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Abstract

Understanding genetic control of biological processes is an important goal in
the post-genome era. GWA studies have been successful in identifying loci
linked to disease and recently in revealing disease risk alleles. However,
pinpointing key genes and their alterations within associated loci remains a
central challenge. Described is the completion of a large, international meta-
analysis and replication study of existing PD GWA data, confirming 6
previously identified loci and identifying and confirming an additional 5 novel
loci; thus, expanding our understanding of the genetic basis of PD. Following
this is an effort to annotate the consequences of genetic variation within the
context of normal human brain tissue by generating and integrating data to
investigate the effects of common genetic variability on DNA methylation in
four brain regions of 150 neurologically normal individuals, 600 samples total.
Genome-wide SNP data is generated and 27,578 CpG sites assessed in each
brain region. Results show methylation patterns differ between brain regions,
genotype is correlated with methylation levels and DNA methylation QTL
occur more often in sites outside of CpG islands. Next, an expanded map of
DNA methylation in human brain assessing 486,428 CpG sites is generated
and proximal CpG sites are integrated with known PD loci implicated by GWA
studies; thus, gaining potential mechanistic insight into pathogenesis of
disease. Significant DNA methylation QTL for 19 of 28 PD risk loci are
identified, demonstrating the correlation of risk alleles for neurological disease

with a biologically relevant trait in human brain tissue is a manageable goal.



Lastly, analyses show CpG sites within normal human brain exhibit significant
age-associated increases in methylation with an enrichment of changes at
CpG islands of functionally related transcripts; thus, providing a footing for
future integration of age-related epigenetic changes into disease models

exhibiting age as a primary risk factor.
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1 Introduction

1.1 Specific Aims of this Thesis

This thesis focuses on understanding the basis of a complex, late-onset
neurological disease, Parkinson’s disease (PD), through the identification of
genetic risk variants, and an assessment of the effects of these variants on
DNA methylation. The first part of this effort is the generation and analysis of
genome wide association data in a large series of PD cases and controls.
This work aims to specifically test the common disease common variant
hypothesis, and to identify loci that contain risk variants for disease. The
second part of this thesis aims to generate a dataset that tests the hypothesis
that common DNA variability may be correlated with DNA methylation in the
human brain, and to provide a reference dataset that can be used to examine
these correlations. The next aim centers on integrating the PD genome wide
association data and the brain DNA methylation quantitative trait data to
detect whether the identified risk alleles are also correlated with differential
DNA methylation, potentially identifying a biological basis for association. The
final aim of this thesis was to examine the relationship between chronological
age and DNA methylation in the human brain in order to understand if

predictable DNA methylation changes occurred with aging.
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1.2 Understanding Neurological Disease

For the majority of neurological diseases current treatment options are limited,
mostly restricted to symptomatic or palliative therapies. The ultimate goal of
disease-based research is to change this paradigm by creating therapies that
are directed at the underlying disease process, rather than the manifesting
symptoms. A central part of this effort to understand etiology has been the
identification of disease related genes, which in turn provides a tool with which

to investigate the molecular events that are the disease process.

Traditionally gene identification efforts have been centered on the isolation of
disease causing mutations, usually in rare familial forms of disease. These
mutations, which most often affect the protein coding sequence of the gene,
are subsequently used to model disease within cell and animal based
systems. While this has been a fruitful area of research, there is a need to
more fully understand the genetic architecture of typical diseases, including
the identification of variants that increase risk for, rather than cause disease. It
is believed that a more general understanding of the genetic architecture of
complex disease and the identification of genes involved in lifetime risk for
disease, will not only inform on the etiologic level, but will also be a key step in
the identification of patients at risk, biomarkers for disease, and disease

subtypes.

As discussed below, there has been a great deal of progress in
methodological and analytical approaches to the identification of risk loci. This

success not only creates exciting opportunities to understand the disease
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process, but also significant challenges. A critical challenge lies not only in the
identification of the disease-linked gene at a particular risk locus, but also in
understanding the biological effect mediated through the gene and locus. In
this introduction | will discuss the recent evolution of gene discovery efforts in
complex traits, the state of the field in gene discovery within a complex, age-
related disorder, Parkinson’s disease, and the role that DNA methylation may

play in understanding the disease process.

1.3 Genetic Variability and Complex Disease

Complex diseases likely arise due to a combination of many genetic,
environmental, and lifestyle factors. There are two principle theories regarding
the genetic component of complex disease: the common disease rare variant
(CDRV) hypothesis and the common disease common variant (CDCV)
hypothesis. At the inception of these theories, there was much discussion
regarding the likely validity of these hypotheses, and in particular much
argument in favor of one over the other; however it is important to note that
these two hypotheses are not mutually exclusive, and it is likely that any

complex disease will contain both genetic components.

The CDRYV hypothesis speculates that a contributing risk component for
complex disease will be rare genetic variants; these are strictly defined as any
genetic allele with a frequency of 1% or less. The CDRV hypothesis suggests
that because low frequency variants are abundant in human populations, and
because there has been little opportunity for the removal of these functional

but rare variants through natural selection (as a consequence of recent

17



population growth) deleterious rare alleles are likely to exist. This
phenomenon may be particularly pronounced in late onset diseases, where
selective pressures, mainly driven through traits that occur before
reproductive age is reached, do not apply. A primary limitation in the
investigation of the CDRV hypothesis has been a technical one; it has
traditionally been extremely difficult to identify rare variants in suitably
powered sample series. However, there is now a great deal of interest in the
investigation of the CDRV hypothesis due to the affordability of second
generation sequencing methods to identify these rare alleles in large groups
of individuals. This is one of the fastest growing fields of disease genetics and
has had some initial success [1, 2]. However, the rarity of these alleles
requires very large sample numbers to detect significant effects and therefore,
it is expensive to execute well-powered studies. As a consequence, the CDRV
hypothesis remains largely untested in most common disorders, a situation

that will inevitably change over the next few years.

Kathleen Merikangas and Neil Risch proposed the idea of ‘common disease—
common variant’ in 1996, suggesting that common, modest-risk SNPs could
mediate genetic susceptibility to common diseases, such as Parkinson’s
disease and other complex disorders [3]. The CDCV hypothesis posits that a
significant proportion of risk for common diseases is mediated through
common genetic variants (i.e. variants present at greater than 1% allele
frequency within a population) [4, 5]. By definition these variants are common
and therefore will have been within the population for a significant amount of
time. Thus, conversely to rare variants, highly functional, deleterious alleles

18



are more likely to have been selected out of the population. Therefore, the
CDCV hypothesis accepts that the effect of individual common alleles on any
deleterious trait is likely to be quite small, but numerous such common alleles
may contribute to that trait, so collectively the contribution of common alleles
to a trait may be substantial. Testing of the CDCV has been well established,
primarily because the technology available to genotype a large number of
common variants has been available, and relatively affordable since ~2005.
This has led to an extremely large number of identified common risk loci as
evidenced by the large catalog of positive genome wide association studies

(http://'www.genome.gov/gwastudies/).

1.4 Knowledge and Technology: Enabling Complex Genetics

The Human Genome Project (http://www.genome.gov/10001772), the
mapping of genetic variability across populations via projects such as the
International Haplotype Map Project (http://hapmap.ncbi.nlm.nih.gov), and
improvements in technology combined to facilitate the development of tools
that revolutionized the study of human genetics. During this time, the core
underlying data and methods used to discover genetic causes and risk for
complex human disease were fundamentally transformed, resulting in a great

deal of genetic discovery.

Before the scope of human genetic variability was well-documented and prior
to the advent of GWA studies and microarray technology, candidate gene
association studies were widely applied in the search for genes underlying

complex disease. The candidate gene approach allowed researchers to
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investigate variants in selected genes based upon a hypothesis of the
etiological role of the gene(s) in the disease, with little known about the human
genome or the variability at that locus. As the gene(s) being tested were
hypothesized to have a biological role in the disease mechanism, one
advantage was that finding a genetic association also informed on the
functionality in the pathway. However, there are many limitations to candidate
gene studies. For example, bias can be inserted into a study as a researcher
must know at least some of the biology underlying the disease and therefore,
may choose genes based on their own specialty, limiting the ability to search
for variants outside a specified region. Therefore, causative variants could be
missed. In this regard, GWA studies have a distinct advantage being
hypothesis-free, simultaneously assessing SNPs throughout the entire
genome versus focusing on loci where there may be a suggestive causal

relationship to the disease [6].

Additionally, without microarray technology, candidate gene studies focused
on genotyping small numbers of common variants in small numbers of cases
and controls, resulting in limited statistical power. Thus, the effects of some
tested variants were likely not detectable, even if the variants truly contributed
to disease susceptibility. The best indication of the general failure of candidate
gene association studies may be the large number of such studies from the

mid 1990’s and the lack of genuine associations identified by those studies.

Enabling genetic studies, the Human Genome project was an international

effort launched in 1990 aiming to sequence and map the genome of Homo
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sapiens. The first draft was completed and released in April 2003. Following
the successful effort by the Human Genome Project, the International
HapMap Consortium was founded in October of 2002. The goal of the
HapMap project was to develop a haplotype map of the human genome
defining common patterns of genetic variation in worldwide populations. The
first phase of the HapMap project included four populations from Africa,
China, Japan, and US residents with European ancestry. Additional
populations were later assembled to include cohorts from Tuscany, Italy,
Kinyawa, Kenya and distinct US populations with Chinese, African, Indian and
Mexican ancestry. The focus of the HapMap project was to map common

alleles occurring in at least 1% of the different populations [7, 8].

These two ambitious, international collaborations and their public release of
data provide the basis of knowledge for the majority of human genetic
experiments that are performed today. While the creation of these genetic
maps was necessary to facilitate a new era of discovery in human genetics,
So too was the development of technologies capable of capitalizing on this

knowledge.

In addition to having a reference human genome sequence and a map of
sequence variation in several populations, a timely technological
advancement allowed faster, accurate and much cheaper genotyping of single
nucleotide polymorphisms (SNP). These methods allowed the realization of
high throughput, high content genotyping, and were critical for the execution

of GWA studies.
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1.4.1 DNA microarrays

DNA microarray technology permits the accurate and efficient typing of
hundreds of thousands to millions of variants in a large series of subjects.
Array technology was developed in the early 1990s [9], but its potential in the
context of SNP genotyping was not fully realized until 2005. The basic
principle underlying DNA microarray technology is hybridization between two
DNA strands. Specifically, complementary nucleic acid pairs form hydrogen
bonds with each other on a substrate containing allele-specific oligonucleotide
probes in a specific pattern (in the instance of lllumina technology the
substrate is a bead). The DNA from each subject is fragmented, amplified and
hybridized to the array. Non-specific binding sequences are washed off the
slide and fluorescently labeled target sequences that bind to an allele-specific
oligonucleotide probe sequence generate a fluorescent signal. The signal is
then detected by scanning software and SNP genotypes are determined for
individuals. Today, this technology allows for up to 5 million known genetic
variants (lllumina Omni5M, lllumina Inc., CA, USA) to be simultaneously typed

in a single human DNA sample.
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Figure 1. Graphic representation of an Infinium HD SNP array genotyping
experiment.

In step one, genomic DNA from the sample is extracted, purified, and input
into the experiment (~250ng). In step two, the genomic DNA is amplified using
a non-PCR based method, and the resulting product is sheared into small
fragments. In step 3 the DNA is hybridized to beads with a target sequence
abutting the variant of interest. In step 4, a single base pair extension occurs
and depending upon the variant at this position in the source DNA the
complimentary base pair tagged with a fluorescent label is incorporated by
polymerase.

There exist now a large number of arrays with different content and slightly
different purposes. The majority of arrays, and those that have facilitated the
majority of advances through GWA, are aimed at maximizing the information
content of interrogated SNPs across the human genome. Although genome-
wide SNP arrays allow typing of a very large number of variants, it is possible

to use the understanding of the haplotype block structure of the human
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genome to predict or impute, the genotypic state of SNPs that are not typed
directly on an array, but that are physically close to directly typed variants [8,
10]. Thus many SNPs are selected for inclusion on arrays based on the
information that the SNP provides on neighboring variants, with variants that
efficiently provide information being called tagging SNPs. The incorporation of
tagging SNPs can be used to capture a major fraction of the genetic variation
present within a population while reducing genotyping demands, data

handling and computation time [11, 12].

While genome wide SNP chips have greatly facilitated the application of
genome wide association (this will be discussed further below) they have also
played a significant role in other genetic discovery efforts [13]. Although
individually SNPs are less informative than the microsatellite markers
traditionally used in linkage, the density of SNP genotyping chips provides
more information and finer scale mapping than microsatellites. Because SNP
arrays are very informative, and due to their ease of use, speed, and low cost,
they are now the predominant technology for generating genotypes in genome
wide linkage studies. A related application is the use of these arrays in rapidly
identifying regions of homozygosity, a methodology used in autozygosity
mapping for recessive traits, identifying loss of heterozygosity in tumor
samples, and in defining regions of uniparental isodisomy [13]. In addition,
because the arrays provide information not only on genotypic state, but also
generate an intensity value, the data can be abstracted from these arrays to
identify copy number variants, although it should be noted that there is a high

error rate in this regard [13]. Additionally, and critical for genome wide
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association studies, the genotypes from genome wide SNP arrays can be
used in identifying population structure and outliers within a group. This is
performed using principal component analysis and is used routinely in GWA
analysis to remove outliers and to correct for population stratification within an

analysis [14]. This is discussed further below.

1.4.1.1 Genome Wide Association

GWA studies examine variants across the genomes of large cohorts of
disease cases and control subjects. On the most basic level, a test of
association between variability at a particular SNP and a trait such as disease
is performed. Commonly an additive model is assumed where the risk for
disease for a heterozygote is intermediate between the risks at opposite
homozygotes, although other tests such as the genotypic, allelic, dominant,
and recessive tests may be executed. Often implemented is the Cochran-
Armitage trend test, which is used in the whole genome association toolset
plink (http://pngu.mgh.harvard.edu/~purcell/plink), and this toolset has been a
critical in the execution of GWA studies, because it is free to use, easy to
access, and relatively straightforward. More recently, several studies use
home grown solutions to calculating significance implemented through R, and
this is particularly apparent for studies that use imputed data, as the
association with disease should most appropriately be regressed against
allele dosage rather than against absolute genotype (this is discussed more

below).

25



Although modern genotyping arrays contain a large number of variants, even
greater genetic information may be gleaned from these arrays using
imputation. Imputation is based on linkage disequilibrium (LD) and uses
genotypes at neighboring SNPs to predict (or impute) the likely values of

neighboring variants [8, 10].

LD is the non-random association between two or more alleles where certain
combinations of alleles are more likely to occur together on a chromosome.
This generally occurs because the SNPs are close together and
recombination events are not likely to occur within the few base pairs between
them. The HapMap Project was able to catalog this phenomenon and
provided an understanding of LD in the human genome; thus allowing
successful imputation of millions of genotypes to be used in association
studies [7, 11]. Further, in 2012 the 1,000 Genomes Project released 1092
genomes sequenced from a number of different ethnic groups [15, 16]. This
novel dataset greatly added to our understanding of LD and has become a

key resource for modern imputation methods (Figure 2).

Notably in most cases the results for imputed SNPs are assigned as allele
dosages rather than genotypes, and because they are probabilistic are often
not absolute, i.e. a genotype of A/A, A/B, and B/B would not be imputed, but
rather an allele dosage would be produced for the variant allele ranging from O

to 2, and most often not a whole number.
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Known variants within a genotyped sample are compared to those within a
reference set, and the reference set of haplotypes is then used to impute or
predict proximal untyped variants. While this representation shows alleles, in
most instances the probability of an allele is predicted, rather than a haplotype
call.

These technological and analytical advances were necessary precursors for
genome-wide association (GWA) studies to come of age as a novel approach
to the study of genetic variability linked to complex disease. Coupled with
imputation, it is routine now to interrogate more than 10 million SNPs in a

GWA.
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14111 Considerations in Implementing Genome Wide Association
Studies
There are a number of best practice considerations in the implementation of
GWA studies. Well-characterized cohorts of cases and controls are the
foundation of successful GWA studies. To ensure maximum benefit from
genome-wide genotyping efforts and/or sequencing efforts prior to genetic
association analysis, it is important that sample collection for GWA studies
involve detailed phenotypic classification that may involve additional genetic,
physiological and clinical tests. Phenotypic misclassification between cases
can reduce the power to detect association in GWA studies. Manchia and
colleagues quantified the impact of phenotypic heterogeneity in the analysis
and interpretation of GWAS results noting that the presence of “non-cases”
reduces the statistical power to identify genetic association and significantly
decreases the estimates of risk attributed to genetic variation. Their results
also suggest that accurate phenotype delineation may be more important for

detecting true genetic associations than increase in sample size [17].

Many of the quality control steps taken in GWAS focus on the removal of
systematic errors in order to limit the number of false positive and false
negative association signals. Initial quality control includes basic measures
including the removal of poor performing SNPs and samples. Because
genotyping using arrays is quite robust, the threshold for SNP and sample
failure remains high, with any SNP failing in more than 2% of samples, being
removed, and any sample with a call rate of less than 95-98% also being

removed. Following initial quality control, an assessment of heterozygosity
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across all non-sex chromosomes is performed, with outliers being removed
(any sample outside of +/- 6 standard deviations). Excess or low
heterozygosity is considered indicative of poor genotyping or sample

contamination.

This is followed by an assessment of genotype gender compared to sample
gender, which is easily performed using genotypes on the non
pseudoautosomal dominant region (PAR) of chromosome X; simply
genotypes from males will appear hemizygous, whereas females will have a
proportion of heterozygous calls on this chromosome. Because arrays also
provide intensity data, which is related to the original copy nhumber of template
DNA, the signal intensity for chromosome X SNPs will be higher in females

than in males (Figure 3).
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Figure 3. Example quality control plot of genotype gender and reported
gender.

This was generated from 200 samples (red, female; blue, male) and average
heterozygote frequency for SNPs on the non-PAR region of chromosome X
was plotted against average signal intensity for the same SNPs. In this
instance the underlying genotype data is from the NeuroX array. There are no
gender discrepancies.

Another critical step in quality control of GWA focuses on estimating
population stratification within the cohort. This is performed using a principal
component analysis (PCA); one common form is the EIGENSTRAT method
[14]. The varied PCA methods operate on a comparable construct, first a PCA
is performed on genotype data across all cases and controls, and often, on
reference populations. This creates a defined number of axes of variation,
where each axis describes as much inter sample variation as possible; with
this being based solely on genotype information these axes of variation
represent inter sample differences in genotype. Because of the prior removal

of genotype artifacts and poorly performing SNPs, one of the remaining key
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differences between samples should be genetic diversity due to population
differences. At this point, the PCAs explaining the majority of inter sample
variation can be used to view population stratification within the test cohort
and if a geographically diverse reference sample is included, the samples can
be viewed in the context of known population structure. Samples that are
evidently outside of the expected population (typically 6 standard deviations)
can be removed. For the remaining samples, the values from the calculated
PCAs can be used to adjust genotypes, thereby minimizing the effects of
population stratification (Figure 4). Because most GWA are looking for genetic
differences between cases and controls, it is important to be aware that over
correction for too many PCAs may remove genuine trait related association

signals.
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Figure 4. Plotting of the first two principal components for a study on
population and reference populations.

In this example the first two genetic principal components are plotted for the
study population (PPMI, internal data from LNG) along with the same PCAs for
11 reference populations for which data was downloaded from the 1000
genomes project (http://www.1000genomes.org). As can be seen these PCAs
separate distinct populations; these data illustrate the study population is
largely European, but also reveal some African, and Asian/South American
ancestry.

An additional common quality control step is the application of a quantile-
guantile (Q-Q) analysis. This step also searches for systematic bias within the
data set. Essentially this involves plotting the observed versus expected p
values across the whole genome and determining whether there is a skew in
the distribution of observed p values. An excess of significant p values would
suggest systematic bias in the data and that many of the significant p values

are a result of false positive association due to genotyping errors or
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population stratification. Conversely a lower than expected number of
associations would indicate that the data might be overcorrected (for example
by applying too many PCAs) and that genuine association signals may have

been removed.

Lastly, a critical step in GWA is the application of correction for multiple
testing. Because many hundreds of thousands, or millions of statistical tests
are being performed, there will be a wide range of p values generated simply
by chance, and not as a result of a genuine association. The threshold for
genome wide significance is considered to be 5x10°; however, ultimately the
most important consideration in GWA is the need for a large and independent
replication of any putative associations. Many of the considerations for GWA
apply to this replication, including adequate power, correction for multiple
tests, and standard sample and genotype quality control. A replication needs
to fulfill these criteria and replicated signals should show a consistent direction
of effect compared to the discovery (genome wide) data. Notably, the effect
size is often smaller in the replication cohort, a consequence of the ‘winners
curse’ effect, where the magnitude of a number of effects discovered as
significant in stage | will be overestimated (this is a principle adapted from
economics) [18]. This is most evident for variants with an effect size close to
the limit of power for stage |. Because of this, it is preferable that a replication
phase include a larger sample series than the discovery phase, although in

practice this is often difficult to achieve.
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1.4.1.1.2 Limitations of Genome Wide Association Studies

While GWA has been an extremely useful tool in the identification of novel risk
loci for disease, there are several limitations to this approach. First, in its
current form the method is designed to test the CDCV hypothesis, and is not
designed to identify rare risk variants for disease, an approach better suited to

sequence based approaches.

Second, each individual study is limited in power by the sample size used,
and the expected effect sizes. Often, this has resulted in the combining of
datasets generated in different laboratories and different countries. Several
methods have been developed to facilitate data combining, ranging from
simple aggregation of data and combined (or joint) analysis, through to a
formal meta-analysis. In the latter design, association statistics are calculated
individually for each study, or each population, and then compared across
studies, typically these statistics are effect sizes, but p values can also be
used. Meta analysis increases the power and facilitates the identification of
consistent effects across studies, even if the effect is not statistically

significant within individual studies.

