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Abstract

Background: Mycobacterium tuberculosis is the principal etiologic agent of human tuberculosis. It has no environmental reservoir
and is believed to have co-evolved with its host over millennia. This is supported by skeletal evidence of the disease in early
humans, and inferred from M. tuberculosis genomic analysis. Direct examination of ancient human remains for M. tuberculosis
biomarkers should aid our understanding of the nature of prehistoric tuberculosis and the host/pathogen relationship.

Methodology/Principal Findings: We used conventional PCR to examine bone samples with typical tuberculosis lesions from
a woman and infant, who were buried together in the now submerged site of Atlit-Yam in the Eastern Mediterranean, dating
from 9250-8160 years ago. Rigorous precautions were taken to prevent contamination, and independent centers were used to
confirm authenticity of findings. DNA from five M tuberculosis genetic loci was detected and had characteristics consistent with
extant genetic lineages. High performance liquid chromatography was used as an independent method of verification and it
directly detected mycolic acid lipid biomarkers, specific for the M. tuberculosis complex.

Conclusions/Significance: Human tuberculosis was confirmed by morphological and molecular methods in a population
living in one of the first villages with evidence of agriculture and animal domestication. The widespread use of animals was
not a source of infection but may have supported a denser human population that facilitated transmission of the tubercle
bacillus. The similarity of the M. tuberculosis genetic signature with those of today gives support to the theory of a long-term
co-existence of host and pathogen.
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Introduction

Tuberculosis is a major global cause of death and disease and

around 2 billion people, about one third of the world’s total

population, are believed to be infected with tubercle bacilli [1].

However, only around 10% of infected persons become ill with

active disease, and this high level of latent infection is an indication

of long-term co-existence of human host and bacterial pathogen

[2]. Tuberculosis is caused by a group of closely related bacterial

species termed the Mycobacterium tuberculosis complex. Today the

principal cause of human tuberculosis is Mycobacterium tuberculosis.

Mycobacterium bovis has a wider host range and is the main cause of

tuberculosis in other animal species. Humans become infected by

M. bovis, usually via milk, milk products or meat from an infected

animal. It is estimated that in the pre-antibiotic era M. bovis was

responsible for about 6% of tuberculosis deaths in humans [3,4].

Other members of the M. tuberculosis complex include the human

pathogens Mycobacterium canettii, Mycobacterium africanum, and species

usually associated with animal infections, such as Mycobacterium

microti, Mycobacterium caprae and Mycobacterium pinnipedii.

Tuberculosis can cause characteristic skeletal changes, such as

collapse of the vertebrae (Pott’s disease), periosteal reactive lesions,
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and osteomyelitis [5]. Such paleopathological changes have been

reported in pre-dynastic (3500-2650 BC) Egypt [6], and Neolithic

(3200-2300 BC) Sweden culturally associated with the earliest

cattle breeders [7]. These are the oldest cases of human

tuberculosis confirmed by ancient DNA. Older cases recognized

by skeletal changes alone were found in Neolithic Italy at the

beginning of the fourth millennium BC [8,9].

Erosive lesions suggestive of tuberculosis have been found on

fossil fauna from the Natural Trap Cave in Wyoming, dated from

the 17,000 to 20,000 year level [10] and tuberculosis in one

specimen was confirmed by biomolecular methods [11]. Initially it

was believed that humans acquired tuberculosis from animals,

especially after domestication [12–14]. Whole genome sequencing

has since revealed that the M. tuberculosis complex has accumulated

deletions over time, which can be used to distinguish individual

species and lineages [15] and earlier ideas about the evolution of

the M. tuberculosis complex have been revised [16,17]. An

intriguing indication of the antiquity of the disease is the finding

of non-specific morphological changes consistent with tuberculosis

in a fossil Homo erectus dating from the middle Pleistocene (490–

510,000 years BP) from Turkey [18].

