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Abstract—Though mutation operators have been designed
for a wide range of programming languages in the last three
decades, only a few operators are able to simulate memory
faults. This paper introduces 9 Memory Mutation Operators
targeting common memory faults. We report the results of an
empirical study using 16 open source programs, which come
with well designed unit test suites. We find only 44% of the
new memory mutants introduced are captured by the traditional
strong mutation killing criterion. We thus further introduce two
new killing criteria, the Memory Fault Detection and the Control
Flow Deviation killing criteria to augment the traditional strong
mutation testing criterion. Our results show that the two new
killing criteria are more effective at detecting memory mutants,
killing between 10% and 75% of those mutants left unkilled by
the traditional criterion.

I. INTRODUCTION

Mutation testing is a fault-based testing methodology that
aims to identify whether a codebase is vulnerable to specific
classes of faults [1]. By simulating simple bugs in a program,
this technique can identify vulnerabilities that are not detected
by traditional testing techniques such as unit testing. A recent
survey [2] has also shown that this mutation methodology is
gaining traction and it is being used in a growing number of
large scale commercial and experimental projects.

Although many (alternate) forms of testing exist, work on
memory vulnerabilities detection [3]–[5] in C applications has
shown the existence of vulnerabilities such as uninitialized
memory access, buffer overruns, invalid pointer access, be-
yond stack access, free memory access and memory leaks in
published code. Such vulnerabilities have been ranked highly
in the CWE SANS top 25 most dangerous programming
errors [6]. Moreover, such vulnerabilities are highly prone
to exploitation. For example, vulnerabilities such as a buffer
overflows when using malloc() facilitate exploits that over-
write heap metadata, gain access to unavailable function/data
pointers, overwrite arbitrary memory locations, and create fake
chunks of memory that may contain modified pointers.

Traditional Mutation Operators only simulate some simple
syntactic errors based on the Competent Programmer Hypoth-
esis [7]. Mutation Testing using these operators may drive
testers to generate test suites mainly targeting such errors.
This may lead to a lack of testcases revealing memory faults,
thus a weakness in traditional Mutation Testing. To overcome
this problem, we propose 9 Memory Mutation Operators
simulating three classes of common memory faults. However,
memory faults do not necessarily propagate to the output,
making strong killing criterion, which is widely adopted in
traditional Mutation Testing, not adequate to detect such faults.
To augment traditional Mutation Testing for detecting memory
faults, we introduce two additional weak killing criteria, i.e.
Memory Fault Detection and Control Flow Deviation. A single

Mutation Testing tool was developed with Memory Mutation
Operators, with the traditional strong killing criterion and the
proposed weak killing criteria incorporated. Using our tool, we
applied traditional Mutation Testing and both of the proposed
criteria to 16 subject programs. The results show that, among
359 generated mutants, traditional strong killing criterion killed
only 44% of the mutants, leaving 201 unkilled. After Memory
Fault Detection and Control Flow Deviation killing criteria are
introduced, 10% to 75% of those survived mutants are killed
across all subject programs.

The primary contributions of this paper are as follows:

1) We build a Mutation Testing tool that applies both
traditional and Memory Mutation Operators and takes
Memory Fault Detection and Control Flow Deviation
as additional killing criteria into account.

2) 9 Memory Mutation Operators are introduced to
mimic several categories of memory faults, reveal-
ing weaknesses in traditional Mutation Testing. On
16 subject programs, Memory Mutation Operators
successfully insert memory faults and generate 359
mutants.

3) We propose Memory Fault Detection (using Valgrind
for precise assessment of memory fault detection) and
Control Flow Deviation as additional killing criteria,
and show that up to 75% of surviving mutants are
killed by these additional criteria.

The rest of the paper is organized as follows: background
theory and the problem statement are presented in Section II,
while the methodology including Memory Mutation Operators
and proposed new killing criteria are presented in Section III
together with a list of research questions. Section IV introduces
the Mutation Testing framework and experimental setting, the
results and analysis of which are shown in Section V. We
summarise the threats to validity and related work in Sec-
tion VI and Section VII respectively, followed by conclusions
in Section VIII.

II. BACKGROUND

This chapter provides an overview of background informa-
tion relating to mutation testing.

A. Mutation Testing

Mutation Testing [1] is a white box testing technique that
measures the quality/adequacy of tests by examining whether
the test set (test input data) used in testing can reveal certain
types of faults. A mutation system defines a set of rules
(mutation operators) that generate simple syntactic alterations
(mutants) of the program under test (PUT), representing errors



that a “competent programmer” would make, known as the
Competent Programmer Hypothesis (CPH) [7].

To assess the quality of a given test suite, the set of
generated mutants are executed against the input test suite to
determine whether the injected faults can be detected. If a
test suite can identify a mutant from the PUT (i.e. produce
different execution results), the mutant is said to be killed.
Otherwise, the mutant is said to have survived (or live). A
mutant may remain live because either it is equivalent to the
original program (i.e. it is functionally identical to the original
program although syntactically different) or the test suite is
inadequate to kill the mutant. The Mutation Score (MS) is
used to quantify how adequate a test suite is in detecting the
artificial faults. It is calculated as the following formula:

MS (P, T ) =
number of mutants killed

total number of mutants generated
.