The paramount limitation of GWA studies is perhaps that, unlike linkage and
positional cloning approaches used to find disease-causing mutations, GWA
identifies loci, and not genes or individual risk variants. The next steps from
the identification of a robust and replicated association signal center on
identifying the critical variant of interest, and on understanding the biological

effect of the risk variant. For the most part, GWA identified risk loci are not
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explained by protein coding variants such as splice site variants, frame shift
variants, stop/start mutations, or non-synonymous amino acid changes. In
fact, less than 30% of identified GWA signals are in linkage disequilibrium with
such changes, and it is likely that only a proportion of these represent the
genuine trait-influencing variant [19]. Therefore, the majority of identified GWA
loci must exert an effect on the disease process through expression, including
effecting basal expression, induced expression, transcript specific expression,
and temporospatial expression. Possibly such effects could be mediated
through a number of mechanisms, such as altering the epigenetic regulation
around a gene and altering transcription regulatory elements. Thus, while a
great deal of investment continues in performing GWA with some success,
there is increasing focus in the development of methods and data that will

shed light on the biological consequences of identified risk variants.

1.5 Parkinson’s Disease

1.5.1 Clinical Background

Parkinson’s disease is a common, progressive neurodegenerative disorder,
affecting 3% of those older than 75 years of age [20] . James Parkinson first
described the disease in 1817, where he illustrated six cases of “shaking
palsy” [21]. PD is the second most common neurodegenerative disorder,

(following Alzheimer’s disease) and is the most common neurodegenerative
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movement disorder with an estimated 10 million individuals worldwide living
with the disease [22] More males than females are affected with the disease
in a ratio of 1.5:1.0 [20, 23]. Clinically PD is associated with resting tremor,
postural instability, rigidity, bradykinesia and a good response to levodopa
therapy [24]. In the past, PD was considered a ‘sporadic’ disorder; but,
approximately 15% of patients report a positive family history of parkinsonism.
The rare, familial forms of PD tend to be early onset, occurring before the age

of 50, and are often monogenic in origin [25, 26].

Typically, onset of PD is subtle, asymetrical and steadily progressive as
neuronal dysfunction and cell death lead to a significant reduction in the
neurotransmitter dopamine in the striatum, a vital section of the basal ganglia
accountable for the initiation and control of movement [27, 28]. For this
reason, patients show a dramatic response to dopamine replacement therapy
using the metabolic precursor of dopamine, L-DOPA, which is the chief
treatment for PD. The neuropathologic hallmarks of PD are loss of
dopaminergic neurons of the nigrostriatal system, the cause of the primary
movement abnormalities, and deposition of intracytoplasmic aggregates
termed Lewy bodies (LB). In PD, Lewy bodies are particularly prevalent in the
substantia nigra; but may also be seen in neocortical areas [27, 29]. While
clinical diagnosis of PD is relatively sensitive and specific, a true diagnosis

can only be made neuropathologically [27].
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1.5.2 The Role of Genetics in Parkinson’s Disease

Parkinson’s disease was long thought to be a sporadic disorder without
genetic causation. However, in 1997 mutations responsible for the disease
were identified in the alpha-synuclein gene (SNCA) [30, 31]. This landmark
discovery revealed the first indisputable, heritable component to PD and
launched 15+ years of successful research into the genetics of PD. Quickly
following detection of the first mutations in SNCA, additional genetic links
were identified at two novel chromosomal regions and linkage of SNCA was
excluded in >200 PD families [32-36]. Therefore, by 1998, it was evident that
PD was a genetically heterogeneous disease. Several genes have since been
linked to inherited forms of parkinsonism and several monogenic forms of the
disease and numerous genetic risk factors have been identified. In this
section, | will first provide a brief overview of the monogenic forms of disease
and move forward to discuss how our view of PD etiology has matured since

1997 to now include risk alleles.

1.5.2.1 Monogenic Forms of Parkinson’s Disease

While the work in this thesis centers on risk loci for complex genetic forms of
PD, it is useful to understand the monogenic forms of this disease. This
provides insight more broadly into the genetic architecture of this disease, and
as described later, there appears to be overlap in the genes that contain
disease causing mutations, and those that contain risk variants. Mutations in

three genes, SNCA (PARK1; encoding a-synuclein), LRRK2 (PARKS,;
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encoding dardarin) and VSP35 (encoding vacuolar protein sorting 35) have
been shown to cause autosomal dominant forms of PD. Mutations in six
genes, PINK 1 (PARK®G; pten induced kinase 1), DJ1 (PARK7), Parkin
(PARK2) and ATP13A2 (PARK9) FBXO7 and PLA2GB have been shown to
cause autosomal recessive PD and/or parkinsonism. The mutations in these
genes, with the exception of LRRK2, cause PD in a small subset of patients.
All known monogenic forms of PD combined explain only about 30% of

familial and 3-5% of sporadic cases [26].

15211 Alpha-Synuclein

Traditional linkage mapping was used to identify the first PD gene, SNCA,
which encods alpha-synuclein [31]. The mutation underlying disease
(Ala53Thr in exon 4) was discovered in a large Italian family and subsequently
in three Greek families with familial PD. The primary Greek families found to
harbor the p.A53T mutation, orginated from a very small geographical area in
southern Greece. Eight additional families, located in central and
southwestern Greece, were also confirmed to have mutations in a-synuclein,
suggesting the presence of a founder mutation [37, 38]. A decade later, two

Korean, and one Swedish family were shown to have the mutation [39-41].

Shortly following the discovery of SNCA mutations causing a rare familial form
of PD, Spillantini and colleagues determined that a-synuclein was a dominant
constituent of Lewy bodies, the pathological hallmark of PD [42]. This

profound finding in the brains of typical sporadic PD patients distinctly tied
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together the etiology and pathogenesis of rare familial forms of PD with typical
sporadic PD. This crucial link between the two disease phenotypes, ultimately
established that examination of rare forms of familial PD, even those that

differed clinically and neuropathologically from typical PD, was pertinent to the

study of the common form.

Mutations in SNCA are rare. As yet, only five (G51D, G50D) autosomal
dominant, missense mutations have been discovered in a-synuclein along
with duplications and triplications of the complete gene [43]. The first identified
missense mutation, A53T is the most frequent and has been found in seven
families throughout the world. The remaining two missense mutations were
found in only one family each: p.A30P was reported in a German family with
autosomal dominant PD and p.E46K in a Spanish family from the Basque
country [44, 45]. Triplication of the entire genomic region containing SNCA
was first discovered in 2003 and has since been reported as a cause of
disease in three separate families [46-48]. Duplications of the entire coding
region of SNCA have been reported as a cause of disease in 13 PD families

and four sporadic cases [47, 49-55].

The clinical phenotype associated with SNCA mutations consists of
progressive L-DOPA responsive parkinsonism with cognitive decline,
autonomic dysfunction and dementia. The average age of onset for those
patients with the p.A53T mutation is 46 years of age, which is younger than
typical sporadic PD and the disease is fully penetrant [56]. In contrast, families
with the A30P mutation have an age of onset that is slightly later (age 52) and

the disease is not fully penetrant [44], while the E46K mutation causes
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dominant PD and Lewy body dementia with symptoms beginning between the
ages of 50 and 65 years with dementia presenting within 2 years of diagnosis

[45].

Genomic duplications and triplications at the SNCA locus cause early-onset
PD with the age of onset and severity of the disease phenotype correlating
with the SNCA copy number, suggesting a gene-dose effect. Triplication of
alpha-synuclein causes a fully penetrant, early onset and rapidly progressive
dopa-responsive parkinsonism, accompanied or followed by dementia.
Clinical presentation ranges widely from severe idiopathic PD to PD with
dementia or diffuse Lewy body disease. PD patients with duplication of SNCA,
therefore generating three copies of the gene, develop the disease about a
decade later than those with four copies of synuclein and the disease course,

while still aggressive, is generally more benign [46, 48, 51, 57, 58].

1.5.2.1.2 Leucine Rich Repeat Kinase 2

In addition to SNCA, autosomal-dominant PD-causing mutations have been
found in the gene encoding Leucine-rich repeat kinase 2 (LRRK2). Linkage of
PD to a region on chromosome 12 was originally mapped in a large,
Japanese family with autosomal-dominant, late-onset PD showing incomplete
penetrance [59]. Within two years, the locus was verified and further
delineated in several European families [60]. In 2004, positional cloning was

performed by two groups that identified mutations in LRRK2 as the root cause
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of chromosome 12-linked PD [60, 61]. Mutations in LRRK2 now represent the

most common known cause of familial PD.

More than 100 distinct missense and nonsense mutations have been reported
in LRRK2 to date [62]; however, only for a small minority is there
overwhelming proof of pathogenicity (p.R1441C/G/H, p.Y1699C, P.G2019S,
p.12020T, p.S1761R, and p.12012T) [63-67]. Of these pathogenic
modifications, clustered in exons encoding the carboxy-terminal region of the
protein, the G2019S mutation is the most frequent and most well studied.
G2019S is common across many populations and has been identified in up to
42% of familial cases, depending on the ethnic background [65, 68].
Importantly, G2019S has also been detected in sporadic PD cases. The
mutation is seen in approximately 2% of sporadic cases in Northern European
and U.S. populations and up to 10% of sporadic cases worldwide [64]. The
penetrance of the G2019S mutation is age dependent and can vary from 28%
at 59 years, 51% at 60 years to 74% at 79 years of age. The G2019S
mutation is frequent in North African, Middle Eastern and Ashkenazi Jewish
PD patients and it is believed that most LRRK2 G2019S mutation carriers are
from a common founder originating in North Africa and spreading with the

Jewish diaspora [65, 69-74].

Overall, mutations in LRRK2 are the most common known cause of late-
onset, autosomal dominant and sporadic PD. Mutations are found in ~10% of
patients with autosomal dominant familial PD [75-78], 3.6% of patients with
sporadic PD and 1.8% of healthy controls [78]. Phenotypically, LRRK2

mutation carriers are essentially indistinguishable from sporadic PD [79]
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demonstrating mid to late onset of disease around 60 years of age, with a
slow progression and a good response to levodopa therapy. Dementia is not
common. Neuropathologic features are consistent with typical PD and Lewy
bodies (LB) are present in the brainstem and there is loss of dopaminergic

neurons in the substantia nigra [79].

LRRK2 encodes a large, multi-domain protein of 2527 amino acids and is a
member of the ROCO protein family [80, 81]. LRRK2 is widely expressed in
brain tissue and localized to LBs in the brainstem where it is associated with
the endoplasmic reticulum of dopaminergic neurons [82, 83]. Several
functional domains, including a GTPase domain and a kinase domain,
characterize the LRRK2 protein. Pathogenic mutations occur in both domains
and the G2019S mutation is consistently shown to increase kinase activity
[84]. The identification of LRRK2 mutations has proven to be a landmark
discovery that has profoundly impacted our understanding of Parkinson’s

disease.

1.5.2.1.3 Vacuolar Protein Sorting 35

Zimprich and colleagues were the first to use next-generation sequencing
methods to detect a PD causing gene. They identified a mutation in vacuolar
protein sorting 35 homolog gene (VPS35); encoding Vacuolar protein sorting
35, as a cause of late-onset autosomal dominantly inherited Parkinsonism. A
family from Australia with 16 affected individuals was investigated. Exomes

from pairs of affected cousins were compared and a list of rare, shared
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heterozygous coding mutations was generated. Subsequently, only one
mutation Asp620Asn was validated by Sanger sequencing and found to
segregate with disease in a Mendelian dominant manner. Several thousand
PD and control subjects have since been screened for the c.1858G>A
(p-Asp620Asn) mutation . The mean age of onset in affected individuals is 53
years, causing approximately 1% of familial parkinsonism and 0.2% of

sporadic PD [61, 85-87].

Autosomal Recessive Parkinsonism

Mutations in six genes: PINK 1 (PARKG; pten induced kinase 1), DJ1
(PARKY), PARK2 (encoding parkin), ATP13A2 (PARK9; ATPase type 13A2),
PLA2G6 (PARK14; phospholipase A2, group VI) and FBX07 (PARK15; F-box
only protein 7) have been shown to cause autosomal recessive (AR)
PD/parkinsonism. The mutations in these genes cause PD in a small subset
of patients. All known monogenic forms of PD combined explain only about
20% of early-onset PD and less than 3% of late-onset PD, although as will be

discussed below, this proportion varies drastically across ethnic groups.

15214 Parkin

Parkin was the second gene identified to cause parkinsonism and the first
gene decisively shown to cause an autosomal recessive (AR) form of the
disease. A homozygous deletion of exons 3-7 in the parkin gene was first
reported by Kitada and colleagues in Japanese families with autosomal-

recessive juvenile on-onset parkinsonism (ARJP); disease onset often
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occurring before twenty years of age [33]. Mutations in Parkin are the primary
cause of ARJP and early onset, recessive parkinsonism. Numerous unique
mutations in all 12 exons of Parkin have been identified throughout various
ethnic populations. These mutations consist of point mutations and exon
rearrangements, including both deletions and duplications [67, 88-92]. To
date, approximately 147 different exonic mutations have been described of
which a third are single-nucleotide changes, 13% are minor deletions and
54% are larger deletions or duplications comprised of one or more exons [93].
The number of exon rearrangements in parkin is likely still to increase as
many exon rearrangements were often omitted due to the early labor intensive

and expensive methods for identification of exon rearrangements.

Mutations are present in approximately 50% of patients with recessive, EOPD
in the age range of 7-58 years of age and present in up to 77% of sporadic
cases with disease onset younger than 20 years [94]. Parkin is the second
largest gene in the human genome and codes for a 465-amino acid protein. It

is an E3 ubiquitin ligase [95].

Key clinical features of parkin disease have been reported to include age at
onset <40 years, foot dystonia, psychiatric symptoms and a dramatic
response to treatment [96]. However, these symptoms can mirror those of

typical young onset PD cases without parkin mutations [97].

The pathology of parkin disease consists of severe neuronal loss in the
substantia nigra, occasional tau pathology and a distinct lack of postmortem

LBs, found in only a minority of genetically confirmed parkin patients [98-100].
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A possible explanation for the lack of LBs, a pathological hallmark of PD, may
be the young age of parkin disease onset [101]. It is notable that no cases of
juvenile-onset PD have been reported with postmortem LBs [102, 103] and
patients with LBs had a significantly older age of disease onset (mean age of
onset: without postmortem LBs = 27 years; with postmortem LBs = 46 years)

[101, 104].

15215 PTEN-Induced Putative Kinase 1

The PARKG6 locus was first mapped to a 12.5-centimorgan (cM) region on
chromosome 1p35-p36 in a large consanguineous family from Sicily [105]. In
2004, two homozygous mutations were identified in the PTEN-induced
putative kinase 1 (PINK1) gene by Valente and colleagues. A p.G309D
missense mutation and a p.W437X truncating mutation, were found in a
Spanish family and two Italian families respectively. All three families shared a

common haplotype, demonstrating a shared ancestry [106].

Both homozygous and compound heterozygous loss of function mutations in
the phosphatase and tensin homolog (PTEN)-induced putative kinase 1
(PINK1) gene are the second most common cause of autosomal-recessive,
early on-set Parkinson’s disease (EOPD) [106-111]. The clinical phenotype of
PINK1-related PD strongly resembles levodopa responsive, classic idiopathic

PD with no reports of dementia [112].
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1.5.2.1.6 DJ-1

The PARKY locus on chromosome 1p was established through the discovery
of a consanguineous pedigree with autosomal recessive PD. In 2003, DJ-1
became the third gene associated with ARPD. Bonifati and colleagues
identified recessively inherited missense and exonic deletions in DJ-1 in two
European families [113]. Homozygosity mapping and positional cloning
performed on a consanguineous pedigree from a genetically isolated
population in the Northern Netherlands revealed a homozygous deletion of
several exons in DJ-1 causing disease. Subsequently, a missense mutation in
a highly conserved residue (Leul66Pro) of DJ-1 was found to cause disease
in an Italian ARPD family. Mutations in DJ-1 are extremely rare, found in <1%
of early-onset PD cases. The mutations are found in both homozygous and
compound heterozygous states, resulting in loss of protein function.
Phenotypically, DJ1 mutations cause Levodopa responsive disease onset in

the mid-twenties, resembling Parkin and PINK-1 linked forms [113-119].

The DJ1 gene spans 24 kb in length and includes 8 exons encoding a domain
protein of 189 amino acids [120]. DJ-1 belongs to the pepidase C56 family of
proteins and has been reported to protect cells against oxidative stress and to
play a role in maintaining normal dopaminergic function in the nigrostriatal
pathway [115, 121-126]. Besides the importance of DJ-1 in dopamine
neurotransmission and signaling, it has been reported to have multiple
functions associated with PD pathogenesis, such as chaperone activity and
the ability to inhibit a-synuclein aggregation, which is thought to be a key

event in Lewy body formation [127]. It has also been suggested that DJ-1
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may be involved in transcriptional regulation of neuroprotective or anti-

apoptotic genes [128].

1.5.2.1.7 PLA2G6, ATP13A2, and FBXO7

More rare, recessively inherited forms of PD are caused by mutations in three
genes: ATP13A2 (ATPase type 13A2), PLA2G6 (phospholipase A2, group VI)
and FBX07 (F-box only protein 7). Mutations in ATP13A2 cause the rare,
juvenile-onset disorder Kufor-Rakeb syndrome, which is characterized by a
lower response to levodopa and additional atypical features of disease such
as dystonia and supranuclear palsy [129, 130]. Mutations in the gene
PLA2G6 cause autosomal recessive, levodopa-responsive parkinsonism with
dystonia [131]. Brain iron accumulation is found in most but not all affected
individuals [131-133]. Shojaee and colleagues first identified mutations in
FBXO7 through linkage mapping followed by gene sequencing in an Iranian
family with AR recessive juvenile-onset parkinsonian-pyramidal syndrome

[134].

1.5.2.2 Genetic Risk Factors in Parkinson’s disease

During recent years several susceptibility genes and numerous risk loci
associated with PD have been identified. In this section, | will discuss how
variability associated with genetic risk for PD was first identified through
candidate gene-based assessments in three genes: SNCA, LRRK2 and GBA.
In the Results section, | will outline how GWA studies extended upon these
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three susceptibility genes and our known understanding of risk to help identify
genetic risk loci for PD. The work associated with the identification of several

novel risk loci will be discussed in the results section.

15221 Alpha-synuclein

As previously noted, families with rare mutations in alpha-synuclein enabled
the novel discovery of a genetic link to PD [31]. Following this hallmark
finding, Kruger and colleagues examined common variability within alpha-
synuclein to establish whether the gene was also associated with risk for the
sporadic form of PD [135]. Kruger’s study initially reported that APOE
genotype, a major risk factor for late-onset Alzheimer’s disease [136],
interacted with a variable dinucleotide repeat within SNCA. The combination
of the APOE4 allele and NACP allele 1 of the promoter polymorphism were
shown to be significantly different between sporadic PD patients and controls.
PD patients presenting this genotype had a 12.8-fold increased relative risk
for developing PD over the course of their lives. Unfortunately, this interaction
between synuclein and APOE genotypes was not replicated; however, risk
for PD within alpha-synuclein was later demonstrated by Maraganore and
colleagues using meta-analysis of existing REP1 genotype data [137].
Maraganore showed an unequivocal association between genetic variability
within the SNCA locus and PD [137]. Since then, association of Parkinson’s
disease with Alpha-synuclein has been overwhelmingly established in GWA

studies, revealing more about the architecture of genetic risk at this locus. The
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Results section of this thesis will examine these GWAS studies in greater

detalil.

1.5.2.2.2 Leucine Rich Repeat Kinase 2

As with SNCA, subsequent to the identification of LRRK2 mutations as a
cause of PD [60, 61] common variability across LRRK2 was examined in
several populations. Within Asian populations, the variant p.G2385R was first
identified as a cause of PD [138]. However, this variant was present in 5% of
the population and later shown to be a risk allele that doubled the risk of PD in
individuals [139]. This finding was replicated extensively in Asian populations
including those from Singapore, Taiwan, China, Korea and Japan [39, 140-
150]. An additional variant described in 2008, p.R1628P was also shown to
be associated with a ~2 fold increase risk for developing PD and has been
replicated in several Asian populations including Thai, Chinese and
Taiwanese populations [141, 151-154]. Several additional variants within
LRRK2 have been assessed and have varying levels of support for

association with risk for PD [152, 155].

1.5.2.2.3 Glucocerebrosidase

Remarkably, thorough clinical observation versus a previously known genetic
association lead to the discovery of PD risk variants within the gene encoding
glucocerebrocidase (GBA); a gene long tied to the autosomal recessive
lysosomal storage disorder, Gaucher’s disease [156]. Tayebi and colleagues

observed that a portion of Gaucher’s disease patients manifested with
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parkinsonism, compelling an early hypothesis that GBA deficiency may lead
to a predisposition to parkinsonism [157, 158]. This idea was sussed out a
year later with convincing evidence. Aharon-Peretz and colleagues were able
to show that a single mutation in GBA increased the risk for PD [159]. Further,
meta-analysis of existing data was later used to show in Ashkenazi Jewish
populations the frequency of two common mutations in GBA (p.L444P and
p.N370S) was 15% in PD and 3% in controls; whereas non-Ashkenazi Jewish
populations demonstrated a 3% frequency of these mutations in cases and
<1% in controls [160]. Overall, these data indicate that a single mutation in
GBA escalates the risk for PD ~5 fold, while remaining inadequate to cause
Gaucher’s disease. These two variants have also been linked to risk for

dementia with Lewy bodies and PD with dementia [161].
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Table 1. Loci involved in monogenic forms of PD and risk loci identified
prior to the advent of genome wide association studies.