The emergence of human infectious diseases has been linked to

changes in human ecology and to interactions between popula-

tions [19]. The change from a gatherer-hunter lifestyle to settled

farming communities appears to coincide with the appearance of

diseases such as smallpox, measles, malaria, schistosomiasis, and

tuberculosis [20]. Our aim was to investigate this stage of human

history by the use of molecular methods to examine human

remains that pre-date the earliest verified cases of tuberculosis, but

with paleopathology consistent with this disease. A further aim was

to elucidate the molecular characteristics of the causative

organism. It is believed that the denser, settled populations

associated with agriculture and animal domestication enabled

human pathogens such as M. tuberculosis to be maintained

indefinitely [21]. Therefore, we examined one of the earliest

villages with evidence of both animal domestication and

agriculture, Atlit-Yam [22], for the presence of tuberculosis in

human remains with characteristic lesions. M. tuberculosis was

confirmed in the skeletal remains of a woman and child, using

both ancient DNA and bacterial cell-wall specific lipid markers.

Deletion analysis indicates that the modern M. tuberculosis lineage

characterized by the TbD1 deletion existed 9000 years ago.

Materials and Methods

The site of Atlit-Yam is now located 300–500 m offshore,

(34u569 E, 32u42.59 N), 8–12 m below sea level in the North Bay

of Atlit, 10 km south of Haifa (Figure 1). Calibrated radiocarbon

dates range from 9250-8160 years BP [23], indicating a date

during the last phase of the Pre-Pottery Neolithic C period, when

human society accomplished a full shift from hunting and

gathering to farming, fishing and animal husbandry. The rich

finds included botanical remains, tools, animal and human bones.

The many animal remains that were excavated included goat

(44%), cattle (43%), pig (9%), gazelle and deer (3.3%).

Human skeletons, which were embedded in dark clay, were

carefully excavated and soaked in fresh-water tanks to dissolve the

salts. The skeletal remains [24,25] were generally well-preserved

(Supporting Figure S1A) and some showed paleopathological

features consistent with a diagnosis of tuberculosis. Samples were

taken for molecular examination from the skeletal remains of a

woman buried together with an infant (Supporting Figure S1B). We

analyzed the ribs, arm bones (adult) and long bones (infant). The

work was done in separate centers to provide verification of data,

and stringent precautions were taken against contamination

(Supporting Materials and Methods S1). Separate areas and

pipettes were used for extraction, PCR set-up and product analysis.

Filter tips were used routinely and surfaces and equipment were

cleaned before each assay. DNA extracts were prepared and, using

the polymerase chain reaction (PCR), both multi-copy and single

copy target loci were amplified (Table 1) and sequenced to confirm

their identity. Screening PCRs detected the M. tuberculosis complex

and nested or hemi-nested PCR was used to increase the likelihood

of detection (Supporting Materiasls and Methods S1). A single copy

conserved membrane protein locus (CMP) found in the M.

tuberculosis complex was examined by PCR to assess the feasibility

of seeking further single-copy loci. PCR target regions, based on

specific deletions, were used to distinguish between M. tuberculosis

and M. bovis. Extracts were analyzed further by reverse dot-blot

hybridization of the M. tuberculosis complex-specific Direct Repeat

(DR) region, a procedure known as spoligotyping [26]. In addition,

samples from both the infant and adult were analyzed by high

performance liquid chromatography (HPLC) for mycobacterial cell

wall mycolic acids [27,28] (Supporting Tables S1, S2 and S3 and

Supporting Figure S2 A and B). Long chain fatty acids were

converted to pyrenebutyric acid-pentafluorobenzyl mycolates, and

reverse phase HPLC examined for profiles similar to standard M.

tuberculosis. Further normal and reverse phase HPLC was performed

to give detailed profiles for each sample. These were used to

determine the percentage ratios and absolute amounts of mycolic

acids extracted from bone samples.

Results

Paleopathology
The infant, though small in size, was estimated to be about 12

months old, based on crown development and long bone

Figure 1. Map of Atlit-Yam site in the North Bay of Atlit, 10 km
south of Haifa (34u569 E, 32u42.59 N). Inset shows general
geographical location.
doi:10.1371/journal.pone.0003426.g001

Neolithic M. tuberculosis
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dimensions. On the inner aspect of the infant cranial bones were

serpentine engravings (serpens endocrania symmetrica, SES; Figure 2A),

a reliable diagnostic criterion for intra-thoracic inflammation [29]

and associated with tuberculosis. The infant tubular bones also

demonstrated lesions identified as hypertrophic osteoarthropathy

(HOA), highly suggestive of tuberculosis [30] and characterized by

the formation of an expanded shell of periosteal reactive bone

(Figure 2B and C). The woman was estimated to be around 25

years old, based on dental attrition, epiphyseal ring ankylosis and

symphysis pubis. There was a slight periosteal reaction affecting

the distal diaphysis of the one tibia available for examination, a

bony change consistent with HOA [5,31,32]. However, the

changes were not so marked as to be diagnostic.