P is the program under test and T is the set of tests.
This metric is traditionally used as an estimation of test suite
effectiveness. However it is biased by the number of equivalent
mutants among all generated mutants.

The equivalent mutant problem is a major impediment to
large scale wide spread use and whether a mutant is equivalent
has been proven to be undecidable [8], [9]. Although it has
been shown that the problem of detecting equivalent mutants
cannot be completely automated, approaches to partially solve
this problem have been introduced. They consist of applying
compiler optimization techniques [9] and detecting infeasible
paths using static analysis [10]. Other work combines mutants
to generate HOMs (Higher Order Mutants) followed by using
the number of unit tests that killed FOMs (First Order Mutants)
that make up a HOM to identify equivalent mutants [11]. Co-
evolution has also been proposed to achieve tailored selec-
tive mutation to partially evaluate mutants [12]. Due to the
undecidable nature of this problem and the requirement of a
human in order to solve it, it can be considered as a Human
Intelligence Task (HIT) [13] such that the cost of the human
oracle associated increases with the scale of the program under
test.

B. Problem Statement

Though there are many Mutation Testing engines [14]–
[23] for different programming languages, they do not address
the issue of evaluating test suite effectiveness with regards to
memory based faults adequately. Using this as a basis for our
investigation, we propose a set of mutation operators that aim
to model such faults and developed a Mutation Testing tool for
C programs that integrates these Memory Mutation Operators.

In traditional Mutation Testing, only the mutant’s outputs
are compared against the original program’s outputs to kill the
mutants, while much more information are generated during
the test, such as implicit memory faults and control flow
graphs. The problem of equivalent mutants may be alleviated
by using a richer source of other information to eliminate
some seem-to-be equivalent mutants. In this paper, we propose
two more killing criteria for memory-related mutation testing,
Memory Fault Detection and Control Flow Deviation. The
number of detected memory faults in a mutant is used to

suggest whether the mutant is potentially equivalent to the
original program, while Control Flow Deviation is to tell
whether a mutant executes a different path than the original.
More details about Memory Fault Detection and Control
Flow Deviation criteria can be found in Section III-B and
Section III-C respectively.

III. METHODOLOGY

In this section, we first present 9 Memory Mutation Oper-
ators we designed to simulate the memory faults, as well as
Memory Fault Detection and Control Flow Deviation killing
criteria. Then we list the research questions that we aim to
answer in this paper.

A. Memory Mutation Operators

A set of 9 Memory Mutation Operators (MeMOs) are
proposed in this project. Each mutation operator mutates calls
to memory related function calls (e.g. malloc(), calloc(), or
free()), their arguments, or assignments of NULL. We divide
these mutation operators into three categories based on the
faults they inject into the code base: uninitialized memory
access, faulty memory allocation and faulty heap management.

Table I lists the proposed operators together with a brief
descriptions. All of the mutation categories evaluate the inher-
ent vulnerabilities of memory related functions in C programs
which concerned previous work [24]–[26].

Each MeMO is detailed in one of the three categories below
as well as a rationale behind its choice.

1) Uninitialized Memory Access: The proposed operators
in this category generate mutants that can cause uninitialized
memory to be accessed in the program. As defined in the C
specification, memory allocated by malloc() is not guaranteed
to be initialized in comparison to calloc(), which initialises
the memory to 0. REC2M replaces instances of calloc() with
malloc() in order to inject uninitialized memory usage faults
into the program (Table II).

TABLE II. EXAMPLE OF REC2M

Original Program
(P )

int

*

array;

array = calloc(15, sizeof(int));

Mutated Program
(P 0)

int

*

array;

array = malloc(15

*

sizeof(int));

RMNA removes NULL assignment statements. Depending
on the usage of the mutated pointer, faults such as dangling
pointers or dereferencing uninitialized pointer are injected.
Table III shows an example application of the RMNA operator,
where the mutated program P 0 is an example of how this
mutation operator can inject a dangling pointer fault and
introduce undefined behaviour into the application.