*Not yet verified.

Locus | Gene Protein Model

Parkl SNCA a-synuclein Autosomal Dominant

Park2 PARK2 Parkin Autosomal Recessive

Park3* | unknown | unknown Autosomal Dominant

Park4 SNCA a-synuclein Autosomal Dominant

Park5* | UCHLL1 Ubiquitin ¢ terminal Autosomal Dominant
hydrolase

Park6 PINK1 Pten-induced putative kinase | Autosomal Recessive
1

Park7 PARKY7 DJ-1 Autosomal Recessive

Park8 LRRK2 Leucine rich repeat kinase 2 | Autosomal Dominant

Park9 ATP13A2 | lysosomal type 5 ATPase Autosomal Recessive

Park10 | unknown | unknown Risk locus

Park11l* | GIGYF2 | GRB interacting GYF protein | Autosomal Dominant
2

Parkl12 | unknown | unknown X-linked

Park13* | HTRA2 HTRA serine peptidase 2 Autosomal Dominant

Parkl4 | PLA2G6 | Phospholipase A2 Autosomal Recessive

Parkl5 | FBXO7 F-box only protein 7 Autosomal Recessive

Parkl7 | VPS35 Vacuolar protein sorting 35 Autosomal Dominant

Parkl18* | EIF4G1 Eukaryotic translation Autosomal Dominant
initiation factor 4 gamma 1

Park19* | DNAJC16 | DNAJ/HSP40 homolog Autosomal Recessive
subfamily C member 6

- SNCA o-synuclein Risk locus

- LRRK2 Leucine rich repeat kinase 2 | Risk locus

- GBA Glucocerbrocidase Risk locus
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1.6 Understanding Pathobiology in Complex Disease

Using traditional gene cloning to find genetic mutations provides a penetrant,
often coding mutation with which to model disease. The path of biological
investigation in these cases, while difficult, is clear. Creation of model
systems that parallel some aspect of the aberrant gene have traditionally
been used as tools to study the disease mechanism. The same is not true for
GWA studies. In comparison to highly penetrant alleles associated with
monogenic disease, the risk alleles implicated by GWA are associated with
small affect sizes. Although a substantial gap still exists between SNP
associations from GWA studies and understanding how loci contribute to
disease, clues are emerging through the study of gene expression and
epigenetic mechanisms, such as DNA methylation. Given that many GWA loci
do not map to coding changes or protein open reading frames, it is likely that
a great deal of biologically and clinically important genetic variation exerts
pathobiological effect through differential gene expression and/or splicing,
rather than point mutations in protein sequence. In this manner, genetic
variability can have a direct impact on gene expression either quantitatively or
gualitatively. Gene expression QTL mapping has been used in an attempt to
catalog, map and understand these effects; however, an intermediate and
plausible effect of genetic variability could be the influence on transcriptional
potential and transcriptional assignment through varying levels of critical

epigenetic mark, local DNA methylation.
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1.6.1 Epigenetics

In addition to a direct influence on gene expression, genetic variability could
affect gene expression and/or splicing through epigenetic mechanisms.
Epigenetics is the study of heritable changes in gene function caused by
mechanisms other than changes in the underlying DNA sequence. Epigenetic
modifications, are heritable but potentially reversible, may alter throughout life
and can be affected by the environment, such as lifestyle, diet and toxin
exposure [162]. The study of epigenetics is an expanding field of research
where technical breakthroughs have recently allowed the success of large-
scale epigenomic studies. For example the discovery of CpG island shores
was made [163], the human methylome was characterized at single
nucleotide resolution [164], the putative identification of non-CpG methylation
was made [165], and the roles of novel histone variants and modification have
been defined [166-168]. Two major categories of epigenetic modifications
that initiate and sustain epigenetic change are chemical modifications to the
cytosine residues of DNA (DNA methylation) and chemical modifications to
histone proteins associated with DNA (histone modifications). Additional
epigenetic modifications include the effect of small and non-coding RNA
mediated regulation. Functionally, signatures of these epigenetic
modifications can serve as epigenetic indicators representing gene activity

and expression as well as chromatin state [169, 170].

Histone proteins and DNA form a complex of chromatin that comprises
chromosomes. When histone proteins are modified via post-translational

modification, they can influence how chromatin is arranged and can therefore
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determine whether the associated chromosomal DNA will be transcribed.
Histone proteins act as a spool around which DNA tightly winds and is
bundled into the nucleus. This repeating DNA-histone complex consists of
146 base pairs of double-stranded DNA wrapped around eight histone
proteins and is called a nucleosome. Generally, tightly folded or condensed
heterochromatin tends to be inactive, or not expressed, while more open
euchromatin tends to be active, or expressed [169]. Histones can be modified
by the addition of an acetyl or methyl group to the amino acid lysine that is
located in the histone. Acetylation is generally associated with euchromatin,
while deacetylation is more associated with heterochromatin. Conversely,
histone methylation can be a marker for both active and inactive regions of
the chromatin. For example, X-chromosome inactivation in females is
achieved by methylation of a distinct lysine (K9) on a specific histone (H3) that
marks silent DNA and is spread throughout heterochromatin. On the other
hand, methylation of a different lysine (K4) on the same histone (H3) is an

indicator of active genes [169].

Enzymes and different forms of RNA can also transform chromatin. RNA in
the form of antisense transcripts, noncoding RNAs or RNA interference can
turn off gene expression. These may influence gene expression by causing
heterochromatin to form or by activating histone modifications and DNA

methylation [169, 171].

It is important to emphasize that the observed outcome of epigenetic

modifications is the sum of their interactions and feedback mechanisms.
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However, the study of DNA methylation alone has the ability to convey
important epigenetic information by distinguishing regions of transcriptional
silence or transcriptional potential. Because only a subset of potential target
CpG sites are methylated within the genome, the signature of methylated sites
is easily distinguished, making the study of CpG methylation attractive,
especially on a genome-wide level. CpG methylation serves as an area of

focus in this thesis and is discussed in more detail below.

1611 DNA methylation

DNA methylation is an important epigenetic regulator of chromatin structure
and function making it a key regulator of gene expression, splicing, growth,
and differentiation in virtually all tissues, including brain [172]. DNA
methylation is perhaps the most widely studied epigenetic modification and is
the oldest epigenetic mechanism known to correlate with gene expression
[173]. In its most fundamental form, DNA methylation consists of the covalent
addition of a methyl group (CHs3) at the 5-carbon of the cytosine ring within the
context of a CpG dinucleotide, resulting in 5-methylcytosine (5-mC). The
addition of methyl groups is governed at several distinct levels in cells and is
carried out by a family of enzymes called DNA methyltransferases (DNMTS).
The combined action of three DNMTs (DNMT1, DNMT3A, and DNMT3B)
mediate the establishment and maintenance of DNA methylation patterns.
DNMTL1 is responsible for the preservation of established patterns of DNA

methylation, while DNMT3A and DNMT3B facilitate the formation of de novo
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methylation patterns [174]. The added CHs group projects into the major
groove of DNA inhibiting transcription; therefore, 5-mC is associated with the
repression and silencing of gene expression. DNA methylation is central to
genomic imprinting and X chromosome inactivation. In human, 5-mC is

present in roughly 1.5% of genomic DNA [175] .

In general, the CpG sites within the landscape of genomic DNA in mammals
tend to be methylated [176]. The distribution of DNA methylation throughout
the genome shows enrichment at non-coding regions and interspersed
repetitive elements, but not in CpG islands of active genes [177]. CpG islands
are clusters of CpG dinucleotides that have a strong association with gene
promoters and housekeeping genes [178]. CpG islands are largely un-
methylated throughout the genome in normal cells, allowing access to the
transcriptional machinery, facilitating transcription. Thus, while an
unmethylated CpG island in a gene promoter does not necessarily mean
active expression of the associated gene, it does suggest there is
transcription potential. There are approximately 30,000 CpG islands in the
human genome, and recent studies have identified a growing number of

methylated islands in non-pathological somatic tissues [179].

Traditionally, a CpG island is defined as having a G+C content greater than
50%, an observed versus expected ratio for the occurrence of CpGs of more
than 0.6 and a minimum size of 200bp. However, the definition of CpG island
has and continues to evolve. A recent study revised the traditional rules of
CpG island prediction in order to exclude other GC-rich genomic sequences

such as Alu repeats. In comparison to previous definitions, it was shown that
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DNA regions immediately 5’ to genes with a G+C content >55% and an
observed versus expected ratio of CpG dinucleotides of >0.65, both in a track
of 500bp or longer, are more likely to be true CpG islands [180]. Seventy-five
percent of transcription start sites (TSS) and 88% of active promoters are
associated with CpG-rich sequences [181]. Although, research has typically
focused on CpG islands spanning the 5’ end of the regulatory region of
genes, it is now evident that variation in methylation occurs more often in the
‘shores’ of CpG islands versus within the islands themselves. It appears that
around 76% of methylated sites occur a short distance away from CpG
islands, with only six percent found within the islands themselves.
Interestingly, most tissue-specific DNA methylation occurs in these CpG
island shores, up to 2,000 base pairs away from CpG islands [163].
Additionally, a recent study revealed an important role for intergenic DNA
methylation in the regulation of alternative promoters within gene bodies [182].
Intergenic methylation appears to modulate gene expression and splice
variants and CpG islands in introns can serve as promoters for non-coding
RNA (ncRNA) regulatory functions [183]. As research focuses on the most
widely studied epigenetic modification, the complexity and significance of DNA

methylation will continue to be highlighted.

1.6.1.2 DNA Methylation analysis tools

The methylation signature in a genomic DNA sample is complex; it represents
the CpG methylation levels from a compilation of cells that were used to
provide the DNA sample. Within each cell the DNA methylation signature at

an individual site is in one of three states: both parental strands are
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methylated, both parental strands are unmethylated, or one is methylated and
one is unmethylated. Assessing CpG methylation can be done for the pattern
of methylated CpG sites along a sequence for individual DNA molecules or as
an average methylation signal at a single genomic locus across many DNA
molecules. Techniques to comprehensively characterize DNA methylation

patterns are the most highly developed of the epigenetic methods.

Standard molecular biology techniques such as PCR and cloning erase DNA
methylation marks; therefore, DNA must be pretreated to reveal the presence
or absence of the methyl group at cytosine residues. There are three different
initial treatments that can be used: endonuclease digestion, affinity
enrichment, and bisulfite conversion. Techniques designed to pretreat DNA
for methylation analysis were initially confined to localized regions of the
genome; however, many methods now enable DNA methylation analysis on a
genome-wide scale, including the bisulfite treatment of DNA. Bisulfite
conversion is the most conventional approach for pretreatment and is
considered the gold standard for determining DNA methylation status because
it offers single CpG resolution [184]. Bisulfite treatment converts unmethylated
cytosines to uracil while leaving methylated cytosines unconverted [185-187].

DNA can then be amplified or hybridized to arrays [188, 189].

One microgram of bisulfite-converted DNA can now be used to ascertain
guantitative measurements of DNA methylation for up to 450,000 CpG
dinucleotides on genome-wide methylation microarrays, such as the Illlumina

Infinium Human Methylation 450 array. The Infinium HumanMethylation450
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Assay uses two different bead types to detect CpG methylation. One bead
type matches the unmethylated CpG site, and the other type matches the
methylated site. The level of methylation for the interrogated locus is
determined by calculating the ratio of the fluorescent signals from the
methylated versus unmethylated sites. The field of epigenomics has
flourished with the use of microarray hybridization techniques adopted from
gene expression and genome-based assays to profile whole-genome DNA

methylation patterns [190-193].
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Figure 5. Schematic of the Infinium DNA methylation assay.

Input genomic DNA is bisulfite converted, which leads to deamination of unmethylated
cytosine to produce uracil (the methylated cytosine is shown in red). Following
conversion the DNA is amplified and hybridized to lllumina beadarrays. There are two
classes of bead types, those against the methylated site (M), and those against the
unmethylated site (U). For the M type the single base extension will occur where a
cytosine is intact, but not where a thymine (created from a uracil during amplification)
exists. The converse occurs for the U type bead.
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Bisulfite treatment of DNA in conjunction with next-generation sequencing can
be used to decode the methylation status of the entire genome [165].
However, due to the high costs currently associated with large-scale
sequencing, other methods concentrating on more limited sequencing of
genomic regions have been developed, such as reduced representation
(RRBS) bisulfite sequencing [194]. RRBS is an approach for large-scale high-
resolution DNA methylation analysis, where only a subset of the genome is
analyzed. DNA is digested with methylation insensitive restriction enzyme
(Mspl) to remove much of the unmethylated regions of the genome,
subsequently only DNA fragments of a specified length are bisulfite

sequenced, consisting mostly of methylated DNA.

Although bisulfite treatment of DNA has long been considered a superior
technique for measuring DNA methylation status, it does have disadvantages.
Bisulfite conversion typically calls for larger quantities of sample DNA, which
can degrade following chemical treatment, it can be limited by incomplete
conversion of all unmethylated cytosines to uracils, and bisulfite conversion
can not discriminate between methylcytosine and hydroxyl methylcytosine.
Alternative assessments of methylation status are based on enrichment of
methylated DNA with immunoprecipitation (MeDIP-seq) or affinity purification
(MethylCap-seq) and subsequent analysis of enriched sequences using

microarrays or sequencing [195].

The HELP assay (Hpall fragment enrichment by ligation- mediated PCR)
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pretreats DNA with methylation sensitive and insensitive restriction
endonuclease digestion. Subsequent comparative analysis of the resulting
fragments using microarray or sequencing is used for the determination of the

methylation state of restriction sites [196].

Several methods have been developed to map DNA methylation on a
genome-wide scale. These methods, while diverse in technique, have been

shown to produce concordant results [197].

1.6.2 Epigenetics and complex disease

Until recently, the majority of epigenetic research focused on the study of
cancer and many advances have been made in defining the disease
pathogenesis. Not only has global DNA hypomethylation consistently been
observed in many cancers but, research shows that all three types of normal
epigenetic modifications of DNA, including chromatin modifications, DNA
methylation, and genomic imprinting are altered in cancer cells [198, 199]. As
the field of epigenetics research has expanded over the last few years,
epigenetic alterations have been found to be linked to disorders such as
metabolic disorders [200] cardiovascular diseases [201-203] and myopathies

[204].

There is also evidence suggesting a relationship between epigenetic
alterations and neurological disorders. For example, hyper-methylation of the
FMR1 promoter has been described in Fragile X syndrome [205] and hyper-
methylation of gene promoters FXN in Friedreich’s ataxia, SMN2 in spinal
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muscular atrophy, and neprilysin in Alzheimer’s disease (AD) [206].
Conversely, the overexpression of tumor necrosis factor alpha in the
substantia nigra of Parkinson’s disease (PD) patients is associated with
promoter hypo-methylation, inducing apoptosis in neuronal cells [207].
Neurodegenerative disorders such as AD and PD are believed to have a
multi-factorial origin arising from a combination of risk factors and
susceptibility genes, where age, diet, lifestyle and level of education are all
correlated with the onset and severity of the sporadic forms [208, 209]. The
mode(s) in which environmental factors and susceptibility genes interact to
cause disease are not fully understood; however, epigenetic mechanisms

may provide a link between genes and environment.

1.6.3 Epigenetics and Neurological Disease

Our understanding of the roles played by different epigenetic elements in
distinct neurodegenerative diseases is still progressing. It remains unclear
whether epigenetic dysregulation is involved in pathogeneisis generally or
whether epigenetic dysregulation may characterize a common pathway for

neurodegeneration.

The analysis of discordant twins in 2005 by Fraga and colleagues provided

important results for the field of epigenetics. Fraga et al was able to show that
twins sharing common genotype displayed divergent penetrance of numerous
diseases, even neurological disorders [210]. Neurodegenerative diseases are

one category of neurological disorder. DNA methylation has now been linked
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to at least four major neurodegenerative diseases, Alzheimer’s disease (AD)
[211-213], Huntington’s disease [214], amyotrophic lateral sclerosis (ALS)

[215] and Parkinson’s disease [216, 217].

1.6.3.1 Parkinson’s Disease and Epigenetics

In terms of epigenetics, PD has been less studied than other
neurodegenerative disorders such as AD. However, epigenetic links to PD are
developing. Genes associated with Parkinson’s disease have been shown to
be regulated by epigenetic mechanisms and to also regulate/modulate the
function of certain epigenetic elements. For example, in brain regions such as
substantia nigra, putamen and cortex of PD patients, alpha synuclein (SNCA)
showed decreased levels of DNA methylation compared to controls [218].
This finding suggests a relationship between hypomethylation of CpG sites in
the promoter region of SNCA and increased expression of SNCA. If this study
holds true, the relationship between DNA methylation and SNCA is a very
important one considering alpha-synuclein is the primary structural
component of Lewy bodies; thus contributing greatly to the pathogenesis of
PD. It is interesting to note, that Matsumoto and colleagues found methylation
levels to be significantly reduced in substantia nigra tissue from PD patients
versus healthy controls [219]. They did not find a significant difference in
methylation levels between PD and controls in two additional brain regions:

the putamen and anterior cingulate [219].
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1.6.4 DNA Methylation as a Quantitative Trait

The expression profile of a cell and its response to environmental signals
effectively defines its overall phenotype. Using gene expression as a
guantitative trait has successfully identified genetic modifiers of gene
expression. However, assaying DNA methylation as an intermediary between
genetic variation and gene expression patterns provides a new, and unlike
gene expression, a stable measure of the cellular phenotype. Quantitative
measures of DNA methylation provide a chromatin signature of cellular
transcriptional potential that is preserved and can be regenerated during cell
division. DNA methylation has been shown to influence gene expression in an
age-dependent and tissue-dependent manner [220, 221], characteristics that
are potentially important for the study of neurodegenerative disease, where
distinct regions of brain tissue and/or cell types are compromised in an age-
dependent manner. Therefore, the study of quantitative trait loci that are
influencing epigenetic regulators of gene expression such as the covalent
modifications of DNA are highly attractive as a means to further explore the
molecular pathology of neurodegenerative disease beyond RNA

guantification.

As my focus is on the study of age-related neurodegenerative disease, one
critical goal is to determine the immediate biological consequences of
disease-associated common genetic variation in the human brain. As
discussed above, two functional, quantitative variables that can efficiently be
investigated from a genome-wide perspective are mMRNA expression and DNA

methylation. Combining these data with quantitative trait locus (QTL) analysis
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allows a systematic, genome-wide, relatively hypothesis free investigation into

the effect of common genetic variability on important functional variables.

1.6.5 DNA Methylation and Aging

Aging is the primary risk factor for the majority of neurodegenerative diseases.
AD affects 11% of people age 65 or older and 32% of people over age 85
[222]; while PD affects 1-2% of people 60 years of age and over, and
increases to 3-5% in people 85 years and older [223]. The fact that
neurodegenerative diseases are frequently late-onset implies there is a
biological characteristic that changes as a person ages. One unvarying factor
for each disease is that neurons steadily lose function as the disease
progresses with age. The biochemistry of aging is complex with significant
alterations occurring in proteins, lipids and nucleic acids. The process is
thought to encompass many dynamic, interacting factors including oxidative
DNA damage, nuclear and mitochondrial genome mutations, depletion of
stem cells, and shortening of telomeres [224]. In addition to these diverse
interactions, there is a strong link between DNA methylation and human
aging. Fraga and colleagues describe one aspect of this link in a simple but
well-designed study analyzing global and locus-specific differences in the
DNA methylation patterns of monozygotic twins. The authors found that
younger twins had indistinguishable methylomes, whereas older twins
demonstrated significantly divergent methylomes, revealing an epigenetic drift
with aging [210]. Differential DNA methylation has been shown to be age-

related [225, 226] and methylation of DNA sequences within or near
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regulatory elements has been shown to suppress gene expression through
effects on DNA binding proteins and chromatin structure [227]. There is global
reduction of DNA methylation across the genome with aging in union with
hypermethylation of distinct loci, often promoter-associated CpG islands [228,

229].

Indeed, both increases and decreases in DNA methylation are reported to
occur with aging contingent upon the tissue and the gene [227]. Bocklandt
and colleagues assessed genome-wide methylation levels in both
monozygotic twins and non-twin samples and reported 88 CpG sites within or
near 80 different genes whose methylation levels substantially changed with
age. Methylation of CpG sites within three genes: TOM1L1, NPTX2 and
EDARADD were particularly associated with age to the point where the
authors were able to build a model from CpG sites within these loci to predict
the age of an individual within an error of 5.2 years [230]. These three genes,

highly correlated with age, are also implicated in human disease [231].

TOML1L1 expression is reduced in esophageal squamous cell carcinoma [232]
and EDARADD mutations slow or decrease wound healing [233].
Interestingly, the third gene, NPTX2 is reported to be upregulated in both
pancreatic cancer [234] and sporadic PD [235]. Moran and colleagues report
that NPTX2 is a novel component of Lewy bodies (a pathological hallmark of
PD) and is found in close proximity to alpha-synuclein aggregates in the
cerebral cortex and substantia nigra (SN) and is profoundly (> 800%)
upregulated in the parkinsonian SN [235]. As NPTX2 has an established role

in synaptic plasticity as well as dopaminergic nerve cell death [236], Moran
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and colleagues hypothesize that NPTX2 is involved in the disease

pathogenesis underlying PD.

DNA methylation levels of NPTX2 are used to predict the age of an individual,
while it's over expression is tied to neuronal death and PD pathology. Clearly
evidence is mounting that the cellular mechanisms associated with aging and
those that are related to neuronal degeneration are intertwined. It is possible
that aberrant patterns of DNA methylation accumulated during aging promotes
or exacerbates pathobiological consequences, perhaps explaining why aged
organisms generally have a higher risk for disease. Teschendorff and
colleagues also show a degree of overlap between genes differentially

methylated during healthy aging and during disease development [229].