Mycobacterium tuberculosis complex and M. tuberculosis
DNA

M. tuberculosis complex DNA was detected in the bones of

woman and infant (Table 2). Positive results with the multi-copy

IS6110 [33,34] and IS1081 [35] PCRs were obtained with the rib

sample from the woman and infant long bone sample, and

confirmed by sequencing. An IS6110 123 bp product from the

woman (right rib) and a 92 bp nested IS6110 product from the

infant were obtained, identical to those in the NCBI database.

Additionally, a 104 bp sequence identical to the relevant NCBI

sequence in the IS1081 product was obtained from the infant.

The single copy TbD1 flanking PCR was positive from the

infant sample and a complete DNA sequence for the 128 bp

amplicon with the outer primers was obtained (Supporting Figure

S3A and B). The consensus sequence was identical to that in the

NCBI database. The strong signal indicates the excellent

preservation at this locus of the M. tuberculosis DNA template.

Nested PCR was also successful. Weak positives were obtained

with the outer primers from the female sample. These findings are

evidence that the infecting organism was M. tuberculosis from a

lineage in which the TbD1 deletion had occurred [16]. Results

from the infant for the single copy CMP PCR were faint and a

partial sequence was obtained (Supporting Figure S3C) with some

mismatched bases compared with the database, attributed to poor

Table 1. Primer sequences and PCR details.1

Locus Primers (59 - 39) MgCl2 (mM) Annealing temp. (uC) Product (bp)

IS6110 P1: CTCGTCCAGCGCCGCTTCGG

Outer P2: CCTGCGAGCGTAGGCGTCGG 1.5 68 123

IS6110 IS3: TTCGGACCACCAGCACCTAA

Nested IS4: TCGGTGACAAAGGCCACGTA 1.5 58 92

IS1081 F2: CTGCTCTCGACGTTCATCGCCG

Outer R2: GGCACGGGTGTCGAAATCACG 1.5 58 135

IS1081 F2: CTGCTCTCGACGTTCATCGCCG

Hemi-nested R3: TGGCGGTAGCCGTTGCGC 2.0 58 113

TbD1 TbD1a: CTAACGGGTGCAGGGGATTTC

Flanking outer TbD1b: CCAAGGTTACGGTCACGCTGGC 1.5 60 128

TbD1 TbD1c: GCAGGGGATTTCAGTGACTG

Flanking inner TbD1d: GCTGGCCAGCTGCTCGCCG 1.5 58 103

CMP F2: TCGGTCAGCAAGACGTTGAAG

R: ACTTCAGTGCTGGTTCGTGG 2.0 58 105

RD2 BV1: ATCTTGCGGCCCAATGAATC

Outer BV2: CAACGTCTTGCTGACCGACA 1.5 58 124

RD2 BV3: ATGAATCGGCCGCGTTCG

Nested BV4: GACCGACATCGGTGCCGCG 1.5 58 99

DR DRa: GGTTTTGGGTGTGACGAC2 Not applicable

DRb: CCGAGAGGGGACGGAAAC 3.0 55

1An initial denaturation step (95uC for 15 mins – hot start PCR, or 94uC for 1 min); DNA amplification (initially 40 cycles, with 25 cycles in nested reactions) of strand
separation at 94uC for 40 sec, 1 min of primer annealing, followed by strand extension at 72uC for 20 sec plus 1 sec/cycle; and a final extension step at 72uC, were used
for all PCR amplifications.