TABLE III. EXAMPLE OF RMNA

Original Program
(P )

char

*

s = calloc(15,sizeof(char));

...

free(str);

str = NULL;

Mutated Program
(P 0)

char

*

s = calloc(15,sizeof(char));

...

free(str);

str;



TABLE I. MEMORY MUTATION OPERATORS

Category Operator Brief Description
Uninitialized
Memory Access

REC2M Replace calloc() with malloc()
RMNA Remove NULL character assignment statement

Faulty Memory
Allocation

REDAWN Replace dynamic memory allocation calls malloc(), calloc(), alloca() and realloc() with NULL
REDAWZ Replace size of the requested block with 0 for dynamic memory allocation functions
RESOTPE Replace the arguments of the sizeof() unary operator with the pointer type equivalent if a non-pointer type is specified
REMSOTP Replace the arguments of the sizeof() unary operator with the non-pointer type equivalent if a pointer type is specified

Faulty Heap
Management

RMFS Remove free() statement
REM2A Replace malloc() with alloca()
REC2A Replace calloc() with alloca()

2) Faulty Memory Allocation: The proposed operators in
this category generate mutants that mutate the way memory
is allocated in order to measure the effectiveness of test
suites at detecting faults such as buffer overflow, underflow
and undefined behaviour. Variable length arrays (VLAs) are
a class of C arrays that can be declared with a size that is
not a constant integer expression, where the size expression
is evaluated at runtime. According to the C specification, if
size arguments of VLAs are not in a valid ranges, this could
result in undefined behaviour. Moreover, a violation of this
constraint does not stop code from being compiled and no
compiler warning will be generated.

TABLE IV. EXAMPLE OF REDAWN

Original Program
(P )

char

*

str;

str = malloc(6

*

sizeof(char));

strcpy(str, "hello");

Mutated Program
(P 0)

char

*

str;

str = NULL;

strcpy(str, "hello");

REDAWN replaces instances of memory allocation calls
with NULL in order to generate mutants which measure the
effectiveness of test suites in identifying faults that occur due
to unchecked return value of memory allocation functions.
Table IV shows an application of this mutation operator.

REDAWZ replaces the request size passed to memory
allocation calls with 0 in order to inject zero allocation faults.
The C specification states that for any of the memory allocating
functions, if a memory block of size 0 is requested, the
behaviour is implementation-defined, i.e. the value can be a
NULL pointer or a unique pointer. One of the problems this
can cause is that, for those implementations where allocation
functions return a unique pointer, NULL checks, which are
considered adequate when receiving pointers through dynamic
allocation, will pass. This assumption can also lead to tests
not detecting such faults. Table V shows an application of
REDAWZ where in P 0 although allocation failed to return the
request size, the program will still trust the allocated pointer
and return true, unless the programmer wrote special checks
to account for such behaviour.

TABLE V. EXAMPLE OF REDAWZ

Original Program
(P )

int num = malloc(10

*

sizeof(int));

return num!=NULL;

Mutated Program
(P 0)

int num = malloc(0);

return num!=NULL;

RESOTPE and REMSOTP mutate the data type of the
sizeof() operator that is typically used by programmers when
dynamically allocating memory. This mutation aims to gener-
ate faults that model the incorrect use of the sizeof() operator

on pointer data types. On some architectures it may be possible
that for a given data type T , sizeof(T ) is equal to sizeof(T*).
This may lead programmers that lack understanding of the C
programming language to believe that this is indeed the case.
However, the effect of this is: sizeof(T ) returns the size of the
data type T itself, while sizeof(T*) returns the size of a pointer
(to T ). Moreover, the C standard allows pointers to different
types to have different sizes, e.g. sizeof(char*) is not necessar-
ily the same as sizeof(int*) which implies that sizeof(T*) is not
guaranteed to always be the same regardless of the type of T .
Faults of this nature can cause incorrect memory allocations
and lead to buffer overflows and memory leaks. Table VI shows
an application of these mutation operators.

3) Faulty Heap Management: The proposed operators in
this category generate mutants that model faults that can occur
due to improper memory management and also to test the
effectiveness of test suites in handling events where allocation
functions may fail due to a lack of free memory.

RMFS mutates instances of the free() standard C library
function by removing instances of free() in order to inject
memory leaks into the program. REM2A and REC2A replaces
instances of malloc() and calloc() with alloca(). Mutants
generated by these operators dynamically allocate memory on
the stack instead of the heap. If a pointer to that memory
is dereferenced after the function containing the allocating
call finished, the pointer is dangling and the memory may
have meanwhile been overwritten. Another problem with using
alloca() is the fact it is not guaranteed to return NULL if it
fails to find enough space on the stack and, depending on the
implementation, it may cause some parts of the stack to be
overwritten. On the other hand, as memory allocated using
alloca() is automatically freed once the function that called it
returns to its caller, it can be possible that this mutation may
lead to memory leak error correction in the program. This is
because as shown in Table VII below, the program P does not
free the allocated memory whereas in P 0 there is no need to
manually call free() in order to free the allocated memory.