Studies illustrate that aberrant methylation can both contribute to disease and
also act as a by-product of disease. For example, oxidative stress can
modulate the regulation of gene expression by triggering DNA lesions; thus,
stimulating genomic hypomethylation by preventing DNMTs from binding to
cytosine [237]. This example of aberrant methylation (hypomethylation) as a
by-product of disease leads to the prospect that age-related hypomethylation
could be the result of free-radical induced DNA damage. Whether or not
aberrant methylation and its association with aging are causal for age-related
neurodegenerative disease, a by-product of disease or both is not clear.
Therefore, it is an important undertaking to understand patterns of DNA
methylation in the normal aging brain as a foundation for gaining biological
insight into age-related neurodegenerative diseases such as Parkinson’s and

Alzheimer’s diseases. Because this goal is central to my thesis, the last
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analysis presented here aims to identify and map the landscape of age-
related DNA methylation changes in the context of normal human brain tissue.
Ultimately, this type of analysis should be incorporated into models aimed at

understanding the genetic, and molecular basis of disease.
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2  Genetic risk for Parkinson’s disease: meta-
analysis of genome wide association studies and

replication of results

STATEMENT OF CONTRIBUTIONS TO THIS RESEARCH:

In this section, | describe a series of experiments that were performed to
identify and replicate novel risk loci for Parkinson’s disease. These
experiments encompass several scientific disciplines and are the collective
effort of several investigators. | was involved in the inception, planning and
design of the experiments and analyses. | performed experimental work and
guality control for genome-wide SNP datasets for both the meta-analysis and
replication stage. | am a co-author on the manuscript and member of the

International Parkinson’s Disease Genomics Consortium (IPDGC).
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2.1 Introduction

Efforts to understand the genetic basis of PD have resulted in the
identification of several genes that contain disease causing mutations, and a
number of risk loci [31, 33, 61, 106, 238]. As with other complex late-onset
neurodegenerative diseases, this genetic knowledge has served as the
foundation of investigation into the molecular pathogenesis in PD. The
creation of cell and animal based models has predominantly used genetic
manipulation, focusing on SNCA and LRRK2. In this context, the emphasis
has been placed on identifying a unifying pathway for disease gene related
dysfunction with the aim of pinpointing a nexus for therapeutic intervention for

all forms of PD.

Recent work in hereditary spastic paraplegia (HSP) has illustrated that as the
number of known genetic causes of disease increases, this information can
be synthesized to better understand the pathobiology of the disease,
particularly using functional network analysis. In turn, functional networks can
then be used to gain information regarding the genetic basis of disease by
nominating candidate genes [239, 240]. For such methods to work, a large
number of disease-linked genes are required, and thus, a key goal in PD

research is to understand more about the genetic basis of this disease.

In general, GWA studies have been applied as a means of identifying risk loci
since the first successful published GWA study in 2005, identifying CFH
polymorphisms as a significant risk factor for age related macular

degeneration [241]. At the time of performing the experiments outlined in this
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chapter there were a number of GWA studies completed in PD [31, 242-249].
These early efforts in PD failed to convincingly identify risk loci as these
studies were, like many other studies at the time, of low power, only
examining ~300 cases [244, 250]. However, in 2009 two collaborative studies
examining Caucasian and Asian subjects were the first to reveal genome wide
significant risk alleles for PD [247, 248]. The Caucasian study identified risk
loci at SNCA and MAPT, and provided supporting evidence for association at
LRRK2 and PARK16 [248]. The study in Asian subjects revealed association
at SNCA, LRRK2, PARK16, and BST1 [247]. Both studies genotyped more
than 1000 cases in the original stage | (genome-wide) analysis, which
became widely characteristic of the sample size required to begin to see
genome-wide significant effects using GWA. Over the next several years
these loci were replicated, and two additional risk loci were nominated at HLA-
DRB5 and GAK. As with GWA detected loci in other complex diseases, the
effect sizes for each of these loci are individually modest [31, 242-249]. Unitil
this point, studies were relying on the use of directly typed variants because

standard methods for imputation were not yet available.

GWA SNP data is powerful in that data from varied sample series and data
generated at different sites can be combined. Thus, the identification of
additional risk loci can be facilitated by the analysis of existing genome wide
data sets. Here, a meta-analysis of five existing PD GWAS datasets from the
U.S. and Europe was pursued by the formation of a collaborative group, the

International Parkinson’s Disease Genomics Consortium (IPDGC). Discovery
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phase results were replicated in a large, independent samples series using a

custom array that included the most significant variants from stage I.
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2.2 Materials and Methods
The study consisted of two stages: (1) a meta-analysis of five independent

GWA studies (2) a replication stage.

2.2.1 Discovery (stage )

22.1.1 Samples

The IPDGC was formed with the express goal of discovering new loci linked to
PD through meta-analysis of each consortium member’s independent GWA
study. The discovery phase of this project included five datasets. Four of
these were from the IPDGC including data from U.S. National Institute on
Aging, UK, Germany, and France. A fifth dataset was downloaded from the
database of genotypes and phenotypes (dbGAP;
http://www.ncbi.nlm.nih.gov/gap). This dataset represented the CIDR:
Genome Wide Association Study in Familial Parkinson Disease (dbGaP Study

Accession: phs000126.v1.p1; CIDR study), a US family based GWA study.

The NIA data set was genotyped using Illlumina 550Kv1 and 550Kv3 Arrays
as described previously [248]. The CIDR study, accessed via doGAP was
initially genotyped at the Center for Inherited Disease Research at Johns
Hopkins University (CIDR) using Illumina 370K arrays [246]. The German
study comprised PD samples collected from the University of Munich and the
University of Tuebingen in addition to controls from the KORA and Popgen
studies [251, 252]. These samples were genotyped using lllumina 550Kv1

arrays as previously described [248]. The United Kingdom samples were
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derived from movement disorder centers within the UK. Controls were
genotyped by the Wellcome Trust Case Control Consortium (1958 Birth
Cohort, and blood donors). Cases were genotyped with the lllumina
Human660-Quad BeadChip and controls were genotyped with the lllumina
1.2M Duo BeadChip as previously described [242]. Samples from the French
group were ascertained from across 15 university hospitals in France, the
controls were derived from the French Three City Cohort (http://www.three-

city-study.com). Summaries of these datasets are shown in Table 2.

2212 Quality Control Procedures

The stage | datasets each went through a series of quality control steps, and
these were performed separately for each cohort at the respective center.
Initial quality control centered on the exclusion of poor performing SNPs and
samples; following clustering within BeadStudio (lllumina, CA), data were
exported in a standard Final Report format and imported into the PLINK
toolset (http://pngu.mgh.harvard.edu/~purcell/plink/; version 1.07). First, SNPs
that failed in more than 5% of samples were removed; second any sample
with a call rate of less than 95% was removed. Any variant that was out of
Hardy-Weinberg equilibrium based on a p value threshold of <1x107 in
controls and <1x10 in cases was removed. Next, the missingness rate for
each SNP was compared between cases and controls, any variant with
skewed missingness based on p<1x10™* was removed (based on ? test). Self
reported gender was then compared to genotype gender, which was predicted
based on heterogeneity of SNPs from the non-PAR of the X chromosome.

Samples discordant for gender were removed. The next quality control steps
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centered on removing samples based on excessive population stratification
and cryptic relatedness, followed by the calculation of population substructure
to be used as a covariate in the analysis. First, for each cohort individually the
samples were merged with public genotype data from the HapMap phase I
for samples of Caucasian, Japanese, Chinese, and African ancestry (CEU,
JPT, CHB, and YRI respectively; http://hapmap.ncbi.nlm.nih.gov). For the
overlapping SNPs between the cohort and the HapMap samples, LD pruning
was performed to remove any SNP with an r? of >0.2 with any other SNP.
Samples were then clustered based on multidimensional scaling (MDS;
performed using the R package; http://www.r-project.org). We removed any
sample that was > 3 standard deviations from the mean component vector
estimates for the first two components from this MDS for the CEU group. The
remaining samples were then tested for cryptic relatedness, for any pair of
samples that shared more than 15% of alleles, a single member of the pair
was removed. Again, this was performed individually for each cohort, with the
exception of the NIA and CIDR cohorts, which were both of North American
origin, and for which samples had been drawn in part from the NINDS
Neurogenetics Repository at Coriell (https://catalog.coriell.org/1/NINDS/).
These two groups were combined for this analysis, and this resulted in the
removal of 42 duplicates between the cohorts. At this point components 1 and
2 were calculated for each case-control cohort, with the exception of the UK
dataset, and these measures were recorded for use as covariates in the study

level association analyses.
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Following these quality control steps the total number of meta-analysis

(Discovery stage) samples was 5,333 PD cases and 12,019 controls Table 2.

Table 2: Characteristics of the stage | cohorts in the meta-analysis of PD
GWA studies

Cases Controls Imputed
SNPs
Sample | Mean | Percent | Sample | Mean | Percent
Size AAO Female Size AAE Female
(SD) (SD)
USA-NIA 971 55.9 40.5 3034 62 52.8 7590773
(15.1) (15.6)
UK 1705 65.8 433 5200 NA 49.5 7678643
(10.8)
Germany 742 56 39.8 944 NA 48 7589890
(11.6)
France 1039 48.9 41.2 1984 73.7 33 7340040
(12.8) (5.4)
USA- 876 61.5 40.4 857 NA 60.2 7482040
dbGAP (9.2)
5333 12019
22.13 Imputation

Following sample collection and quality control of collaborator datasets,
genotypes imputed for all subjects in a two-stage process in order to flag and
exclude imputed SNPs of poor quality. Genotypes for all subjects of
European ancestry were imputed using haplotypes derived from low coverage
sequencing on 112 European ancestry samples from the 1,000 Genomes
Project (University of Michigan Center for Statistical Genetics. 1000G 2009-08
download) [253]. The Markov Chain based Haplotyper (MACH; version

1.0.16) was used
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(http://www.sph.umich.edu/csh/abescasis/MACH/download/1000G-Sanger-
0908.html). The first stage of this analysis centered on generating error and
crossover maps to be used as parameter estimates for imputation. This was
performed using a subset of 200 samples from each of the 5 studies, where
for each study the 200 samples were randomly selected and the analysis
performed 100 times. The estimates derived from these 100 iterations were
then used to generate maximum likelihood estimates of allele numbers for
each variant for the second round of imputation. In order to remove low quality
imputed variants, any variant with an R? estimate of less than 0.3 as indicated
by MACH was excluded from further analysis. Notably, this method generates
non-integer allele counts for each variant for each sample; thus in an
individual, each imputed variant is not scored as a minor homozygote,
heterozygote, or major homozygote, but rather is represented by a score for
minor allele load. While this approach fails to provide categorical genotypes it
does incorporate the uncertainty inherent within imputation [10]. This provided
a total of between 7,340,040 to 7,678,643 post-QC imputed variants for each

the five studies.

22.1.4 Meta Analysis

A formal meta-analysis was performed, versus a grouped analysis because,
the samples not only were sent from diverse sites, but also because different
samples series were genotyped with different array types. A fixed-effects
inverse variance weighted meta-analyses was executed using METAL
(http://www.sph.umich.edu/csg/abecasis/metal). The standard errors of the

beta coefficients were scaled by the square root of study-specific genomic
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inflation factor estimates prior to combining the summary statistics across
studies in an attempt to control for genomic inflation. A secondary random-
effects meta-analyses was performed for each SNP using R, not to generate
primary outcome statistics but rather to estimate the possible influence of
study heterogeneity on results by generating I°. Tests of effect heterogeneity

(Cochran’s Q) were also performed using METAL.

2.2.2 Replication (Stage II)

22.2.1 Existing Data

In silico replication data was provided by two consortium members
representing case-control cohorts with GWAS data provided after the initial
discovery phase. These data were available in Dutch and Icelandic cohorts

[249].

22.2.1.1 Dutch in silico Replication

Genome wide genotyping data comprising 587,388 SNPs typed in 2,082
population control participants from the Rotterdam study Il was used. The
Rotterdam study is a population based cohort study started in 1990 with focus
on the prevalence and determinants of neurologic, ophthalmologic, locomotor
and cardiovascular disease prevalence and determinants in the elderly.

Subject are 45 years of age or older (http://www.epib.nl/research/ergo.htm).

This dataset had been through similar quality control procedures to those
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described above, with some minor differences (2.2.1.2). As above,
discrepancies between reported and assayed gender were detected, and
samples were removed. SNP failure cutoff was set at 5% and individual
sample failure rate for genotyping was set at 2.5%. Heterozygosity outliers
were excluded from the dataset. Population outliers were removed by
clustering with 210 HapMap samples and using a threshold of >4 standard
deviations outside of the mean for principle components 1 through 4. As
before, sample duplicates, and subjects who were cryptically related were

removed by calculating identity by descent distances.

Data for 824 Dutch PD cases genotyped at 559,589 variants was available.

These data had also been filtered through a similar quality control procedure.

2.2.2.2 Samples
Three replication cohorts were available for replication genotyping. The
replication stage consisted of independent, Dutch, French, German, UK and

US cohorts genotyped on the lllumina Immunochip.

The US cohort consisted of 2,807 PD cases and 2,215 controls after quality
control, with samples contributed from collaborators at the Parkinson's, Genes
and Environment (PAGE) study, the PostCept Study, from investigators at
Washington University of Saint Louis (WUSTL), and samples from the NINDS

Neurogenetics Repository at Coriell.

The UK cohort consisted of 1,271 cases contributed by the University College
London, Cardiff University and 1,864 Wellcome Trust population control

samples. Dutch case-control samples that were assayed on the ImmunoChip,
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included 304 cases and 402 controls. An additional 1,153 PD cases and 712
controls were included from collaborators at the Universitat Tubingen. 267
French cases and 363 French controls were provided to complete the
replication series. Following quality-control procedures, the independent

replication sample set included 7,053 PD cases and 9,007 controls.

Assay Design

The ImmunoChip was designed as a cost effective solution for replication of
GWA loci across a variety of traits [254]. The ImmunoChip is based on the
lllumina Infinium genotyping chip, and contains 196,524 polymorphisms (718
small insertion deletions, 195,806 SNPs). Wellcome Trust Case-Control
Consortium (WTCCC) created this array as a cost and labor effective solution
to replicate and fine map GWA identified loci across a large number of traits;
primarily related to major autoimmune and inflammatory diseases. The UK
portion of the GWA in PD was part of the WTCCC,; therefore, a segment of the
ImmunoChip was used to type PD related variants. A total of 1920 PD related
SNPs were placed on the ImmunoChip by the IPDGC for analysis, with the
remainder of variants available for use in quality control procedures. Of these
1920 SNPs, 1200 were genotyped for the purpose of replication of signals

identified within the meta-analysis.

2.2.2.3 Replication Genotyping
Genotyping was performed at the NIH per manufacturers protocol [255].
Briefly, A total of 200-400ng of genomic DNA for each sample was suspended

in TE solution (10mM Tris, 1ImM EDTA) and normalized to 50ng/ul. The
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samples were then denatured with NaOH and neutralized before amplification.
The denatured DNA was placed at 37 degrees Celsius for 20-24 hours to
isothermally amplify the amount of DNA by several thousand-fold. Following
amplification, the DNA was enzymatically fragmented to an endpoint at 37°C
for 1 hour. An isopropanol precipitation was then performed and the DNA
collected by centrifugation at 4°C, followed by resuspension in hybridization
buffer (RA1, lllumina). The re-suspended DNA was then hybridized to the
Immuno BeadChips by incubation overnight at 48°C where the amplified and
fragmented DNA samples annealed to locus-specific 50-mers. The following
day the unhybridized and non-specifically hybridized DNA was washed off the
BeadChips using RA1 solution. The BeadChips were then ‘X-stained’ using a
Tecan Freedom EVO robot (Tecan, Switzerland). Here, single-base extention
of the oligos on the BeadChip occurs using the hybridized DNA as a template,
incorporating detectable labels on the BeadChip and enabling the genotype
call for each sample to be read on the iScan (lllumina, San Diego). After X-
staining and before chips are placed on the iScan, the BeadChips were
washed in PB1 solution (lllumina) and coated with XC3 polymer (lllumina)
then vacuum-dried for 1 hour. The BeadChips were read on the iScan
(Illumina, Inc San Diego), which uses a laser to excite the fluorophore of the
single-base extension on the beads, creating a high-resolution image of the

emitted light.

22231 Quality Control of ImmunoChip Genotyping
The Genotyping Analysis Module within Genome Studio version 1.9.4 was

used to analyze data read by the iScan (illumina). The threshold call rate for
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sample inclusion was 97%. All subjects with call rates greater than 97% were
included in the analysis. Quality control of sample handling was determined
by comparing the subjects’ reported gender with the genotypic gender
determined using Genome Studio’s ‘estimate gender’ algorithm. ‘Estimate
gender’ determines genotypic gender based on heterozygosity across the X
chromosome. Samples with gender discrepancies were excluded from the
analyses. Prior to our secondary round of quality control and the generation of
covariates to adjust for population sub-structure, the regions of interest
outside of the 11 genome-wide significant loci (+/-2MB) and all A/T and G/C

SNPs were removed.

2.2.2.4 Statistical Analyses

For the replication stage, SNPs that passed genome-wide significance (fixed
effects p<5x10®) and quality control on the Immunochip array (lllumina, San
Diego, CA USA) were included. SNPs with inconsistent results across the

datasets (1*>75%) were removed [256, 257].

Due to technical constraints of the Immnunochip assay and the likelihood that
not all SNPs would genotype successfully, several proxy SNPs were included
in the design of the chip to capture the association signal at each locus. After
quality control of SNPs generated from Immunochip experiments, either the
originally nominated SNP from each locus, or the best proxy SNP was
selected, contingent upon genotyping at the proxy SNP surpassing quality

control threshold. All proxy SNPs were in strong LD with main effects.
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Specificity of genotyping was confirmed by visual inspection of clusters within

Genome Studio Software (Figure 9, Figure 10).

2.3 Results

2.3.1 Discovery (stage |I) Meta Analysis

Based on an assessment of the fixed effects p values we identified 12 loci
that exceeded the threshold for genome-wide significance in the discovery
phase (p<5x10®) (Figure 6). A single locus on chromosome 17 showed an
extremely high level of heterogeneity across studies, possibly indicative of an
experimental artifact due to different genotyping platforms, distinctly sourced
cases and controls, or batch effects in the execution of the discovery
genotyping. This variant was removed from further analysis. The remaining 11
genome-wide significant loci included six previously identified PD GWA loci:
SNCA, MAPT, BST1, LRRK2, GAK and HLA-DRBS (Table 3) [245, 247, 248].
In addition, five putative novel loci were identified at; GBA/SYT11,
ACMSD/TMEM163, STK39, MCCC1, and CCDC62. As indicated by the
heterogeneity of effect scores all loci showed consistent effects across
studies, with the exception of previously identified BST1 locus (I = 74.7; p
=0.0041); however, the p value threshold did not meet our criteria for

exclusion. BST1 had been previously identified using genotypes not included
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in the current meta-analysis; thus, we chose to leave this association in our

study for replication.

Locus plots for each of the associated loci are shown in the appendix
(Supplementary Figure 1 to Supplementary Figure 11, pages 214 though 224

inclusive).
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Figure 6: Manhattan plot generated from stage | (discovery) of a meta-analysis of PD GWA studies.

Shown in orange are SNPs with a p value of <1x10® and >5x10°® (suggestive loci), and in red are SNPs with a p value of
<5x107% (genome wide significant loci). Each of the genome wide significant loci is labeled with the nearest or most



Table 3: Genome wide significant results for discovery phase genotyping, and the results of replication of these loci.

Locus information Discovery Phase Results Replication Phase
Results

Most o . Fixed Random Fixed
Significant SNP | C Position Ikl OR | SE Effects Effects & Het P- OR | SE Effects
in Region (bp) Gene P-value P-value G P-value
chr1:154105678 | 1 | 154105678 | SYT11 1.67 | 0.09 | 1.02E-08 | 5.70E-09 | O 0.77 1.44 | 0.08 | 1.18E-06
rs6710823 2 | 135308851 | AMCSD 1.38 | 0.05 | 1.35E-09 | 1.61E-05 | 48.26 | 0.11 1.07 | 0.02 | 0.003161
rs2102808 2 168825271 | STK39 1.28 | 0.04 | 3.31E-11 | 1.54E-11 | O 0.72 1.12 | 0.04 | 0.001639
rs11711441 3 | 184303969 | MCCC1/LAMP3 | 0.82 | 0.04 | 2.10E-08 | 1.17E-08 | O 0.97 0.87 | 0.03 | 6.92E-05
chr4:911311 4 1911311 GAK 1.21 | 0.03 | 1.80E-12 | 2.96E-07 | 51.58 | 0.09 1.14 | 0.02 | 7.46E-08
rs11724635 4 | 15346199 BST1 0.87 | 0.03 | 1.85E-08 | 0.001407 | 74.77 | 4.1E-03 | 0.87 | 0.02 | 2.43E-09
rs356219 4 | 90856624 SNCA 1.30 | 0.03 | 7.90E-26 | 1.11E-26 | O 0.58 1.27 | 0.02 | 4.23E-23
chr6:32588205 6 | 32588205 HLA-DR 0.70 | 0.06 | 2.58E-08 | 1.44E-08 | O 0.88 0.80 | 0.04 | 9.30E-08
rs1491942 12 | 38907075 LRRK2 1.19 | 0.03 | 3.23E-08 | 5.24E-06 | 35.52 | 0.20 1.30 | 0.05 | 1.06E-08
rs12817488 12 | 121862247 | CCDC62/HIP1R | 1.16 | 0.03 | 4.43E-09 | 2.99E-06 | 34.97 | 0.20 1.13 | 0.03 | 9.06E-07
rs2942168 17 | 41070633 MAPT 0.76 | 0.03 | 1.62E-18 | 3.91E-19 | O 0.74 0.80 | 0.03 | 1.37E-13

C — chromosome; OR — Odds ratio per dose of the minor allele; SE — standard error of the odds ratio; Het P-value — heterogeneity p

value
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Figure 7: Forest plots showing discovery phase results from a meta-analysis of GWA
studies.