2The DRa primer was biotinylated at the 59 end to enable subsequent detection of amplified DNA by reverse hybridization.
doi:10.1371/journal.pone.0003426.t001

Figure 2. Paleopathological lesions on Neolithic infant bones.
A. Endocranial surface of the infant showing marked engravings
(serpens endocrania symmetrica, SES), which indicate chronic respiratory
malfunction, and are usually associated with tuberculosis. B. Fragment
of long bone of the infant. Note the intensive bone remodeling
(hypertrophic osteoarthropathy, HOA) at the surface on the right side.
C. Higher magnification of the HOA on the infant bone.
doi:10.1371/journal.pone.0003426.g002
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DNA preservation. No demonstrable amplicons of human nuclear

microsatellite DNA were obtained from the bone samples.

Spoligotyping provided additional evidence for M. tuberculosis

complex DNA for both the adult and infant specimens (Supporting

Figure S4 A–D), although there were several faint or dubious

positives and inconsistencies between replicates, as might be

expected of ancient specimens.

Lipid biomarkers of M. tuberculosis
Modifying an established protocol [28,36], long-chain fatty

acids were extracted as pentafluorobenzyl (PFB) esters, and

fractions corresponding to PFB mycolates were obtained (Sup-

porting Tables S4, S5). After treatment with pyrenebutyric acid

(PBA) these fractions produced PBA-PFB mycolates, which, after

reverse phase HPLC, gave profiles closely similar to those

produced by the M. tuberculosis complex, as indicated by a

standard M. tuberculosis strain (Figure 3). Further normal and

reverse phase HPLC gave detailed profiles for each sample,

reinforcing the close identity with M. tuberculosis (Supporting Figure

S2 C and D).

Discussion

It is believed that inundation of the Atlit-Yam site occurred

shortly after abandonment [24] and thereafter the environment

remained unchanged for 9,000 years. The Atlit-Yam site was

located within marshland; the graves were encased in clay,

eventually covered by thick layer of sand and later by salt water,

thus providing anaerobic conditions that retard degradation. The

excellent preservation of the skeletal remains is consistent with the

excellent physical state of the organic artifacts (wooden bowls, reed

mats) that were found on the site. The paleopathogical lesions of

SES in the infant cranium and HOA in the infant long bones and

possibly also the tibia of the woman buried with the infant,

presumed to be the mother, suggest that both suffered from, and

died of, tuberculosis.

Anaerobic conditions are also conducive for DNA preservation

[37] and DNA analysis supports the paleopathological diagnosis of

tuberculosis. Overall, the PCR data provide strong evidence of the

M. tuberculosis complex as specific DNA was detected in five

different genetic loci, including the TbD1 locus with a deletion

that is specific for a broadly-defined modern lineage of M.

tuberculosis. Failure to detect human DNA (data not included) may

reflect the greater stability of the GC-rich mycobacterial DNA,

which additionally benefits from the robust hydrophobic bacterial

cell wall [28,38,39].

Direct detection of cell wall mycolic acids specific for the

Mycobacterium tuberculosis complex, without any amplification step,

provides independent, robust confirmation of the presence of

tuberculosis. The quantity of mycolic acids appeared lower in the

infant sample (Supporting Table S5), in contrast to the DNA

studies where the infant gave better results. However, the mycolate

analyses were carried out on three combined rib samples from the

baby, not all of which had been tested for MTB DNA. These

extremely hydrophobic high molecular weight molecules are more

stable than DNA and have been used previously to confirm

diagnoses of ancient tuberculosis [27,28].

We conclude that both individuals in our study were infected

with M. tuberculosis, and that our findings are supported when we

consider the nature of the site, the stringent precautions taken to

prevent cross-contamination and verification by the specific lipid

biomarkers. Furthermore, we believe that this is the earliest report

of the disease in humans that has been confirmed by molecular

means. The infant is likely to have had disseminated primary

tuberculosis: - the only DNA sequences for single copy loci were

obtained from the infant material, which suggests a higher

bacterial load during life. In infants less than a year old the

present risk of developing active disease on infection with M.

tuberculosis is as high as 43% [40] due to the inadequacy of their

immune system. This compares with 5–10% in adults, 15% in

adolescents, and 24% in children aged 1–5 years.

