direction towards

the substrate countering any convection forces that might be felt due to the

temperature gradient found within the reactor. The downwards movement of

the droplets will cause the droplet to alter its shape as it impacts on the sur-

face. The shape of the landing droplet affects the final shape of the deposited

nanoparticle and since non-uniform shapes of sizes smaller than 200 nm were

observed we can assume that the reduction of auric acid happens quickly and

more importantly, the nanoparticles are not subject to further reactions since

further agglomeration into larger particles were not found.

From AACVD of auric acid onto glass wool, we observe nanoparticles of

a larger dispersion between the sizes of 20 nm and 1 µm than from the spray

rig. In AACVD the droplets travelling to the substrate do not feel the same

pressure as if generated in the spray set up even though the flow rate is much

higher at 3-4 Lmin−1. The momentum from the carrier gas is reduced as the

already formed aerosol has to be pushed upwards then laterally into the reac-

tor through a wider inlet compared to the spray nozzle. The duration that the

aerosol spends at a higher temperature before undergoing reduction is longer

in an AACVD reactor and so the reduction of the auric acid can occur within

the droplet itself before depositing on the substrate, leading to more spheri-

cal particles. The larger particles seem to have resulted from longer reaction

times within the droplet, as there is a longer time before deposition, which

were further encouraged because of the higher overall temperature found in

the AACVD reactor since the reactor volume is much smaller when compared

to the spray rig.

The large size dispersion of AACVD AuNPs can be observed from the

variety of colour seen from the depositions. Pink and purple correlated to
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nanoparticles smaller than 500 nm, and orange to nanoparticles larger than

500 nm up to 1 µm and above. These two areas were tested to see if they dis-

play any catalytic activity for the oxidation of benzyl alcohol to benzaldehyde.

Both coloured areas was seen to have high selectivity to the desired product, 96-

97% as expected from gold.249 However, the yield was low compared to other

AuNP catalysts reported, with the pink/purple wool achieving a lower yield

at 16% compared to 46% for the orange wool because of the closely packed

nature of glass wool and catalyst immobilisation.

Since the Au particles formed from the spray deposition are in general

smaller and with a narrower dispersion when compared to AuNPs from AACVD,

they show promise for future work as they are expected to have greater catalytic

activity which unfortunately due to time restraints we were unable to investi-

gate. It was concluded that the Au particles were deposited via a spray pyrolysis

method as from SEM images it can be seen that the shape of the particles were

influenced by the way the droplet splashes on the surface. The one drawback of

using this deposition process compared to AACVD would be the smaller sur-

face area covered each deposition run, however this spray mechanism is more

similar to industrial CVD glass coating processes.
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Chapter 6

Conclusions

6.1 Summary of work

Reports in this thesis have shown that aerosol-assisted chemical vapour depo-

sition reactor is a versatile tool for investigating a range of functional materi-

als. Chapter 3 describes how SnO2 can be consistently deposited and doped

with F to make a high quality transparent conducting oxide material with a

sheet resistance of around 10Ω/� and a visible transmittance of around 75-80%

comparable to industrial standards and previous reports.69,79 Additional func-

tionality can be added to the metal oxide films by way of making a composite

with AuNPs.12,38,112 The full range of materials deposited and their important

characteristics are shown in Table 6.1.

Detailed investigations into the depositions of AuNPs with auric acid are

described in Section 3.5. It was observed that by adjusting the concentration

of the starting solution, the size of resultant nanoparticles can be altered with-

out the use of additional surfactants. This can be observed in a visible change

in colour due to the shift in SPR absorption.209 Further to this, the auric acid

was reduced without the use of any additional reducing agents but from a com-

bination of thermal decomposition and reactions with the by-products of sol-
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Table 6.1: Materials that have been deposited and described for this thesis and
their selected properties.

Material Properties and character

SnO2
Polycrystalline and transparent (>70%

over 400-800 nm)

FTO
Polycrystalline, transparent (>70% over
400-800 nm) and low sheet resistance(8

Ω/�)

AuNP on silica coated float
glass

Crystalline, SPR absorption but not
adhesive

AuNP on silica (glass) wool Crystalline, SPR absorption and catalytic
activity

AuNP/FTO and FTO/AuNP
composites

Transparent (>70% over 400-800 nm), low
sheet resistance(8 Ω/�), SPR absorption

and adhesive AuNPs

Other metal oxides/AuNP
composites (TiO2, ZnO, MgO,

Al2O3 and Ga2O3)

Metal oxides were poly crystalline or
amorphous, adhesive AuNPs and SPR

absorption

vent breakdown. This work furthers previous reports of CVD synthesis of

AuNPs,38 by showing that some control can be exerted on the final nanopar-

ticle thin film.

A one-pot solution of Au and Sn precursors managed to produce a compos-

ite thin film of AuNPs and SnO2, however these thin films suffered from high

C contamination and poor conductivity. As had been shown with AuNPs,

depositions of the thin films individually might be more useful as it allows the

user to tailor their material to meet specific application design needs. A layered

structure was thus proposed and deposited, resulting in a material with high

quality TCO properties and SPR absorbances. Further to this, the adherence

problem to glass substrate encountered by AuNPs had been overcome112,160

without resorting to harsh treatments involving piranha solutions which are

needed for silanisation reactions.37,161,162 Compared to previous AuNP:SnO2
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composites192 the materials produced here had far superior optical and elec-

tronic properties for transparent conducting applications not reported prior

to publication generated from this thesis.