These plots illustrate the lack of heterogeneity of effect across studies, even for BST1,
suggesting the loci are genuine, and are generalizable across populations.
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Figure 8: Forest plots showing discovery phase results from a meta-analysis of GWA

studies

These plots illustrate the lack of heterogeneity of effect across studies, suggesting the
loci are genuine, and are generalizable across populations
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2.3.2 Replication of Loci

The most associated variants at the eleven identified genome wide significant
loci were examined using the ImmunoChip data in an independent set of
7,053 cases and 9,007 cases. Cluster plots were visually inspected within
BeadStudio (Illumina, Inc). This revealed that 2 of these SNPs had failed to
perform well. For these variants the proxy markers that had been included on

ImmunoChip at these loci were selected (Figure 9 and Figure 10).

Analysis of the resulting genotypes at these loci confirmed the discovery
phase signals based on a Bonferroni corrected replication p value cutoff of <
0.0045 (0.05 divided by 11 independent tests) (Table 3). For each of these
loci the direction of effect was consistent with that seen in the discovery phase
and displayed low heterogeneity across studies (Figure 11 and Figure 12).
Consistent with previous GWA studies in complex late-onset
neurodegenerative diseases, the effect sizes detected were modest, ranging

from 0.8 to 0.87 and from 1.07 to 1.44.
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Figure 9: Cluster plots from SNPs significantly associated with PD, typed on
ImmunoChip during replication phase
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Figure 10: Cluster plots from SNPs significantly associated with PD, typed on

ImmunoChip during replication phase
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Figure 11: Forest plots of replication phase SNPs.

These show minimal heterogeneity between studies and consistent effect
direction with the discovery phase signals.
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Figure 12: Forest plots of replication phase SNPs.

These plots illustrate consistent effects across each series and demonstrate a
direction of effect consistent with that observed within the discovery series.
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2.4 Discussion

This chapter describes the completion of a large International meta-analysis
and replication of existing GWA data for PD. At the time of publication this
was the largest GWA study in PD and confirmed 6 previously identified loci,
and identified and subsequently confirmed an additional 5 novel loci. Of the
six previously identified loci only SNCA, MAPT, and HLA-DRB5 had met strict
criteria for genome wide association. These loci were confirmed in this study,
both in terms of significance and direction of effect. Notably, while BST1,
GAK, and LRRK2 were each previously implicated by association, these loci
had formerly failed to meet the criteria for genome wide significance. Thus,
this study is the first to provide unequivocal evidence for association at these
loci [242, 246-249, 258]. This study also linked 5 novel loci conferring risk for

PD: ACMSD, STK39, HIP1R, MCCC1, and SYT11.

Two of the identified loci, at LRRK2 and SYT11 are close to known disease
causing mutations or moderate risk factors. The most significant risk SNP in
SYT11 lies approximately 500kb from GBA, which (as discussed in the
introduction) is known to contain mutations that substantially increase risk for
PD [259]. The phenomenon of synthetic association has been suggested to
exist at some GWA signals [260]. Synthetic association describes a
hypothetical scenario where rare disease related variants occur by chance
more often on the background of a common allele, which may be quite distant
from the rare variant. This creates a potential for misattribution of association
to common variants, and mislocalization of the association signal. To

investigate this possibility the GWA signals at SYT11 and LRRK2 were tested
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in the context of known mutation status at GBA and LRRK2 respectively (data
not shown). These analyses suggested that the GWA signals were

independent of these mutations.

It is important to understand that GWA studies identify loci rather than genes,
and that while genes were nominated for each locus based on proximity or
function, these genes may not be the functionally relevant effector of
association. With this caveat in mind it is useful to briefly discuss the

nominated genes at these loci in the context of their potential role in disease.

SYTL11 encodes synaptotagmin Xl a protein important in the maintenance of
synaptic function. SYT11 has been investigated previously in a negative
mutation screening study in 393 familial and sporadic PD patients because of
a work showing an interaction between the protein products of SYT11 and
PARK2 [261, 262]; the latter data suggest a functional role for SYT11 in the

pathogenesis of PD.

ACMSD has been shown to be associated with picolinic and quinolinic acid
homeostasis and is described as a possible therapeutic target for a number of
conditions affecting the central nervous system [263]. It is worth noting some
concern regarding this locus, not only because of the modest replication p
value (p=0.0032) but also because the estimate of heterogeneity of effect

across cohorts was moderately high (1?=48.3).

The locus identified near the gene STK39 has been cited as being associated
with autism, and defined as an expression QTL, although no investigations of

this locus contributing to neurodegenerative phenotypes have been reported
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[264, 265].

LAMP3 within the MCCC1/LAMP3 locus has been implicated in a study
suggesting LAMP3 is partly responsible for modulation of the

neuronal/neurosecretory function in PC12 cell lines [266].

The HIPR1R locus is a biologically plausible association, as the protein
product of HIPR1R is functionally implicated in the intrinsic cell death
pathways and believed to interact with huntingtin to modulate polyglutamine-

induced neuronal dysfunction in transgenic worm and mouse models [267].

The HLA-DRBS is a very interesting locus, as this suggests a role for
immunity and inflammation within the pathogenesis of PD [268]. The HLA
locus has been shown to be associated with numerous neurological diseases,

including multiple sclerosis, and Alzheimer’s disease [269, 270].

Association of the SNCA, LRRK2, and MAPT loci indicates that genetic
variation around these loci is important not only for rare familial forms of
neurodegenerative disease, but also for typical sporadic PD. Given the lack of
disease associated protein coding polymorphisms at these loci, these data
also suggest that expression of these genes is the pathologically relevant

effector.

In summary, these data substantially expand our understanding of the genetic
basis of PD. The data provide support to the common disease common
variant hypothesis, reinforcing the prediction that for common diseases, one

form of genetic risk will be mediated by myriad common polymorphisms that
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individually confer a modest effect.
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3  Abundant Quantitative Trait Loci Exist for DNA

Methylation in the Human Brain

STATEMENT OF CONTRIBUTIONS TO THIS RESEARCH:

In this section, | describe a large series of experiments performed to
comprehensively assess the relationship between common genetic variability
across the human genome with DNA methylation and gene expression in
human brain. These experiments encompass several scientific disciplines and
are the collective effort of several investigators. | was involved in the
inception, planning and design of the experiments and analyses. Additionally,
| performed all experimental work and quality control measures for the
genome-wide genotyping and genome-wide methylation datasets. | drafted
parts of the original manuscript and made substantial contributions to the
critical revision of the entire published manuscript, of which | am, one of three

equally contributing first authors.
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3.1 Introduction

In an assessment of published GWA studies Hindorff and colleagues showed
that at most, 30% of GWA loci could be linked to a protein-coding variant [19].
Therefore, the majority, and likely more than 70%, of GWA loci must be
explained by changes outside of simple amino-acid sequence changes. If
single amino-acid changes are not the primary driver of pathobiologic effects
associated with GWA loci, then the primary alternative is that such effects
must be driven by expression. Such an effect on expression may be driven at
the level of the gene, the transcript, in the context of basal expression,
induced expression, or localization of mMRNA. While there has been some
success in examining the role of risk variants as expression quantitative trait
loci (eQTL), there are several limitations that suggest this approach in
isolation is not likely to succeed. One limitation is that the expression
differences between genotypes are state dependent, and require a response
to a stimulus of some kind, and may not be reflected in an expression profile
examined in a single tissue at a single time point. It may therefore be useful to
also look at the potential for expression, which can feasibly be assessed by
examining DNA methylation. Further, many current eQTL studies use array
based expression assays in which transcript splicing and exon usage are not
well captured. In this context, DNA methylation may also provide an indicator
of whether risk SNPs may be mediating a pathobiologically relevant effect

through splicing.
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In an attempt to efficiently provide high dimensional data that allows the rapid
identification of DNA methylation QTLs (dmQTL), a series of experiments
were performed to assay the genetic variability and DNA methylation levels in
frozen human brain samples. The effects of common genetic variability on
DNA methylation in the frontal cortex, temporal cortex, pons and cerebellum
were investigated using brain tissue from subjects who were neurologically
normal at time of death. All subjects were clinically identified as normal
controls at the time of death with no diagnostically confirmed neurological
disease. Neuropathological data were not available and therefore not taken

into consideration for control subjects.

Frozen tissue for each of these regions from 150 subjects for a total of 600
tissue samples was used. Genome wide genotyping (>500,000 SNPS) and
whole-genome methylation profiling (>27,000 CpG methylation sites) was
carried out in each of the four regions of the brain. Results of these assays
characterizing dmQTL in the human brain are presented in this chapter.
Notably eQTL data was also generated in the same tissue samples. This work
was not performed as part of this thesis, and the detailed methods and results
are not presented, but are discussed briefly to place the current results in

context where appropriate.
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3.2 Materials and Methods

3.2.1 Samples and Assays

For each of the six hundred samples (150 brains x four regions),
approximately 5 grams of frozen tissue was sub-dissected at either the
University of Maryland Brain Bank or at the Department of Neuropathology,
Johns Hopkins University, and sent on dry ice to the Laboratory of
Neurogenetics (LNG), NIA. At LNG, 100-200mg aliquots of frozen tissue were
sub-dissected from each sample. Samples were kept on dry ice to avoid
thawing. Separate pieces were cut for DNA extraction to be used in SNP
genotyping assays and for methylation assays. Each tissue aliquot was stored

at -80°C until use.

Genomic DNA extraction for genotyping was performed using the DNeasy
Blood and Tissue Kit as per the manufacturer’s instructions (Qiagen Inc.,
Valencia, CA). Genomic DNA for the Infinium methylation assays was
extracted using phenol-chloroform and ethanol precipitation. DNA
concentration was determined using a Nanodrop ND-1000 spectrophotometer
(Thermo Scientific, Wilmington, DE), and DNA extraction was repeated using
a new tissue aliguot for samples with DNA concentration less than 50ng/ul, or
with a 260/280 ratio less than 1.7. 100-200mg aliquots of frozen tissue were
sub-dissected from the frontal cortex, temporal cortex, cerebellum and caudal
pons from the brains of each of the 150 neurologically normal Caucasian

donors, resulting in 600 samples used for CpG methylation.
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3.2.1.1 SNP Genotyping

SNP genotyping was performed using DNA extracted from cerebellar tissue
for each subject using Infinium HumanHap550 version 3 BeadChips (lllumina
Inc., San Diego, CA) according to the manufacturer’'s instructions and as
described previously (2.2.2.3). Genotype data was analyzed using the
Genotyping Analysis Module 3.2.32 within the BeadStudio software version

3.1.4 (lllumina Inc.).

3.2.1.2 DNA Methylation

Genome-wide methylation profiles were generated using Infinium
HumanMethylation27 BeadChips (lllumina Inc.), which measure DNA
methylation at 27,578 CpG dinucleotides spanning 14,495 genes. A
GenePaint automatic slide processor robotic system was used to
simultaneously process twenty-four BeadChips. Briefly, 1ug of genomic DNA
underwent bisulfite conversion using the WZ-96 DNA Methylation Kit
according to the manufacturer’s protocol (Zymo Research Corp, Orange, CA).
Incubation conditions used during conversion were as follows: (95°C for 30
seconds, 50°C for 1 hour) for 16 cycles, hold overnight at 4°C. Unmethylated
cytosines were chemically deaminated to uracil in the presence of bisulfite,
while methylated cytosines were refractory to the effects of bisulfite and
remained as cytosines. Methylation was then detected as a C/T nucleotide
polymorphism at each CpG site. After bisulfite conversion, each sample was
whole-genome amplified, fragmented, and hybridized to the BeadChip. DNA
molecules anneal to locus-specific DNA oligomers. Two bead types

correspond to each CpG locus, one to the methylated (C) state, and the other
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to the unmethylated (T) state. After extension, the BeadChip was fluorescently
stained, and scanned using a BeadArray laser confocal scanner to measure
the intensities of unmethylated and methylated bead types for each locus.
Data were analyzed using the Methylation Analysis Module 3.2.0 within
BeadStudio. Intensities were not normalized. DNA methylation for each locus
was recorded as a beta value, which is a continuous variable between 0 and 1
representing the ratio of the intensity of the methylated bead type to the

combined locus intensity (for a schematic of this procedure see Figure 5).

3.2.2 Quality Control

3.2.2.1 Genotype Data

The threshold call rate for inclusion of the sample in analysis was 95%. Two
samples initially had a call rate below this threshold, but were successfully re-
genotyped using fresh DNA aliquots. Thus all 150 brain samples had a call
rate greater than 95%, and were included in the subsequent analyses
(average call rate = 99.86%; range 97.72% - 99.95%, based on the missing

procedure within the PLINK v1.04 software toolset [271].

The gender of the samples reported to LNG by the brain banks was compared
against their genotypic gender using PLINK 's check-sex algorithm, which
determines a sample’s genotypic gender based on heterozygosity across the
X chromosome. Two samples with gender discrepancies were detected. One

of these arose from a clerical error at the brain bank and was included in the
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analysis after correction of the clinical information, whereas the other sample

(UMARY1496) was removed from subsequent analysis.

To confirm the ethnicity of the samples, Identity-By-State (IBS) clustering and
multidimensional scaling analyses were performed within PLINK using the
genotypes from the brain samples that had been merged with data from the
four HapMap (http://hapmap.ncbi.nim.nih.gov) populations (n = 32 Caucasian
(CEU), 12 Han Chinese, 16 Japanese and 24 Yoruban non-trio samples
previously genotyped by Illumina and assayed on the Infinium HumanHap500
version genotyping chips). Two samples were outliers based on population
and excluded from further analysis (UMARY4545, UMARY927). Results are

shown in Supplemental Figure 1.

Genotype data of the samples were compared for cryptic relatedness using
the Identity-By-Descent (IBD) procedure within PLINK. No samples were

found to be from related individuals.

Mach software version 1.0.16 [272] and HapMap CEU phase data (release
22) were used to impute genotypes for ~2.5 million SNPs. Imputed SNPs
were excluded if the linkage disequilibrium r? values between imputed and
known genotypes was less than 0.3, and if their posterior probability averages
were less than 0.8 for the most likely imputed genotype. For each of the four
tissue regions, SNPs were also excluded if: (a) call rate was less than 95%,
(b) Hardy-Weinberg equilibrium (HWE) p-value was less than 0.001, and (c)
the SNP had less than 3 minor homozygotes present. Exact numbers of SNPs

used are shown in Supplemental Table 2 A.
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Two samples were outliers based on population ethnicity and excluded from

further analysis (Figure 13).

Population MDS by Genotype

© Removed

PC2

-1

O Removed

<& CEU

CHB
+ JPT
O LNG
A YRI

-2

PC1

Figure 13: Population MDS plot for brain samples used in dmQTL analyses.

These are based on genotype from genome wide Identity-By-State pairwise
distances between the 150 samples used in this study and HapMap samples
(CEU, CHB, JPT and YRI). The plot shows that of the 150 samples originating
from reported Caucasian individuals from the United States, two samples
(indicated by Removed labels) are ethnic outliers relative to the cohort used in
this study.

Cryptic relatedness of samples was determined by comparing genotypes
using the ldentity-By-Descent (IBD) procedure within PLINK. No samples
were found to be from related individuals. Mach software version 1.0.16 [273]

and HapMap CEU phase data (release 22) were used to impute genotypes for

106



~2.5 million SNPs. Imputed SNPs were excluded if the linkage disequilibrium

r? values between imputed and known genotypes was less than 0.3, and if
their posterior probability averages were less than 0.8 for the most likely

imputed genotype. For each of the four tissue regions, SNPs were also

excluded if: (a) call rate was less than 95%, (b) Hardy-Weinberg equilibrium

(HWE) p-value was less than 0.001, and (c) the SNP had less than 3 minor

homozygotes present. The final numbers of SNPs used per brain tissue for

CpG methylation assay are shown below (Table 4) and a Venn diagram is

shown below illustrating which detected probes overlapped per region.

Table 4: Summary count of the number of samples, DNA methylation

sites, and SNPs tested per tissue

Region
CRBLM FCTX PONS TCTX
Samples 108 133 125 127
Probes 27,310 27,532 27,476 27,538
SNPs 1,540,472 1,624,830 1,602,245 1,607,740
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Figure 14: Venn diagram of probes detected across regions.

This represents the number of probes detected in 95% of samples between
the four brain tissues. The rectangles with different orientations and border,
shown on the left legend represent the different tissue and the different
squares represent overlapping frequencies between different tissues. The
green square iillustrates that 99.0% of the 27,551 CpG probes detected in at
least one tissue region were also detected in all four tissues regions.

3.2.2.2 CpG Methylation Data

The threshold call rate for inclusion of samples in the analysis was 95%.
Based on this metric, 9 cerebellar samples (UMARY933, UMARY 1465,
UMARY4593, UMARY 4640, UMARY4726, UMARY4727, UMARY4842,
JHU1361, and BLSA1640), 6 pons samples (UMARY384, UMARY 1541,
UMARY1583, UMARY1613, UMARY1907 and UMARY4903), 2 frontal cortex
samples (UMARY1712, BLSA1840) and 8 temporal cortex samples

(UMARY 1865, UMARY 1866, UMARY1867, UMARY4545, UMARY4598,

UMARY4726, UMARY4727 and UMARY5087) were excluded from analysis.
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The remaining brain samples had an average detection rate of 99.84% (range

95.0% to 99.98%).

The gender of the samples reported to LNG by the brain banks were
compared against their methylation gender based on beta values of
methylation probes across the X chromosome [185]. Four samples with
gender discrepancies were detected and were removed from subsequent
analysis (BLSA2102-crbim, UMARY1862-crbim, UMARY880-pons,
UMARY4540-tctx). The resulting HCL sample tree is based on Chromosome

X sites, after removal of these four individuals (Figure 13).
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Figure 15: Unsupervised hierarchical cluster plot using DNA methylation data
from 4 brain regions.

The plot was generated in HyperTree using the samples tree generated from
an HCL of Chromosome X methylation data using ‘Average Linkage
clustering’. Male and female status was not used as a variable within the
cluster analysis, and the colors represent post-hoc labeling based on brain
back reported gender. The plot is after removal of the individuals that
appeared to be gender mismatches.
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3.2.3 Clustering of Samples by Brain Region

HCL [274] of methylation profiles was performed using the TM4 MeV version
4.1.01 tool [275] with Euclidian distances and Average Linkage clustering.
Detected data for autosomal probes only was used in clustering the CpG data,
otherwise sub-clusters based on gender appeared. The HCL sample tree was
saved as a Newick tree file and plotted again using the HyperTree tool

(http://hypertree.sourceforge.net/).

3.2.4 Correction for Known Biological and Methodological Covariates
In an effort to remove the influence of potentially confounding variables, each
trait was adjusted for the following covariates: age, gender, post-mortem
interval (PMI), brain bank and sample hybridization batch. This adjustment
was performed prior to QTL analysis. In R [276] each trait was regressed with
Y representing the trait profile (logz normalized mMRNA expression intensities
or raw values of CpG DNA methylation) and X; ... X, representing the
biological and methodological covariates. Within this model gender, tissue
bank and batch were treated as categorical covariates. After fitting each trait
to the model, the residuals were kept and represent the trait in the present
study. Thus variance attributable to gender, age, post-mortem interval, tissue

source and hybridization batch were controlled for prior to QTL analysis.
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3.2.5 Quantitative Trait Locus Analysis

For each of the four brain regions, a regression analysis was performed on
the residuals described in the preceding section for the CpG methylation
levels. The trait residuals were then used as the quantitative phenotype for
each probe in a genome-wide association analysis investigating quantitative
trait loci. These analyses were performed using the assoc function within Plink
[271], correlating allele dosage with change in the trait. Each of the four brain

regions was analyzed separately.

3.2.6 Correction for Multiple Tests

In an attempt to correct for the number of variants tested per trait, genome-
wide empirical p-values were computed for the asymptotic p-value for each
SNP; this was performed using maxT permutation [271], by means of 1,000
permutations of swapping sample labels of the traits. This method is not
dependent on these quantitative traits having a normal distribution and also
allows the linkage disequilibrium of the genomic regions being tested against

the traits to be maintained [277].

In an attempt to correct for the number of traits (i.e. CpG sites) being tested in
each tissue region, a false discovery rate (FDR) threshold was determined
based on empirical p-values using the fwer2fdr function of the multtest
package in R [276]. Empirical p-values were allowed to exceed this threshold
if their linkage disequilibrium r* was greater than or equal to 0.7 with a SNP

with empirical values within the FDR threshold.
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Following regression analyses, significant QTLs were designated as cis if the
SNP was within 1MB of the CpG methylation site being tested. All other SNP

—dependent variables were designated as trans.

3.2.7 Polymorphism(s) in Assay Probes

Sequence variants within probes used to assay DNA methylation levels may
cause differential hybridization and inaccurate expression and methylation
measurements. To exclude this possible confounding variable, the sequences
of probes with significant correlation to a trait were examined for the presence
of polymorphisms using CEU HapMap data, and, if present, that QTL was

removed from the result set.
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3.3 Results

3.3.1 CpG Methylation Levels Prove to be Different Between Brain

Regions.