The size of the infant’s bones, and the extent of the bony

changes, suggest a case of acquired neonatal tuberculosis, in which

an adult suffering from contagious pulmonary tuberculosis infects

an infant shortly after birth. Childhood tuberculosis is closely

linked to adult disease and is usually a sentinel event in the

community, demonstrating recent transmission. Infant and

maternal mortality rates from untreated tuberculosis in recent

times was between 30% and 40% [41], so it is unsurprising for

both mother and child to succumb and be buried together.

Spoligotyping should be a useful method of examining DNA

from archaeological material as even fragmented DNA gives

results, due to the increased sensitivity from the combination of

amplification and hybridization [42]. M. tuberculosis complex DNA

from the lesion of a 17,000-old extinct Pleistocene bison [11]

yielded spoligotyping patterns most similar to Mycobacterium

africanum or M. tuberculosis [43], and distinct from present day M.

bovis. Zink et al. [44] obtained spoligotypes from ancient Egyptian

Table 2. Summary of PCR results.

PCR locus Woman Infant

1st stage
PCR

2nd stage
PCR

1st stage
PCR

2nd stage
PCR

IS6110 Positive Positive Positive1 Negative

IS1081 Positive Positive Positive1 Positive

Flanking TbD1 Positive Negative Positive1 Positive

RD2 Negative Negative Negative Negative

CMP Positive Not done Positive1 Not done

1confirmed by sequencing.
doi:10.1371/journal.pone.0003426.t002 Figure 3. Detection of Mycobacterium tuberculosis mycolic acid

pyrenebutyric acid-pentafluorobenzyl (PBA-PFB) derivatives
by reverse phase fluorescence high performance liquid
chromatography (HPLC), from the Neolithic woman and infant.
The characteristic tight envelopes of peaks are the total mixture of
homologues for the different a-, methoxy- and ketomycolates. The Y-
axis in the profiles represents absorbance; absolute values of the
mycolates detected are shown in Supporting Table 5.
doi:10.1371/journal.pone.0003426.g003
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human bone and soft tissue samples, dating back to about 4000

years. Of their 12 positive samples, spoligotyping indicated M.

tuberculosis or, in some older Middle Kingdom samples, M.

africanum patterns, but not those of M. bovis.

We carried out spoligotyping on specimens from the woman

and infant but replicated typing gave inconsistent results, which

suggests there may be poor DNA preservation of some of the

single-copy spacer regions. The observed patterns do not match

any in the International Data Base spoldb4: www.pasteur-

guadeloupe.fr/tb/spoldb4 but appear similar to an ancestral

pattern. Results need to be interpreted with caution, as spoldb4 is

based on data obtained from cultured organisms and spoligotyping

has not been validated for application to DNA extracts prepared

from degraded or archival specimens. The spoligotyping technique

is based on modern M. tuberculosis strains from around the world.

As the main variation in types is caused by unidirectional

deletions, all ancestral strains are likely to produce a near-

complete profile of the DR region and therefore to resemble each

other. This may explain why the spoligotypes from the Atlit Yam

skeletons resemble those of the Pleistocene bison [11].

Deletion analysis is a more robust method of examining ancient

material [16,45], and based on the TbD1 deletion, the genetic

lineage resembles modern lineages of M. tuberculosis [16,43,51].

Suggestions that human tuberculosis arose from M. bovis in

hunted or domesticated animals have been revised since

comparative genomic studies demonstrate that M. bovis represents

a later lineage [16,17]. Members of the M. tuberculosis complex are

genetically very similar and were believed to be the result of a

clonal expansion following an evolutionary bottleneck 20,000–

35,000 years ago [16,46,47]. However, further genomic studies of

the M. tuberculosis complex indicate a more ancient origin of this

group of closely related species than had previously been believed,

and that possibly an early progenitor, perhaps similar to M. canettii,

was present in East Africa as early as 3 million years ago [48,49].

The observation of non-specific lesions consistent with tuberculosis

found in a 500,000 year-old skeleton of Homo erectus [18] may also

indicate the long-term co-existence of host and pathogen, although

the diagnosis in this particular case has been questioned. However,

M. tuberculosis appears to have undergone long-term co-evolution

with its human host prior to the evolutionary bottleneck and well

before the development of agriculture and domestication,

comparable to other long-term human pathogens such as

Helicobacter pylori [50,51].