In Chapter 4, the depositions of AuNP composites expanded to other metal

oxides, with the effect of the SPR observed based on the refractive index char-

acter of the metal oxide. The SPR of AuNPs have been widely reported to shift

according to the refractive index of the surrounding media.12,166,222 The adapt-

ability and rich background of metal oxide AACVD221 was taken advantage of

by the depositions of SnO2 as well as MgO, Al2O3, TiO2, ZnO, and Ga2O3

and their composites with AuNPs. The refractive indices were measured us-

ing ellipsometric results as multiple factors in the synthesis of the metal oxide

thin films can affect the optical properties, and so accuracy with regards to any

discussion about the optical character is maintained. Through the AACVD

method a "bank" of new composites have been created. Even though no corre-

lation was observed between the refractive index and the AuNPs’ SPR, reports

in this chapter highlight the tunability of the optical properties of the thin film,

without the need to change the shape, size or concentration of the AuNPs. The

SPR of AuNPs composites were found to have red-shifted but the lack of cor-

relation sheds light on the importance of film and growth morphology on the

interface between the metal oxide and AuNPs, and resulting plasmon physics.

This was due to either the inconsistencies of how each precursor reacted and

deposited, assumed from the different surfaces of each metal oxide, or a change

in the AuNPs during the second deposition. The results from this chapter will

be important to those that use nanoparticles as a colourant for coatings since

the only experimental studies performed for this relationship only takes into

account local refractive index and the CVD technique used here is analogous

to current coating technologies.222,224,252

As AACVD can be used to deposit of silica coated float glass, in Chapter 5
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it is used to deposit Au particles onto silica (glass) wool. This high surface area

support is ideal for catalytic purposes. There is reusability and recyclability

potential since the glass wool can be easily recovered from a reactor. Although

there were some loss of precursor due to depositions on the walls of the reactor,

these depositions still showcase AACVD’s versatility in the lab for its ability

to deposit on different substrates. Catalytic experiments on the oxidation of

benzyl alcohol showed that it has over 90% selectivity, as expected this is lower

than the >99% reported nanoparticles specially synthesised to be catalysts253

since the size of the Au particles are much larger than the reported optimum.249

The yield is relatively low compared to the literature, however we think this

can be improved by changing the reaction set up - the active sights might be

blocked due to the tangled up nature of the glass wool. In order to counter the

loss of precursor during deposition, several preliminary investigations were

carried out using a spray deposition set up, which seems promising giving a

more targeted area of deposition.

Overall, this thesis really showcases AACVD’s strength for depositing a

range of functional properties materials (catalysis, TCO, SPR) onto a variety

of substrates (float glass and glass wool) allowing us to explore the properties

of many materials.

6.2 Forward look

In a more general tone, the tools described in this thesis relating to the struc-

tures of nanocomposite films can be developed and tested for other functional

properties, and as part of device development. This is an area that has not been

explored here. Expansion into a range of catalytic systems other than the oxi-

dation of alcohols and further work into recyclability of the AuNPs deposited

onto glass wool, by aerosol-assisted chemical vapour deposition and spray de-

186



6. Conclusions

position, would be interesting in terms of potential applicability within indus-

try. A wider study into the effects of refractive index on the SPR absorption

can be further expanded to include different growth strategies and give a more

complete understanding of the relationship between the metal oxide and gold

nanoparticles in a composite. More specifically to each piece of work, the thesis

can be carried forward with the following suggestions.

6.2.1 Functional composites of gold and tin dioxide

Investigating and comparing the use of MBTC with other Sn precursors. TGA

can be used to study the breakdown of MBTC, HAuCl4 and MBTC with HAuCl4,

all dissolved in methanol. A simple benchtop reaction can perhaps elucidate the

reactivity of the precursors with each other.

6.2.2 Effect of metal oxide character on the SPR in compos-

ites of AuNPs

Detailed SEM and TEM studies to further confirm wether the AuNPs change

shape while being heated a second time during the second deposition. A com-

parison can be made for the metal oxide deposition and preferred orientation

between the thin films deposited on glass and on the AuNPs. Further the func-

tionality testing of each metal oxide composite. The interface between the

metal oxide and gold nanoparticles using side-on SEM analysis can reveal the

bonding that exists between the metal oxide and gold.

6.2.3 Gold nanoparticles on silica wool

In order to complete the catalytic studies, a catalytic test of blank glass wool

should be performed with this set up. It would be interesting to compare the

catalytic activity of the NPs produced in the AACVD reactor with the ones
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from the spray rig. Always important to industry, recycling the catalyst and

checking the activity will also be valuable to see if loading AuNPs on glass wool

is actually viable. Lastly, more experiments of tuning the various factors of the

reactions can be done to see if smaller NPs can be achieved through either the

AACVD or the spray rig.
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