B. Memory Faults

Traditional Mutation Testing only uses the test output of
the mutants and the test output of the original to (strongly)
kill the mutants. However, executing the mutants against a
testsuite generates much richer information that is neglected
in traditional Mutation Testing. Memory Fault Detection can
generate one kind of such additional information. If a memory
fault is detected in a mutant but is not detected in the original,
one can be sure that the memory fault must have been
introduced into the mutant by the mutation operator, thus the
mutant can not be equivalent to the original in every sense



TABLE VI. EXAMPLES OF RESOTPE AND REMSOTP

RESOTPE REMSOTP
Original Program

(P )
char

*

str;

str = malloc(10

*

sizeof(char));

char

*

str;

str = malloc(10

*

sizeof(char

*

));

Mutated Program
(P 0)

char

*

str;

str = malloc(10

*

sizeof(char

*

));

char

*

str;

str = malloc(10

*

sizeof(char));

TABLE VII. EXAMPLES OF RMFS, REC2A AND REM2A

RMFS REC2A REM2A

Original Program
(P )

T

*

data;

data = malloc(8

*

sizeof(T));

free(data);

int

*

nums;

nums = malloc(8

*

sizeof(int));

int

*

nums;

nums = calloc(8, sizeof(int));

Mutated Program
(P 0)

T

*

data;

data = malloc(8

*

sizeof(T));

int

*

nums;

nums = alloca(8

*

sizeof(int));

int

*

nums;

nums = alloca(8

*

sizeof(int));

of “equivalent”. Memory Fault Detection can reveal presence
of memory faults that do not always propagate to the output,
so some of the memory faults may not reveal themselves in
the test outcome, yet we still have other ways to detect them
during the execution. In this paper, we propose using Valgrind
to detect memory faults as an additional weak mutation killing
criterion. Despite other tools that can also detect memory
faults, we choose Valgrind because it is a stable tool and
widely used for memory fault detection. Valgrind can easily
be changed to other memory fault detection means.

We say a mutant Mi is killed by the Memory Fault
Detection (MFD) criterion if MFD(Mi, t) > MFD(P

UT

, t)
for any testcase t, where MFD(P, t) is the number of memory
faults found from program P when running it against testcase
t. Notice that the original program may also contain some
memory faults, we only care whether a mutant contains ‘more’
memory faults than that in the original.

Since the MeMOs are designed to simulate real memory
faults, we expect to see a large number of mutants generated
from MeMOs can not be killed by the traditional criterion but
are killed by the MFD criterion.

C. Control Flow Deviation

A program can be considered as a network of nodes which
represent branches in the program and each test as a possible
entry point into the network. If we consider the execution of
each mutated program as a path from a starting node (the point
in the program execution at which the mutant is executed) to
a sink node (the point at which the program terminates), then
the set of mutants which generate a path that is different in
comparison to the path generated by the PUT can be classified
as weakly non-equivalent mutants.

Similar to the representation of control flow graphs [27], in
Fig. 1 test cases are represented by circles labelled t

1

, . . . , t
7

,
the mutation execution point is labelled as M, the set of pro-
gram branching states that makeup the control flow for a given
program are labelled s

1

, . . . , s
7

and the sink state (program
termination) is labelled s

8

. Fig. 1 also shows an example
execution of test case t

4

(two graphs to the left) where the
control flow of the mutated program M ht

4

, s
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, s
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, s
6
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8

i
is able to deviate from the control flow of the original program
P ht

4

, s
1

, s
3

, s
7

, s
8

i, whereas in the execution of test case
t
7

(the graph to the right), the execution paths are the same
ht

7

, s
1

, s
2

, s
3

, s
7

, s
8

i. We consider this kind of deviation as a
distinguishing factor that can help reduce the set of survived

mutants. We also consider this deviation as a sign of test suite
weakness, since the deviation shows that a mutant was able to
execute undesired code and pass all the test cases regardlessly.

Let CFG(P ) be the control flow graph of program P and
let E(G, t) be the edge set of graph G for the execution of
testcase t. We say a mutant M is killed by the Control Flow
Deviation (CFD) criterion, iff

9t 2 T : EO = E(CFG(P
UT

), t)

^ EM = E(CFG(M), t)

^ (EO [ EM )� (EO \ EM ) 6= ;

On the other hand, if E(CFG(M), t) is the same as
E(CFG(P

UT

), t), the mutant survives.

In our experiments, we use the CFD criterion to further
reduce the number of survived memory mutants. However,
CFD criterion is not designed to detect memory faults, thus
can be adopted by any Mutation Testing framework.

D. Research Questions

We try to answer the following research questions:

RQ1 What are the characteristics of the proposed Memory
Mutation Operators?

RQ1a What is the prevalence of Memory Mutants?
RQ1b How effective is each Memory Mutation Op-

erator in generating memory faults?
RQ1c What is the Mutation Score for the traditional

criterion applied against the Memory Mutants?

RQ2 What is the reduction rate of survived mutants after
introducing Memory Fault Detection and Control Flow
Deviation as additional killing criteria?

RQ3 What is the relation between Memory Fault Detection
and Control Flow Deviation killing criteria?

We ask the first research question to understand some
basic properties of the proposed MeMOs. To obtain different
aspects of the properties, we ask three sub-questions: Firstly,
we would like to know how effective the Memory Mutation
Operators are in injecting memory faults into subject programs
in terms of the number of generated mutants. Then we ask a
further question to understand the effectiveness of each one
of the Memory Mutation Operators in generating mutants.
Additionally, we are interested in how many mutants generated
from these Memory Mutation Operators survive when applying
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Fig. 1. Control Flow Deviation. Test t4 generates different control flow before and after the mutation at state s3 (the two graphs to the left). Test t7 generates
the same control flow (the graph to the right).