In order to determine whether CpG methylation levels differed among the four
brain regions, a global comparison of CpG methylation was performed across
the four different tissues. An unsupervised cluster analysis [274] revealed that
the four regions have uniqgue DNA methylation profiles. These data revealed
a distinction in DNA methylation patterns between the pons and cerebellum
with the two cortices overlapping considerably. Previous work showed a
distinct pattern of DNA methylation in the human cerebellum compared with

cortical tissues [278, 279].
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Figure 16: Unsupervised cluster analysis of CpG methylation levels at
autosomal loci.

These data show separation of the cerebellum, pons and cortices, but a
general inability of the clustering to separate data derived from frontal cortex
and temporal cortex.

Next, an analysis was performed in a dataset including only probes that
showed an Illumina detection p-value of less than or equal to 0.01 in 95% of
samples. This subset of probes was analyzed in each of the four brain tissues

and included 27,551 unique CpG methylation sites (Figure 17).

The distribution of the observed CpG methylation levels was plotted as a
histogram for each brain region (Figure 17). This analysis revealed a large
number of CpG sites infrequently methylated and a smaller number of highly
methylated sites, across all tissues, exhibiting a similar pattern of DNA
methylation to that reported earlier by Zhang and colleagues (2009) and

Meissner and colleagues (2008) [280, 281]. CpG sites within islands were

114



primarily unmethylated [178, 282]. Next, a direct comparison of CpG
methylation at individual loci was made between each possible pair of brain
regions. On the whole, DNA methylation levels were similar between tissues.
The levels within the frontal and temporal cortices were consistently the most

alike with the cerebellar region showing the most divergent profile.
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Figure 17: Comparison of DNA methylation levels between tissues.

These data show only data from those probes with an lllumina detection p-
value of less than or equal to 0.01 in 95% of the samples assayed. This
illustrates that the DNA methylation levels are most similar across probes for
the temporal and frontal cortices, with the signal being most dissimilar from
other tissues in the cerebellum.
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3.3.2 Genetic Control of DNA Methylation

A principal objective of these experiments was to examine the influence of
genetic variability on DNA methylation and expression within brain tissues.
Therefore, a series of QTL analyses was carried out. For each sample
genotyped, 537,411 SNPs passed quality control. Those genotypes were then
imputed to 2,545,178 SNPs using MACH and HapMap CEU phase data. After
additional quality control measures were applied, an average of 1,629,853
SNPs were used in the QTL analysis. Each brain region was considered
separately for the QTL analysis. This allowed for the inclusion of CpG probes
that were detected in 95% of the samples for individual brain regions versus
95% of samples for all four regions. The number of CpG sites tested for each

brain region is listed above (Table 4).

It has been shown that SNPs in close proximity to genes can have a greater
influence on gene expression [283, 284]. In order to find out if this could also
be applied to QTLs linked to DNA methylation and to examine if this could be
generalized across tissues, all significant QTLs were plotted by genomic

position of the SNP versus that of the CpG site (Figure 18 and Figure 19).
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Figure 18: Positions of dmQTL based on SNP and associated CpG site.

This figure illustrates that for all regions the vast majority of SNP-CpG dmQTL
pairs are physically close.
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Figure 19. dmQTL within and across regions.

Cis mdQTL demonstrate a symmetric association between methylation level
and variants on both sides of the CpG site in all four brain regions. Notably,
the figure displaying a summary of dmQTLs seenin 1, 2, 3, or 4 regions shows
that the most significant QTLs tend to be present in all regions.
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Previous work by Bock and colleagues [282] showed that SNPs were only
faintly correlated with the methylation status of CpG islands when compared
with the much stronger influence of DNA sequence or structure. However, a
large number of significant correlations between genetic variation and the
methylation status of individual CpG loci were found in the present study
(Table 5). There is a robust positional effect seen genome-wide with an
excess of the number and magnitude of cis associations. Interestingly,
detection of cis QTLs for DNA methylation occurred more when the CpG site

was located outside of an island [178].

Table 5: . Summary counts of significant methQTL results found in each
brain tissue.

Cerebellum Frontal Pons Temporal
Cortex Cortex
cis dmQTL 9,117 9,242 7,966 12,081
trans dmQTL | 2,985 2,893 3,408 4,653
Total dMQTL | 12,102 12,135 11,374 16,374

Exploring the distribution of the numerous cis dmQTL revealed that the
number of significant dmQTL and strength of association between the SNP
and DNA methylation level were inversely correlated with the physical
distance between the genetic and epigenetic variants in question. The number
of significant QTL and the strength of association for those loci increased the
closer the SNP was to the CpG site. The average distance between correlated

cis SNP and the correlated CpG site was 81kB.

118




In order to determine whether there was an enrichment of cis QTLs relative to
those in trans, the number of observed and possible cis and trans QTL for
each of CpG methylation and mRNA expression levels was calculated. The
outcome showed a tremendous enrichment of cis dmQTLs (4,400-fold)
compared to trans dmQTLs. The peak level of cis enrichment was observed
when the threshold distance was dramatically decreased from 1MB to ~45bp

(Figure 6).
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Figure 20: Enrichment of observed cis dmQTL relative to observed trans
dmQTL.

This plot displays the proportions of significant cis and trans SNP/Probe
pairings from the possible pairings at different distances. At 1 Mb the

enrichment of cis to trans for CpG QTLs is 4,427-fold. This plot shows how this
enrichment changes when physical distance changes as a threshold for cis,

where the x-axis represents the physical distance, resulting in a non-linear
relationship at 50 distances.
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3.3.3 Highly Significant dmQTL Are Consistent Across Brain Regions
Figure 19 above shows that the most significant dmQTLs tend to occur across
all regions. Taking statistically significant results into account, 49% of CpG
sites with a significant cis QTL are detected in only one tissue; thus,
appearing to be tissue specific. However, these results can be misleading due
to the reliance on using a threshold for significance. It is possible that dmQTL

that did not reach this threshold were excluded.

In order to compare detected dmQTLs between tissues in a more complete
way, every SNP-CpG methylation pair that passed the defined threshold for
significance in at least one tissue was selected. Using ternary plots, the R?
values were then compared for each SNP-CpG pair in all four tissues,
including those pairs that were considered non-significant (Figure 21). The
majority of large effect and many moderate effect dmQTLs were shared
across the four brain regions when significant effects from a tissue were
compared with corresponding (potentially non-significant) effects from another
tissue. A subset of trans dmQTLs was also shared between regions and had
high R? values. This shows, even as there is enrichment for cis dmQTLs in
our dataset, there are also strong effects where SNP and CpG methylation
show significant association but are physically distant from one another

(Figure 21 E-F).
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Figure 21: Ternary plots of dmQTLs across regions.

dmQTL that passed the threshold for significance in at least one tissue were
included in the ternary plots. The color of the points in the ternary plots
reflects the cumulative R? value for all tissues tested within each plot. Points
toward the center indicate an equal R? value across the three regions under
investigation. Points toward the corner of a plot indicate a high R?in one of the
three tissues; points toward the edges of the plot indicate a high R? in two of

the three tissues
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3.4 Discussion

In an attempt to understand and map DNA methylation and the relationship of
DNA methylation to genetic variability, epigenetic variation was investigated
from a whole-genome perspective in human brain tissue. This work integrated
common genetic variability typed and imputed from whole genome genotyping
with genome-wide methylation levels. Four brain regions; the cerebellum,
frontal cortex, temporal cortex, and caudal pons were studied in tissues from

150 neurologically normal individuals.

Findings show that DNA methylation patterns differ between brain regions,
sufficiently so that it is possible to separate cortical tissue from that derived
from the pons or cerebellum based on DNA methylation profile alone. These
data show that there are region specific differences in DNA methylation and
suggest that these differences may require investigators to use a tissue
directly relevant to their disease or trait of interest. However, these data also
show that highly significant and high effect dmQTLs occur across multiple
brain tissues. Thus, for many of the large effect dmQTLs it may be sufficient

to examine only one brain tissue.

A large number of dmQTLs were identified in the current study and there is a
clear enrichment for cis dmQTLs when compared to trans dmQTLs. Notably,
the SNP and CpG methylation site tend to be close physically, as indicated by
the enrichment of highly significant SNPs close to the correlated CpG site
(shown in Figure 19) and the peak enrichment of observed to expected

dmQTLs at only ~50bp from the CpG site in question (Figure 20).

123



Although not shown here, expression QTL analysis was performed in the
same tissues as the current study. A comparison was performed to test
whether transcripts with proximal dmQTLs were more likely to have eQTLSs,
and whether the same variant was mediating both effects. Strikingly, this was
not the case. There is relatively little overlap between the identified eQTLs
and dmQTLs possibly reflecting some of the limitations of current eQTL
analyses, in that most studies examine transcription at a single time, rather
than transcriptional potential. It is also conceivable that dmMQTL may exert an
effect through altering transcript ratios, UTR usage, and splicing, effects that
may not be seen using expression arrays. Regardless, these data suggest
that dmQTL analysis may serve as a valuable tool in understanding the

consequences of genetic variation.

There are several limitations to the current study; notably the sample size,
while large for dmQTL analysis, is not of sufficient size to reliably detect
modest effects. Also, while the DNA methylation assays used here are
reliable, it is important to assay additional sites. Perhaps an even more
significant limitation is the use of brain tissue, which represents a highly
heterogeneous mix of cells. This would suggest that the dmQTLs observed
here are more likely to be of large effect and/or generalizable across cell

types, and that cell type specific dmQTLs may have been missed.

A major reason for performing these experiments was to allow the creation of
a dataset that could be used to ‘lookup’ the effects of genetic variability on
DNA methylation, particularly for studies interested in understanding the

effects of risk alleles. In order to do this, data have been made public through
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dbGAP (www.ncbi.nlm.nih.gov/gap/) and GEO
(http://www.ncbi.nlm.nih.gov/geo/). These data, and the companion gene
expression data, have been downloaded and used by numerous investigators,
primarily to help understand functional consequences of disease linked risk
variants for disorders such as Tourette’s syndrome, coffee consumption,

obsessive compulsive disorder, body mass index, and PD [285-287].
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4 Assessment of Parkinson’s Disease Genetic Risk

Loci as DNA Methylation QTLs

STATEMENT OF CONTRIBUTIONS TO THIS RESEARCH:

In this section, | describe a series of experiments that were performed to
identify Parkinson’s Disease risk variants as dmQTLs. These experiments
encompass several scientific disciplines and are the collective effort of several
investigators. | was involved in the inception, planning and design of the
experiments and analyses. | performed experimental work and quality control
for genome-wide SNP datasets for the PD meta-analysis and NeuroX
replication stage genotyping. | performed the DNA methylation analysis, and
genotyping in human brain tissue as described in Section 3 above and drafted

a manuscript (in submission).

126



4.1 Introduction:

Achieving a complete understanding of the pathobiological mechanisms
underlying complex neurological disease has been the emphasis of genetic
studies for well over a decade. As described previously, GWA studies have
had considerable success identifying Mendelian genes and now numerous
genetic risk factors for Parkinson’s disease [286]. However, the next step
following the discovery of genetic risk-associated markers is the challenging
interpretation of such risk within the context of disease pathobiology. A
primary aim of meta-analysis of PD GWA studies (described in Chapter 2)
was not only to identify novel risk variants for PD, but to also to assess the

biological consequences of those variants.

One approach is to integrate genotyping and a quantitative trait, such as DNA
methylation levels, in a manner in which biological meaning can be derived
from the association between the two datasets. A direct relationship between
the underlying genetic sequence and CpG methylation levels was described
and defined as DNA methylation quantitative trait loci (dmQTL) in Chapter 3 of
this thesis. Additional studies have also reported the close interplay between
allele load and DNA methylation levels [288-290] including descriptions of
natural human variation [290-292], neurological disorders [288] and
rheumatoid arthritis [293] emphasizing the significance of DNA methylation

patterns for diverse phenotypes, including those related to diseases.

DNA methylation is cell and tissue specific [294]; therefore, it is critical to

analyze methylation patterns in the tissue of interest. For degenerative
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diseases such as PD, in which cell death is a key element of the disease
pathology, it is also important to assess DNA methylation levels (or other
guantitative trait, such as gene expression) in tissue derived from healthy
individuals to avoid detection of alterations caused by cell loss. Here, following
a large-scale meta-analysis of GWA data [286], we evaluate the association
of previously confirmed and novel PD risk loci with CpG methylation levels in
the frontal cortex region of 309 normal human brain samples. We examine
CpG methylation levels within 1Mb of 28 reported PD risk variants [286] as
potential methylation QTLs. Results of these assays characterizing dmQTLs

in the human brain within the context of PD risk are presented in this chapter.

4.2 Materials and Methods:

4.2.1 Samples

Aliquots of frozen tissue were sub-dissected from the frontal cortex, from the
brains of 432 neurologically normal Caucasian donors from the US and UK.
Genomic DNA was extracted from 100-200mg of tissue using phenol-
chloroform. DNA concentration was measured using the Qubit 2.0

Fluorometer.
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4.2.2 SNP Genotyping

Genotyping for the 28 SNPs with known genome-wide significance in PD
GWA studies was performed using the Illlumina NeuroX genotyping array
(Illumina Inc, San Diego) [295]. The NeuroX array is an Illlumina Infinium
iSelect HD Custom Genotyping array containing 267,607 lllumina standard
content exonic variants and an additional 24,706 custom variants designed for
neurological disease studies [295]. Of the custom variants, approximately
9,000 are designed to study Parkinson’s disease and are applicable to both
large population studies of risk factors and to investigations of familial disease
and known mutations. The custom SNPs include, tagging SNPs, proxies and
technical replicates for the PD associated loci identified in the discovery
phase of the PD GWA meta-analysis recently published by our laboratory

[286].

Genotyping on Illumina NeuroX array was performed per manufacturers
protocol (lllumina, Inc. San Diego) and as described in Chapter 2. The
Genotyping Analysis Module within Genome Studio version 1.9.4 was used to
analyze data. The threshold call rate for sample inclusion was 97%. All 28
SNPs analyzed were manually clustered and visually inspected. Genotypes
for standard exome content variants were called using a cluster file from the

CHARGE consortium based on more than 60,000 samples [296].
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4.2.3 CpG methylation

Genomic DNA was bisulfite converted using Zymo EZ-96 DNA Methylation Kit
(Zymo Research Corp., Irvine, CA) per manufacturer's protocol. CpG
methylation status of 485,577 CpG sites was determined using the lllumina
Infinium HumanMethylation450 BeadChip (lllumina Inc., San Diego, CA) per

the manufacturer's protocol, outlined in Section 3.2.1.2.

The HumanMethylation450K BeadChip uses both Infinium I and Infinium 1l
chemistries. Infinium | chemistry uses two probes per locus: one
unmethylated and one methylated as described in Chapter 3. Infinium II
chemistry is designed to use only one bead type with the methylated state
defined at the single base pair extension following hybridization. The 3’ end of
the 50bp probe complements the base directly upstream of the CpG site;
subsequently, the single base pair extension results in an addition of a labeled
(A) or (G) nucleotide, complementary to either the methylated (C) or the

unmethylated (T) state (Figure 5 page 60).

The HumanMethylation450 BeadChip queries 99% of NCBI Reference

Sequence Database genes (http://www.ncbi.nim.nih.gov/refseq/) with sites in

the promoter region, 5’UTR, first exon, gene body and 3'UTR. 96% of CpG
islands within the human genome are queried with multiple probes within

islands, shores and shelves.

Initial data analysis was performed using the Methylation Analysis Module
within Genome Studio 2011.1 (Model M Version 1.9.0 Illlumina, Inc., San

Diego, CA). CpG probes within 1Mb either side of the 28 SNPs reported as
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most significant in GWA studies for PD were analyzed for QTL analysis. This

included 20,616 CpG probes.

Threshold call rate for inclusion of samples was 95%. Quality control of
sample handling included comparison of brain bank reported sex versus sex
of the same samples determined by analysis of methylation levels of CpG
sites on the X chromosome. Beta values were extracted for sites on the X
chromosome. Subject mean methylation versus subject mean intensity levels
were plotted in R V2.11.1. Based on methylation levels for chromosome X
loci, these data split into two primary groups. Calls generated by this method
were then compared with sample information reported by brain bank(s).
Samples not matching between clinical reported sex and methylation data
were excluded from analyses. Eight samples with gender errors and 5

samples considered outliers were removed from the analysis (Figure 22).
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Figure 22:Sample handling quality control for CpG methylation samples.

Beta values were extracted for sites on the X chromosome. Subject mean
methylation versus subject mean intensity levels are plotted for 11,232 CpG
probes on Chr X. Males are depicted in Blue. Females are depicted in Red. Plot
shows 8 gender discrepancies and 5 outliers.

4.2.4 Cis Quantitative Trait Locus Analysis

Genome-wide methylation results were filtered to include CpG probes within
1Mb of the most significant SNP in each PD associated region. The filtered
results included methylation levels for 20,615 CpG probes. Any probes with
>5% missingness were excluded from the analysis leaving a total 17,620
probes tested. The inverse variance normalization method was applied to

stabilize the data into a normal distribution using R software 3.0.2. Linear
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regression of allele dosage was performed using CpG methylation level as the
dependent variable and genotype as the independent variable. Linear
regression analysis was carried out using R software 3.0.2 to associate allele
dosage with quantitative trait. For these analyses, significance was

determined based on standard FDR adjustments for multiple testing.

Preceding regression analyses, biological and methodological covariates

including gender, age, post-mortem interval, brain bank, experimental batch
and the first two principle component vectors from multi-dimensional scaling
were taken into consideration. Each trait was adjusted in an effort to reduce

the influence of systematic confounding effects using mach2qtl v1.11.

A secondary round of analysis was performed because it was noted that two
independent PD risk variants within SNCA were strongly associated with DNA
methylation at the same CpG (cg08767460). This was performed in order to
test whether the association between these risk alleles and DNA methylation
was independent. To test this, the linear modeling was performed for the
second SNP (rs3910105) including the allele dosage at the first SNP

(rs356181) as a covariate in the adjustment of methylation values.
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4.3 Results

Of the 486,428 assayed CpG sites on the Illlumina HumanMethylation450
array, 20,615 were within 1Mb of the top SNP within the loci of interest. Of
these 17,620 passed initial quality control. Some of the risk loci overlapped
physically; therefore, a total of 25,292 SNP-CpG pairs were tested. In order to
be conservative and due to polymorphisms within several probes, which can
create significant bias in QTL analysis, all probes against a sequence that
contained a polymorphism at >2% allele frequency in Caucasians was
removed. This resulted in 3,580 testable CpG sites, and 5,473 testable CpG-
SNP pairs. Of the remaining CpG-SNP pairs, 3,302 CpG sites were annotated
as being within a CpG island or a CpG island shore, with the remaining 2,171
sites being inter CpG island (1,432 within a CpG Island, 299 in a North Shelf,

659 in a North Shore, 338 in a South Shelf, and 574 within a South Shore).

Analysis of the dmQTL data revealed that significant dmQTLs existed for top
PD associated SNPs at 19 of the 28 identified PD risk loci (Table 6, Figure 23
to Figure 41 inclusive). Within these significant loci, the most significant CpG

site was within an annotated feature 68% of the time, slightly (but not

significantly) more than expected (60% based on chance).

Top PD associated SNPs at the remaining nine loci failed to show an
association with proximal DNA methylation levels based on an FDR corrected
p value (raw p value shown, Supplementary Figure 12 through Supplementary

Figure 20 inclusive).
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Before removal of probes targeting a polymorphic region, the number of
significantly associated loci was 24, highlighting the potential extent of the
‘polymorphism in probe’ problem, which has been observed extensively in

expression QTL analysis [297].

The most associated probes with each of the 19 SNPs ranged in significance

from p=0.0009 on chromosome 16 to p=3.4x10-"° at the MAPT locus.
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ucsc
RefGene UCSC RefGene

SNP Chr | CpG Beta | SD p pAd;j Annotation Name Group
rsg23118 1 cgl14893161 | -0.83 | 0.06 | 3.5E-33 | 5.0E-30 | South Shore PM20D1 TSS200
rs10797576 1 cgl6244711 | -0.41 | 0.11 | 0.0002 0.0117 - SIPA1L2 TSS200
rs6430538 2 cg02741327 | -0.38 | 0.08 | 4.2E-06 | 0.0004 - TMEM163 Body
rs34884217 4 cg06157924 | -0.92 | 0.11 | 5.4E-15 | 1.6E-12 | South Shore | TMEM175 Body
rs34311866 4 cg14530993 | 0.71 0.08 | 6.7E-19 | 3.1E-16 | South Shelf GAK Body
rs6812193 4 cg20432211 | -0.26 | 0.06 | 5.2E-05 | 0.004 Island STBD1 TSS1500
TSS1500
rs356181 4 cg08767460 | 0.36 | 0.08 | 9.7E-06 | 0.0008 South Shore SNCA 5'UTR
rs3910105 4 cg15133208 | -0.48 | 0.08 | 4.7E-10 | 7.8E-08 | North Shore SNCA 5'UTR
exm535099 6 cg08188698 | -1.80 | 0.18 | 2.0E-20 | 1.1E-17 - ATF6B Body
rs115462410 | 6 cg08265274 | 1.34 | 0.10 | 1.6E-30 | 1.6E-27 | South Shore | HLA-DRB5 Body
rs199347 7 cgl4444376 | 0.71 0.07 | 5.7E-20 | 3.0E-17 | North Shore GPNMB 5'UTR 1stExon
rs329648 11 cg11936536 | -0.82 | 0.08 | 2.8E-23 | 1.9E-20 | North Shelf - -

rs76904798 12 cg25382486 | -0.28 | 0.08 | 0.0006 0.031 South Shelf - -

rs11060180 12 cg06742321 | -0.40 | 0.08 | 2.0E-06 | 0.0002 - PITPNM2 TS5200

rs11158026 14 €g22955899 | -0.50 | 0.08 | 3.7E-09 | 5.3E-07 - DLGAPS5 Body

rs2414739 15 cg07084345 | -0.56 | 0.09 | 5.7E-10 | 9.3E-08 - - -

rs14235 16 cgl6747885 | 0.22 0.07 | 0.0009 0.04 South Shelf - -
rs11868035 17 cg15030378 | -0.87 | 0.08 | 1.8E-24 | 1.3E-21 Island SREBF1 Body
rs17649553 17 €g24801230 | 1.34 0.05 | 3.4E-79 | 4.3E-75 South Shelf MAPT 5’UTR

Table 6: Significant dmQTLs identified at PD associated loci.