The present study of a population from 9250-8160 years ago,

around the time of the first great transition from hunter-gatherers

to a settled agriculture-based lifestyle [19], helps us to understand

the nature of tuberculosis within the Middle East. Could the

presence of cattle be pertinent? Atlit-Yam is among the very few

Pre-Pottery Neolithic sites where domesticated cattle have been

found. Furthermore, it is the only Neolithic site where there were

quantities of bovine bones, indicating that cattle were a major

dietary component [23]. We suggest that in the absence of

detectable M. bovis, the cattle may be important by supporting a

larger and denser human population, thus indirectly encouraging

the conditions for the long-term maintenance and transmission of

M. tuberculosis [21].

Supporting Information

Materials and Methods S1 Text

Found at: doi:10.1371/journal.pone.0003426.s001 (0.05 MB

DOC)

Table S1 The solvent sequence used for the silica gel normal

phase cartridge fractionation of long-chain compounds

Found at: doi:10.1371/journal.pone.0003426.s002 (0.03 MB

DOC)

Table S2 The solvent sequence used for the reverse phase

cartridge purification of PBA-PFB mycolates

Found at: doi:10.1371/journal.pone.0003426.s003 (0.02 MB

DOC)

Table S3 Conditions for HPLC analysis of PBA-PFB mycolates

Found at: doi:10.1371/journal.pone.0003426.s004 (0.02 MB

DOC)

Table S4 Percentage ratios of alpha-, methoxy- and ketomyco-

lates in archaeological samples and M. tuberculosis standard

determined in normal phase HPLC

Found at: doi:10.1371/journal.pone.0003426.s005 (0.02 MB

DOC)

Table S5 Absolute amounts of mycolic acids extracted from

bone samples

Found at: doi:10.1371/journal.pone.0003426.s006 (0.02 MB

DOC)

Figure S1 Atlit-Yam burials. A. An example of human remains

with excellent preservation. B. Partial excavation of the burial site

with the adult female and infant skeleton (arrow).

Found at: doi:10.1371/journal.pone.0003426.s007 (2.46 MB TIF)

Figure S2 High Performance Liquid Chromatography (HPLC)

methodology. A. Representative structures of the mycolic acids

from M. tuberculosis. Natural mixtures of mycolates express a range

of homologous components with varying chain lengths. B. Strategy

for the release and derivatization of mycolic acids for fluorescence

HPLC. (a) Hydrolysis with KOH/ methanol/toluene to release

mycolic acids. (b) Phase-transfer catalyzed esterification of mycolic

acids with pentafluorobenzyl bromide (PFB) to give PFB

mycolates. (c) Esterification of PFB mycolates, by reaction with

pyrenebutyric acid (PBA), to produce PBA-PFB mycolates,

catalyzed by dicyclohexylcarbodiimide and pyrrolidinopyridine.

R- represents the remainder of the mycolate molecule. C. Normal

phase HPLC of PBA-PFB mycolates from bone samples and

standard M. tuberculosis. D. Reverse phase HPLC of individual a -,

methoxy- and ketomycolic acid PBA-PFB derivatives from bone

samples and standard M. tuberculosis. The number of carbons in the

individual underivatized mycolic acids is shown.

Found at: doi:10.1371/journal.pone.0003426.s008 (0.83 MB TIF)

Figure S3 DNA sequence data. A. M. tuberculosis TbD1 flanking

region (128 bp), obtained from the infant sample (59-39 strand). B.

M. tuberculosis TbD1 flanking region (128 bp), obtained from the

infant sample (39-59 strand). C. M. tuberculosis conserved membrane

protein (CMP) region, obtained from the infant sample (59-39

strand only).

Found at: doi:10.1371/journal.pone.0003426.s009 (12.09 MB

TIF)

Figure S4 Repeated spoligotypes from the Atlit-Yam samples

and controls. Each set of spoligotyping data (A–C) represents, from

top to bottom, M. tuberculosis, M. bovis (BCG) controls, Atlit Yam

female and Atlit Yam infant. D. Diagram of spoligotyping data,

including M. africanum spoligotypes (Donoghue et al 2004), and a

consensus pattern based on one or more positive results.

Found at: doi:10.1371/journal.pone.0003426.s010 (5.61 MB TIF)
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