All Mutants

               M

       C

T

Fig. 2. Venn Diagram of the relation between mutants killed by each criterion.
Sizes of the circles do not correspond to the real data.

only the traditional killing criterion, i.e. using only the test
output of the original program and the test output of a mutant.
The third subquestion can help us understand how weak
traditional Mutation Testing is in revealing memory faults.

After we understand the weakness of traditional Mutation
Testing in terms of memory faults, we ask the second research
question to understand how effective the two newly proposed
criteria are in reducing the number of equivalent mutants.
Furthermore, we want to understand the relation between these
two proposed killing criteria in terms of the number of mutants
only killed by each criterion. By answering this question, we
can see the effectiveness of each criterion and whether one
criterion subsumes the other.

The relation between the mutants killed by each criterion
can be easily understood by the Venn Diagram in Fig. 2.
Sets T , M and C contain the mutants killed by a testsuite
when the traditional (T ), Memory Fault Detection (M ) and
Control Flow Deviation criterion (C) area applied respectively.
Moreover, S represents the set of mutants that survive the
corresponding criterion for S 2 {T,M,C}. The Mutation
Score for a criterion can be calculated as:

MS =
|S|

|AllMutants|

In the Venn Diagram, set T (white area outside the grey
circle) contains all mutants surviving traditional mutation test-
ing, and from those the ones that interest us are the ones that
can be killed by the MFD and CFD criterion (the shaded part).
More formally, we answer RQ2 by calculating the ratio of the
shaded area contained in the white area (where T \ (M [C)
is the shaded area):

R
MFD+CFD

=
|T \ (M [ C)|

|T |

In order to answer RQ3, we calculate the size of two sets:
M

only

= M \ T \ C and C
only

= C \ T \ M . A bigger
size of each of these two sets means that more mutants can
only be killed by the corresponding criterion, thus the criterion
contributes more in reducing the number of survived mutants.

IV. EXPERIMENTS

We have built up a Mutation Testing tool targeting C pro-
grams which can support Memory Fault Detection and Control
Flow Deviation killing criteria. Some key components of the
framework are introduced in Section IV-A and the experiment
setup for this work is described later in Section IV-B.

A. Mutation Testing Framework

The overall framework of our Mutation Testing tool is
illustrated in Fig. 3. It takes a program under test (PUT) and
associated test suite as input, as well as a configuration file
containing paths to the source files and other parameters. After
generating mutants and testing them against the test suite, the
mutation report for each mutant is generated, which contains
the mutated point with the Mutation Operator applied, whether
the mutant has survived or is killed, and a list or criteria that
kill it if it is killed.
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Fig. 3. Mutation Testing Tool work flow. It takes a program under test, a test
suite and a configure file as input, and ourputs the mutation report for each
mutants generated.

The mutation engine in our tool was developed using the
TXL source transformation language [28]. TXL is a functional
language, which provides a rule-based way of traversing and
mutating the generated abstract syntax tree of a source file.
One big advantage of using TXL is that the mutations are
guaranteed to be safe, due to the fact that the transformational
rules are confined by a grammar which guarantees the transfor-
mations will always be compilable and abide by the grammar
of the language. Another advangate of TXL is that it has a very
simple rule based transformation definition system that allows
users to quickly develop their own rules without knowing the
lower level details. However, in comparison to another widely
used platform, Clang/LLVM, which is used by many other
mutation engines, TXL is slower for Mutation Testing due
to repeated source file parsing, once per mutant [14]–[19].
To overcome this problem, we develop a driver that allows
generation of all mutants for a given source file in a single
parse of the source file (similar to a meta-mutant [29]). We
leave the comprehensive comparison of efficiency between
TXL and Clang/LLVM as future work.

After the mutants are generated, some basic mutation
information including the mutated point and the Mutation
Operator applied are stored as part of the mutation report for
each mutant. The test driver then instruments the mutants and
compiles them, while those that fail to compile are labeled
as killed. After the compilation, all the mutants are executed
against the test suite, which generates three independent re-
sults: the test result indicating whether a mutant passes the
regression test, the memory log including potential memory
faults and the coverage information.

To detect memory faults, the mutants are executed by
Valgrind’s memcheck tool [26] which generates the memory
fault report for each mutant. The control flow information
is gathered by using Gcov [30] to generate the control flow
graph and the control flow coverage for each mutant. All of
this information is summarised in a single mutation report for
each mutant as the output of our tool.

B. Experiment Setup

With the framework introduced in Section IV-A, we applied
MeMOs to 16 “real world” C programs that implement unit
tests using the CuTest C testing framework [31] (Table VIII).