Shown are the SNP used, and the CpG site for which methylation was modeled
as the trait. Also shown are the raw p value, and the pAdj, which is the locus
specific FDR corrected p value. CpG sites were annotated as within a CpG
island or on the North/South shores and shelves of CpG Islands.
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Figure 23: PD risk allele rs823118 on chromosome 1is admQTL.

Allele burden at rs823118 was assessed for association with DNA methylation
levels at proximal CpG sites. Non-associated CpG sites are shown as open
symbols, significantly associated CpG sites are shown as filled symbols,
colored according to annotated functional position.
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Figure 24: PD risk allele rs10797576 on chromosome 1is admQTL.

Allele burden at rs10797576 was assessed for association with DNA
methylation levels at proximal CpG sites. Non-associated CpG sites are shown
as open symbols, significantly associated CpG sites are shown as filled
symbols, colored according to annotated functional position.
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Figure 25: PD risk allele rs6430538 on chromosome 2 is a dmQTL.

Allele burden at rs6430538 was assessed for association with DNA methylation
levels at proximal CpG sites. Non-associated CpG sites are shown as open
symbols, significantly associated CpG sites are shown as filled symbols,
colored according to annotated functional position.
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Figure 26: PD risk allele rs34884217 on chromosome 4 is admQTL.

Allele burden at rs34884217 was assessed for association with DNA
methylation levels at proximal CpG sites. Non-associated CpG sites are shown
as open symbols, significantly associated CpG sites are shown as filled
symbols, colored according to annotated functional position.
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Figure 27: PD risk allele rs34311866 on chromosome 4 is a dmQTL.

Allele burden at rs34311866 was assessed for association with DNA
methylation levels at proximal CpG sites. Non-associated CpG sites are shown
as open symbols, significantly associated CpG sites are shown as filled
symbols, colored according to annotated functional position
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Figure 28: PD risk allele rs6812193 on chromosome 4 is a dmQTL.

Allele burden at rs6812193 was assessed for association with DNA methylation

levels at proximal CpG sites. Non-associated CpG sites are shown as open
symbols, significantly associated CpG sites are shown as filled symbols,
colored according to annotated functional position
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Figure 29: PD risk allele rs356181 on chromosome 4 is a dmQTL.

Allele burden at rs356181 was assessed for association with DNA methylation
levels at proximal CpG sites. Non-associated CpG sites are shown as open
symbols, significantly associated CpG sites are shown as filled symbols,
colored according to annotated functional position
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Figure 30: PD risk allele rs3910105 on chromosome 4 is a dmQTL.

Allele burden at rs3910105 was assessed for association with DNA methylation
levels at proximal CpG sites. Non-associated CpG sites are shown as open
symbols, significantly associated CpG sites are shown as filled symbols,
colored according to annotated functional position
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Figure 31: PD risk allele exm535099 on chromosome 6is admQTL.

Allele burden at exm535099 was assessed for association with DNA
methylation levels at proximal CpG sites. Non-associated CpG sites are shown
as open symbols, significantly associated CpG sites are shown as filled
symbols, colored according to annotated functional position
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Figure 32: PD risk allele rs115462410 on chromosome 6 is a dmQTL.

Allele burden at rs115462410 was assessed for association with DNA
methylation levels at proximal CpG sites. Non-associated CpG sites are shown
as open symbols, significantly associated CpG sites are shown as filled
symbols, colored according to annotated functional position
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Figure 33: PD risk allele rs199347 on chromosome 7 is a dmQTL.

Allele burden at rs199347 was assessed for association with DNA methylation
levels at proximal CpG sites. Non-associated CpG sites are shown as open
symbols, significantly associated CpG sites are shown as filled symbols,
colored according to annotated functional position

147



rs329648 Chr11

o “3 ¢ |sland
o = i * South Shore
% = ‘ * South Shelf
> : * North Shore
& o _ ‘ » North Shelf
= 2 ' ® * Non-Island
3 w© A S

& o g@ca? @ © 8o %@5’0@@&8% Q[udb

133.0 133.5 134.0 134.5
Position (MBp)

a . | .
° o !
= [
© & :
> |
S 9 - |
= | &
S 0 ® ® : & &)

o - © °© g i Oé) 8% o &

[ [ | | [ | ]
133.60 133.70 133.80 133.90

<<< RP11-448P19.1.1
I |
b
<<< SPATA19
i
i
<<< RP11-259P6.3.1
|
<<< RP11-259P6.1.1
I
H
<<<|GSF9B
W1
LR
HHE
Hi
[
RP11-713P17.
1

Figure 34: PD risk allele rs329648 on chromosome 11 is a dmQTL.

Allele burden at rs329648 was assessed for association with DNA methylation
levels at proximal CpG sites. Non-associated CpG sites are shown as open
symbols, significantly associated CpG sites are shown as filled symbols,
colored according to annotated functional position

148



rs76904798 Chr12

o) ® |
- o ] i ¢ Island
% _ | * South Shore
! e
= o | 1 South Shelf
> o~ : * North Shore
& - | * North Shelf
=] o ! * Non-Island
& 7 o °
] —] ] 0
o Jo 9 o o i © 8
(= [ I | [
40.0 40.5 41.0 41.5
Position (MBp)
o _ @ |
—_—— m :
© n |
3 |
© S X
= a\ |
& a :
2 o !
o = |
o Al '
£ | [
o _| o I
o [ | [ I [ ]
40.2 40.3 40.4 40.5 40.6 40.7
<<< RP11-476D10.1.1
-1 | |
2A13 AC079630.2.1 >>>
| H | (. I
4C121336.1 |
| <<< AC079630.4.1
<< SNORA22 I |
| LRRK2 >>>

<< AC121336.2.1

ARIRIN [}
R TR
TR
H
AC084290.2.1 >
= |
<<< RPL30P13
I It
e

Figure 35: PD risk allele rs76904798 on chromosome 12 is a dmQTL.

Allele burden at rs76904798 was assessed for association with DNA

methylation levels at proximal CpG sites. Non-associated CpG sites are shown
as open symbols, significantly associated CpG sites are shown as filled
symbols, colored according to annotated functional position
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Figure 36: PD risk allele rs11060180 on chromosome 12 is a dmQTL.

Allele burden at rs11060180 was assessed for association with DNA
methylation levels at proximal CpG sites. Non-associated CpG sites are shown
as open symbols, significantly associated CpG sites are shown as filled
symbols, colored according to annotated functional position
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Figure 37: PD risk allele rs11158026 on chromosome 14 is a dmQTL.

Allele burden at rs11158026 was assessed for association with DNA
methylation levels at proximal CpG sites. Non-associated CpG sites are shown
as open symbols, significantly associated CpG sites are shown as filled
symbols, colored according to annotated functional position
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Figure 38: PD risk allele rs2414739 on chromosome 15is a dmQTL.

Allele burden at rs2414739 was assessed for association with DNA methylation
levels at proximal CpG sites. Non-associated CpG sites are shown as open
symbols, significantly associated CpG sites are shown as filled symbols,
colored according to annotated functional position
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Figure 39: PD risk allele rs14235 on chromosome 16 is a dmQTL.

Allele burden at rs14235 was assessed for association with DNA methylation
levels at proximal CpG sites. Non-associated CpG sites are shown as open
symbols, significantly associated CpG sites are shown as filled symbols,
colored according to annotated functional position
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Figure 40: PD risk allele rs11868035 on chromosome 17 is a dmQTL.

Allele burden at rs11868035 was assessed for association with DNA
methylation levels at proximal CpG sites. Non-associated CpG sites are shown
as open symbols, significantly associated CpG sites are shown as filled
symbols, colored according to annotated functional position
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Figure 41: PD risk allele rs17649553 on chromosome 17 is a dmQTL.

Allele burden at rs17649553 was assessed for association with DNA
methylation levels at proximal CpG sites. Non-associated CpG sites are shown
as open symbols, significantly associated CpG sites are shown as filled
symbols, colored according to annotated functional position.
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Notably there are two confirmed independent PD risk variants within SNCA,
one 3’ to the gene (rs356181), and another within intron 4 (rs3910105). The
current analysis revealed that both of these variants are also dmQTLs with the
top associated CpG being cg15133208 for the intronic variant, and

cg08767460 for the 3’ variant.

It is also notable that while the top CpG association with rs3910105 is at CpG
site cg15133208, there is also a strong association between allele dosage at
this SNP and methylation at site cg08767460 (p=3.8x10®) (Figure 30). Thus
both risk SNPs in SNCA, despite being ~55kb apart, exert an effect on
methylation at the same CpG site. Annotating the alleles at these SNPs in
terms of risk for PD reveals that the association with DNA methylation is in the
same direction for both SNPs, with high-risk alleles being associated with

higher DNA methylation (Figure 42).
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Figure 42: Association of SNCA risk alleles with DNA methylation at
cg08767460.

At both loci within SNCA the PD risk alleles are associated with increased
methylation at CpG site cg08767460.
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Covariate analysis was performed in an attempt to correct for any potential
confounding of the association at rs3910105 because of linkage
disequilibrium with rs356181, which is also strongly associated with
cg08767460 methylation. This adjusted analysis confirmed that a statistically
significant association remains between rs3910105 and methylation at
cg08767460 suggesting that this is a truly independent effect, and not one
driven by residual LD between rs3910105 and rs356181 (p=0.001, Beta =
0.55, Standard Error = 0.16; Figure 43). The r? between these two SNPs based

on 1000 genomes Caucasian data is nominal (r’=0.271).
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Figure 43: Association of allele dosage at rs3910105 and methylation at
cg08767460.

In this analysis methylation levels have been adjusted for allele dosage at the
proximal CpG methylation associated risk variant rs3910105. Analysis of this
association using a linear model adjusting for genotype at rs356181 and other
biological covariates revealed a significant association (p=0.001).
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4.4 Discussion

This chapter describes the integration of known PD loci implicated by large
GWA studies, with a map of the genetic control of DNA methylation in human
brain. The aim of this effort was to link definitively identified risk alleles with a
biological effect in order to gain potential mechanistic insight into the

pathogenesis of disease.

The current work identified significant dmQTLs for 19 of 28 identified PD risk
loci, demonstrating that the association of risk alleles for neurological disease

with a biologically relevant trait in human brain tissue is a tractable goal.

Examining the loci here, there are several that are of immediate interest.
Perhaps most notable is the SNCA locus, which contains two independent PD
risk alleles [242, 286]. In the current work, both alleles show significant
association with methylation of a CpG Island and Island Shore close to the
promoter region of SNCA. It is also notable that these variants, which confer
independent risk effects for PD, also confer independent effects on CpG
methylation. Lastly, in both instances the risk allele at each SNP is associated
with increased DNA methylation, showing consistency of effect. Previous data
has suggested an association between SNCA risk alleles and increased
SNCA expression [298], although these data were not definitive. The current
data however suggests a mechanism for how expression may be modulated

at SNCA.
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The status of DNA methylation at SNCA has been assessed by several
groups previously; however, these studies in general examined DNA
methylation in PD cases versus controls, rather than methylation levels linked
to disease risk alleles [218, 299]. Previous studies show inconsistent results,
although this may be a feature of the generally small sample size used and

because only limited and varied CpG sites were studied.

As with SNCA, expression at MAPT has been associated with genetic risk
alleles, although it was not clear until recently, that the observed effects were
not simple changes in expression but rather represented changes in exon
usage [300]. Examining the MAPT locus in the current data reveals a complex
picture, with multiple significant dmQTLs across the entirety of the locus.
While it is notable that the most significant dmQTL is with a CpG site within
the 5’ end of MAPT, the extensive linkage disequilibrium across this locus
means that a large number of CpG sites are also associated with the risk

alleles at this locus.

Another particularly interesting locus, given recent functional work, is the
PARK16 locus on chromosome 1 (Figure 23). Most recently, RAB7L1 within
the PARK16 locus was functionally implicated in PD, as the protein product
interacts with the protein product of another PD gene, LRRK2 [301, 302].
However, in the current work an extremely strong association with DNA
methylation at a CpG site distal to RAB7L1 and 5’ to PM20D1 is observed.
There are several potential reasons for this observation. First, DNA
methylation at this locus may be a genuine effect, but simply unrelated to PD

pathogenesis; second, although unlikely, the Irrk2-rab7I1 interaction could be
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spurious, or unrelated to disease; or third, the methylation change may exert
an effect on RAB7L1. With regard to this last point, it is clear that regulatory
elements may be quite distal to the regulated gene, and in one particular
example at the FTO locus, a DNA regulatory element in one gene (FTO)
exerts an effect through long-range functional connections with a distant gene
(IRX3) [303]. Thus, while the identified regulated CpG site at the PARK16
locus is quite distant from RAB7L1, this could indeed be the pathologically

relevant effected gene.

This last illustrative example raises the question of where to go next with this
work in order to further understand pathogenesis. Following up on individual
loci, prioritizing those with the most biologically interesting signal/target is one
route that could provide pertinent information. Although, a more
comprehensive approach may be warranted, one that integrates further high
content data to create high dimensional datasets. The addition of RNA
sequencing data, including data generated in neuronal cells with varied stimuli
and the mapping of regulatory elements and other epigenetic marks in
disease relevant tissues/cells would add an extremely important element to
this work with the potential to reveal the sequence of events leading from

genotype to protein phenotype.

As a last point, revealing the epigenetic mediator of genotype may also have
the potential to inform regarding other risk factors for disease. It is plausible
that environmental and lifestyle risk factors for a slowly progressive, late onset

disease may also exert pathogenic effects through an epigenetic effector and
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therefore, it will be worth an investigation of the effects of candidate

exposures on the epigenetic marks identified here.
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5 Distinct DNA methylation changes highly
correlated with chronological aging in the human

brain

STATEMENT OF CONTRIBUTIONS TO THIS RESEARCH:

In this section, | describe a series of experiments that were performed to
assess the relationship between DNA methylation and chronological age in
the human brain. | was involved in the inception, planning and design of the
experiments and analyses. | performed all of the experimental work and
guality control for the genome-wide methylation dataset. | drafted the original

published manuscript. | am one of two equally contributing first authors.
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5.1 Introduction

A major risk factor for common neurodegenerative disease is aging [222, 304]

In addition, DNA methylation patterns have been shown in many studies to
alter with age [210, 228, 229, 305, 306] and vary globally or locally across
different brain regions [307]. In a recent study, Steve Horvath reports on an
epigenetic clock, using methylation levels at 353 CpG sites to accurately
predict an individual’'s age. The method can be used to predict age in several
tissues, with much improved accuracy using cortical brain tissue, where the
clocks median error is 1.5 years [308]. Neurodegenerative diseases exhibit
many non-Mendelian variances such as late age of onset, suggesting an
epigenetic component may contribute to disease etiology. Therefore, it is
important to better understand the landscape of DNA methylation patterns in
the normal aging brain as a foundation for insight into the functional etiology of

neurodegenerative diseases, where the primary risk factor is aging.

Analysis of the methylation data produced in neurologically normal controls
(Chapter 2) is expanded here to test the effect of age on DNA methylation
status. Methylation levels at approximately 27,000 CpG sites were assayed
throughout the human genome in four brain regions: the frontal cortex,
temporal cortex, pons and cerebellum tissues from 150 human donors. This
was extended to include CpG methylation data generated in an additional 237
cerebellum and 237 frontal cortex samples. Results of these assays
characterizing DNA methylation in the human brain of donors 0.4-102 years

are presented in this chapter.

163



5.2 Materials and Methods

5.2.1 Tissue samples

For stage | analysis, fresh, frozen tissue samples of the frontal and temporal
cortices, caudal pons and cerebellum regions were obtained from 150
neurologically normal Caucasian subjects, resulting in 600 tissue samples.
For stage two analysis, fresh, frozen tissue samples of the frontal cortex and
cerebellum regions were obtained from an additional 237 neurologically
normal Caucasian subjects. Genomic DNA was phenol-chloroform extracted
from brain tissues [309] and quantified on the Nanodrop1000

spectrophotometer prior to bisulfite conversion.

5.2.2 CpG Methylation

Bisulfite conversion of 1 microgram of genomic DNA was performed using
Zymo EZ-96 DNA Methylation Kit per the manufacturers protocol. CpG
methylation status of >27,000 sites was determined using lllumina Infinium
HumanMethylation27 BeadChip, per the manufacturers protocol. Data were
analyzed in BeadStudio software (lllumina Beadstudio v.3.0). The threshold
call rate for inclusion of samples in the analysis was 95%. Quality control of
sample handling included comparison of genders reported by the brain banks
with the gender of the same samples determined by analyzing methylation
levels of CpG sites on the X chromosome. Beta values were extracted from

BeadStudio (Illumina, Inc) for sites on chromosome X and loaded into TM4
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MeV tool. This data was then clustered by sample. Based on methylation
levels for Chromosome X loci, these data split into two primary groups
correlated with gender. Calls generated by this method were then compared
with sample information reported by the brain bank. Samples where genders
did not match between brain bank and methylation data were excluded from
our analyses. Forty-seven tissue samples from subjects were excluded due to

low methylation call rate or gender discrepancies.

5.2.3 CpG Methylation Analysis

For all available samples, stratified by brain region, multivariate linear
regression was performed to test the effect of age on CpG methylation at
each CpG site in the publicly available data. Regression models were
adjusted for the following covariates: hybridization and amplification batch,
study center responsible for sample collection, post-mortem interval and
gender. Bonferroni correction of 1.8e-6 was used to account for the effects of
multiple testing phenomenon after testing the associations of > 27,000 CpG
sites per brain region in the stratified analyses (27,476 in pons, 27,310 in

cerebellum, 27,532 in frontal cortex, and 27,538 in temporal cortex).

Any CpG site passing the Bonferroni thresholds for significance (1.8e-6) in all
four brain regions was carried forward from the discovery phase of the project.
Ten CpG sites that met these criteria and were analyzed using the same
statistical models as implemented in the discovery phase, in an independent

set of frontal cortex and cerebellum samples.
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Post hoc, we categorized CpG sites as within or outside of CpG islands. This
categorization was based upon annotation as a CpG island if the CpG site
was described as an island in at least two resources out of three used for
annotation: EPI score [310], UCSC genome browser sequence based
annotation of CpG sites [311] or lllumina documentation. Non-island CpG
sites were defined as sites not annotated as within an island in any of the

three resources used for annotation.

5.2.4 DAVID analysis
Functional relationships were investigated using DAVID

(http://david.abcc.ncifcrf.gov/). Enrichment of selected gene ontology (GO)

terms among age-associated CpG sites was examined using the functional
annotation clustering module. Six hundred and eighty three unique Entrez
Gene identifiers in the David database were cross-referenced from the
lllumina gene annotation for significantly associated CpG sites from our
discovery analyses; where a CpG site passed Bonferroni correction in any
brain region specific analysis. These 683 genes were considered our

experimental pool in the clustering analysis.

To account for possible bias in the Illlumina array design (i.e., bias introduced
by the array being enriched for CpG sites nearby a certain functional class of
gene), 14495 unique Entez Gene identifers were cross referenced between
the entire Illumina CpG array annotation and the DAVID database, with this

second gene set serving as the background level of enrichment for genes on
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the array. Default settings were used for the derivation of clusters and false-
discovery rates were used to correct for multiple testing. A total of 228
clusters were generated, with six clusters with enrichment scores showing a

greater than four-fold enrichment of clustered terms.

5.2.5 Additional analyses

Replication was deemed successful if the association between age and
methylation passed the Bonferroni threshold for significance of 1.8e-6 in
analyses of both the frontal cortex and cerebellum datasets. Since the
replication dataset included a significant number of individuals in the lower
age ranges compared to the data used in the discovery phase, two additional
iterations of the replication model were utilized to further scrutinize results,
first by excluding all samples with age at sampling under 16 years, then
excluding all samples under 18 years. Neither of these secondary models
caused any marked attenuation of the p-values in the replication results. In
addition, a fourth set of models using additional covariates of component
vectors 1 and 2 from multidimensional scaling of genotype data for these

samples did not significantly alter the results of the regression models.

5.3 Results

A series of experiments was performed to map the association of DNA
methylation levels in human brain with chronological age. The first set of
experiments included tissue from four brain regions: the frontal cortex,

temporal cortex, pons and cerebellum from 150 individuals varying in age
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from 16-101 years. The second (or replication) stage included tissue from the
two most disparate regions of the brain, the frontal cortex and cerebellum
regions and included 237 human brains collected from donors ranging from

0.4 to 102 years of age

5.3.1 Association between CpG methylation levels and chronological
age across brain regions

Analysis of the association between chronological age and DNA methylation

levels at individual CpG sites in the Stage 1 sample set revealed a

considerable number of strongly associated loci (Figure 44).
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Figure 44: Manhattan plot representing >27,000 CpG sites/probes and their respective p-values associated with age.

Shown are data for cerebellum (purple), frontal cortex (green), pons (blue) and temporal cortex (red). For each point, a positive
association between DNA methylation and chronological age is indicated by upward pointing triangles; a negative association is
indicated by a downward pointing triangles



After applying correction for multiple testing, 1,141 significant associations
between DNA methylation and age at CpG sites in the Stage 1 sample set
were revealed. Of these 1141 associations, 589 loci were significant in only
one region, 167 loci were significant in two regions, 86 loci were significant in
three brain regions, and DNA methylation levels at ten CpG loci were
significantly correlated with age in all four brain regions. Of the total number
of significant CpG sites detected (1,141), 932 were considered to be within a
strict definition of CpG islands, 129 were not within CpG islands, and 80 were

in regions that could not unequivocally be defined as islands or non-islands.