TABLE VIII. SUBJECT PROGRAMS UNDER TEST

PUT
NO. Program LoC

1 PeerWireProtocol 1547
2 Craft 731
3 CfixedArraylist 497
4 ChashMapViaLinkedList 488
5 CAVLTree 405
6 CpseudoLRU 384
7 CHashMapViaQuadraticProbing 1097
8 CtextureAtlas 745
9 Csplaytree 834
10 CstreamingBencodeReader 371
11 CSparseCounter 328
12 Cheap 207
13 CcircularBuffer 118
14 ClinkedListQueue 200
15 CbipBuffer 118
16 Cbitfield 87

PeerWireProtocol, a C based implementation of the Bit-
Torrent peer wire protocol, is the largest program (based
on lines of code) of the set. This program facilitates the
exchange of file blocks between peers over the wire in a P2P
Bittorrent system. The program also handles message flows,
handshakes and manages client negotiations. CRaft is a C
based implementation of the Raft Consensus protocol which
implements the Raft Consensus Algorithm in order to manage
multiple fault-tolerant distributed systems. CpseudoLRU im-
plements the Least Recently Used (LRU) caching algorithm
and CstreamingBencodeReader is a library for reading and
manipulating bencoded data, which is the encoding used by
the peer-to-peer file sharing system BitTorrent for storing and
transmitting loosely structured data. The rest of the programs
are implementations of common memory intensive data struc-
tures whereas.

The main reason for choosing these programs is the fact
that they are non-trivial real-world programs ranging from 87
to 1547 lines of code, making them of manageable size for
our simple proof-of-concept research tool. Moreover, they are
memory intensive, making extensive use of memory based
operators. Additionally, these programs come with real-world
test suites. All of the subject programs can be found in GitHub
repositories.

After we generated mutants from these subject programs,
we use both, the traditional killing criterion and additionally
the Memory Fault Detection and Control Flow Deviation
criteria to kill the mutants.

V. RESULTS

In this section, we answer the Research Questions one by
one using the experiment results.

A. Characteristics of MeMOs

To answer RQ1, we need to answer the sub-questions from
three aspects.
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Fig. 4. Number of generated Memory Mutants from each subject program

We gathered the number of mutants generated from each
of the subject programs and report it in Fig. 4. According
to the figure, the MeMOs generate a considerable number of
mutants, ranging from 5 to 62 for each subject program. For
half of the programs, MeMOs generate more than 20 mutants.
So the answer to RQ1a is that the Memory Mutation Operators
are effective in injecting memory faults into programs.

Specifically, we want to understand about how effective
each proposed Memory Mutation Operator is in injecting mem-
ory faults. The number of mutants generated by each Memory
Mutation Operator is reported in the third column in Table IX.
The numbers of generated mutants from all Memory Mutation
Operators are comparable (Except REMSOTP), indicating the
operators are similarily effective in injecting memory faults.
Recall that REMSOTP only applies to the unary operator
sizeof() when the argument is a data type pointer and in most
cases it is a data type. Therefore it is expected that REMSOTP
generates fewer mutants than its counterpart RESOTPE. So
the answer to RQ1b is that all MeMOs are equally effective
in injecting memory faults, while REMSOTP is slightly less
effective than others.

TABLE IX. NUMBER OF GENERATED MUTANTS AND SURVIVED
MUTANTS FOR EACH OPERATOR

Category Mutation
Operator

Generated
Mutants

Survived
Mutants

Mutation
Score

Uninitialized
Memory Access

REC2M 30 25 0.167
RMNA 39 21 0.462

Faulty Memory
Allocation

REDAWN 65 12 0.815
REDAWZ 63 35 0.444
RESOTPE 48 28 0.417
REMSOTP 5 5 0.000

Faulty Heap
Management

RMFS 53 53 0.000
REM2A 27 16 0.407
REC2A 29 6 0.793

All 359 201 0.440

To answer RQ1c, we calculate how many mutants survived
under the traditional killing criterion (comparing test outputs)
for each Memory Mutation Operator. The number of survived
mutants and the Mutation Score are reported in Column 4 and
5 respectively in Table IX. From the table we can see that
for 7 out of 9 operators the Mutation Scores are below 0.5.
The highest Mutation Score is 0.815, while the lowest is 0 –
meaning that none of the mutants generated by two operators
(5 for REMSOTP, 53 for RMFS) were killed. The answer
to RQ1c is that most of the MeMOs generate more than 50%
mutants that cannot be killed by applying the traditional killing

criterion, with a lowest Mutation Score of 0. There are quite
a lot survived mutants with respect to MeMOs, which may
severely bias the Mutation Score.

B. Reduction of Survived Mutants

In order to answer RQ2, we calculate how many survived
mutants can be killed by either the Memory Fault Detection
or the Control Flow Deviation killing criterion. We report the
reduction rate of survived mutants in Fig. 5. In the graph, each
100% bar represents all the survived mutants for each Memory
Mutation Operator in terms of the traditional criterion, or
T refering to the Venn Diagram in Fig. 2. The darker part
represents the ratio of these mutants killed by the Memory
Fault Detection and/or Control Flow Deviation criteria, or
R = T \ (M [ C). The percentage number on the dark bars
are calculated as |R|

|T | .

From the graph, we can see there is a reduction rate of more
than 60% for 4 out of 9 MeMOs, after introducing Memory
Fault and Control Flow Deviation killing criteria. The least
reduction rate is 10% while the biggest reduction rate is as
high as 75%. So the answer to RQ2 is, Memory Fault and
Control Flow Deviation criteria are effective in reducing the
number of survived mutants with the highest reduction rate of
75% for operator RESOTPE.

C. Contribution of MF and CFD

We calculate c
MFD

= |M
only

|
|R| and c

CFD

= |C
only

|
|R| for each

of the subject programs and report them in Table X. The value
of c

MFD

represents how much the MFD criterion exclusively
contributes to the reduction of survived mutants and is always
in the range of [0, 1]. When c

MFD

= 0, the MFD criterion
contributes none, since all the mutants, if any, killed by MFD
can also be killed by CFD (M

only

= ;), on the other hand, if
c
MFD

= 1, all of the mutants killed by MFD can only be killed
by MFD, indicating that CFD contributes none. Similarly, the
larger c

CFD

is, the more the CFD criterion contributes to the
reduction of survived mutants. Specially, c

MFD

+ c
CFD

 1
and 1� (c

MFD

+ c
CFD

) is the ratio of mutants killed by both
criteria. RQ3 can be answered by comparing c

MFD

and c
CFD

for all of the PUTs.

TABLE X. CONTRIBUTION OF MF AND CFD IN REDUCING SURVIVED
MUTANTS

PUT
NO.

Number of mutants
c
MFD

c
CFD

survived killed by
MF/CFD

killed by
MF only

killed by
CFD only

1 37 9 4 2 0.444 0.222
2 29 29 25 0 0.862 0
3 37 6 6 0 1 0
4 8 2 1 1 0.5 0.5
5 14 5 5 0 1 0
6 4 1 0 1 0 1
7 3 0 0 0 0 0
8 8 8 8 0 1 0
9 3 1 0 1 0 1
10 6 4 4 0 1 0
11 22 13 13 0 1 0
12 3 0 0 0 0 0
13 3 2 2 0 1 0
14 12 6 4 2 0.667 0.333
15 3 2 2 0 1 0
16 9 3 2 1 0.667 0.333
All 201 91 76 8 0.835 0.088



Fig. 5. Reduction of equivalent mutants after introducing Memory Fault Detection and Control Flow Deviation killing criteria. The percentage of the darker
bars is calculated as “number of mutants survived from strong killing criterion but killed by MFD and/or CFD” divided by ”number of mutants survived from
strong killing criterion”.

From Table X we can see that for most of the cases c
MFD

is bigger than c
CFD

(c
MFD

= 0.835 and c
CFD

= 0.088
for all subjects), indicating that the MFD criterion is more
“powerful”, i.e. it reduces more survived mutants. This is
not surprising since these mutants are generated by inserting
memory faults by MeMOs. Since both MFD and CFD criteria
can be applied to traditional Mutation Testing as well, whether
MFD is more powerful than CFD in traditional Mutation
Testing remains a question for future work. In our experiments,
even though c

MFD

is generally bigger than c
CFD

, on 6 PUTs
c
CFD

is larger than 0 with in total 8 mutants only killed
by CFD, suggesting that the CFD criterion is still useful in
reducing survived mutants since c

CFD

> 0 suggests that there
are some mutants that can only be killed by the CFD criterion.

VI. THREATS TO VALIDITY

A. Internal Validity

In this paper, we use Valgrind and Gcov to instrument
the PUTs to gather memory fault and control flow coverage
information during the execution. Whether these two instru-
mentations affect each other remains untested. This could
be an internal threat to the validity of the reduction rate of
survived mutants. Another threat is the execution environment.
The programs and the mutants are run in Valgrind’s virtual
environment, which may differ from a real environment. This
could bias the number of survived mutants with respect to each
killing criterion and is worth of investigation in the future.

B. External Validity

All of the conclusions are drawn from the PUTs ranging
from small sizes to moderately large sizes. But they don’t
garantee to hold on very large programs. Recall that most
the MeMOs apply only on malloc/free routines, the number
of mutants generated must relate to how frequently a pro-
gram uses the routines. This could lead to a threat to the
conclusion that MeMOs effectively insert memory faults to the

subject programs in terms of the number of generated mutants.
From another perspective of view, if a program uses dynamic
memory allocation less frequently, the program is less likely
to have memory faults and needs memory related Mutation
Testing less, thus the effect of this threat is reduced. The
contribution of MFD and CFD criteria reported in this paper
is only applicable on the 9 Memory Mutation Operators. It is
likely the values of their contribution will be different when
applied to other traditional Mutation Operators. This is merely
a threat since it is also interesting to see how these criteria
perform in detecting memory-specific faults.