The ten CpG sites that showed significant genome-wide association with
chronological age across all four brain regions were further examined. An
emphasis was placed on these ten loci as they were significant in all brain
regions tested, suggesting these associations were genuine and that the
potential confound of cellularity most likely did not play a roll. All ten of these
significantly associated loci were located within CpG islands and the DNA
methylation levels at these sites showed an increase with age across each of
the four tissues Figure 45. The analysis of the independently ascertained stage
2 sample series confirmed the strong associations at all of these loci Table 7.
It is important to note that the direction and magnitude of effect was consistent

in both sample series.
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Shown are data in cerebellum (purple), frontal cortex (green), pons (blue) and
temporal cortex (red) for ten CpG sites where methylation levels increase
significantly with age in all four brain regions (based on a Bonferroni threshold
for significance of p = 1.8x10®). Notably for all 10 loci that met our
conservative threshold for significance, methylation levels were positively

associated with age.
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Table 7: Ten DNA methylation sites identified as significantly associated with chronological age in all tissues from stage |.

Notably DNA methylation level at each of these CpG sites is significantly and consistently associated with chronological
age in stage Il. CBLM — cerebellum; FCTX — frontal cortex; PONS — pons; TCTX —temporal cortex. Genomic position is
based on hgl18 of the human genome.

Genomic Dist. | Stage | p value Stage |l p value

Name Chr | (bp) Symbol | TSS Range

cg06144905 | 17 | 24393906 PIPOX | 138 |7.3x107 |6.2x10™° | 3.4x107 | 1.1x10™"® | 5.8x10° | 3.2x10™® | [1.5x10°3.4x107
cg06993413 | 15 | 63597257 DPP8 | 162 |2.7x10"° | 5.4x10™ | 9.0x10° | 5.4x10™ | 5.5x10%" | 3.8x10™° | [4.3x10™,9.8x10%]
cg10523019 | 2 227408702 | RHBDD1 | 315 | 7.7x107 |9.2x10° | 6.1x10™"° | 3.2x10™ | 2.0x10™"® | 5.5x10™"° | [5.9x10™ 1.2x107]
cgl4424579 | 2 27127813 | FLJ21839 | 240 | 5.9x107 | 3.5x10° | 3.2x107 | 3.7x10™ | 2.5x10™"° | 9.4x10™"* | [2.8x10™ 4.0x10™]
cg15201877 | 1 71285561 | PTGER3 | 518 |5.4x10™ | 1.3x10™ | 1.1x10™"® | 1.6x10™® | 5.1x10° | 8.5x10*° | [3.4x10™ 1.6x107]
cgl8108623 | 17 | 30725434 | FLJ34922 | 701 | 1.7x10° | 9.3x10™ | 1.8x107 | 9.6x10™° | 3.1x10° | 1.2x10** | [3.0x10™ 8.4x10"]
cg18555440 | 11 | 17698263 MYOD1 |528 |1.8x10° |2.2x10° | 3.6x107 | 2.6x10™ | 1.0x10*° | 6.0x10™ | [5.7x10™8.0x10™]
cg19945840 | 1 1157899 B3GALT6 | 391 | 4.2x10™"° | 1.7x10° | 1.8x10™ | 5.0x10™"° | 6.9x10%° | 2.3x10™ | [1.9x10°2.6x107]
cg21589115 | 19 | 54558926 DKKL1 |72 1.2x10° | 1.7x10™ | 6.2x10™ | 2.4x10™® | 5.1x10™ | 3.2x10?° | [5.8x10*,1.8x107]
cg27529628 | 12 | 99491350 GAS2L3 | 270 | 8.1x10™° | 1.8x10™° | 8.2x10™"* | 7.8x10%° | 2.3x10-*" | 3.8x10*° | [7.1x10™ 1.5x107]




5.3.2 Substantial enrichment of CpG Methylation sites positively
correlated with chronological age
The preliminary assessment of the 10 loci where DNA methylation was
associated with chronological age in all four brain regions revealed that each of
the associations was in the positive direction, increasing DNA methylation.
Further, the majority of all the significantly associated loci in each tissue showed
that this positive association was the trend. This is illustrated in Figure 44, where
positive correlations between chronological age and DNA methylation appear to
be in tremendous excess and are indicated by upward pointing triangles. 95.4%
of significant results passing Bonferroni correction in stage | showed a positive
correlation with age, whereas only 56.0% of non-significant results had positive
regression coefficients, illustrating that this consistent direction of effect far
exceeds chance (Z-statistic = 26.7, p-value < 0.0001). This enrichment of
positive associations was also seen in the replication dataset with 78.6% of
significant associations having a positive direction of effect, and 55.1% of non-
significant results having a positive direction of effect (Z-statistic = 20.4, p-value <

0.0001).

It was recently shown by Christensen and colleagues that (among solid tissues
studied, including the brain) the direction of correlation between age and
methylation differs upon whether the CpG site is located within an island [312],

observing that loci within CpG islands showed significant increases in
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methylation with advancing age while CpG sites located outside of islands
showed significant losses of methylation with aging. In the present analysis the
regression coefficients from the stage | data showed an excess of CpG sites
where DNA methylation positively correlated with age within islands compared to
those sites outside of CpG islands. Of the age associated sites within CpG
islands, the correlation between DNA methylation and chronological age was
positive in more than 98% of sites. Conversely, a substantially lower proportion of
associated sites outside of CpG islands showed a positive correlation between

DNA methylation levels and age (Figure 46).
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Figure 46: Significant results show an excess of CpG sites positively associated
with age.

This relationship is particularly pronounced at CpG sites within canonical islands
(red solid line). Both positive and negative correlation between CpG sites and
chronological age exist at non-island CpG sites.

Due to the potential confounding effect of unreliable designation into island/non-
island status, we repeated this analysis using a more restrictive definition of CpG
sites inside and outside of islands, requiring that a CpG site meet the criteria for
being located within an island in all three resources used for annotation: EP
score [282], UCSC genome browser sequence-based annotation of CpG sites
[178] and lllumina documentation. Restricting the definition did not change the

excess of positive correlations within islands versus non-islands (Figure 47).
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These data are supported by previous work performed in human blood [313]. Our
analysis illustrates that those sites where DNA methylation was negatively
correlated with age are sixteen times more likely to be located outside of a CpG
island versus within a CpG island.
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Figure 47: Analysis of the regression coefficients from stage 1 data continue to
show the excess of positive correlations within islands versus non-islands using
a more restrictive definition of sites inside and outside of islands.
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5.3.3 Comparison of age-related CpG methylation changes across brain
regions
In order to determine whether the associations found between DNA methylation
at individual CpG sites and chronological age were consistent across brain
regions, a comparison of association p-values was performed across cerebellum,
frontal cortex, pons, and temporal cortex datasets. Individual CpG sites where
DNA methylation level showed a significant association with chronological age in
at least one of the four tissues were included in the analysis, revealing that age
associated CpG sites are most similar in frontal cortex and temporal cortex and
that these two tissues are in turn quite similar to pons (Figure 48). In contrast, the
pattern of age associated CpG sites observed in the cerebellum was by far the

most distinct of the four regions tested.
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Figure 48: Ternary plots showing concordance of combined p values from phase |
analyses across all four brain regions stratified by CpG island or non-island
status.

The number and identity of samples in stage | were marginally different between
the four tissue regions tested due to occasional sample or assay failure. To
ensure the observed differences were not a result of power, a comparison was
performed among age-associated CpG sites across tissues on a subset of
donors from stage | for whom data on each of the four tissues were available (n =

84). These analyses revealed that uniqueness of associations in cerebellar tissue
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was not due to sampling bias. The relative similarity between the frontal cortex

and temporal cortex tissues remained (Figure 49).
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Figure 49: Analyses on a subset of donors from stage 1 for whom data on each of
the four tissues were available revealed the uniqueness of associations in
cerebellar tissue was not due to sampling bias

Next, the analysis was expanded to include data derived from the additional
frontal cortex and cerebellar samples typed in stage Il (Figure 14). Again
significant associations occurred in both the frontal and cerebellar datasets (as

well as in all 4 regions). As before, the most associated methylation sites (with
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the highest p-values) displayed comparatively similar methylation levels in both
tissues. These findings are consistent with previous reports from our group and
others showing that patterns of both DNA methylation and expression are quite

different in cerebellum compared to other brain tissues [279].
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Figure 50: Data from stage Il comparing results from cerebellum and frontal
cortex.

These data show that significant results across two or more tissues often occur
at similar methylation levels across various tissues, seemingly robust to the
maghnitude of methylation.
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5.3.4 Gene ontology/functional annotation analysis

In order to provide insight into the biological function of age-associated CpG sites
and to determine whether genes within close proximity to these sites were
functionally similar, the Database for Annotation, Visualization and Integrated

Discovery (DAVID) (http://david.abcc.ncifcrf.gov/) was use to investigate for

enrichment of gene ontology (GO) terms. Six hundred and eighty three unique
EntrezGene identifiers were cross-referenced in the DAVID database, using
lllumina gene annotation for significantly associated CpG sites from our initial
stage 1 analysis. These 683 were considered our experimental pool in the
clustering analysis. A total of 228 clusters were generated. Six clusters with the
highest degrees of enrichment are shown in Figure 51. These clusters illustrate a
strong enrichment for genes related to DNA binding, morphogenesis and

regulation of transcription.
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Figure 51: A map of enriched functional clusters for genes proximal to age
associated CpG sites based on DAVID functional annotation clustering.

This figure shows the inferred functional relatedness of clustered genes at a
greater than four-fold level of enrichment among significant results in phase | of
this study. Line thickness connecting nodes indicates relative p-value of the term
within the cluster, with the thickest line representing the most significant term (p-
value = 1.6x10-19) and the thinnest lines representing the least significant term (p-

value = 2.5x10-5).
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5.4 Discussion

In an attempt to understand and map DNA methylation levels in normal brain with
chronological age, genome-wide analysis of DNA methylation across four distinct
brain regions was performed in two stages, a discovery stage in four brain

regions and a replication in two brain regions.

CpG sites were shown to exhibit strong age-associated changes in DNA
methylation. Many of the significantly associated CpG sites were found in
multiple tissues and occurred at higher frequencies than expected by chance.
Assessing DNA methylation levels in frozen brain tissue samples and attempting
to associate these levels with chronological age presents a unique confound in
that brain tissue has a dynamic cellular composition. Of note, is that the
proportion of neurons to glia may change with chronological aging. However, we
have identified consistent results across multiple brain regions and therefore, it is
not likely to be a confounding point among the 10 CpG sites showing significant

genome-wide association with chronological age across all four brain regions.

Further, four of the ten loci identified in all four brain regions of the analyses were
shown previously to be associated with age-related methylation changes in
pleura and blood [312, 313]. Age-related increases in methylation levels for
discrete CpG loci was also shown in DNA isolated by fluorescence activated cell

sorting (FACS) from cerebral cortex neuronal nuclei of 125 subjects [314].
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Although this particular study was not a genome-wide examination of CpG loci, it
did show similar results of increasing DNA methylation in the brain correlated
with age. This study examined 50 CpG sites in samples consisting solely of
neuronal DNA, thus removing the possible confound of non-neuronal cells
contributing to the signal. Together, these data provide evidence that the age-
related CpG loci detected here are not artifacts of age-associated alterations in

brain tissue cellularity, but indicate a biological change in DNA methylation state.

In the present study, an enrichment of age-associated methylation changes at
CpG islands of functionally related transcripts was shown. DNA binding factors
and transcription factors were identified as classes of genes linked with age-
associated CpG sites. The clustering of age-associated CpG methylation sites
proximal to genes associated with DNA binding and predominantly transcription
with homeobox proteins suggests that age-related alterations in methylation
might be important for the maintenance of transcriptional programs in aging
tissues. It is the tendency for gene expression to show higher variance as
organisms age, versus a linear association with aging [315]. Therefore, it is an
interesting possibility that the increase of DNA methylation may be important in
maintenance of consistent gene expression patterns with age and conceivably

relevant to the study of late onset neurodegenerative disease mechanism.
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6  General Summary and Conclusions

A principal reason for performing genetic analysis of disease is to use the
insights provided by genetics to understand the biological processes underlying
disease etiology. Disease genetics has followed a route for a number of years,
discovering genetic mutations that cause disease and subsequently using those
mutations to model and understand the disease process in cells and animals.
While progress on this path has been challenging, there have been successes
and science has benefited from this research paradigm. However, as new
approaches to understanding genetic influences in disease emerge, such as
genetic risk factors, the requirements for a novel means to study the biological

basis of these new genetic influences must be established.

To this end, the work in this thesis illustrates the beginning of one new path using
genetics to understand disease. This research focused on using modern genomic
and epigenomic approaches to generate a dataset mapping the influence of
common genetic variability on CpG methylation levels in human brain and
investigating trends in CpG methylation levels associated with chronological age

in normal human brain.

Genome wide association studies have provided information on a new form of
genetic influence in disease and now require a novel set of methods to effectively

leverage this information. Here, GWA has been performed in a large series of PD
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cases and controls, resulting in the identification of 11 novel risk loci for this
disease. This work has provided fundamental knowledge regarding the genetic
architecture of PD. It has shown that the common disease common variant
hypothesis is testable and true in PD, revealing that genes containing dominant
PD causing mutations such as LRRK2 and SNCA, also contain non-coding
variability that confers risk for the disease in the general PD population. This
observation suggests that similar mechanisms leading to disease in mutation
carriers also occur in genetically complex PD. This effort has also delivered a
large number of genes putatively involved in risk for PD. As with other GWA, it is
extremely challenging to distinguish the key gene within a locus that may be

altered and operating in disease pathogenesis.

In an attempt to begin to address this obstacle, this thesis describes work that
centered on creating a reference set of data, linking common genetic variation
with DNA methylation levels in the human brain. These data showed that
methylation levels at a large number of CpG sites are associated with genotype,
and further that when the two were correlated, they also tended to be physically

close and generalizable across brain regions.

Integrating the PD GWA with dmQTL data revealed that the majority of PD risk
alleles were also dmQTLs for proximal CpG sites. These results suggest the
investigation of dmQTL could be a fruitful area of initial investigation on the path
toward understanding disease etiology. Most striking of the dmQTLs presented,
were the dmQTLs observed for the two independent risk alleles at SNCA.
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Despite being ~55kb apart, both risk alleles influence DNA methylation at the
same CpG site within the promoter region of SNCA. Notably, both risk alleles
influence CpG methylation at this site in the same direction (increasing risk being

associated with increasing methylation).

The last portion of my thesis describes work that aims to identify whether there
are age-associated changes in DNA methylation in the human brain. This effort
represents the most comprehensive analysis of CpG methylation levels and
chronological age in neurological tissue performed to date and provides insight
into coordinated changes in DNA methylation during aging providing a starting
point for understanding the underlying mechanisms of aging. This work showed
consistent and highly significant changes in DNA methylation at 10 loci across all
brain regions. A portion of these age-associated methylation loci had been
previously reported in other tissues. Therefore, it is an interesting possibility that
predictable changes in DNA methylation may be important in maintenance of

consistent gene expression patterns with age.

There are many directions in which this research can be taken further. In the
context of the discovery of genetic risk factors, much is already being done.
During the time of performing this thesis work the number of loci identified for PD
went from 5 to 28 and it is likely that ongoing analyses using existing GWA data
will identify additional loci. Second generation sequencing will be a factor in the
identification of new PD linked genes, and this will likely impact in the field
through resequencing of candidate loci (including GWA loci), exome sequencing,
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and ultimately whole genome sequencing. There is also room to apply each of
these techniques beyond simple disease association, analyzing other key
phenotypes such as disease onset, disease progression, disease course,
response to medication, and the appearance of other symptoms (such as

depression, and dementia).

Many challenges remain in our endeavor to translate genetics to an
understanding of disease pathogenesis. Possibly the most difficult of these
challenges today is understanding the biological effects of risk alleles both in the
context of which gene is mediating risk, and in what way that gene is altered. The
current work examining DNA methylation provides some insight; however, there
are limitations of these data. While this work is the most comprehensive in
sample size and number of CpG sites examined in brain tissue, there are still a
large number of CpG sites that remain to be assessed. Examining the complete
methylation signature across each of the associated PD risk loci could provide
valuable information. Further, this work examines tissue of mixed cellular
composition; therefore, cell specific changes are difficult to observe. The
application of more comprehensive sequence based methods, particularly in
defined cell populations, would address some of these issues. However, the
application (for example) of DNA methylation sequencing in a series of iPS cells
differentiated into dopaminergic neurons is currently time and cost prohibitive.
Enhancing our work by expanding the brain sample series and/or assessing a

more comprehensive list of CpG sites will be useful; however, significant
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information could likely be gained by integrating other forms of data. Total RNA
sequencing data in the same series of brains described here is currently being
generated. Given that DNA methylation can be associated with gene expression
levels, transcript expression levels, splicing, and UTR usage, RNA sequencing
will add a valuable set of data to the current work. Investigation into many of the
identified loci using other genetic and functional efforts will be performed over the
next 2-3 years. These efforts include resequencing of the PD risk loci (which will
help in gene identification through the identification of rare coding mutations) and
mapping of transcriptional regulatory elements within cells of interest at these

specific loci.

Lastly, the work examining the association between chronological age and DNA
methylation is currently being followed up within a longitudinal series of blood
samples collected at 3 time points in an epidemiological cohort (INCHIANTI
study: www.inchiantistudy.net/). Undoubtedly, as the relationship between aging
and methylation is better defined, there will be an opportunity to integrate these
epigenetic changes (and those within PD loci in particular) into our models of PD

risk and pathogenesis.
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8  Supplementary Information
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Supplementary Figure 1: Locus plot for the SYT11 locus on chromosome 1.
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Chr 2: 134808851 — 135808851 bp
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Supplementary Figure 2: Locus plot for the ACMSD locus on chromosome 2
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Supplementary Figure 3: Locus plot for the STK39 locus on chromosome 2
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Chr 3: 183803969 — 184803969 bp
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Supplementary Figure 4: Locus plot for the MCCC1 locus on chromosome 3
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Supplementary Figure 5: Locus plot for the GAK/DGKQ locus on chromosome 4
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Supplementary Figure 6: Locus plot for the BST1 locus on chromosome 4
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Supplementary Figure 7: Locus plot for the SNCA locus on chromosome 4
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Supplementary Figure 8: Locus plot for the HLA-DRB locus on chromosome 6
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Supplementary Figure 9: Locus plot for the LRRK2 locus on chromosome 12
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Supplementary Figure 10: Locus plot for the HIP1R locus on chromosome 12
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Chr 17: 40070633 — 42070633 bp
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Supplementary Figure 11: Locus plot for the MAPT locus on chromosome 17
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Supplementary Figure 12: PD risk allele rs114138760 on chromosome 1 does not

significantly associate with DNA methylation.

Allele burden at rs114138760 was assessed for association with DNA methylation

levels at proximal CpG sites. Non-associated CpG sites are shown as open
symbols

rs71628662 Chr1
o)
o : * |sland
© N | * North Shore
% _ & o ! * North Shelf
> O O : o * South Shore
2 ° _ 0c® o & | g | * South Shelf
69) LD 6 o ©O @OO%OOO o ! . * Non-Island
(_3 ] © o O@ g | e} ©
B DIERY X ¥ TS )
g _ ® @ ® o) @® I 80 e %
|

| | [
154.5 155.0 155.5 156.0

Position (MBDp)

Supplementary Figure 13: PD risk allele rs71628662 on chromosome 1 does not

significantly associate with DNA methylation.
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Allele burden at rs71628662 was assessed for association with DNA methylation

levels at proximal CpG sites. Non-associated CpG sites are shown as open

symbols
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Supplementary Figure 14: PD risk allele rs1955337 on chromosome 2 does not
significantly associate with DNA methylation.
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Allele burden at rs1955337 was assessed for association with DNA methylation

levels at proximal CpG sites. Non-associated CpG sites are shown as open

symbols
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Supplementary Figure 15: PD risk allele rs12637471 on chromosome 3 does not
significantly associate with DNA methylation.

Allele burden at rs12637471 was assessed for association with DNA methylation
levels at proximal CpG sites. Non-associated CpG sites are shown as open
symbols
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Supplementary Figure 16: PD risk allele rs11724635 on chromosome 4 does not
significantly associate with DNA methylation.

Allele burden at rs11724635 was assessed for association with DNA methylation
levels at proximal CpG sites. Non-associated CpG sites are shown as open
symbols
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Supplementary Figure 17: PD risk allele rs591323 on chromosome 8 does not
significantly associate with DNA methylation.

Allele burden at rs591323 was assessed for association with DNA methylation
levels at proximal CpG sites. Non-associated CpG sites are shown as open
symbols
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Supplementary Figure 18: PD risk allele rs118117788 on chromosome 10 does not
significantly associate with DNA methylation.

Allele burden at rs118117788 was assessed for association with DNA methylation
levels at proximal CpG sites. Non-associated CpG sites are shown as open
symbols
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Supplementary Figure 19: PD risk allele rs12456492 on chromosome 18 does not
significantly associate with DNA methylation.

Allele burden at rs12456492 was assessed for association with DNA methylation
levels at proximal CpG sites. Non-associated CpG sites are shown as open
symbols
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Supplementary Figure 20: PD risk allele rs55785911 on chromosome 20 does not
significantly associate with DNA methylation.

Allele burden at rs55785911 was assessed for association with DNA methylation
levels at proximal CpG sites. Non-associated CpG sites are shown as open
symbols
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