VII. RELATED WORK

Shahriar [32] proposed 12 mutation operators which pri-
marily focus on Buffer Overflow vulnerabilities, vulnerable
library functions and program statements. The tool which they
developed uses mutation testing to generate test cases that
expose vulnerabilities in the program under test. Their pro-
posed mutation operators also suggest that they are interested
in identifying faults that aim to identify a programmers lack
of fundamental knowledge about the programming language
instead of identifying trivial syntactic faults. However, the
proposed operators in this study do not consider vulnerabilities
that are caused due to uninitialized memory access such as
NULL pointer dereferencing or memory leaks caused due to
faulty heap management, while we focus on and mutate the
heap management routines in this work. They also proposed
some killing criteria aiming at buffer overflows, but in our
work, using Valgrind is a more general way to detect memory
faults including buffer overflows.

Work done by Vilela [33] was an inspiration behind the mu-
tation operators that mutate the parameters of malloc(), calloc()
and other memory allocation/deallocation library functions
as well. Static memory allocations (MSMA) and Dynamic
memory allocations (MDMA) are proposed in this paper, each
of which mutate the buffer size in order to identify buffer
overflow and buffer underflow vulnerabilities. Although their



proposed mutation operators mutate memory related opera-
tions, they do not expose vulnerabilities that are caused due
to uninitialized memory faults like we propose in this project
as well as buffer vulnerabilities that can be caused due to an
incorrect argument to the sizeof() function generally used in
memory allocation.

Although Zhivich [34] use a mutation approach to identify
memory based faults as well as integrate dynamic memory
analysis tools in their work, they primarily focus on buffer
overflow vulnerabilities and do not consider the other classes
of vulnerabilities that we consider in this work. Also, their
work is mainly concerned with using mutation to mutate test
data and use code instrumentation along with dynamic memory
analysers to identify vulnerabilities, in comparison to using
mutation as a way of injecting faults into the source code itself
in our work. Moreover, due to the fact they do not perform any
source code transformation and much of their work is based
on dynamic analysis of the program under test, their work can
be classified as taking a more black-box testing approach in
comparison to the white-box testing approach that is taken in
this project.

Kosmatov [35] developed a runtime memory monitoring
library for runtime assertion checking in Frama-C [26], which
is a platform for analysis of C code. Their work aims to detect
dynamic memory related faults such as invalid pointers, out-
of-bounds memory accesses, unitialized variables and memory
leaks. Valgrind is also used in this work, though only as
a benchmark to compare results. Although this study aims
to detect the same classes of memory faults we do in this
project, this study does not use mutation operators to inject
such vulnerabilities. Instead, mutation operators that mutate
numerical arithmetic operators, pointer-arithmetic operators
and comparison operators are used to generate faults that
may or may not introduce memory based vulnerabilities to be
picked up by the runtime memory analyser. Their work also
acknowledges the fact that memory related faults are more
likely to occur in C programs due to the lack of infrastructure
available to detect them.

Interesting research such as a detailed evaluation of seven
modern dynamic buffer overflow detection tools was also
carried out by Zhivich [34]. They end up using CRED (C
Range Error Detector) in order to analyse buffer overflow
faults over Valgrind’s Memcheck, which is the tool we use
in our study, mainly because Memcheck uses sampled bound
checking to detect buffer overflow errors instead of more
precise bound checking techniques in CRED. They also found
that Valgrind runs 25-50 times slower than gcc due to the
fact it simulates program execution on a virtual x86 processor.
Although they observed a speed issue with using Valgrind,
Valgrind’s Memcheck is used as the primary memory analysis
tool in this project due to its ability to analyse a range of
other memory faults as well as its ability to handle faults due
to uninitialized memory especially well in comparison with
other alternative tools available.

VIII. CONCLUSION

Mutation Testing is notably good at testing the adequacy
of a test suite. However, traditional Mutation Operators only
mimic general faults while memory faults may be missed by

these operators. In this paper we propose 9 Memory Mutation
Operators (MeMOs) simulating different kinds of memory
faults. By applying MeMOs to 16 real world programs, we
find that these operators are effective in inserting memory
faults in the subject programs, but the traditional Mutation
Testing (comparing the output of a mutant against the original)
achieves relatively low Mutation Score. We find that richer
information can be used to reduce the number of survived
mutants. We collect the memory faults and the control flow
graph coverage of mutants and of the original program and use
this information to reduce the survived mutants that survive
the traditional strong killing criterion, proposing two new
Memory Fault Detection and Control Flow Deviation killing
criteria. The experimental results show that introducing these
two killing criteria can further reduce the survived mutants by
up to 75%. Furthermore, we summarise the number of survived
mutants (from traditional Mutation Testing) that can only be
killed by MFD or CFD criterion. The results suggest that both
criteria are useful in reducing the number survived mutants,
but no criterion subsumes the other.
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